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RESEARCH ARTICLE

ALSgeneScanner: a pipeline for the analysis and interpretation of
DNA sequencing data of ALS patients
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Abstract
Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting
in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an
important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for
variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists,
including health care professionals and patients, are obtaining their genomic information without a corresponding ability
to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent.
Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated
report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence
data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the inter-
pretation of the relevance of novel and existing variants identified in DNA sequencing data.

KEYWORDS: ALS, genomics, NGS, bioinformatics, genome analysis

Introduction

Amyotrophic lateral sclerosis (ALS) is a progres-
sive neurodegenerative disease, typically leading to
death within 2 or 3 years of first symptoms. Many
gene variants have been identified that drive the
degeneration of motor neurons in ALS, increase
susceptibility to the disease or influence the rate of
progression (1). The ALSoD webserver (2) lists
more than 120 genes and loci which have been
associated with ALS, although only a subset
of these have been convincingly shown to be

ALS-associated (3), demonstrating one of the chal-
lenges of dealing with genetic data interpretation
of findings. Next-generation sequencing provides
the ability to sequence extended genomic regions
or a whole-genome relatively cheaply and rapidly,
making it a powerful technique to uncover the
genetic architecture of ALS (4). However, there
remain significant challenges, including interpret-
ing and prioritizing the found variants (5) and set-
ting up the appropriate analysis pipeline to cover
the necessary spectrum of genetic factors, which
includes expansions, repeats, insertions/deletions
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(indels), structural variants and point mutations.
For those outside the immediate field of ALS gen-
etics, a group that includes researchers, hospital
staff, general practitioners, and increasingly,
patients who have paid to have their genome
sequenced privately, the interpretation of findings
is particularly challenging.

The problem is exemplified by records of
SOD1 gene variants in ALS. More than 180 ALS-
associated variants have been reported in SOD1
(2). In most cases, the basis of these variants being
attributed to ALS is simply that they are rare and
found in SOD1. Neither of these is sufficient for
such a statement to be made. The p.D91A variant,
for example, reaches polymorphic frequency in
parts of Scandinavia, and yet has been convin-
cingly shown to be causative of ALS. A few var-
iants have been modeled in transgenic mice,
shown to segregate with disease or have other
strong evidence to support their involvement
(6–10) but most do not have such support. Rare
variation can be expected to occur by chance, and
its existence in a gene is not evidence of relation-
ship to a disease, making interpretation of
sequencing findings difficult. Although various
tools are available to predict the pathogenicity of a
protein-changing variant, they do not always agree,
further compounding the problem.

We, therefore, developed ALSgeneScanner, an
ALS-specific framework for the automated analysis
and interpretation of DNA sequencing data. The

tool is targeted for use by a wide audience which
includes people with knowledge outside genetics.

Materials and methods

ALSgeneScanner is part of the DNAscan suite
(11). Figure 1 shows the pipeline main steps. The
pipeline accepts sequencing data in fastq and bam
formats as well as DNA variants in vcf format. In
the latter case, only the annotation, variant priori-
tization, and report generation steps are performed.
A detailed description and benchmark of its analysis
components have been previously published (11).
ALSgeneScanner uses, among others, Hisat2 (12)
and BWA-mem (13) to align the sequencing data
to a reference genome, Freebayes (14) and GATK
Haplotype Caller (15) to call SNVs and small
indels, Manta (16) and ExpansionHunter (17) for
the detection of large structural variants (bigger
than 50 bps) and repeat expansions.

Software

ALSgeneScanner is available on GitHub (18)
(https://github.com/KHP-Informatics/
ALSgeneScanner). The repository provides
detailed instructions for tool usage and installation.
A bash script for an automated installation of the
required dependencies is also provided as well as
Docker (19) and Singularity (20) images for a fast
and reliable deployment. A Google spreadsheet
with the complete list of genes and loci used by
ALSgeneScanner is publicly available to visualize
and comment (see GitHub repository).

Gene and loci prioritization

ALSgeneScanner groups genes and loci associated
with ALS into three classes: i) genes and loci iden-
tified by our manual scientific literature review to
be associated with the disease or an influence on
the phenotype in ALS (see Table 1), ii) genes in
which variants of clinical significance have been
reported on ClinVar (51) and for which no contra-
dictory interpretation is present, and iii) genes for
which any association evidence has been submitted
to ALSoD (2). The union of these three sets of
genes (available on GitHub) is used to restrict the
genome analysis. However, ALSgeneScanner
allows the user to use a custom list of genes.

Manual scientific literature review

The literature review was performed using several
databases, including PubMed, MEDLINE, and
EMBASE, to identify all articles reporting the
contribution of genetic variations to the develop-
ment of the disease or the modification of the
phenotype in ALS from 1993, when SOD1 was
the first gene discovered to cause ALS (41), until
the date of the last manuscript revision. Review
articles were discarded. The resulting list of

Figure 1. ALSgeneScanner pipeline main steps. From
sequencing data in fastq format to the report generation of
the results.
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genes and loci was filtered by keeping only the
ones for which the link with ALS was shown in
at least two independent studies (e.g. SOD1,
FUS, C9orf72, etc.) or cohorts (e.g. KIF5A), or
whose variants passed the genome-wide signifi-
cance threshold in GWAS studies (e.g.
CAMTA1). In the latter case, if a replication
study was not yet available, to avoid spurious
associations, we also required that these
variants were surrounded by proxies in tight
linkage disequilibrium (LD) that clearly indicated
the presence of an associated haplotype block.
The resulting list of ALS genes and loci is kept
up to date by reviewing new articles as they
become available. This list, as well as the com-
plete list of reviewed articles, is available on
GitHub (https://github.com/KHP-Informatics/
ALSgeneScanner).

Variant prioritization

The pathogenicity prediction programs, SIFT (52),
PolyPhen-2 HDIV and PolyPhen-2 HVAR (53),
LRT (54), MutationTaster (55), MutationAssessor
(56), Fathmm (57), PROVEAN (58), Fathmm-
MKL coding (59), MetaSVM (60), and CADD
(61) are used to prioritize variants. A variant is
scored X where X is equal to the number of tools
which predict it to be pathogenic. A higher priority
is given to variants which are reported to be “likely
pathogenic” or “pathogenic” on ClinVar. For each
tool, we used the authors’ recommendations for the
categorical interpretation of the variants. For each
variant, the score ranges between 0 and 11 accord-
ing to the number of computational tools (11 in
total) that predict it to be pathogenic. In order to
leave the user free to customize the prioritization
criteria, both our cumulative score and the categor-
ical variant interpretations from the 11 tools are
included in the final results.

Whole-genome sequencing

The whole-genome sequencing (WGS) sample
used to assess the computational performance of
ALSgeneScanner was sequenced as part of Project
MinE (62). Venous blood was drawn from patients
and controls and genomic DNA was isolated using
standard methods. DNA integrity was assessed
using gel electrophoresis. Samples were sequenced
using Illumina’s FastTrack services (San Diego,
CA) on the Illumina Hiseq 2000 platform.
Sequencing was 100bp paired-end performed
using PCR-free library preparation, and yielded
�40x coverage across each sample.

Whole-exome sequencing

To assess the computational performance of
ALSgeneScanner we also used the Illumina
Genome Analyzer II whole exome sequencing of
NA12878 (ftp://ftp-trace.ncbi.nih.gov/1000genome
s/ftp/technical/working/20101201_cg_NA12878/NA
12878.ga2.exome.maq.raw.bam).

VariBench and ClinVar datasets

To assess our variant prioritization approach, we
used a set of non-synonymous variants from the
VariBench dataset (63) for which the effect is known
and all ALS-associated non-synonymous variants
stored in ClinVar (71 benign and 121 pathogenic).
The VariBench variants are not ALS genes specific-
ally, but because they are all annotated depending
on whether or not they are deleterious, the general
principles of the method could be tested. The data-
set includes VariBench protein tolerance dataset 1
(http://structure.bmc.lu.se/VariBench/tolerance_data-
set1.php) comprising 23,683 human non-synonym-
ous coding neutral SNPs and 19,335 pathogenic

Table 1. List of ALS genes identified by literature review.

Gene
Associated

ND
Phenotype
influence

Key
reference

ANG ALS/PD (21)
ANXA11 ALS (22)
APOE Longer survival (23)
ATXN2 ALS (24)
CAMTA1 Shorter survival (25)
C21orf2 ALS (26)
C9orf72 FTD/ALS Primarily bulbar onset (10)
CCNF FTD/ALS (27)
CHCHD10 FTD/ALS (28)
DAO ALS (29)
DCTN1 ALS (30)
EPHA4 Longer survival (31)
FIG4 ALS (32)
FUS FTD/ALS Early age of onset and

shorter survival
(9)

HNRNPA1 ALS (33)
IDE Shorter survival (25)
KIF5A ALS (34)
MATR3 ALS (35)
MOBP ALS (26)
NEK1 ALS (36)
NIPA1 ALS (37)
OPTN ALS (38)
PFN1 ALS Limb-onset (39)
PGRN FTD/ALS (40)
SARM1 ALS (26)
SCFD1 ALS (26)
SOD1 ALS Limb-onset, early age

of onset and
shorter survival

(41)

SPG11 ALS (38)
SQSTM1 FTD/ALS (42)
SETX ALS (43)
TAF15 ALS (44)
TARDBP FTD/ALS (45)
TBK1 ALS (26)
TUBA4A FTD/ALS (46)
UBQLN2 FTD/ALS (47)
UNC13A ALS Shorter survival (26)
VAPB ALS (48)
VCP FTD/ALS (49)
8p23.2 ALS (26)
1p34-

rs3011225
Late age of onset (50)
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missense mutations (64). None of the tools used in
our pathogenicity score were trained on the
VariBench dataset. However, it is possible that some
VariBench variants were present in the training data-
sets. In order to minimize the overlap between train-
ing and evaluation sets, we derived a subset of
variants (VariBenchFiltered) from the VariBench
dataset by filtering out its overlap with HumVar
(53), the CADD training dataset (61) and ExoVar
(65), which are commonly used to train the tools
(66). The resulting dataset comprising 5051 patho-
genic and 14,077 neutral variants, was balanced by
randomly subsampling 5051 neutral variants.

Evaluation of performance

Receiver operating characteristic (ROC) curves and
their corresponding area under the curve (AUC)
statistic were calculated using easyROC (67).
Accuracy, precision, and sensitivity are defined as in
equation below where Tp is true positives, Fp false
positives, Fn false negatives, and Tn true negatives.

Precision ¼ Tp

Tp þ Fp
; Sensitivity ¼ Tp

Tp þ Fn
;

Accuracy ¼ Tp þ Tn

Tp þ Tn þ Fn þ Fp

Hardware

All tests were performed on a single, mid-range,
commercial computer with 16GB RAM and an
Intel i7-670 processor.

Output

Resulting variants are reported in a tab-delimited
format to favor practical use of worksheet software
such as iWork Number, Microsoft Excel, or
Google Spreadsheets.

Results

Manual literature review identified 486 articles
describing a total of 127 genes and loci associated
with ALS (the article and gene lists are available
on GitHub), from which 38 genes and 2 loci
(Table 1) with strong and reproducible supporting
evidence of association with ALS or influence on
phenotype were included. ClinVar reported SNVs
and small indels in 44 genes and 4 structural var-
iants ranging in size from 3 to 50 million base
pairs. ALSoD reported variants in 126 genes and
loci. The union of these sets of genes contained
149 genes and loci. The Venn diagram in Figure 2
shows the overlap between the three sets.

Using a midrange commercial computer (4
CPUs and 16 gigabytes of RAM) (Figure 3)
ALSgeneScanner could analyze 40x WGS data of
one individual in about 7 h using 12.8GB of RAM,
and whole-exome sequencing data in 1 h and
20min using 8.5GB of RAM.

We tested the computational score that the tool
used to rank variants on three datasets. The
VariBench dataset, the VariBenchFiltered dataset,

Figure 3. Computational performance of the pipeline to process whole-genome sequencing and whole exome sequencing data from
fastq file to the generation of the final result report.

21
7

13
85

9

3

11

Manual Review

ALSoD
ClinVar

Figure 2. Venn diagram of the ALS related genes that we
selected in our literature review, found in the ALSoD webserver
and in the ClinVar database.
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and on the ALS associated ClinVar entries. Figure
4 shows the results on the three datasets and
Table 2 precision, sensitivity and accuracy of the
method in function of the chosen threshold. The
ROC curve for the VariBench and
VariBenchFiltered dataset (Figure 4, AUC = 0.90
and 0.81) suggests a cutoff equal to 9 which maxi-
mizes the accuracy (0.83 and 0.73) however, a
lower or higher cutoff can be chosen to reach a
better precision or sensitivity according to the
user’s needs. For example, for diagnostics a higher
sensitivity is generally required and a cutoff equal
to 5 would increase the sensitivity to 0.90 (Table
2). The ROC curve for the ClinVar variants sug-
gests a cutoff equal to 7. The AUC for such var-
iants is 0.82 (Figure 4) and the accuracy for the
ideal cutoff is 0.75 (Table 2). The better perform-
ance on the VariBench dataset can be partially
explained by the fact that some of its variants were
used for training the tools used by our cumulative

score. However, other factors can contribute to the
performance drop on the VariBenchFiltered and
ClinVar ALS datasets: first the uncertainty in the
ClinVar entries. ClinVar provides the community
with an infrastructure to allow researchers to store
their clinical observations, but the quality checks
are very limited and the only filter we have
adopted in this study to select the variants was the
absence of contradictory entries. A similar effect is
also likely for the VariBenchFiltered dataset.
Indeed, filtering out all variants present in the
other datasets might increase the proportion of
misclassified variants. Also, the different definitions
of pathogenicity and neutrality used in the differ-
ent benchmark/training datasets could contribute
to this effect (66). The second is the difficulty that
available computational tools have in assessing the
effect of ALS related variants (3,36), in part
because the mechanism of ALS is unknown, and
in part because at least some of the variants result
in a toxic gain of function that is difficult to under-
stand or model.

Correlation analysis was performed to investi-
gate the correlation between the 11 tools used by
our score, using the categorical results of each
individual tool on the VariBenchFiltered dataset.
Supplementary Table 1 shows the results of this
analysis. The average correlation was 45% and the
standard deviation 14%. Only PolyPhen-2 HDIV
and PolyPhen-2 HVAR showed a strong correl-
ation (83%). PolyPhen-2 HDIV differs from
PolyPhen-2 HVAR in the training dataset which
only included Mendelian disease variants. These
tools can provide the user with complementary
useful information.

Discussion

We have developed ALSgeneScanner, a fast, effi-
cient, and complete pipeline for the analysis and
interpretation of DNA sequencing data in ALS,
targeted for use by a wide audience including non-
geneticists. The method is able to distinguish

Table 2. ALSgeneScanner variant prioritization performance.

VariBench VariBenchFiltered ClinVar ALS variants

Score Precision Sensitivity Accuracy Precision Sensitivity Accuracy Precision Sensitivity Accuracy

0 0.430 1 0.430 0.500 1 0.500 0.612 1 0.613
1 0.507 0.990 0.581 0.560 0.984 0.606 0.659 0.957 0.670
2 0.549 0.978 0.644 0.592 0.968 0.651 0.707 0.949 0.728
3 0.580 0.950 0.682 0.609 0.907 0.663 0.745 0.949 0.770
4 0.618 0.928 0.721 0.634 0.860 0.682 0.754 0.889 0.754
5 0.653 0.900 0.751 0.657 0.804 0.693 0.798 0.812 0.759
6 0.692 0.875 0.779 0.687 0.766 0.708 0.832 0.761 0.759
7 0.736 0.841 0.801 0.721 0.719 0.720 0.863 0.701 0.749
8 0.783 0.796 0.817 0.762 0.657 0.726 0.911 0.615 0.728
9 0.845 0.731 0.827 0.817 0.582 0.726 0.926 0.538 0.691
10 0.919 0.635 0.819 0.895 0.486 0.714 0.931 0.462 0.649
11 0.954 0.436 0.748 0.937 0.315 0.647 0.925 0.316 0.565
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Figure 4. ROC curve of the performance of ALSgeneScanner
on the three datasets.
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pathogenic from nonpathogenic variants with high
accuracy and reports findings in a simple format,
able to be exported for further analysis. With the
decreasing costs and increasing availability of next-
generation sequencing, health care professionals
and motivated patients are progressively more
likely to have WGS data available, without the
tools to interpret findings. An automated system to
provide a meaningful report, therefore, has a
potentially important part to play in giving patients
ownership of their data and arming them with the
knowledge to understand it, but this should always
be interpreted with the assistance of a specialized
genetic counselor.

Omictools (68), a web database where available
bioinformatics tools are listed and reviewed, lists
over 7000 such tools for next-generation sequenc-
ing, including more than 100 pipelines; given the
great interest in this field, new tools are frequently
released. As a result, designing a bioinformatics
pipeline for the analysis of next-generation
sequencing data, keeping the system simple to use
on a standard computer and translating the output
into a format that is easily understood, is not triv-
ial, and requires specialized expertise. The compu-
tational effort and the informatics skills required to
use typical pipelines can dramatically limit the use
of next-generation sequencing data. Adequate
high-performance computing facilities and staff
specialized in informatics are not always present in
medical and research centers. Furthermore, the
use of cloud computing facilities, which could the-
oretically provide unlimited resources, is not
always possible due to privacy and ownership
issues, cost and the expertise required for their
use. To this end, ALSgeneScanner is computation-
ally light as it can run on a midrange commercial
computer. Performing the same analyses with
other widely used pipelines, e.g. SpeedSeq (69)
and GATK Best Practice Workflow (15), would

require high-performance facilities (HPC) and
about 3–10 times more computational resources
than for ALSgeneScanner (11). It is easy to use
since it performs sophisticated analyses using only
a few command lines (see Figure 5) and is com-
prehensive, including the necessary analyses to
identify all known ALS associated genetic factors.
Finally, a tab-delimited output, in which the ana-
lysis results are enriched with information from
several widely used databases such as ClinVar,
ALSoD, our manual literature review, pathogen-
icity scores and the graphical visualization utilities
(see Supplementary Material) integrated in the
pipeline as part of DNAscan (11), favor an easily
accessible interpretation of the results. No other
currently available pipeline provides the user with
such a comprehensive end-to-end ana-
lysis framework.

Our table of sensitivity, specificity, and accur-
acy (Table 2) means that the appropriate cutoff
can be used to interrogate data, depending on
whether the aim is the exclusion of potentially
harmful variants, or the detection of definitely
harmful variants.

ALSgeneScanner puts a powerful bioinformat-
ics tool, able to exploit the potentialities of next-
generation sequencing data in the hands of
patients, ALS researchers, and clinicians.
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