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ABSTRACT  

The introduction of carbon nanotubes (CNTs) in structural fibre-reinforced polymers, to 

imbue the composite with multifunctional properties (e.g. enhancing electrical/thermal 

conductivity, structural health monitoring), has received much attention in recent years. 

Maintaining, and preferably enhancing, the structural integrity of the composite is 

imperative. Consequently, strong interfacial bonding between the CNTs and the polymer 

matrix is sought. If the sought multifunctionality is dependent on specific CNT alignment 

or orientation, achieved through fragile CNT assemblies, gas‒phase chemical 

functionalisation of the CNT assembly is a viable approach in order to chemically modify 

the CNT surface without damaging the CNT assembly. This study reports on the gas‒phase 

amino‒functionalisation of CNT webs (CNTw) and further explores its influence on the in 

situ electrical conductivity. The placement of an ethylenediamine-functionalised multilayer 

CNTw (0.2 g·m-2) between CF plies resulted in a 13 % enhancement in the interlaminar 

Mode I fracture toughness, while providing an electrical conductivity of 103 S·m-1 in the 

direction of the CNTs within the interleaved CNTw. The effectiveness of the amino‒

functionalised CNTw in enhancing the mechanical properties of an epoxy composite is 

related to an epoxy opening reaction, as demonstrated by Differential Scanning Calorimetry 

(DSC). Raman and X-ray photoelectron spectroscopies are used to confirm that gas‒phase 

amino‒functionalisation does not damage the graphene-based structure and its structural 

dependent properties. 
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1. INTRODUCTION 

Carbon fibre reinforced polymer (CFRP) composite laminates are increasingly being used 

in aerostructures [1] because of their superior specific strength and stiffness and excellent 

fatigue and corrosion resistance. CFRP composite is lightweight when compared to 

aluminium alloys, but its lower electrical and thermal conductivities necessitate the 

development of new approaches to anti‒icing/de‒icing (AI/DI), lightning strike protection 

(LSP), and, potentially structural health monitoring (SHM) [2, 3]. Moreover, CFRP 

laminates have poor through‒thickness strength and interlaminar fracture toughness (ILFT), 

which make them susceptible to delamination under relatively low‒energy impact events 

[4]. To address these demands, the addition of carbon nanotubes (CNTs) within the resin is 

a promising option due to their outstanding mechanical, thermal, and electrical properties 

[5]. Thus, CNTs are considered an ideal candidate to provide multifunctionality to 

advanced hierarchical CFRP composites [6].  

Within a hierarchical composite structure, CNTs can be distributed in the entire matrix, 

placed around the individual fibres, or distributed between plies [6]. The last option allows 

to accurately control amount and orientation of the CNTs, what is of paramount importance 

since different and multiple functionalities can be provided in specific directions and 
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locations, increasing the design options for integrated systems in CFRP multifunctional 

composites.  

As with any other CNT reinforced nanocomposite, the dispersion of the CNTs and the 

interfacial interactions between the CNT surface and the matrix are key issues. Dispersion 

is not a problem where the configuration and orientation of the CNTs are precisely 

controlled but an appropriate interfacial interaction is needed to ensure that, when CNTs are 

used for LSP, SHM or AI/DI, an effective load transfer is provided to simultaneously 

enhance interlaminar fracture toughness [7]. Among the many functionalisation routes for 

modifying the CNTs to broaden their applications [8], amino‒functionalisation is 

particularly attractive for an epoxy resin (the polymer of choice in CFRP aerospace 

applications) because the amine can efficiently participate in the cross‒linking reaction. 

Furthermore, amino‒functionalisation of dispersed CNTs may further improve the 

mechanical [9], thermal [7], or electrical [10] performance of a CNT reinforced epoxy 

nanocomposite. 

A number of covalent and non‒covalent functionalisation methods have been proposed for 

CNTs [8, 11, 12], which can be divided into two main categories, i.e. wet‒chemistry 

processes and solvent‒free gas‒phase processes. For CNTs that are accurately oriented in 

different assemblies, gas‒phase processes, that do not affect the CNT morphology, are 

essential. In addition, solvent‒free gas‒phase processes are environmentally friendly, 

reduce the risk of laminate contamination and are scalable. There are three main gas‒phase 

approaches to amino‒functionalise graphitic materials: functionalisation through a plasma 

treatment [12, 13], thermochemical functionalisation through thermal activation of the 
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graphitic material and its subsequent reaction with alkenes or halide derivatives via radical 

addition [14], and thermally activated amination under low pressure [15, 16]. During the 

plasma process, highly energized gas species create activated sites that react with the 

excited gas (e.g. ammonia) to form functional groups (e.g. amino groups). The main 

drawback is that it implies certain degradation of the graphene based structure. In contrast, 

both thermal activation routes are based on functionalisation through existing surface oxide 

defect sites, mostly carboxylic groups, minimizing the graphene framework degradation 

and therefore the loss of properties associated with such degradation. This implies a great 

advantage: the graphitic nanostructure maintains not only its physical distribution and 

orientation but also its structural integrity. The thermally amination under low pressure 

route was selected due to its simplicity. Basiuk et al. [15, 16] demonstrated that the 

volatized amines can react with the carboxylic groups present on the CNT surface ‒either 

already present as defects or from a pre-treatment‒ creating amide groups, or simply be 

physically adsorbed onto the pristine surface of the CNTs. 

Previous studies have shown that it is possible to increase the fracture toughness of a 

CF/Epoxy composite by the addition of CNTs, although results vary widely. Several 

authors dispersed CNTs in epoxy resin and then prepared a CNT/CF/epoxy composite, 

which exhibited fracture toughness which was up to 98 % [17-21] higher than the reference 

baseline. The greatest increases in fracture toughness were mostly observed in low 

performance epoxies, where, as a specific example, the average critical strain energy 

release rate in Mode I (GIC) of such an epoxy, was increased from 86 to 170 J·m-2 [21]. In 

contrast, Herceg et al. [20] observed a lower GIC improvement (24 %), for a toughened 
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resin, with the addition of 2.7 vol. % CNTs, reaching a value of 840 J·m-2
. Another 

approach involved transferring dry vertically aligned CNT forest to the prepregs, observing 

enhancements in GIC ranging from 31 to 150 % [22, 23], or shear-pressing the forest in 

order to transfer an aligned CNT web or sheet, in which the CNTs were orientated in the 

plane of the laminate [24], enhancing the Mode I fracture toughness by up to 105 %. The 

latter orientation has been also studied between a glass fibre/epoxy prepreg, and up to a 47 

% enhancement was observed using a CNTw directly wound from a vertically oriented 

CNT forest [25]. Some authors have functionalised the CNTs through oxidation [24, 34], 

but the observed improvement in GIC was lower than using pristine CNTs. Godara et al. 

[19] dispersed commercially available amino‒functionalised CNTs in the matrix and 

doubled the improvement obtained with pristine CNTs, demonstrating the potential of this 

type of functionalisation. 

Herein we report for the first time the gas‒phase amino‒functionalisation of CNTw to 

provide multifunctionality to an advanced composite while enhancing the CF/epoxy 

mechanical properties. As CFRP composites are relatively susceptible to delamination 

failure, the interlaminar fracture toughness (ILFT) test in Mode I was selected to study the 

effect of using amino‒functionalised CNTw. Highly aligned CNTw directly drawn from 

CNT forest were treated with a range of diamines according to a procedure proposed by 

Basiuk et al. [15, 16] and the effect on mechanical and electrical properties measured. In 

order to study the influence of the amine structure two different aliphatic diamines were 

employed: one short chain (ethylenediamine, EDA) and one long chain (1,10-

diaminodecane, DAD) compound. In addition, a tetrafunctional aliphatic amine 
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(triethylenetetramine, TET) bearing two primary and two secondary amine groups, and an 

aromatic diamine (1,5-diaminonaphtalene, DAN) bearing two primary amines on a rigid 

condensed ring skeleton were also studied.  

2. EXPERIMENTAL PROCEDURE 

2.1 MATERIALS 

CNT webs were directly drawn from a highly aligned forest, produced by CVD based on a 

process reported in [26] using a silicon wafer. The nanotubes of the forest obtained are 

typically about 300 µm long and 10 nm diameter with an average of 6 walls. 

Ethylenediamine (≥ 99.5%; bp = 118 ºC), 1,10-diaminodecane (97%; vapour pressure of 

1.6 KPa at 140 ºC), triethylenetetramine (≥ 97.0%; bp =266‒267 ºC) and 1,5-

diaminonaphtalene (97%; volatile at 200 ºC under vacuum) were used, as received, from 

Sigma-Aldrich. The high modulus carbon fibre/toughened epoxy resin prepreg 

(HMC/SE84LV) selected to test the performance of the pristine and amino‒functionalised 

CNT webs was received from Gurit (Gurit Ltd., Isle of Wight, UK). A glass fibre/prepreg 

RE295/SE84LV used as an insulating equivalent was also provided by Gurit. 

2.2 SAMPLE PREPARATION  

A 60 mm wide CNTw was drawn directly from the substrate supported-forest and wound 

onto aluminium frames to a thickness of 10 layers (aerial density of 0.2 g·m-2), as can be 

seen in Figure S1a. The amine functionalisation was carried out by placing the 

corresponding amine (5 mg) into a glass receptacle underneath the CNTw (~ 0.8 mg) in a 

glass reactor tube within a clamshell furnace (Figure S1b). The system was evacuated to -
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100 KPa with respect to atmospheric pressure and then heated to 180 ºC at a rate of ~ 8 

ºC·min-1 and held for 2h for EDA, DAD, and TET or to 200 ºC for DAN. The reactor was 

purged with N2 and cooled naturally before opening. The composite double cantilever beam 

(DCB) specimens were prepared according to the ASTM D5528 [27] standard for Mode I 

fracture toughness testing. To achieve 3-5 mm beam thickness 12 plies of unidirectional 

HMC/SE84LV (0.297 mm nominal cured ply thickness) were used with a 13 µm PTFE 

film inserted between the 6th and the 7th plies to form the pre‒crack (Figure S1c and d). The 

unidirectional carbon fibres (CFs) are placed in the x direction and the PTFE film is 

inserted in the x-y plane. The pristine or amino‒functionalised CNTw was placed in the x-y 

plane, beside the PTFE film (Figure S1c). As can be seen in Figure S1 the orientation of the 

CNTs in the assembly can be accurately controlled throughout the whole process. The 

laminates were cured at 120 ºC for 1h under constant vacuum, as recommended by the 

manufacturer.  

Since CNTw is intended to be exploited by inserting between the plies of a composite 

laminate (x-y plane with respect to Figure S1d) to enhance electrical conductivity among 

other functionalities, we evaluated the influence of amino‒functionalisation on the 

electrical conductivity of CNTw alone. To isolate the CNTw (pristine or amino 

functionalised), it is placed between two insulating glass fibre composite plies, in direct 

contact with two copper bus electrodes. The CNTw is in the x-y plane, with the CNTs 

oriented in the y direction, perpendicular to the copper buses (x direction). The distance 

between the copper buses is 50 mm and the width of the CNT web is 60 mm.  
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2.3 CNT WEB CHARACTERIZATION  

The CNTw was analyzed by means of Fourier transform infrared spectroscopy in total 

attenuated reflection mode (FTIR-ATR, Spectrum 100 FT-IR Spectrometer, Perkin-Elmer) 

in the 600-3000 cm-1 range, with a resolution of 4 cm-1 and ten scans, subtracting 

background for each spectra. Thermogravimetric analysis (TGA, TGA/SDTA851e, Mettler 

Toledo) of the CNTw was carried out to 1000 ºC at 10 ºC·min-1 in air. Raman spectra (In 

Via, Renishaw) of the CNTw were obtained in the 500-3200 cm-1 spectral range using a 

514 nm excitation wavelength and a 50x magnification objective (Leica). Each spectrum 

was obtained using 10 scans and 10 s as exposure time. XPS spectra of pristine and EDA 

treated CNTw were obtained using a PHOIBOS 150 9 MCD spectrometer (SPECS GmbH) 

equipped with a monochromatic Al Kα X-ray source operating at 200 W and 12 kV (1486.7 

eV). High resolution spectra were obtained with an analyser pass energy of 25 eV, an 

energy step of 0.1 eV and 100 ms dwell time per point around the emission lines of interest.  

The in situ in-plane electrical conductivity of the CNT webs before and after amino‒

functionalisation was calculated from the resistance between the copper bus electrodes (50 

mm apart with a conductor width of 60 mm) (Agilent 34450A 51/2 Digit Multimeter) and 

the sample thickness.  The bus method was developed to address problems presented by the 

anisotropy and extreme thinness of the CNTw material, and the thin but variable surface 

resin thickness (and hence resistance) encountered in composites where CNTw is 

nominally exposed. The morphology of the CNTw was observed by SEM (FlexSEM 1000, 

Hitachi) at an accelerating voltage of 5 kV. The average thickness of the embedded CNTw 
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was obtained by SEM and used to calculate the electrical conductivity of the corresponding 

CNT/glass fibre/epoxy system. 

2.4 FRACTURE TOUGHNESS TESTING 

At least five DCB specimens were tested (Instron 5564 Universal Testing Machine) in 

tensile mode, at a cross head displacement rate of 1 mm·min-1, tracking the crack length 

with a microscope‒camera. Where multiple cracks were observed to propagate during 

testing the results were discarded. The fracture surfaces were analyzed using an SEM 

(FlexSEM 1000, Hitachi) at an accelerating voltage of 5 kV. Differential scanning 

calorimetry (DSC, DSC-6, Perkin-Elmer) were carried out placing the corresponding amine 

(~ 2.5 mg) between two 4 mm diameter discs of uncured HMC/SE84LV (~ 20 mg). The 

test was run from 30 ºC to 350 ºC at a rate of 10 ºC·min-1. 

3. RESULTS AND DISCUSSION 

3.1 CNT WEB CHARACTERISATION 

FTIR-ATR analysis indicates (Figure 1) the presence of amino groups in amine-

functionalised CNTw samples. The pristine CNTw spectrum shows only weak bands such 

as the stretching of the C=O carboxyl bond [28, 29] or the C=C bond adjacent to 

oxygenated groups at around 1740 cm-1 and 1580 cm-1, respectively [30]. Other weak bands 

can be observed in the 1350‒1450 cm-1 region, where the CH2 and CH3 groups vibrate [31], 

indicating a small amount of adsorbed hydrocarbon or amorphous carbon. The amino‒

functionalisation produced new bands centred at 1070 cm-1 (s), assigned to C‒N stretching, 

and at ~1250 cm-1 (m) and ~1534 cm-1 (w) due to N‒H bending [29]. The bands due to the 
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amines appear in addition to those from the carboxyl C=O and adjacent C=C stretching 

[29] rather than provoking a shift of the C=O stretching to ~1620‒1650 cm-1, where the 

C=O of the amide vibrates [28, 29]. The absence of this shift to lower wavenumbers 

indicates that the amino molecules detected by FTIR-ATR are physically adsorbed on the 

surface of the CNTw rather than covalently bonded. Basiuk et al. [15, 16] also observed 

that the amines were mostly physisorbed on the surface of the CNTs but inferred amide 

group formation through the detection of two different reaction products by Temperature 

Programmed Desorption-Mass Spectrometry [15]. From this they estimated the proportion 

of amide to be one order of magnitude below the physisorbed amine. 

Figure 1. FTIR-ATR spectra of pristine CNTw (a) and amino‒functionalised with EDA 

(b), DAD (c), TET (d) and DAN (e). 

 

Thermogravimetric analysis (TGA) is often used to estimate the extent of CNT 

functionalisation since the organic moieties incorporated are always decomposed at lower 

temperature than the stable sp2 carbon of the CNTs graphitic structure. The TGA of pristine 
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CNTw (Figure S2) shows a slight weight loss of 2.9 wt. % from about 100 °C to 300 °C, 

which may be attributed to the loss of adsorbed species such as water, hydrocarbons or 

amorphous carbon fragments, or the loss of some oxygenated groups, which have already 

been detected by FTIR-ATR (Figure 1). The CNTw is then stable up to about 550 °C, 

where the degradation of the graphitic structure starts. In contrast, the TGAs of amino‒

functionalised CNTw do not exhibit this early weight loss as that material would have been 

removed by the treatment itself, which entails heating at ~ 200 °C under vacuum (TET does 

show a small weight loss of about 2% up to 200 °C which is attributable to post-processing 

moisture adsorption which is well characterised for this amine). Instead they show in all 

cases two stages of weight loss at temperatures between 200 °C and 550 °C. The shape of 

those weight losses is typical of sidewall functionalisation [32], which is consistent with the 

presence of amine molecules being distributed on the CNT sidewalls.  

From the amine TGA curves and first derivatives (Figure S2), the first of the two weight 

losses (between 200 and 410 °C) is ascribed to physisorbed molecules. The second weight 

loss would usually be attributed to covalently bonded molecules [16, 33-35] however this 

does not seem to be the case here since it occurs at a temperature too high (410 °C to 550 

°C) to be considered chemisorbed diamines. Chattopadhyay et al. [36] assigned a weight 

loss between 150 °C and 300 °C to a CNT physisorbed aliphatic amine and Basiuk et al. 

[16, 33-35] assigned weight losses below 200 °C to physisorbed amines, while losses 

between 200 °C and 360 °C were attributed to covalently bonded species. Some of those 

authors functionalised CNT buckypapers with amines in gas‒phase [33] and observed also 

a stepwise TGA curve with a weight loss between approximately 400 °C and 600 °C, which 
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was attributed to the CNT layer containing covalently attached amines. Herein it should be 

highlighted that molecular dynamics simulations have shown that the physical adsorption 

of amines over a CNT surface takes place preferentially at defect rich areas, interacting 

with five-membered rings [16] or carboxylic groups [33]. Thus the amount of diamine 

incorporated in each case is calculated from the weight loss between 200 °C and 410 °C 

while the weight lost between 410 °C and 550 °C is attributed to the earlier degradation of 

the CNT surfaces to which the diamine molecules had been physi- or chemisorbed (Table 

1). The fact that (except as noted above) no weight loss is observed below 200 °C is due to 

the functionalisation process in which, once the process is completed, the reactor is chilled 

down to room temperature while purging with a N2 current, so the weakly bonded amines 

are desorbed. The excess reactant is condensed in the cold areas of the glass reactor as 

previously detected by other authors [15, 16]. The surface area of the CNTs, which have an 

average of seven walls and outer diameter of 10 nm, is calculated to be approximately 233 

m2·g-1 using the areal mass of single layer graphene of 2600 m2·g-1 [37]. The 

correspondence between the amount of each diamine incorporated (wt. %) and the 

theoretical surface of CNT that could be covered by physisorbed diamine is calculated. To 

make such theoretical calculus, a monolayer of diamine molecules is assumed to orientate 

recumbent rather than standing on-end or on-edge on the CNT surface. The surface that a 

given diamine molecule occupies is calculated from its respective 2D projection (PubChem 

open source). The actual amount of amine adsorbed is calculated from the TGA loss up to 

410 °C and expressed as a wt. %, as the mEq NH2·g-1, and as the % of CNT surface that a 

flat monolayer of this amount of diamine could theoretically coat, referred as equivalent 

amine monolayer (EAM). Thus EDA is adsorbed to the extent of around 4.30 wt% (1.43 
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meq·g-1), and this amount of ethylenediamine could cover up to 32% of the CNT surface if 

oriented parallel forming a monolayer. On the other hand, the amount of CNT carbon in 

contact with the diamine (2.76 wt. %) indicates that only 15% of the CNT surface shows 

signs of contact with the diamine and suggests that the adsorbed molecules may have been 

oriented on-end or as a bi-layer rather than as a recumbent monolayer.  A similar mismatch 

is seen between the calculated EAM value and the CNT surface cover for the other alkyl 

amines (DAD, TET), whereas the aromatic compound DAN is closer with 23% EAM and 

18% CNT coverage.  Although these are at best approximations, this suggests that the DAN 

predominantly lies flat on the CNT surface as might be expected due to aromatic π‒π 

interactions whose importance has already been demonstrated [33].  

 

Table 1. Amount of incorporated amine (wt. %), the corresponding NH2 equivalent weight, 

the theoretical percentage of CNT surface covered by an equivalent amine monolayer 

(EAM), the amount of CNT in contact with the diamine (wt. %) and the corresponding 

CNT surface (%) 

CNT 

web 

Incorporated 

Diamine  

[wt. %]a) 

[mEq NH2·g-1]a) 

Equivalent amine 

monolayer 

coverage  

[%]b) 

C in contact 

with 

diamine 

[wt. %]c) 

CNT surface 

covered by 

diamines  

[%]c) 

EDA 4.30 1.43 32 2.76 15 
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DAD 3.90 0.45 27 3.03 17 

TET 4.11 1.12 32 2.77 15 

DAN 3.28 0.41 23 3.19 18 

a) Calculated from the weight loss observed between 200 °C and 410 °C; b) Calculated 

assuming a parallel orientation of the amines over the average CNT surface of the present 

work; c) Calculated from the weight loss observed between 410 °C and 550 °C. Further 

detail is available in Supporting Information. 

 

Raman spectroscopy and SEM was performed on the untreated pristine CNTw and also on 

the EDA treated one (Figure S3). In both spectra, the main characteristic peaks of graphene 

based structures can be seen, i.e. D, G and 2D bands [38]. Centred at ~ 1350 cm-1 is the D 

band, which is due to the breathing modes of the sp2 rings. At a Raman shift of ~ 1580 cm-1 

the G band can be seen, associated with the vibration of the defect‒free sp2 carbons of the 

graphene‒like structure. Commonly, the relation between the integrated intensities of D and 

G bands (ID/IG) is used to quantify the extent of disorder. Finally, at ~ 2700 cm-1 the 2D 

band is clearly observed in both spectra, which is related to the layered order. The pristine 

CNTw and the amino treated CNTw show the same ID/IG value of 0.49. As expected, the 

low temperature activated amination does not degrade the graphitic structure of the CNTw.  

The SEM images show that the CNTs are highly oriented within the webs, both before and 

after the amino‒functionalisation (Fig. S4b). This demonstrates that the gas‒phase 
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treatment has not affected the orientation of the CNTs. Both Raman spectroscopy and 

electron microscopy have demonstrated the suitability of the thermally activated amination 

process in order to modify a CNT assembly without disturbing its structural integrity or 

physical distribution and orientation.  

Pristine and EDA CNTw were further characterized by X-ray photoelectron spectroscopy 

(XPS). Carbon, oxygen and impurities of organic silicon were detected on both samples. 

However, although XPS is a very surface sensitive technique, nitrogen was not observed in 

any sample (see Figure S4 and S5). This may be explained by suggesting that the 

physisorbed EDA molecules are desorbed under the ultra-high vacuum (UHV) used in 

XPS. Taking into account that the amines are incorporated in the 4 wt. % range (Table 1), 

the maximum amount of nitrogen incorporated is about 2 wt. % only (calculated for EDA, 

the studied amine with the highest nitrogen proportion). If only 10% of the incorporated 

amine is chemisorbed, as previously observed by other authors [15], the amount of nitrogen 

due to amine chemisorption would be 0.2 wt. %. Taking into account the high purity of the 

CNTs employed herein (low amount of carboxylic groups are expected) this covalent 

incorporation could be even lower that the one already observed by Basiuk et al. [15], 

which would fall below the detection limit of FTIR and XPS techniques. 
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Figure 2. C 1s peak-fitting of pristine (a) and EDA (b) treated CNTw. 

High resolution spectra of C1s are shown in Figure 2, where a main asymmetrical peak at 

284.3 eV, which represents the sp2 hybridized carbon atoms of the nanotube structure, can 

be observed. The peak centred at 285.3 eV can be assigned to sp3 carbon atoms. Also, C=O 

was observed (287.0 eV for pristine CNTw and 286.7 eV for EDA CNTw), whose presence 

was confirmed in the O1s spectra, where oxygen doubly bound to carbon at 531.7 - 531.9 

eV was observed. Additionally, the characteristic shake-up π→π* lines of carbon in 

aromatic compounds were observed above 290 eV. Since EDA molecules were mainly 

adsorbed and thus desorbed under the UHV of the XPS, the material that is under analysis 

is in both cases that of the CNT only, either pristine or after amine adsorption-desorption 

process. Here it worth noting that no significant changes were observed in terms of 

oxygenated groups. The most prominent difference after the amino‒functionalisation 

treatment is the elimination of some sp3 carbon species, as already observed by FTIR 

(Figure 1). 
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3.2 MODE I FRACTURE TOUGHNESS  

In order to study the effect on fracture toughness of the nano-modified CFRP laminates 

Mode I double cantilever beam (DCB) specimens were prepared with the unidirectional 

carbon fibre (CF) in the x direction and the CNTw in the x-y plane, with the CNTs oriented 

parallel to the y axis (Table 2). The average strain energy release rate (GIC), during 

propagation of the crack in Mode I, was calculated (Table 2) using the Modified 

Compliance Calibration Method in accordance with the ASTM D5528 standard [27]. 

Representative load-displacement and R-curves are shown in Figures S6 and S7 

respectively. Using the analysis of variance test (ANOVA) a p-value of 0.0009 was 

obtained, indicating that the results are statistically significant.  

If pristine CNTw is used as an interleaf between the CF/epoxy plies, a 9% depreciation in 

interlaminar fracture toughness is observed. This emphasizes the need for surface 

modification to ensure that the structural integrity of the laminate is maintained in 

applications where the CNTw provides non-structural functionality such as increased 

thermal and/or electrical conductivity. If the CNTw is treated with EDA, a 13 % 

improvement in GIC with respect to the non-reinforced CFRP system is observed, while the 

improvement is up to 24% if compared with the use of pristine CNTw. On the other hand, 

if the CNTw is treated with the long aliphatic-chain counterpart (DAD), a higher 

depreciation is observed. The functionalisation with the tetramine (TET) shows a 10 % 

improvement while the use of the aromatic diamine (DAN) has almost no effect on the 

Mode I behaviour if compared with the pristine CNTw, showing a similar decrease in the 

average strain energy release rate. 
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The inclusion of non-functionalised CNTw seem to provide a preferential crack path whilst 

also decreases fibre bridging which is known to contribute to the apparent enhanced fracture 

toughness. It should be emphasised that the fibre bridging observed was not significant and 

any contribution to fracture toughness is likely to be minimal. It is worth noting that 

toughening of resins with dispersed CNT is often perceived to be the result of CNTs being 

oriented orthogonal to the fracture plane which act as ‘nano-stitches’ [23]. The CNTs in the 

web are primarily oriented parallel to the fracture plane and hence the integrity of the CNT-

matrix interface is the limiting factor which may be controlled through functionalisation.  

 

Table 2. GIC obtained from Mode I fracture toughness test of DCB specimens with pristine 

and functionalised CNTw at the crack interface.  

Composite 

GIC (propagation)a) 

[J·m-2] 

Change in average 

[%] 

Number of 

valid 

specimens/ 

total number 

of specimens 

SE84LV Control 511 ± 12 – 7/12 

SE84LV / Pristine CNTw 467 ± 36 – 9% 9/18 

SE84LV / EDA-CNTw 580 ± 47 + 13% 8/9 
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SE84LV / DAD-CNTw 428 ± 124 – 16% 4/5 

SE84LV / TET-CNTw 562 ± 51 + 10% 3/6 

SE84LV / DAN-CNTw 450 ± 74 – 12% 8/9 

a) p-value = 0.0009. 

There is a correlation between the mode I fracture toughness (Table 2) and the extent of 

NH2 groups incorporated in each case (Table 1). In the case of the functionalisation with 

EDA, 1.43 mEq NH2·g-1 are incorporated and a 13% improvement in GIC is observed. For 

the TET-functionalised CNTw, a 10% improvement is observed, with an incorporation of 

1.12 mEq NH2·g-1. These correspond to 24% and 20% improvements respectively if 

compared with the incorporation of pristine CNTw. In contrast, DAN and DAD CNTw 

show 12 % and 16 % reduction in GIC respectively but very low NH2 incorporations (0.41 

and 0.45 mEq NH2·g-1 respectively, Table 1).  

3.3 DIFFERENTIAL SCANNING CALORIMETRY 

Differential scanning calorimetry (DSC) of the CF/SE84LV epoxy prepreg shows (Figure 

3) a single exothermic peak starting at about 120 °C (the curing temperature recommended 

by the manufacturer) that is unambiguously assigned to the cross-linking reaction of the 

epoxy resin. This same peak can be seen for every amine-treated prepreg sample (Figure 3). 

The three aliphatic amines EDA, TET and DAD also exhibit an exotherm which starts at 

about 40 °C, 44 °C and 60 °C, respectively, whereas no such exotherm is shown by the 

aromatic DAN. These exotherms are attributable to the reactions between the respective 
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aliphatic amine and the epoxide moiety which occur at temperatures well below the 

recommended curing temperature. The temperature required to activate the aromatic amine 

DAN is above the curing temperature of the epoxy system such that by the time this 

temperature is reached, there is no epoxide left to react with and hence no exotherm. 

Failure of the DAN to effectively cross‒link with the epoxide would account for the lack of 

improvement and indeed slight reduction compared with pristine CNT as it would perhaps 

hinder access to the CNT surface.   

In contrast to DAN, DAD clearly reacts with the epoxide but causes even more 

depreciation in performance. Compared with EDA, DAD causes a 26 % reduction and 8 % 

below the CNTw alone indicating a strong negative effect of aliphatic chain length. The 

comparison between the theoretical EAM for DAD (27 %) and the experimentally observed 

CNT surface covered by DAD (17 %) (Table 1) suggest certain deviation from a parallel 

orientation. Thus, it could be due to a non-effective DAD molecule orientation, presenting 

the oily chain to the epoxide matrix. 

The DSC plot of DAD also exhibits (Figure 3) a sharp endothermic peak centred at about 

65 °C which is attributable to the melting of DAD (melting point of ca. 67 °C ‒ 69 °C). 

Both EDA and TET are liquids at room temperature while DAN melts at about 185 °C ‒ 

187 °C by which temperature it is very likely to have already dissolved in the epoxy resin. 

In the absence of any covalent bonding, either directly with the epoxy or through the 

medium of chemisorbed amines, the interfacial interaction between the CNTw and the 

polymer matrix is of primary importance for the interlaminar fracture toughness of CNTw 
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composites. This interaction is a function both of the particular epoxy formulation and, in 

the present context, parameters such as the aromaticity of the diamine or the chain length.  

Those parameters may affect the temperature at which the diamine reacts with the epoxy 

system and also the preferential orientation of the diamines with respect the CNT surface. 

Finally, a slightly lower GIC improvement is observed with the polyamine functionalisation 

(TET-functionalised CNTw) if compared with the diamine functionalisation with similar 

amino incorporation (EDA-functionalised CNTw). Whilst TET is tetrafunctional, only two 

of the amines are primary with two secondary and less accessible which may reduce the 

cross-linking efficiency of these groups.  Also, TET has a strong propensity for adsorbing 

moisture which is likely to interfere with the cross-linking capacity of this compound. 

 

Figure 3. DSC of the pristine CF/Epoxy system and with EDA, DAD, TET and DAN. 
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3.4 FRACTOGRAPHY 

The fractography analysis of the fresh fracture surfaces following Mode I testing (Figure 4) 

supports the hypothesis that the improvement in GIC, observed in the composite reinforced 

with EDA-treated CNTw, is due to the reaction between the amine and the epoxy matrix. In 

all cases, loose carbon fibres are observed at low magnification (Fig 4, a-d, left), as a result 

of fibre bridging. Also, at higher magnification there is evidence to suggest a more 

torturous route of the crack path through the CNTw (Fig 4, b-d, centre). In addition to this, 

when the CNTw is treated with EDA it can be observed that some epoxy resin fragments 

are attached around the CNTs. This debris is due to the early reaction between the EDA and 

the epoxy rings of the resin that takes place at certain points around the CNTs, as 

demonstrated by DSC (Figure 3). To a lesser extent, the debris can also be seen on the 

fracture surface of the DAD-CNT and TET-CNT composites. This is probably related to 

the higher temperature required to activate those aliphatic amines and could also be due to a 

different orientation of those amines with respect to the CNT surface. Indeed, no debris was 

observed around the CNTs on the fracture surface of the DAN-CNT composite. 

Even though a covalent amino‒functionalisation could produce a stronger CNT-matrix 

interface that might transfer the load to the reinforcing phase more efficiently, non‒

covalent amino‒functionalisation of CNTs has already been proved effective [39, 40].  
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Figure 4. SEM images of the fracture surface of CF/SE84LV (a), reinforced with pristine 

CNTw (b), EDA treated CNTw (c) or DAN treated CNTw. DAD and TET treated CNTw 

images are available in the supplementary information. The crack is propagated parallel to 

the CF.  
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3.5 ELECTRICAL CONDUCTIVITY 

The electrical conductivity of the CNTw was measured, both after and before the amino‒

functionalisation with EDA. Using the two probe method, an electrical resistance of 74 ± 5 

Ω and 89 ± 5 Ω was measured for pristine and EDA treated CNTw respectively. Assuming 

an average thickness of 6 µm and considering the area of the webs, an electrical 

conductivity of 1.9 ± 0.1 x 103 S·m-1 and 1.6 ± 0.1 x 103 S·m-1 was calculated for pristine 

and EDA treated CNTw respectively. The slight decrease in electrical conductivity 

observed after EDA functionalisation is attributable to the presence of the diamine on the 

CNT surface, which promote an early stage curing reaction in the vicinity of the CNTs and 

thereby slightly increase the CNT-CNT contact resistance.  Nevertheless, the observed 

electrical resistance is potentially high enough for several applications, from 

electromagnetic shielding, where only more than 101 S·m-1 is required [41], to de-icing, 

where CNT based systems with in–plane conductivities from ~ 142 S·m-1 [42] to 6.5 103 

S·m-1 [43] have been proved effective. Chu et al. [43] observed an electrical conductivity of 

7.8 103 S·m-1 by introducing only 1.45 wt. % of CNTs but in the form of a paper, with a 

thickness of ca. 70 µm. Herein, the in–plane electrical conductivity is in the same order of 

magnitude but the thickness of the CNTw introduced is about 6 µm, one order of 

magnitude lower than the CNT paper used by Chu et al., [43] with a weight increment of ~ 

0.2 g·m-2. Indeed, Falzon’s research group [44-46] have recently demonstrated the 

suitability of using CNTw embedded in a composite laminate to develop a highly tuneable 

electro-thermal system for AI/DI applications using the same CNTw employed herein. 
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Thus, the electrical conductivity that the CNT web presents even after functionalisation 

demonstrates the CNTs maintain their structural integrity.  

4. CONCLUSIONS 

The non-covalent amino‒functionalisation (physisorption) of CNTw in gas‒phase reaction 

has been shown to be an effective method to increase the chemical interactions between the 

CNT surface and the epoxy matrix. This enhancement yielded a 13% improvement in 

fracture toughness when the CNTw were functionalised with ethylenediamine, and a 24% 

improvement if compared with the pristine CNTw. This work has further shown that the 

suitability of an organic amine to enhance the fracture toughness of a CNT/CF/epoxy 

laminate depends, among other parameters, on the temperature required to activate the 

organic amine towards the epoxy ring opening reaction, which can be measured by 

differential scanning calorimetry (DSC). Raman, XPS, and SEM confirmed that the 

thermally activated functionalisation process did not affect the CNT structural integrity, nor 

its physical distribution or orientation. In addition, the electrical conductivity was 

maintained in the region of 103 S·m-1 even after functionalisation, making it suitable for 

several applications including electromagnetic shielding or de‒icing. This opens the 

possibility of using amino‒functionalised CNTw to provide directional multifunctionality 

to a CF/epoxy laminate with a negligible increase in weight of only 0.2 g·m-2, while also 

toughening the material. 
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Supporting Information 

CNTw (10 layers) supported on an aluminium frame; CNTw gas-phase amino 

functionalisation reactor; CNTw placed at 90º with respect of the CF during the preparation 

of the composite preparation of DCB specimen for Mode I fracture toughness testing 

(Figure S1). TGA and first derivative of pristine and amino functionalised CNTw (Figure 

S2). Raman spectroscopy and SEM images of pristine and EDA treated CNTw (Figure S3). 

XPS survey of pristine and EDA-functionalised CNTw (Figure S4). N1s peak region of 

EDA treated CNTw (Figure S5). Representative load-displacement curves (Figure S6). 

Representative R-curves (Figure S7). SEM images of the fracture surface of CF/SE84LV 

reinforced with DAD treated CNTw and TET treated CNTw (Figure S8) 
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Figure S1. CNTw (10 layers) supported on an aluminium frame (a); CNTw gas-phase 

amino functionalisation reactor (b); CNTw (x-y plane) placed on the CF prepreg during the 

preparation of the composite. CFs are parallel to the x axis while CNTs are parallel to the y 

one (c) preparation of DCB specimen for Mode I fracture toughness testing (d).   
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Figure S2. TGA (a) and first derivative (b) of pristine and amino‒functionalised CNTw. 

 

The 2D area of the diamines were calculated using the projected shadow of the more stable 

3D conformer given at PubChem open source database (Open Chemistry Database 

provided by the National Center for Biotechnology Information from the U.S. National 

Library of Medicine), correlating the total area with the distance of the C-C in an aliphatic 

chain (0.154 nm) or in an aromatic structure (0.137 nm). To make such calculations, all the 

molecules were oriented flat, that is, oriented in such a way that the projected shadow is 

maximised.  

This allowed us to calculate the total area per gram that could be covered with a monolayer 

of the corresponding amine in such a flat orientation (M) using the following formula: 

𝑀 =
𝑁

𝑃
 

where N is the calculated area for the corresponding amine times the Avogradro’s number, 

in m2·g-1 and P is the molecular weight of the corresponding diamine in g·mol-1. 

To calculate the CNT surface area (S), an average CNT were selected, with 7 walls, an 

outer diameter of 10 nm and an average space between layers of 0.34 nm. Considering the 
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CNT as a perfect cylinder, a theoretical graphene surface area of 2600 m2·g-1, and taking 

into account only the contribution to the surface of the outermost layer, a CNT specific 

surface area of 233 m2·g-1 is obtained. The surface area of the graphene was divided by two, 

since endohedral interactions were disregarded and thus only one side of the graphene 

plane was considered to be accessible in the CNT.  

The weight loss between 400 °C and 600 ºC were assigned to a combustion of the 

outermost layer of the CNT only, and thus the surface of CNT in contact with the diamine 

was calculated ascribing all the weight lost to the seventh graphene concentric layer of the 

CNT. 

The equivalent amine monolayer (EAM) coverage was obtained dividing the total amount 

of surface that could be covered by a given monolayer of diamine over the total surface of 

CNT to be covered, by using the formula: 

𝐸𝐴𝑀 (%) =  

𝑊
100  𝑀

(1 −
𝑊

100
)  𝑆

 100 

Where W is the corresponding weight % of amine incorporated, as calculated from the 

weight loss between 200 °C and 410 °C; M is the total area per gram that could be covered 

with a monolayer of the corresponding amine (m2·g-1); and S is the BET surface area of the 

CNT (m2·g-1).   
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Figure S3. Raman spectroscopy (a) and SEM images of pristine (b) and EDA (c) treated 

CNTw. 

Figure S4. XPS survey of pristine (a) and EDA‒functionalised (b) CNTw. 

An XPS survey scan was taken for both samples in order to study the overall chemical 

composition. The binding energies of the photoelectron spectra were referenced to the sp2 

component of carbon, at 284.3 eV. After a Shirley-type background subtraction, peak 
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fitting was performed by using a combination of Doniach-Sunjic and Gaussian-Lorentzian 

function for the asymmetric component of C1s. For symmetric components, a Gaussian-

Lorentzian fitting function was used. Data processing was performed using CasaXPS 

software. 

 

Figure S5. N 1s peak region of EDA treated CNTw. 

 

Figure S6. Representative load-displacement curves. 
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Figure S7. Representative R-curves.  

The propagation fracture toughness was calculated over Δa = 30-50 mm. 

 

 

Figure S8. SEM images of the fracture surface of CF/SE84LV reinforced with DAD 

treated CNTw (a) and TET treated CNTw (b). 


