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Abstract We focus on the problem of link prediction in Knowledge Graphs
with the goal of discovering new facts. To this purpose, Energy-Based Models
for Knowledge Graphs that embed entities and relations in continuous vector
spaces have largely been used. The main limitation on their applicability lies
in the parameter learning phase that may require a large amount of time for
converging to optimal solutions. For this reason we propose a unified view of
the Energy-Based Embedding Models that is grounded on an adaptive learn-
ing rate, showing that this kind of selection can improve the efficiency of the
parameter learning process by an order of magnitude with respect to existing
methods, leading to more accurate link prediction models in a significantly
lower number of iterations. Finally, we also employ the proposed learning pro-
cedure for evaluating a variety of new models. Our results show a significant
improvement over state-of-the-art link prediction methods on two large knowl-
edge graphs: WORDNET and FREEBASE.

1 Introduction

Knowledge Graphs (KGs) are graph-structured knowledge bases, where fac-
tual knowledge is represented in the form of relationships between entities.
We focus on KGs that adopt Resource Description Framework (RDF)E| as
their representation, since they constitute a powerful instrument for search,
analytics, recommendations, and data integration. Indeed, RDF is the Web
standard for expressing information about resources.

A resource (hereafter also called entity) can be anything, including doc-
uments, people, physical objects, and abstract concepts. An RDF knowledge
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base (also called RDF graph as a KG) is a set of RDF triples in the form
(s,p,0), where s, p and o denote the subject, the predicate and the object of
the triple, respectively. The s and o position are generally intended as resources
while p denotes a predicate (i.e. a relation type). Each triple (s, p, 0) describes a
statement, which can be interpreted as: A relationship of type p holds between
entities s and o. The following example shows a set of RDF triplesﬂ describing
the writer William Shakespeard’}

Ezxample 1 (RDF Fragment)

(W. SHAKESPEARE, INFLUENCEDBY, G. CHAUCER)

(W. SHAKESPEARE,  RELIGION, CHURCH OF ENGLAND)
(W. SHAKESPEARE, AUTHOR, HAMLET)

(HAMLET, GENRE, TRAGEDY)

(HAMLET, CHARACTER, OPHELIA)

Several RDF KGs are publicly available through the Linked Open Data
(LOD) cloud, a collection of interlinked KGs such as Freebase [4], DBpedia [3]
and YAGO [18]. As of April 2014, the LOD cloud is composed by 1,091 in-
terlinked KGs, globally describing more than 8 x 10% entities, and 188 x 106
relationships holding between thenﬁ However, KGs are often largely incom-
plete. For instance, 71% of the persons described in Freebasdﬂ have no known
place of birth and 75% of them have no known nationality [11].

For this reason, in this work, we focus on the problem of predicting missing
links in large KGs, so to discover new facts about a domain of interest. In
the literature, this problem is referred to as link prediction, or knowledge base
completion. The aim of this work is to provide an efficient and accurate model
for predicting missing RDF triples in large RDF KGs (in a link prediction
setting), without requiring extra background knowledge.

Specifically, we focus on a class of Energy-Based Models for KGs, where
entities and relations are embedded in continuous vector spaces, referred to
as embedding spaces. In such models, the probability of an RDF triple is ex-
pressed in terms of energy of the triple, i.e. an unnormalized measure that
is inversely proportional to the triple probability and is computed as a func-
tion of the embedding vectors of the subject, the predicate and the object of
the triple. In the following, we refer to models in this class as Energy-Based
Embedding Models (EBEMs). These models, such as Translating Embedding
(TransE) [6] and other related ones [5/7,25], achieve state-of-the-art results on
link prediction tasks, while being able to scale to large KGs, such as WORD-
NET and FREEBASE. However, a major limiting factor lies in the parameter

2 This description is taken from the FREEBASE KG |4

3 For readability reasons, we describe entities and relations using abbreviated forms rather
than the pure RDF syntax.

4 State of the LOD Cloud 2014: http://lod-cloud.net/
5 Available at https://developers.google.com/freebase/data
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learning algorithm, which may require a long time (even days) to converge on
large KGs [9].

In order to overcome such a limitation, we propose a method for reduc-
ing the learning time in EBEMs by an order of magnitude, while leading to
more accurate link prediction models. Furthermore, we employ the proposed
learning method for evaluating a family of novel EBEMs with useful proper-
ties. We experimentally tested our methods on two large and commonly used
KGs: namely WORDNET and FREEBASE by showing a significant improvement
over state-of-the-art link prediction methods. on two large knowledge graphs:,
namely WORDNET and FREEBASE.

The rest of the paper is organized as follows. In Sect. [2] we introduce basics
on Energy-Based Models and their application to RDF KGs. In Sect. [3] we
propose a framework for characterizing state-of-the-art EBEMs, together with
a family of novel energy functions with useful properties, and a method for
improving the efficiency of the learning process in such models. In Sect. [4] we
survey related works. In Sect. [5] we empirically evaluate the proposed learning
methods and energy functions. In Sect. [f] we summarize this work, and outline
future research directions.

2 Basics

In this section we summarize the basics of Energy-Based Models, after that
we focus on the formalization of Energy-Based Models for RDF KGs.

2.1 Energy-Based Models

Energy-Based Models (EBMs) |17] are a versatile and flexible framework for
modeling dependencies between variables. The key component in EBMs is a
scalar-valued energy function E(-), which associates a scalar energy to a con-
figuration of variables. The energy of a configuration of variables is inversely
proportional to the probability of the configuration of variables: more likely
configurations correspond to lower energy values, while less likely configura-
tions correspond to higher energy values. Two main steps can be recognized
in EBMs: the inference step and the learning step.

In EBMSs, inference consists in finding the most likely configuration of the
variables of interest, that is the one that minimizes the energy function E(-).
Let X and Y be random variables, with values in X and ). An example of
the exploitation of the inference in EBMs is given in the following.

Ezample 2 (Energy-Based Inference) Assume that X describes the pixels of
an image, while Y describes a discrete label associated to the image (such as
“ v

car” or “tree”). Let E : X x ) — R be an energy function defined on the
configurations of X and Y. The most likely label y* € Y for an image z € X
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can be inferred by finding the label in Y that, given x, minimizes the energy
function E(-):

* = argmin E(x,y).
y gmin B (z, y)

Learning in EBMs consists in finding the most appropriate energy function
within a family F = {Ep | 8 € ©}, indexed by parameters §. That is in
finding the function that is actually able to associates lower energy states
to likely configurations of the variables of interests, and higher energy states
to unlikely configurations of such variables. In practice, this corresponds to
finding the energy function Ej € F that minimizes a given loss functional L,
which measures the quality of the energy function on the data D:

E; = arg ]L{Iglg}:ﬁ(Eg,D).

A normalized probability distribution can be derived from an EBM. Specif-
ically, given an energy function F : X — R defined on the possible configura-
tions of a random variable X, it is possible to derive a corresponding proba-
bility distribution through the Gibbs distribution:

P(X =z) = BRSO

Z(P) ’

where 8 is an arbitrary positive constant, and Z(8) = > . e PE@) is a
normalizing factor H referred to as the partition function.

2.2 Energy-Based Models for RDF KGs

EBMs can be used for modeling the uncertainty in RDF KGs, in both statis-
tical inference and learning tasks.

An RDF graph G can be viewed as a labeled directed multigraph, where
entities are vertices, and each RDF triple is represented by a directed edge
whose label is a predicate, and emanating from its source vertex to its object
vertex. We denote as £g the set of all entities occurring as subjects or objects
in G, that is £ = {s | I(s,p,0) € G} U{o | (s,p,0) € G}, and as R¢ the set
of all relations appearing as predicates in G, that is Rg = {p | (s, p,0) € G}.
Let Sg = € X Rg X Eg be the space of possible triples of G, with G C Sg,
and let E : S¢ — R be an energy function that defines an energy distribution
over the set of possible triples Sg. The most likely object 0o* € £g to appear
in a RDF triple with subject s € £z and predicate p € Rg, can be determined
according to E(-). Specifically, the most likely object o* can be inferred by
finding the object 0 € £ that minimizes E(-):

0" = arg min E((s,p,0)).

o€€q

6 If X is a continuous random variable, then Z(8) = Soex e PEE),
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As mentioned in Sect. [1} in this work we will focus on Energy-Based Embed-
ding Models (EBEMS) (presented in Sect.[3)) that are a specific class of EBMs
for RDF KGs where each entity € £¢ is mapped to a unique low-dimensional
continuous vector e, € RF that is referred to as the embedding vector of x.
The reason for such a choice is that EBEMs, such as Translating Embedding
(TransE) [6] and related models [5}7,/25], achieve performances that are com-
parable with state-of-the-art link prediction methods, while scaling to large
RDF KGs such as WORDNET and FREEBASE.

3 A Framework for Energy-Based Embedding Models

In this section, we present a general framework for formalizing EBEMs for
KGs in a unified view.

Given an RDF graph G with entities g, relations Rg, and Sg = Eg X
Ra x Eg the space of possible triples of G, similarly to EBMs, an EBEM
associates an energy value to each triple in S¢, by means of an energy function
Ey : S¢ — R, with parameters 0. As for EBMs, Learning in EBEMs consists
in finding an energy function Ej € F, within a parametric family of energy
functions F = {Ejy | 6 € ©} indexed by parameters 6, that minimizes a given
loss functional £ defined on the RDF graph G:

E; = argErrgieI}_E(Eg,G).
6

Since the energy value for a triple expresses a quantity that is inversely pro-
portional to the probability of the triple itself (see Sect. , in a link prediction
setting, the energy function Ej(-) can be exploited for assessing a ranking of
the so called unobserved triples, that are the triples in Sg \ G. As such, triples
associated to lower energy values (higher probabilities) will be more likely to
be considered for a completion of the graph G. Indeed, in RDF, the Open
World Assumption holds, which means that a missing triple in G does not
mean that the corresponding statement is false (like for the case of the Closed
World Assumption typically made in the database setting), but rather that
its truth value is missing/unknown since it cannot be observed in the KG.
We refer to all triples in G as wvisible triples, and to all triples in Sg \ G as
unobserved triples, which might encode true statements.

In the following sections, we show that EBEMs proposed in literature so
far can be characterized with respect to their energy function and we also
propose novel formulations of the energy functions with useful properties (see
Sect. . Hence we focus on the learning process, by specifically proposing
a method for improving the efficiency of the parameters learning step (see

Sect. 3.2).
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Table 1: Energy-Based Embedding Models for knowledge graphs proposed in
literature, with their energy functions, shared and embedding parameters.

Model Energy function E((s,p, o)) Shared Embedding
Unstructured |5] lles — eoll1 es, e, € RF
TransE (6] li(es + ep) — eoll1/2 es,ep,eo € RF
SE (7] Rp,1es — Rp,2€0]|1 es,e, € RF R, € R"¥F
RESCAL |21] el'Rye, es,e, € RF R € RFxF
SME lin. |5] (Ries + Raep) T (Rseo + Ruep) R. € R"*F es,ep,e, € RF
SME bil. [5] [(Ries) x3 (Raep)]T [(Raeo) x3 (Raep)] | R. € RnXF es,ep,e, € RF
NTN |[25] ul' tanh (el Tpe, + Rp 1es + Ry 2€0) es e € RY, u, € R”,
p s -pvTo p,1%s 'p,4¥0 Tp c RkaX1L7Rp,. c Rnxk

3.1 Energy Function Characterization and New energy Functions

The energy function Fy : S¢ — R of state-of-the art EBEMs for KG has two
types of parameters:

— Shared Parameters: used for computing the energy of all triples in the
space of possible triples S of G.

— Embedding Parameters: used for computing the energy of triples con-
taining a specific entity or relation z € £ U Rg. We denote such param-
eters by adding a suffix with the name of the entity or relation they are
associated to (e.g. es denotes the embedding vector of s).

EBEMs for KGs associate each entity x € £ to a k-dimensional embed-
ding vector e, € R¥, and each relation p € Rg to a (possibly empty) set of
embedding parameters S,,. Tab. [1| summarizes the energy functions of state-
of-the-art EBEMs for KGs, by highlighting the distinction between the two
different kinds of parameters reported above.

The energy functions can be seen as sharing a common structure: given a
RDF triple (s,p,0), its energy FE((s,p,0)) is computed by the following two
steps process:

1. The embedding vectors e, e, € RF, of the subject s and the object o of
the triple, and the embedding parameters S, associated to the predicate p

of the triple are used to obtain two new vectors e, e/, € R by means of
two functions f,(-) and f,(-) (see also Fig. [I)):

e, = fi(es,Sy), €)= folen,Sp).

2. The energy of (s, p,0) is computed by a function g : R¥ xRF — R, applied
to the vectors €', e/ € R¥ resulting from the previous step:

87 ~o

E((s,p,0)) = g(e;, e,) = g(fs(es, Sp), fo(€o,Sp))- (1)

The two steps process for computing the energy function for an EBEM is
clearly depicted in Fig. [I} As an example, in the following we show how the
energy function adopted by the Translating Embeddings model (TransE) [6],
which stands for the main state of the art EBEM for performing link pre-
diction in KG, can be expressed by the use of the formalization presented
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just above. Specifically, TransE is particularly interesting since while its num-
ber of parameters grows linearly with the number of entities and relations in
the knowledge graph, it yields state-of-the-art link prediction results on the
WORDNET and FREEBASE knowledge graphs (see the empirical comparison
with other link prediction methods in Sect. .

es _Sp €
3 T
T H“‘“‘-m l
l k/- H'ﬁ
e; = Jr'ﬂ (e-‘a'.‘ SP] E:J = fv(etn Sp)
-H""-\-\._\_\_\_HH ///’—
~ =

E{(s,p,0)) = gle,,e])

Fig. 1: Structure of the energy function in Energy-Based Embedding Models
for KGs: eg, S, and e, are the embedding parameters of s, p and o.

Ezample 8 (Energy Function in TransE) In the formulation for the energy
function of the Translating Embeddings model (TransE) [6] (see TablI), each
entity and relation € E6UR¢ in an RDF graph G is associated (correspond)
to an embedding vector e, € R in the embedding space, while each relation
corresponds to a translation operation in such an embedding space. As from
Tab. [1} the energy function can be formulated by using the L; or the Lo norm.
In the case of L; formulation, the energy of an RDF triple (s, p, o) is given by
the L, distance of (e; +e,) and e,:

E((s,p,0)) = || (es + ep) — €oll1.

This corresponds to the following choice of the functions fs(-), fo(:) and g(-):

fs(es, {ep}) = es + ey, foleo, {€p}) = ey, g(el,e,) = [lef —e, |1

O

Besides of proposing a general framework for expressing an energy function
to be used by EBEMs, in this work, we also investigate whether the choice of
other affine transformations for the functions f,(-) and f,(+), such as scaling,
or composition of translation and scaling, leads to more accurate models than
those generated by TransE (using the energy function reported in Tab. |1 and
reformulated as shown just above), while still having a number of parameters
that scales linearly in the number of entities and relations. Specifically, we
investigate the following choices for the functions f,(-) and f,(+):

Translation: fles, {ep}) = e, +ep,
Scaling: fles, {ep}) = e, O ey,
Scaling o Translation: f(e;,{ep1,€p2}) = (e; O ep1)+epo,
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where o denotes the composition operation between functions, and ® denotes
the Hadamard product. The results of such a study are reported and discussed
in Sect. Please note that, similarly to models in [5H7], we enforce the
embedding vector of all entities to lie on the Euclidean unit (k — 1)-sphere,
that is SF=! = {x € R¥ | ||x|2 = 1} (see Alg. l line (3 ' For such a reason,
we also propose normalizing the results of functions fs(-) and f,(-), so the
resulting projections also lie on the Kuclidean unit sphere.

In the next section we focus on the learning step of EBEMs, consisting (as
illustrated in Sect. in finding the most appropriate energy function to be
used for the successive inference step.

3.2 Learning the Parameters of the Energy Function

As illustrated in Sect.[2] learning in EBEMs for KGs corresponds to finding an
energy function Ej, within a family of functions F = {Ej | 6 € O} indexed by
parameters 6, that minimizes a given loss functional £ measuring the quality
of an energy function with respect to the RDF graph G:

E; = argéilieg__ﬁ(Eg,G).

In the following, the definition for the loss functional L is given. In agree-
ment with the formalization given in Sect. a key point for learning the
(best) energy function in EBEMs consists in learning the shared and embed-
ding parameters to be used for computing the energy function. As in [5H7],
shared and embedding parameters are learned by using a corruption process
Q(Z | x) that, given a RDF triple x € G, produces a corrupted RDF triple
Z, uniformly sampled from the set of corrupted triples C,. Formally, given
an RDF triple (s,p,0) from G, the set of corrupted triples for it is given by
Cispo) = {(3,p,0) | 5€Ea}U{(s,p,0) | 0€ &}
that is the set obtained by replacing either the subject or the object of the
triple with another entity from the set of entities £;. The corruption process
Q(Z | x) is used for defining the following margin-based stochastic ranking
criterion over triples in G:

L(Ey,G Z Z [v+ Eo(x) — Eo(2)] . , (2)

z€G i~Q(%|z)

where [z] | = max{0,z}, and v > 0 is a hyperparameter referred to as margin.

As proposed [5H7], the minimization of the loss functional in Eq. [2| can
be carried out by projected Stochastic Gradient Descent (SGD) in mini-batch
mode, as summarized in Alg. [[] Given an RDF graph G, at each iteration,
the algorithm samples a batch of triples from G. Similarly to [6], each batch is
obtained by first randomly permuting all triples in G, then partitioning them
into ny batches of similar size, and iterating over them. A single pass over
all triples in G is called an epoch. For each triple in the batch, the algorithm
generates a corrupted triple by means of the corruption process Q(Z | z):
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Algorithm 1 Learning in EBEMs via Stochastic Gradient Descent [6]

Input: Learning rate 7, batch size n
Output: Optimal model parameters 6*
1: Initialize model parameters 6y
2: forte (1,...,7) do

3 ez —eg/|les], Ve €la {Normalize all entity embeddings}
4: T «+ SAMPLEBATCH(G, n) {Sample observed and corrupted triples}
5 gt < VX (omyer [V + Eo(z) — Eo(2)] 4 {Evaluate the gradient of £ w.r.t. 0}
6: At +— —ngt {Calculate the update to model parameters 6}
7 Oy < 011 + Ay {Update the model parameters 6}
8: end for

9: return 0,

this leads to a set of observed and corrupted pairs of triples 7. Then, the
observed/corrupted triple pairs in T are used to evaluate the gradient of the
loss functional £ in Eq. [2] with respect to the current model parameters 6.
Finally, 6 is updated in the steepest descent direction of the loss functional £
by a fixed learning rate n. This procedure is repeated until convergence (in [6]
the learning procedure was limited to 1000 epochs).

The main drawback of SGD is that it requires an initial, careful tuning of
the learning rate 7 that is also used across all parameters, without adapting to
the characteristics of each parameter. However, if some entities and relations
are infrequent, the corresponding embedding parameters will tend to be up-
dated less frequently during the learning process. For such a reason, the task
of learning the model parameters in EBEMs by using SGD may require days
to terminate [9)].

In order to reduce the learning time in EBEMs, we propose the adoption of
adaptive per-parameter learning rates. Specifically, while the SGD algorithm
in Alg. [l uses a global, fixed learning rate 7, we propose relying on methods
that estimate the optimal learning rate for each parameter, while still being
tractable for learning large models. In particular, we consider the following
criteria for selecting the optimal learning rates: the Momentum method [23],
AdaGrad |12| and AdaDelta [28]. Each of these methods can be implemented
in Alg. [I} by replacing the update to model parameters on line [f] as specified
in the following.

Momentum Method The basic idea of this method is accelerating the
progress along dimensions where the sign of the gradient does not change,
while slowing the progress along dimensions where the sign of the gradient
continues to change. This is done by keeping track of previous parameter up-
dates with an exponential decay. The update step on line [6] of Alg. [T} in the
Momentum method is given by:

Ap < pAi1 — g,

where p is a hyperparameter controlling the decay of previous parameter up-
dates.
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AdaGrad The underlying idea in this method is that per parameter learning
rates should grow with the inverse of gradient magnitudes: large gradients
should have smaller learning rates, while small gradients should have larger
learning rates, so that the progress along each dimension evens out over time.
The update step on line [6] of Alg. [T} in AdaGrad is given by:

n
Ap ¢ —————01,

t
>j=19;

where 7 is a global scaling hyperparameter. AdaGrad has been used on large
scale learning tasks in a distributed environment [10].

AdaDelta This method uses an exponentially decaying average of squared
gradients E[g?] and squared updates E[A?], controlled by a decay term p, to
give more importance to more recent gradients and updates. The update step
on line [6] of Alg. [I] in AdaDelta is given by:

RMS[A],_1

Ay ——————qy,
' RMS[g] gt

where RMS[z]; = \/E[22]; + ¢, and € is an offset hyperparameter.

4 Related work

Statistical Relational Learning (SRL) [13] aims at modeling data from multi-
relational domains, such as social networks, citation networks, protein inter-
action networks and knowledge graphs. and one of the main goals is link pre-
diction in such relational domains. Two main categories of models can be
ascribed to SRL: Probabilistic latent variable models and Embedding Models
(see Fig. [2| for their main characteristics). The main related works falling in
these categories are analyzed in the following.

/

N
g

E((s,p,z}) E({z,p,0))

(&)

Yu; e U Yu; € U

e‘_ul

Fig. 2: Left — A simple SB for a social network: each user v € U is associated
to a latent class variable Z,, which conditions both its attributes A,, and its
relations with other users. Right — An example of EBEM: the embedding vector
e, of an entity = defines the energy of all RDF triples in which = appears in.



O©CoO~NOOOITA~AWNPE

Title Suppressed Due to Excessive Length 11

Probabilistic Latent Variable Models Models in this class explain re-
lations between entities by associating each entity to a set of intrinsic latent
attributes. The term latent refers to the fact that the attributes are not directly
observable in the data. Specifically, this class of models condition the proba-
bility distribution of the relations between two entities on the latent attributes
of such entities. Similarly to Hidden Markov Models [16], this allows the infor-
mation to propagate through the network of interconnected latent variables.
An early model in this family is the Stochastic Block Model (SB) [26], which
associates a latent class variable to each entity. The Infinite (Hidden) Rela-
tional Model [15]27] extends the SB by using Bayesian nonparametrics, so to
automatically infer the optimal number of latent classes. The Infinite Hidden
Semantic Model [22] further extends such model, so to make use of constraints
expressed in First Order Logic during the learning process, while the Mixed
Membership Stochastic Block Model [1] extends the SB so to allow entities to
have mixed cluster-memberships. More recent works associate a set of latent
features to each entity, instead of a single latent class. The Nonparametric
Latent Feature Relational Model |20] is a latent feature model, which relies on
Bayesian nonparametrics to automatically infer the optimal number of latent
features during learning.

The main limitation of probabilistic latent variable models lies in the com-
plexity of probabilistic inference and learning, which is intractable in gen-
eral |16]. As a consequence, these models may not be feasible for modeling
large knowledge graphs.

Embedding Models Similarly to probabilistic latent feature models (see
Fig. , in Embedding Models each entity in the knowledge graph is repre-
sented by means of a continuous embedding vector e, € R, encoding its in-
trinsic latent features within the KG. Nevertheless, models in this class do not
necessarily rely on probabilistic inference for learning the optimal embedding
vectors and this allows avoiding the issues related to the proper normalization
of probability distributions, that may lead to intractable problems.

In RESCAL |21], the problem of learning the embedding vector represen-
tations of all entities and predicates is cast as a tensor factorization problem:
by relying on a bilinear model, and by using a squared reconstruction loss,
its authors propose an efficient learning algorithm based on regularized Alter-
nating Least Squares. However, in RESCAL, the number of parameters grows
super-linearly with the number of predicates in the knowledge graph: for such
a reason, RESCAL can hardly scale to highly-relational knowledge graphs |14].

In EBEMs, the energy of each RDF triple (s, p, o) is defined as a functions
of the embedding vectors e; and e, associated to the subject s and the object
o of the triple. The major limitation in EBEMs is the learning time, i.e. the
time required for learning the parameters of the energy function.

Several options have been proposed for the choice of both the energy func-
tion and the loss functional for learning the embedding vectors representation,
e.g. see [57/14,25]. These methods have been used to achieve state-of-the-art



O©CoO~NOOOITA~AWNPE

12 Pasquale Minervini et al.

link prediction results while scaling on large KGs. We outperform such meth-
ods both in terms of efficiency (for learning the model parameters, reducing
the learning time by an order of magnitude) and effectiveness (by obtaining a
more accurate model) (see Sect. [5).

5 Empirical Evaluation

In this section, we present the empirical evaluation for our proposed solution.
Particularly, we aim at answering the following questions:

Q1: Can adaptive learning rates, as proposed in Sect. [3:2] be used for im-
proving the efficiency of parameters learning with respect to the current
state-of-the-art EBEMs?

Q2: Do the energy functions proposed in Sect. lead to more accurate link
prediction models for knowledge graph completion?

In Sect. we answer Q1 by empirically evaluating the efficiency of
the proposed learning procedure, and the accuracy of the learned models.
In Sect. we answer Q2 by evaluating the accuracy of models using the
proposed energy functions in link prediction tasks.

In the following, we describe the KGs used for the evaluation, jointly with
the adopted metrics. Specifically, for comparison purposes, we adopt the same
evaluation settings used in [6].

Knowledge Graphs As KGs, WORDNET [19] and FREEBASE (FB15K) [4]
have been adopted.

WORDNET is a lexical ontology for the English language. It is composed
by over 151 x 103 triples, describing 40943 entities and their relations by means
of 18 predicate names.

FREEBASE (FB15K) is a large collaborative knowledge base that is com-
posed by over 592 x 102 triples, describing 14951 entities and their relations
by means of 1345 predicate names.

As for the training/validation/test sets, we use the same sets as used in [6].
Specifically, as regards WORDNET, given the whole KG, 5000 triples have been
removed for validation and 5000 have been used for testing. As regards FB15K,
50000 triples have been removed for validation while 59071 have been used for
testing.

Evaluation Metrics In agreement with [6], the following metrics have been
used: averaged rank (denoted as MEAN RANK), and proportion of ranks not
larger than 10 (denoted as HITs@10). They have been computed as follows.
For each test triple (s, p, 0), the object o is replaced by each entity 6 € Ea
in G thus generating a corrupted triple (s, p, 6). The energy values of corrupted
triples are computed by the model, and successively sorted in ascending order.
The rank of the correct triple is finally stored. Similarly, this procedure is
repeated by corrupting the subject s of each test triple (s,p,0). Aggregated
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over all test triples, this procedure leads to the two metrics: averaged rank
(denoted as MEAN RANK), and proportion of ranks not larger than 10 (denoted
as HITs@10). This is referred to as the RAw setting.

Please note that, if a generated corrupted triple already exists in the KG,
ranking it before the original triple (s, p,0) is not wrong. For such a reason,
an alternative setting, referred to as the FILTERED setting (abbreviated with
FILT.) is also considered. In this setting, corrupted triples that exist in either
training, validation or test set are removed, before computing the rank of each
triple.

In both RAw and FILTERED settings, it would be desirable to have low
MEAN RANK and high Hirs@10.

5.1 Evaluation of Adaptive Learning Rates

In order to reply to question Q1, that is, for assessing whether Momentum,
AdaGrad and AdaDelta are more efficient than SGD in minimizing the loss
functional in Eq. we empirically evaluated such methods on the task of
learning the parameters in TransE on WORDNET and FREEBASE (FB15K)
KGs, using the optimal settings described in [6] that is:

— k=20,v=2,d= L; for WORDNET
— k=50,v=1,d= L; for FB15k.

Following the empirical comparison of optimization methods in [24], we
compared SGD, Momentum, AdaGrad and AdaDelta using an extensive grid
of hyperparameters. Specifically, given G, = {1075,107°,...,10'}, G, = {1 —
10741 -1073,...,1 = 107%,0.5} and G. = {1075,1073}, the grids of hyper-
parameters for each of the optimization methods were defined as follows:

— SGD and AdaGrad: rate n € G,,.
— Momentum: rate € G, decay rate p € G,,.
— AdaDelta: decay rate p € G,, offset € € Ge.

For each possible combination of optimization method and hyperparameter
values, we performed an evaluation consisting in 10 learning tasks, each time
using a different random seed for initializing the model parameters in TransE.
The same 10 random seeds were used for each of the evaluation tasks.

Fig. ] shows the behavior of the loss function for each of the optimiza-
tion methods, for the best hyperparameter settings after 100 epochs over the
training set. It is immediate to see that, in both WORDNET and FB15K knowl-
edge graphs, AdaGrad (with n = 0.1) and AdaDelta (with (1 —p) = 1072 and
€ = 10%) provide sensibly lower values of the loss functional £ than SGD and
Momentum, even after a low number of iterations (< 10 epochs), and that
AdaGrad and AdaDelta, in their optimal hyperparameter settings, provide
very similar loss values.

Since AdaGrad has only one hyperparameter 1 and a lower complexity
(it only requires one per parameter accumulator and a rescaling operation
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Fig. 3: Average loss across 10 TransE parameters learning tasks on the WORD-
NET (left) and FREEBASE FB15K (right) knowledge graphs, using the optimal
settings in [6]. For each of the optimization methods, the hyperparameters set-
tings that after 100 epochs achieve the lowest average loss are reported.

at each iteration) than AdaDelta, we select AdaGrad (with n = 0.1) as the
optimization method of choice. Specifically, as a successive step, we needed to
assess whether AdaGrad (with n = 0.1) leads to more accurate models, i.e.
with lower MEAN RANK and higher HiTs@Q10, than SGD. For the purpose,
we trained TransE by using AdaGrad (with n = 0.1) for 100 epochs on a
link prediction task on the WORDNET and FREEBASE (FB15K) knowledge
graphs, under the same evaluation setting used in [6]. Hyperparameters were
selected according to the performance on the validation set using the same
grid of hyperparameters adopted in [6]. Specifically, we chose the margin v €
{1,2,10}, the embedding vector dimension k € {20,50}, and the dissimilarity
d € {Ly,Ly}. Tab. [2 shows the results obtained by TransE trained using
AdaGrad (with = 0.1) for 100 epochs, in comparison with state-of-the-art
results as reported in [6]. From the table it is possible to see that, despite of

Table 2: Link Prediction Results: Test performance of several state-of-
the-art Link Prediction methods on the WORDNET and FREEBASE (FB15K)
KGs. Results show the MEAN RANK (the lower, the better) and HiTs@10 (the
higher, the better) for both the RAw and the FILTERED settings [6].

Knowledge Graph WORDNET FREEBASE (FB15K)
Metric MEAN RANK HiTs@10 (%) MEAN RANK | HITs@10 (%)
Raw | Firt. Raw | FiLT. Raw | FiLT. Raw | FiLT.
Unstructured [5] 315 304 35.3 38.2 1074 979 4.5 6.3
RESCAL |[21] 1180 1163 37.2 52.8 828 683 28.4 44.1
SE [7] 1011 985 68.5 80.5 273 162 28.8 39.8
SME linear [5| 545 533 65.1 74.1 274 154 30.7 40.8
SME bilinear [5| 526 509 54.7 61.3 284 158 31.3 41.3
LFM [14] 469 456 71.4 81.6 283 164 26.0 33.1
TransE [6] 263 251 75.4 89.2 243 125 34.9 47.1
TransE (AdaGrad) 169 158 80.5 93.5 189 73 44.0 60.1
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the sensibly lower number of training epochs (100, compared to 1000 used for
training TransE with SGD, as reported by [6]), TransE trained using AdaGrad
provides more accurate link prediction models (i.e. lower MEAN RANK and
higher HiTs@10 values) than every other model in the comparison.

The results showed in this section largely prove that our proposed solution
is able to give a positive answer to Q1. Specifically, besides of experimentally
proving that the adaptive learning rates proposed in Sect. 3.2 are able to
improve the efficiency of parameters learning with respect to the current state-
of-the-art EBEMs, we have also proved that the final learned model is able
to outperform current state-of-the-art models in terms of MEAN RANK and
Hirs@10.

5.2 Evaluation of the Proposed Energy Functions

In this section, we evaluate the energy functions proposed in Sect. in the
definition of an EBEM, with the final goal of providing reply to question Q2,
that is to assess whether the energy functions proposed in Sect. 3.1 lead to
more accurate link prediction models for KGs completion with respect to the
state-of-the-art.

As from , the energy function of an EBEM can be rewritten as:

E((s,p,0)) = g(fs(es,Sp), fo(eo, Sp))
where e, and e, denote the embedding vectors of the subject s and the object
o of the triple, and S, denotes the set of embedding parameters associated to
the predicate p.

In Sect. we proposed alternative choices for functions fs(-) and f,(-),
that allow defining models whose number of parameters grows linearly with
the number of entities and relations in the KG. Specifically, we proposed using
translation, scaling, their composition, and the projection on the Euclidean
unit sphere n(x) = x/[|x||.

For each of the considered choices, we trained the corresponding EBEM on
the WORDNET and the FREEBASE (FB15K) knowledge graphs. Hyperparam-
eters were selected on the basis of the model performances on the validation
set: we selected the embedding vector dimension k € {20, 50,100}, the margin
v € {2,5,10}, and the g(-) function g(x,y) € {||x—yl1, [x—yl2, —xTy}, cor-
responding to the L; and Lo distances, and the negative dot product. Follow-
ing the results from Sect. model parameters were learned using AdaGrad
(with n = 0.1) for 100 training epochs.

Tab. [3| shows the test results obtained with different choices of f,(-) and
fo(+) functions. Additionally, for the purpose of comparison, we also add the
results obtained by TransE (as reported in [6]) standing for the best performing
model in the literature, on the same link prediction tasks.

From the table, it is interesting to note that, especially for highly multi-
relational KGs such as FREEBASE (FB15K), simpler models for fs(-) and f,(+)
provide better results than their more complex variants. A possible motivation
for this is that a number of relations in FB15K only occur in a limited number
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of triples (only 736 predicates out of 1345 occur in more than 20 triples) and
in cases like this more expressive models are less able to generalize correctly
that simpler models. Given f,(e,,{e,}) = €,, the best performing models, in
terms of HITS@10, are:

— fs(es,{ep}) = es+ ey, representing the predicate-dependent translation of
the subject’s embedding vector
— fs(es,{ep}) = es © e, representing the predicate-dependent scaling.

This indicates that, despite the very different geometric interpretations, rely-
ing on simpler models improves link prediction results, especially in highly-
relational knowledge graphs.

We can conclude that, constraining the expressiveness of the models while
using adaptive learning rates, yields a significant improvement over state-of-
the-art methods discussed in [6].

Table 3: Link Prediction Results: Test performance of several EBEMs (cor-
responding to different choices of the fq(-) and f,(-) functions) in compari-
son with TransE [6] on the WORDNET and FREEBASE (FB15K) knowledge
graphs. Results show the MEAN RANK (the lower, the better) and HiTs@10
(the higher, the better) in the RAw and FILTERED settings.

fo=mn(eoc ®ep3+epa)

Knowledge Graph WORDNET FREEBASE (FB15K)
Motric | MBEAN RANK HiTs@10 (%) MEAN RANK HiTs@10 (%)
Raw Fiur. Raw Fiur. Raw Fiur. Raw Fivur.
TransE [6] | 263 | 251 | 754 | 89.2 | 243 | 125 | 349 | 47.1
;s ot 161 | 150 | 80.5 | 93.5 | 189 | 65 | 47.9 | 67.6
;}‘ s Oer 229 | 215 | 81.4 | 93.5 | 207 | 81 | 46.5 | 65.3
JoZlee@epterat | 68 | 155 | 813 | 932 | 214 | 88 | 418 | 573
fo=estepn 171 159 | 79.6 | 92.6 | 196 78 449 | 624
fo=eot+ep2
fs=esOepa 337 | 325 | 83.0 | 95.2 | 202 75 449 | 629
fo=eoOepa
fo=(es Oep1) +ep2 279 266 | 824 | 943 | 210 88 42.3 | 59.1
fo=€o0eps
fs =(es ©ep1) tep2
b B 320 | 308 | 81.6 | 93.6 | 211 87 | 400 | 549
fooplestet | oon | 200 | 757 | 887 | 237 | 115 | 395 | 554
Joonee@ell | 226 | 213 | 776 | 892 | 262 | 132 | 420 | 599
fomnllecoeptenalt | 160 | 148 | 777 | 887 | 239 | 103 | 428 | 591
fo=mlestep )l | 950 | 951 | 793 | 91.6 | 206 | 86 | 47.5 | 66.5
fo =n(eo +ep,2)
fs = nles 9 ep) 761 | 750 | 734 | 83.5 | 249 | 120 | 420 | 61.0
fo= "(eo O) ep,2)
fs =mles O epatep2) 624 | 613 | 747 | 836 | 238 | 114 | 427 | 604
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Source code and datasets for reproducing the experiments presented in this
paper are available on—lineﬂ

6 Conclusions and Future Works

We focused on Energy-Based Embedding Models, a novel class of link predic-
tion models for knowledge graph completion where each entity in the graph is
represented by a continuous embedding vector.

Models in this class, like the Translating Embedding model [6], have been
used to achieve performances that are comparable with the main state-of-the-
art methods while scaling on very large knowledge graphs.

In this work, we proposed: (i) a general framework for describing state-of-
the-art Energy-Based Embedding Models, (ii) a family of novel energy func-
tions, with useful properties, (iii) a method for improving the efficiency of the
learning process by an order of magnitude, while leading to more accurate link
prediction models.

We empirically evaluated the adoption of the proposed adaptive learning
rates in the context of Energy-Based Embedding Models by showing that they
provide more accurate link prediction models while reducing the learning time
by an order of magnitude in comparison with state-of-the-art learning algo-
rithms. We also empirically evaluated the newly proposed energy functions
(with a number of parameters) that scales linearly with the number of en-
tities and relations in the knowledge graph. Our results showed a significant
improvement over state-of-the-art link prediction methods on the very same
considered large knowledge graphs, that are WORDNET and FREEBASE.

For the future we plan to investigate on the formalization of Energy-Based
Embedding Models that are able to take into account the available background
knowledge. Other research directions include dynamically controlling the com-
plexity of learned models, and further optimizing the learning process.
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