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Introduction 

In the past half century, the effect of global warming has caused the Arctic sea ice thickness to reduce by 50% 

[1]. The thinned ice vibrates under the excitation from ocean waves, known as its hydroelastic response. Studies 

on hydroelastic wave-ice interactions started by theoretical models, in which a very long ice floe is usually 

assumed as semi-infinite and subjected to regular ocean waves. Fox and Squire [2] assumed that the ice floe 

deforms into a sinusoidal wave-shape, while of a different wavelength and amplitude from the incident waves. By 

contrast, other authors [3–5] emphasise the hydroelastic waves attenuate with propagation distance and provided 

predictions of the attenuation. To assess the applicability of these theoretical models, Sree et al. [6] conducted 

corresponding laboratory experiments using an artificial viscoelastic ice floe and found large discrepancies against 

the theoretical predictions. Similar inaccuracies of theoretical models were also demonstrated by the experiments 

of Toffoli et al. [7] and Nelli et al. [8]. With the increasing demand for Arctic Engineering purposes, Squire [9] 

suggests current theories may have oversimplified the sea ice hydroelasticity, indicating the need to develop 

numerical models to obtain more realistic solutions. 

Numerical models have been reported capable of achieving a full coupling between waves and rigid floating ice 

[10,11]. When an ice floe is relatively small to wavelength, it is valid for the floe to be considered as rigid, thus 

no need to solve ice deformations. However, in order to model the sea ice hydroelasticity, a Fluid-Structure 

Interaction (FSI) approach is required to obtain the structural solution of ice deformation and couple it with the 

solution of surrounding fluid domain, which requires further development of above models. To fill this gap, an 

FSI approach [12–16] was developed based on the open-source code, OpenFOAM, and it has been validated in 

the case of wave interaction with a finite ice floe [17]. In this work, the developed model is extended to a very 

long ice floe to study the semi-infinite scenario. Simulations are performed to present the wave-induced ice 

deformation, with the attenuation of hydroelastic waves along the ice floe investigated. 

 

Numerical model 

As shown in Figure 1, a two-dimensional rectangular computational domain is established, defined by the 

Cartesian xy coordinate system. To obtain both fluid and structural solutions, the domain is divided into two parts, 

namely the fluid sub-domain and the solid sub-domain. The domain is 8 m long and 0.6 m high, filled with fresh 

water of 0.45 m depth, with air filling the rest of the fluid sub-domain. A numerical wavemaker is set at the inlet 

to generate a regular wave field, propagating in the positive x-direction. A range of wave conditions is considered, 

combined by period T = 0.8 ~ 1.2 s (corresponding to wavelength λ = 1 ~ 2.1 m) with wave steepness ka = 0.04 

~ 0.1. A wave absorption zone is placed by the outlet boundary to minimise reflection of waves. At the top 

boundary of the domain, a static pressure boundary condition is applied to represent atmospheric conditions. The 

bottom boundary is defined as a no-slip wall to account for the presence of the seabed. The solid sub-domain 

represents a high aspect-ratio ice floe floating on the water surface, with length L = 5 m and thickness h = 0.01 

m. The ice floe is initialised at its buoyancy-gravity equilibrium position, and its rheology is set at density ρ = 900 

kg/m3, Young’s modulus E = 4 GPa and Poisson ratio ν = 0.4. 

The Finite-Volume method [18] is applied to obtain the fluid and structural solutions over a certain time duration. 

The process includes two types of discretisation, in space and time respectively. In space, the computational 

domain is divided into a set of non-overlapping hexahedral cells, known as a mesh; in time, the temporal 

dimension is split into a finite number of timesteps. As this is an FSI case, the computational mesh is divided into 

two parts, namely a fluid mesh for the fluid sub-domain and a solid mesh for the solid sub-domain, as depicted in 

Figure 2. The solutions of the fluid mesh (including velocity, pressure and free surface location) are obtained by 



 

 
 
 

solving the Navier-Stokes equations incorporating the Volume of Fluid method [17]; the solid mesh is governed 

by conservation of momentum adopting the nonlinear St. Venant Kirchhoff hyperelastic law [14], so as to capture 

the ice deformation. The fluid and structural solutions are coupled at the fluid-solid interface, achieved by a 

Dirichlet-Neumann coupling procedure [13], where velocity and pressure are first calculated in the fluid sub-

domain, and the force from the fluid side on the interface is applied as a boundary condition to the solid side of 

the interface; the displacement in the solid sub-domain is then solved according to the force and the velocity of 

the solid interface is sent back as a boundary condition to the fluid interface. Iterations are performed over these 

steps until the interface satisfies the kinematic and dynamic conditions. 

 

 

Figure 1: Schematic of the model with dimensions: regular waves propagate in the positive x-direction and 

induce the elastic deformation of a long ice floe floating on the water surface. 

 

 

Figure 2: Mesh layout: with fluid mesh (light), solid mesh (dark) and free surface (blue line). The fluid mesh is 

graded towards the free surface area. 

 

Results and discussion 

As shown in Figure 3, with the propagation of waves, the ice floe undergoes vibrations, including sinusoidal 

oscillations following the wave period and a downward bend due to waves running on top of the ice (referred as 

overwash [19,20]). The ice deforms into the wave-shape, in which the wave amplitude decreases along the ice, 

i.e. attenuation, and the wavelength inside the ice is visibly larger than the incident wavelength. Figure 3(a) shows 

the ice edge bends upwards when a wave crest encounters it. However, it does not show an effective upward 

displacement, which attributes to the offset of overwash load. Figure 3(b) shows a large downward displacement 

induced by a wave trough, which has been strengthened by overwash. These suggest the effect of overwash can 

be a key factor to the hydroelastic ice strain, important for further predicting ice crack and break-up. Overwash is 

a ubiquitous polar phenomenon due to the very small freeboard of sea ice, which has been reported to be one main 

gap of current sea ice modelling; its exclusion by previous theoretical models is the primary reason causing 

inaccuracies [7,8]. Nevertheless, the proposed approach is promising for relevant sea ice predictions since it is 

fully-coupled with overwash. 



 

 
 
 

To analyse the wave attenuation along the ice floe, vibrations are measured every 0.1 m along the ice floe. An ice 

vibration amplitude (aice) is obtained at each measured location, calculated as half the difference between the 

average peak and trough positions of the oscillation. As shown in Figure 4, for all the tested wave conditions, the 

amplitude of the ice response decreases as the distance from the ice edge increases, showing the wave energy 

dissipation due to the viscous effect between water and the ice bottom. Figure 4 (a) presents the attenuation for 

the same wave steepness but different wave periods. It can be seen that waves of a larger period (or longer waves) 

can better propagate into the ice. When T = 1.2 s and T = 1 s, an exponential attenuation can be observed. The 

amplitude decreases from around 95% and 80% of the wave amplitude respectively, and around 35% and 20% 

can propagate through one meter of the ice. When T = 0.8 s, where the waves are relatively short, the ice edge can 

only vibrate at around 40% amplitude of the incident wave, and the amplitude quickly reduces to zero after 

propagating over one meter. For a further location, the vibration is negligible. Figure 4 (b) compares the 

attenuation at T = 0.8 s but different wave steepnesses, and they all follow the similar trend. For a higher steepness 

(or higher amplitude), a weaker vibration is obtained, which can attribute to a consequent stronger overwash that 

can suppress the vibration. 

The numerical observations are in accordance with the experiments conducted at the wave-ice tank at the 

University of Melbourne [21]. Future work will include a numerical and experimental combination to investigate 

relevant hydroelastic wave-ice interactions. Experimental work can provide valuable insights and validations to 

support of the development of the numerical model; on the other hand, the numerical method equips convenience 

to provide cost-effective solutions, attended by the flexibility to investigate the influence of varying environmental 

variables, e.g. ice dimensions and rheology.  
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(a) t = (n+1/4) T, when a wave crest approaches the ice. 

 

(b) t = (n+3/4) T, when a wave trough approaches the ice. 
 

Figure 3: Deformed ice floe due to waves (T = 1.2 s and ka = 0.04); black line indicates its original position. 



 

 
 
 

  
(a) ka = 0.04, with different wave periods  (b) T = 0.8 s, with different wave steepnesses 

  

Figure 4: Non-dimensional vibration amplitude, as a function of horizontal distance from the ice edge.  
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