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Abstract

A new, coercive formulation of the Helmholtz equation was introduced in [1]. In this paper we
investigate h-version Galerkin discretisations of this formulation, and the iterative solution of the
resulting linear systems. We find that the coercive formulation behaves similarly to the standard
formulation in terms of the pollution effect (i.e. to maintain accuracy as k →∞, h must decrease
with k at the same rate as for the standard formulation). We prove k-explicit bounds on the
number of GMRES iterations required to solve the linear system of the new formulation when it
is preconditioned with a prescribed symmetric positive-definite matrix. Even though the number
of iterations grows with k, these are the first such rigorous bounds on the number of GMRES
iterations for a preconditioned formulation of the Helmholtz equation, where the preconditioner is
a symmetric positive-definite matrix.
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1. Introduction: the goals of this paper

The Helmholtz equation ∆u+ k2u = 0 is difficult to solve numerically, when the wavenumber
k is large, for the following three reasons:

1. The solutions of the homogeneous Helmholtz equation oscillate on a scale of 1/k, and so
to approximate them accurately with piecewise polynomial functions (e.g. using the finite
element method) one needs the total number of degrees of freedom, N , to be proportional to
kd as k increases, d ∈ N being the spatial dimension.

2. The pollution effect means that for fixed-order finite-element methods with N ∼ kd, even
though the best-approximation error is bounded independently of k, the relative error grows
with k. The fact that N � kd is required for the relative error to be bounded independently of
k leads to very large matrices, and hence to large (and sometimes intractable) computational
costs.

3. The standard variational formulation of the Helmholtz equation is not coercive (i.e. it is sign-
indefinite) when k is sufficiently large; in other words, zero is in the numerical range or field
of values of the operator (see Definition 2.6 below). This indefiniteness is inherited by the
Galerkin linear system; therefore even when the linear system has a unique solution (which
depends on the discretisation and on k), one expects iterative methods to behave extremely
badly if the system is not preconditioned.

A new formulation of the Helmholtz equation was introduced in [1] (see the recap in §2.2
below); the advantage of this new formulation is that the sesquilinear form is continuous and
coercive for all k > 0, and thus this formulation does not suffer from the third difficulty above.
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The disadvantage is that it is posed in a subset of H1(Ω), namely the space V defined by (2.11),
and conforming discretisations of V require C1 elements (like conforming discretisations of the
standard least-squares formulation).

The goals of this paper are to answer the following two questions for the h-version of the
Galerkin method applied to the formulation of [1] (defined by (2.12) below):

Q1. How must h decrease with k for the relative error to be below a prescribed (k-independent)
accuracy as k →∞? (See Definition 2.3 below for a more precise description of this property.)

Q2. How does the number of GMRES iterations grow with k?

We then compare the answers with the corresponding answers for the the standard variational
formulation (2.2) and the least-squares formulation (2.16).

We discretise all three formulations with C1 elements; this is necessary for the formulation of
[1] and the least-squares formulation because they are posed in the space V (2.11). The standard
variational formulation only requires C0 elements, but we use C1 elements to keep the comparison
uniform across formulations.

Q1 is investigated in §3, Q2 is investigated in §4, and the results are combined in §5 to give
k-explicit estimates on the finite-element error of the approximation to the Galerkin solution com-
puted with a number of GMRES iterations whose k-dependence is given explicitly.

We highlight the complementary investigation of the formulation of [1] by Ganesh and Morgen-
stern in [2] (and their generalisation of the formulation to problems with variable refractive index
in [3]). We compare the results of [2, 3] to our results in §6.3 below.

2. Definitions and existing theory of the three variational formulations considered

In this paper, we consider the model Helmholtz problem of the interior impedance problem,
and we are particularly interested in the case that kL is large, L being a characteristic length of
the computational domain.

Definition 2.1 (Interior Impedance Problem (IIP)). Let Ω ⊂ Rd, d ≥ 1 be a bounded Lips-
chitz open set and let Γ := ∂Ω. Given f ∈ L2(Ω), g ∈ L2(Γ), and k > 0 find u ∈ H1(Ω) such that

Lu := ∆u+ k2u = −f in Ω, (2.1a)

∂nu− iku = g on Γ, (2.1b)

where ∂n denotes the normal derivative operator (see, e.g., [4, Lemma 4.3]).

Since the fundamental solution of the operator L is known explicitly, the IIP can be solved
by boundary integral equations, which have the advantage that the dimension of the problem is
reduced. Nevertheless, there is large interest in the numerical solution of the IIP via discretisations
in the domain (as opposed to on the boundary), partly motivated by the large interest in the
heterogeneous Helmholtz equation ∆u + k2nu = 0, where n is a function of position; boundary-
integral-equation techniques are no longer applicable to this latter equation since there does not
exist an explicit expression for the fundamental solution.

2.1. Recap of the theory of the standard variational formulation

The standard variational formulation of the IIP is formed by multiplying the PDE (2.1a) by a
test function v and integrating by parts (i.e. using Green’s theorem).

Definition 2.2 (Standard variational formulation in H1). Given f ∈ L2(Ω), g ∈ L2(Γ), and
k > 0, find u ∈ H1(Ω) such that

aST (u, v) = FST (v) for all v ∈ H1(Ω), (2.2)

where aST (u, v) :=

∫
Ω

(
∇u · ∇v − k2uv

)
dx− ik

∫
Γ

uv ds and FST (v) :=

∫
Ω

fv dx +

∫
Γ

gv ds.

2



Given a finite-dimensional subspace HN ⊂ H1(Ω), the Galerkin method is,

find uN ∈ HN such that aST (uN , vN ) = FST (vN ) for all vN ∈ HN . (2.3)

In this paper we consider the h-version of the finite element method (h-FEM); i.e. we consider
a sequence (HN )N∈Z of finite-dimensional nested subspaces, with each HN a space of piecewise
polynomials of some fixed degree p ≥ 0 and mesh diameter h, so that the subspace dimension
N (i.e. the total number of degrees of freedom) satisfies N ∼ h−d. We highlight that there are
many other discretisations schemes for the Helmholtz equation; we touch on some of these below
(e.g. hp-FEM in §2.1.1, Trefftz methods in §2.2), but remained focused on the h-FEM because of
its wide and sustained use by people interested in solving the Helmholtz equation in applications.

If {φi : i = 1, . . . , N} is a (real) basis of HN , then the Galerkin equations (2.3) are equivalent
to the N -dimensional linear system

Au = f , with A := S− k2M− ikN(0), (2.4)

where S`,m =
∫

Ω
∇φ` · ∇φm dx is the stiffness matrix, M`,m =

∫
Ω
φ`φm dx is the mass matrix, and

N
(0)
`,m =

∫
Γ
φ`φm ds is the boundary mass matrix. Note that A is symmetric but not Hermitian.

Throughout the paper, we use the notation a . b to mean that there exists a C > 0, independent
of h and k such that a ≤ Cb. We write a ∼ b when a . b and b . a.

2.1.1. First numerical-analysis goal: accuracy of Galerkin solutions.

The standard numerical analysis of the h-FEM applied to elliptic PDEs is concerned with the
limit h→ 0 with other parameters, such as k, fixed. When solving wave problems such as the IIP,
it is natural to consider h as a function of k, and have the goal that relative error is controlled to
a prescribed accuracy uniformly in k. The following (non-standard) definition will make it easier
to refer to this property in the rest of the paper. Recall that the natural norm on H1(Ω) for
Helmholtz problems is given by

‖v‖2H1
k(Ω) := ‖∇v‖2L2(Ω) + k2 ‖v‖2L2(Ω) ; (2.5)

the rationale behind this weighting is that, if u satisfies ∆u+k2u = 0, one expects that ‖∇u‖L2(Ω) ∼
k‖u‖L2(Ω), under which both terms in the norm (2.5) are of the same magnitude (see Remark 3.5).

Definition 2.3 (hka-accurate). Given a > 0, we say that an h-FEM for the IIP is hka-accurate
if given 0 < ε < 1 and k0 > 0 there exists C = C(ε, k0) such that if hka ≤ C, then the sequence of
Galerkin solutions uN satisfies

‖u− uN‖H1
k(Ω)

‖u‖H1
k(Ω)

≤ ε for all k ≥ k0. (2.6)

The question of for what a > 0 the standard FEM is hka-accurate was thoroughly investigated
by Ihlenburg and Babuška in 1-d [5], [6] (following earlier work by Bayliss, Goldstein, and Turkel
[7]). With H1-conforming piecewise-polynomial subspaces of order p ≥ 1, Ihlenburg and Babuška
showed that when p = 1, the h-FEM is hk3/2-accurate (assuming u ∈ H2) [8, Equation 3.25], [9,
Equation 4.5.15] with numerical experiments indicating that this is sharp [5, Figure 11], [9, Figure
4.13]. Furthermore they showed that when p ≥ 2 the h-FEM is hk(2p+1)/(2p)-accurate (assuming
u ∈ Hp+1(Ω) and f ∈ Hp−1(Ω)) [6, Corollary 3.2], [9, Theorem 4.27 and Equation 4.7.41].

The situation for d = 2, 3 is less understood. Numerical experiments (e.g., [7, §3]) indicate that,
when p = 1, the h-FEM is hk3/2-accurate, but this has yet to be proved. If Ω is a convex polygon
(for d = 2) or polyhedron (for d = 3), Wu proved in [10] that, if hk3/2 is sufficiently small, then

‖u− uN‖H1
k(Ω) . ‖f‖L2(Ω) + ‖g‖H1/2(Γ). (2.7)

In the case when Ω is star-shaped with respect to a ball and Γ is analytic, Melenk and Sauter
proved that (2.7) holds when hk(p+1)/p is sufficiently small [11, Equation (5.14b)]. 1

1Melenk and Sauter also proved that the hp-FEM is quasi-optimal (i.e. (2.8) holds) when kh/p is sufficiently
small and p ≥ C log k for some sufficiently large C [11, Theorem 5.8], and Esterhazy and Melenk proved analogous
results for polygons [12, Theorem 4.2].
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Remark 2.4 (Quasi-optimality). A related goal to (2.6) is for the h-FEM to be quasi-optimal:

‖u− uN‖H1
k(Ω) . min

vN∈HN

‖u− vN‖H1
k(Ω) . (2.8)

In 1-d, Ihlenburg and Babuška proved that (2.8) holds for p = 1 when hk2 is sufficiently small [8,
Theorem 3], [9, Theorems 4.9 and 4.13], and numerical experiments indicated that this is sharp
[8, Figures 7 and 8], [9, Figure 4.11]. In 2- and 3-d, Melenk proved that (2.8) holds when hk2 is
sufficiently small [13, Proposition 8.2.7], under the a priori estimate (2.20) below and assuming
that u ∈ H2(Ω).

Remark 2.5 (The pollution effect). The pollution effect can either be defined by saying that a
numerical method suffers the pollution effect if the condition “hk sufficiently small” is not enough
to ensure that the relative error is bounded independently of k (i.e. (2.6)), see [9, §4.6.1], or by
saying that a numerical method suffers the pollution effect if the condition “hk sufficiently small”
is not enough to ensure k-independent quasi-optimality (i.e. (2.8)), see [14, Definition 2.1].

We now show that if k-independent quasi-optimality holds, then the relative error decreases with
k, and thus the second definition of the pollution effect is stronger than the first. For continuous
piecewise-polynomial elements on a simplicial mesh and w ∈ H2(Ω) we have

min
vN∈VN

‖w − vN‖H1
k(Ω) . h ‖w‖H2(Ω) + hk ‖w‖H1(Ω)

by, e.g., properties of the quasi-interpolant given in [15, Theorem 4.1]. Furthermore, assuming
that derivatives of Helmholtz solutions scale with k, see Assumption 3.4 (in particular (3.3) with
m = 1) below, if quasi-optimality (2.8) holds, we have that ‖u− uN‖H1

k(Ω) . hk ‖u‖H1
k(Ω) . As

recalled above, quasi-optimality holds for hk2 sufficiently small, and thus the relative error then
decreases like 1/k as k increases in this case.

2.1.2. Second numerical-analysis goal: rapid solution of linear system

From §2.1.1, the dimensionN of the Galerkin method Amust grow at least like kd as k increases,
which puts 3-d large-k problems out of range of direct solvers. The Galerkin matrix A (2.4) is
non-Hermitian, and in general it is nonnormal. General iterative methods such as preconditioned
(F)GMRES therefore have to be employed for the solution of the linear system (2.4).

Without preconditioning, GMRES performs badly when applied to Helmholtz problems with
k large, and the search for good preconditioners for Helmholtz problems is therefore a topic of
much current interest; see, e.g., the reviews [16], [17] and the references therein. One is the reasons
this is difficult is that analysing the convergence of (preconditioned) GMRES is hard, because an
analysis of the spectrum of the system matrix alone is not sufficient for any rigorous convergence
estimates. In §4.1 we recap the existing tools based on the field of values/numerical range.

Definition 2.6 (Field of values/numerical range). Given an N × N complex matrix C, the
field of values/ numerical range of C (in the Euclidean inner-product 〈·, ·〉2), W (C), is defined by

W (C) :=
{
〈Cv,v〉2 : v ∈ CN , ‖v‖2 = 1

}
.

2.1.3. The role of coercivity.

Two key properties of sesquilinear forms, such as aST (·, ·) are continuity and coercivity. Indeed,
given a sesquilinear form a(·, ·) on a Hilbert space V with norm ‖ · ‖V ,

a(·, ·) is continuous if there exists Ccont > 0 such that |a(u, v)| ≤ Ccont ‖u‖V ‖v‖V for all u, v ∈ V,

and a(·, ·) is coercive if there exists Ccoer such that |a(v, v)| ≥ Ccoer ‖v‖2V for all v ∈ V;

“sign-definite” is often used as a synonym for “coercive”.
The relevance of continuity and coercivity to the twin goals in §2.1.1 and §2.1.2 is as follows.

If a sesquilinear form a(·, ·) is both continuous and coercive, then:
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1. Céa’s lemma implies that the Galerkin method for variational problems involving a(·, ·) is
quasi-optimal, i.e. for any finite dimensional subspace VN ⊂ V, the Galerkin solution uN
exists, is unique, and satisfies

‖u− uN‖V ≤
Cc
α

min
vN∈VN

‖u− vN‖V ; (2.9)

moreover, if a(·, ·) is self-adjoint, i.e. a(u, v) = a(v, u), then (by, e.g., [18, §2.8])

‖u− uN‖V ≤
√
Cc
α

min
vN∈VN

‖u− vN‖V . (2.10)

2. There exists bounds on the number of iterations GMRES takes to solve the linear system
involving the Galerkin matrix. Indeed, these bounds, summarised in §4.1 below, need a bound
on (i) the norm of the Galerkin matrix—this follows from continuity, and (ii) the distance of
the field of values (see Definition 2.6) from the origin—this follows from coercivity.

Lemma 2.7 (Continuity and lack of coercivity of standard formulation).
(i) aST (·, ·) is continuous in H1

k(Ω) with norm (2.5) with Ccont ∼ 1.
(ii) There exists a k0 > 0 such that if k ≤ k0, then aST (·, ·) is coercive in H1

k(Ω) with norm (2.5)
with Ccoer = 1/2.
(iii) Let λ1 > 0 be the first Dirichlet eigenvalue of the negative Laplacian in Ω. If k2 ≥ λ1 then
there exists a v ∈ H1

k(Ω) with aST (v, v) = 0.

References for proof. (i) follows from the Cauchy–Schwarz and multiplicative trace inequalities;
see, e.g., [19, §6.2]. For (ii), see, e.g., [19, Lemma 6.4]. For (iii), see, e.g., [19, Lemma 6.5].

2.2. Definition of the coercive formulations of the Helmholtz IIP

Although the standard variational formulation of the Helmholtz IIP (with sesquilinear form
aST (·, ·)) is not coercive for k sufficiently large, there do exist coercive formulations of the Helmholtz
IIP. These are summarised in [1, §I.2] (see also [19, §8.3]). For these formulations discussed
in [1, §I.2] at least one of the following is true: (i) the formulation is an integral equation on
Γ; (ii) the formulation requires restricting the Hilbert space to include only piecewise solutions
of the homogeneous Helmholtz equation (so-called operator-adapted or Trefftz spaces); (iii) the
formulation is a least-squares formulation (under which any well-posed linear BVP is coercive).

The MS formulation. The paper [1] introduced a coercive formulation of the Helmholtz IIP, which
we refer to as the MS formulation. The novelty of the MS formulation is that it is a formulation
in Ω (not on Γ), does not require operator-adapted spaces, and is not a least-squares formulation.

To define the MS formulation, we first let ∇Γ denote the surface gradient on Γ; recall that
∇Γ is such that if v is differentiable in a neighbourhood of Γ then ∇Γv = ∇v − n ∂v

∂n on Γ, where
n = n(x) is the outward-pointing unit normal vector at the point x ∈ Γ). Let

V :=
{
v : v ∈ H1(Ω), ∆v ∈ L2(Ω), v ∈ H1(Γ), ∂nv ∈ L2(Γ)

}
; (2.11)

standard regularity results imply that the solution of the IIP is in V (see [1, Proposition 3.2]). In
fact, the harmonic analysis results of Dahlberg, Jerison, and Kenig imply that V = H3/2(∆; Ω) :=
{w ∈ H3/2(Ω) : ∆w ∈ L2(Ω)}; see [20, Lemme 2]. An important feature of V is that conforming
FEMs in this space require C1 elements [1, Lemma 5.1].

Definition 2.8 (MS formulation). Given f ∈ L2(Ω), g ∈ L2(Γ), and k > 0, find u ∈ V such
that

b(u, v) = G(v) for all v ∈ V, (2.12)

where b(u, v) :=

∫
Ω

(
∇u · ∇v + k2uv +

(
Mu+

A

k2
Lu
)
Lv
)

dx (2.13)

−
∫

Γ

(
ikuMv +

(
x · ∇Γu− ikβu+

d− 1

2
u

)
∂nv + (x · n)

(
k2uv −∇Γu · ∇Γv

))
ds,
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and G(v) :=

∫
Ω

(
Mv − A

k2
Lv
)
f dx +

∫
Γ

Mv g ds, (2.14)

where β and A are arbitrary real constants, d is the spatial dimension, and

Mu := x · ∇u− ikβu+
d− 1

2
u.

Remark 2.9 (The MS formulation in 1-d). In one space dimension Ω = (x−1, x1) ⊂ R, the
tangential gradient ∇Γ terms drops and formulation (2.12) reads∫ x1

x−1

(
u′v′ + k2uv +

(
(x− x0)u′ − ikβu+Ak−2u′′ +Au

)
(v′′ + k2v)

)
dx

−
∑

ξ∈{−1,1}

(
ik(xξ − x0)u(xξ)v

′(xξ)− k2βu(xξ)v(xξ)− ikβu(xξ)v
′(xξ)ξ + (xξ − x0)ξk2u(xξ)v(xξ)

)
=

∫ x1

x−1

(
(x− x0)fv′ + (ikβ −A)fv −Ak−2fv′′

)
dx+

∑
ξ∈{−1,1}

(
(xξ − x0)v′(xξ) + ikβv(xξ)

)
g(xξ)

for all v ∈ V where x0 ∈ (x−1, x1). Here the coefficient ξ = ±1 in the boundary terms gives the
correct sign to the flux terms.

The MS formulation comes from integrating over Ω the identity

MvLu+MuLv = ∇ ·
[
Mv∇u+Mu∇v + x(k2uv −∇u · ∇v)

]
−∇u · ∇v − k2uv, (2.15)

using the PDE (2.1a) and the boundary conditions (2.1b) and then adding on the least-squares-type
term LuLv. Multipliers of the form Mv were first used for the Helmholtz equation by Morawetz
and Ludwig in [21] and Morawetz in [22]; see the discussion in [1, §I.4] and [23, Remark 2.7].

A generalisation of this formulation to the IIP with the PDE (2.1a) replaced by ∆u+k2nu = −f ,
and with n satisfying conditions that guarantee nontrapping of rays (see [24, §6]) was introduced
by Ganesh and Morgenstern [3]; this formulation arises by integrating over Ω the analogue of the
identity (2.15) with L replaced by Ln := ∆ + k2n.

Least-squares formulation. The least-squares formulation of the IIP is posed in the same space as
the MS formulation, i.e. V , and it is therefore natural to compare the two.

Definition 2.10 (Least-squares variational formulation in V ). Given f ∈L2(Ω), g ∈L2(Γ),
and k > 0, find u ∈ V such that

aLS(u, v) = FLS(v) for all v ∈ V, (2.16)

where

aLS(u, v) :=

∫
Ω

LuLv dx +

∫
Γ

(
∂nu− ik u

)(
∂nv − ikv

)
ds and FLS(v) :=

∫
Ω

f v dx +

∫
Γ

g v ds.

Remark 2.11 (The MS formulation as a “stabilised method”). Formulation (2.12) is a
special case of a slightly more general family [1, (3.4)]:

bZ(u, v) =

∫
Ω

((
2− d+ Z1 + Z2

)
∇u · ∇v +

(
d− Z1 − Z2

)
k2uv +

(
x · ∇u+ Z2u+

A

k2
Lu
)
Lv
)

dx

−
∫

Γ

(
iku (x · ∇v + Z1v) + (x · ∇Γu+ Z2u)

∂v

∂n
+ (x · n)

(
k2uv −∇Γu · ∇Γv

))
ds,

GZ(v) =

∫
Ω

(
x · ∇v + Z1v −

A

k2
Lv
)
f dx +

∫
Γ

(x · ∇v + Z1v) g ds,

where Z1, Z2 are complex parameters which, in [1], were written as Z1 = α1 +ikβ1, Z2 = α2− ikβ2.
Formulation (2.12) corresponds to the choice Z1 = Z2 = d−1

2 + ikβ. This formulation is consistent

6



and continuous in V for any choice of Z1, Z2 ∈ C, while coercivity is ensured by a certain range
of parameters only ([1, Theorem 3.4]). We can decompose it into the sum of four terms:

bZ(u, v) =Z1aST (u, v) +
A

k2

∫
Ω

LuLv dx + Z2a0(u, v) + ax(u, v), (2.17)

GZ(v) =Z1FST (v) +
A

k2

∫
Ω

(−f)Lv dx + Fx(v),

where aST and FST are from Definition 2.2,

a0(u, v) :=

∫
Ω

(∇u · ∇v − k2uv + uLv)dx−
∫

Γ

u
∂v

∂n
ds = 0 for all u, v ∈ V

from integration by parts (which means that the choice of Z2 is irrelevant) and

ax(u, v) :=

∫
Ω

(
(2− d)∇u · ∇v + dk2uv + (x · ∇u)Lv

)
dx

−
∫

Γ

(
ikux · ∇v + x · ∇Γu

∂v

∂n
+ (x · n)

(
k2uv −∇Γu · ∇Γv

))
ds,

Fx(v) :=

∫
Ω

x · ∇v f dx +

∫
Γ

x · ∇v g ds.

We have that ax(u, v) = Fx(v) for all v ∈ V from combining (i) the expressions of f and g, (ii) the
divergence theorem applied to the Rellich identity [1, eq. (1.32)] and (iii) the divergence theorem
applied to (k2 times) ∇ · [uvx] = (x · ∇u)v + (x · ∇v)u+ duv.

The decomposition (2.17) shows that the MS formulation can be seen as a “stabilised method”
[25], related to the “Galerkin-least squares” (GLS) method [26, 27]: bZ(u, v) = GZ(v) is a linear
combination of the standard formulation (2.2), the volume part of the least-squares formulation,
and a consistent formulation ax(u, v) = Fx(v) arising from Rellich’s identities.

2.3. Continuity and coercivity of least-squares and MS formulations

The continuity and coercivity properties of the least-squares and MS formulations depend on
what norm is used for the space V (2.11).

Definition 2.12 (The norms ‖·‖V1
, ‖·‖V2

). Let

‖v‖2V1
:=k−2 ‖∆v‖2L2(Ω) + ‖∇v‖2L2(Ω) + k2 ‖v‖2L2(Ω) + L

(
‖∂nv‖2L2(Γ) + ‖∇Γv‖2L2(Γ) + k2 ‖v‖2L2(Γ)

)
,

(2.18)

‖v‖2V2
:= ‖Lv‖2L2(Ω) + ‖∇v‖2L2(Ω) + k2 ‖v‖2L2(Ω) + L

(
‖∂nv‖2L2(Γ) + ‖∇Γv‖2L2(Γ) + k2 ‖v‖2L2(Γ)

)
,

(2.19)

where L is the diameter (or some other characteristic length scale) of the domain.

Two remarks:

1. We weight the derivatives by k and include L in front of the boundary terms so that, when
computed for plane-wave solutions of the homogeneous Helmholtz equation with wavenumber
k, each term of the norm scales in the same way as k and L vary; see [1, Remark 3.8]. The

norm equivalence 1
max{3,2k−2} ‖v‖

2
V1
≤ ‖v‖2V2

≤ (2k2 + 1) ‖v‖2V1
holds, and if Lv = 0 then

1
2 ‖v‖

2
V1
≤ ‖v‖2V2

≤ ‖v‖2V1
.

2. The sharp bound (2.20) below shows that, for the solution u of the IIP, each term in ‖u‖2V2

is of the same order.

Definition 2.13 (Star-shaped with respect to a ball).
(i) Ω is star-shaped with respect to x0 ∈ Ω if, whenever x ∈ Ω, the segment [x0,x] ⊂ Ω.
(iii) Ω is star-shaped with respect to the ball Ba(x0) if it is star-shaped with respect to every

point in Ba(x0).
(iii) Ω is star-shaped with respect to a ball if there exists a > 0 and x0 ∈ Ω such that Ω is

star-shaped with respect to the ball Ba(x0).
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Recall that if Ω is Lipschitz, then it is star-shaped with respect to Ba(x0) if and only if
(x− x0) · n(x) ≥ a for all x ∈ Γ for which n(x) is defined; see, e.g., [28, Lemma 5.4.1].

Theorem 2.14 (k-explicit bound on the solution of the IIP). If Ω is either Lipschitz and
star-shaped or smooth (i.e. C∞), then given k0 > 0, the solution of the IIP satisfies

‖u‖V1
. L ‖f‖L2(Ω) + L1/2 ‖g‖L2(Γ) for all k ≥ k0; (2.20)

moreover, this bound is sharp in its k-dependence.

References for the proof of Theorem 2.14. The bound is proved for Lipschitz star-shaped Ω in [1,
Remark 3.6] and for general smooth Ω in [29, Theorem 1.8, Corollary 1.9]. Note that [29, Corollary
1.9] does not include the ‖∂nu‖L2(Γ) or ‖∆u‖L2(Ω) terms; the former can be included by an argu-
ment involving Green’s identity essentially identical to the proof of this corollary (this argument
in the case f = 0 is in, e.g., [30, Lemma 4.2]). The latter can be included in a straightforward
way using the PDE (2.1a). The sharpness with respect to k is proved in [30, Lemma 4.10] and [29,
Lemma 5.5]. Note that the bound ‖u‖H1

k(Ω) . L ‖f‖L2(Ω) + L1/2 ‖g‖L2(Γ) (contained in (2.20))

was proved when Ω is star-shaped with respect to a ball with smooth boundary in [13, Proposition
8.1.4] for d = 2 and [31, Theorem 1] for d ≥ 3.

In the rest of the paper, we allow the constants in . and ∼ to depend on L.

Remark 2.15. Proving that the sharp bound (2.20) holds when Ω is a general Lipschitz domain is
still open. The best results in this direction are in [30, Theorem 1.6], and show that, when L = 1,
‖u‖V1

. k ‖f‖L2(Ω) + k1/2 ‖g‖L2(Γ) in the general Lipschitz case, and ‖u‖V1
. k3/4 ‖f‖L2(Ω) +

k1/4 ‖g‖L2(Γ) when Ω is piecewise-smooth.

Lemma 2.16 (Continuity and coercivity of least-squares formulation).
(i) In the norm ‖·‖V1

, aLS(·, ·) is continuous with Ccont ∼ k2. If Ω is either Lipschitz and star-
shaped with respect to a ball, or C∞, then aLS(·, ·) is coercive in the norm ‖·‖V1

with Ccoer ∼ 1.
(ii) In the norm ‖·‖V2

, aLS(·, ·) is continuous with Ccont ∼ 1. If Ω is either Lipschitz and star-
shaped with respect to a ball, or C∞, then aLS(·, ·) is coercive in the norm ‖·‖V2

with Ccoer ∼ 1.

Proof of Lemma 2.16. The continuity results follow from the Cauchy–Schwarz and triangle
inequalities. The coercivity results follow from Theorem 2.14.

Lemma 2.17 (Continuity of the MS formulation). If

β ≤ CL (2.21)

for some C > 0 independent of k and L, then
(i) b(·, ·) is continuous in the norm ‖·‖V1

with Ccont ∼ k.
(ii) b(·, ·) is continuous in the norm ‖·‖V2

with Ccont ∼ 1.

Proof. (i) is proved in [1, Lemma 3.3] using the Cauchy-Schwarz inequality; the proof of (ii) follows
in an almost identical way.

Theorem 2.18 (Coercivity of MS formulation). Let Ω be a Lipschitz domain with diameter
L that is star-shaped with respect to a ball (without loss of generality at the origin), i.e. there exists
a γ > 0 such that x · n(x) ≥ γL for all x ∈ Γ such that n(x) exists. Assume that

β ≥ L

2

(
1 +

4

γ
+
γ

2

)
. (2.22)

(i) If A = 1/3, then, for any k > 0, <b(v, v) ≥ γ
4 ‖v‖

2
V1

for all v ∈ V .

(ii) If A = k2, then for any k > 0, <b(v, v) ≥ γ
4 ‖v‖

2
V2

for all v ∈ V .

Corollary 2.19. For the MS formulation (with sesquilinear form b(·, ·)), if β satisfies both (2.21)
and (2.22), we have Ccont/Ccoer ∼ k in the ‖·‖V1

norm (if A = 1/3), and ∼ 1 in the ‖·‖V2
norm

(if A = k2).

Proof of Theorem 2.18. (i) is proved in [1, Theorem 3.4] using the identity (2.15). (ii) follows
from the proof of [1, Theorem 3.4] taking A = k2 in [1, Equation (3.9)], and then dealing with the
terms on Γ exactly as before. (Note that [1, Equation (3.11)] has a typo: Lv should be ∆v.)
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3. Accuracy of Galerkin solutions

3.1. The discrete space

To compare the properties of the different variational formulations ((2.2), (2.12) and (2.16)),
we apply the Galerkin method to each formulation with the same discrete space VN ⊂ V . As
explained in [1, Lemma 5.1], the elements of VN must be in C1(Ω). For simplicity we restrict
ourselves to the cases d = 1 and d = 2.

In one space dimension, we simply choose VN to be the Hermite element space, i.e. the space
of C1 piecewise-cubic polynomials: if Ω = (x0, xn) ⊂ R, given a mesh with nodes x0 < x1 < · · · <
xn−1 < xn,

VN =
{
v ∈ C1(x0, xn), v|(xj−1,xj) is a polynomial of degree ≤ 3, j = 1, . . . , n

}
.

The meshwidth is defined as h = maxj=1,...,n(xj − xj−1) and N := dimVN = 2n+ 2. The degrees
of freedom are function values and first derivatives in the nodes xj .

In two space dimensions we consider a rectangular domain Ω = (x0, xnx)× (y0, yny ) ⊂ R2, for
x0 < x1 < · · · < xnx−1 < xnx

and y0 < y1 < · · · < yny−1 < yny
,

VN =
{
v ∈ C1

(
(x0, xnx

)× (y0, yny
)
)
, v|(xj−1,xj)×(yj′−1,yj′ )

∈ Q3, j = 1, . . . , nx, j
′ = 1, . . . , ny

}
.

Here Q3 is the space of polynomials of degree at most 3 separately in the x and y variables. The
meshwidth is h = maxj=1,...,nx;j′=1,...,ny

((xj − xj−1)2 + (yj′ − yj′−1)2)1/2 and N := dimVN =
(2nx + 2)(2ny + 2).

In the numerical experiments we will consider only uniform meshes, i.e. with identical elements.
The theory presented below can be easily adapted to different spaces with higher polynomial degrees
and/or continuity constraints and defined on suitable curvilinear domains (one would then modify
the proof of Lemma 3.7 using the general results of [32]).

3.2. Error bounds from continuity and coercivity

We denote by uN the solution of the Galerkin method in VN applied to one of the formulations
(2.2), (2.12) or (2.16); the choice of the formulation will be clear from the context.

Lemma 3.1 (Quasi-optimality of Galerkin method). Let VN be a finite-dimensional sub-
space of V . (i) If the MS formulation with A = 1/3 is solved using the Galerkin method, then,
given k0 > 0,

‖u− uN‖H1
k(Ω) ≤ ‖u− uN‖V1

. k min
vN∈VN

‖u− vN‖V1
for all k ≥ k0. (3.1)

(ii) If either the least-squares formulation or the MS formulation with A = k2 are solved using the
Galerkin method, then, given k0 > 0,

‖u− uN‖H1
k(Ω) ≤ ‖u− uN‖V2

. min
vN∈VN

‖u− vN‖V2
for all k ≥ k0. (3.2)

Proof. For the MS formulation, the bounds follow from Céa’s lemma (for non-self-adjoint sesquilin-
ear forms) (2.9) and Corollary 2.19. For the LS formulation, the bounds follow from Céa’s lemma
(for self-adjoint sesquilinear forms) (2.10) and Lemma 2.16(ii).

Remark 3.2. The different k-dependences of the quasi-optimality constants in Lemma 3.1 sug-
gests we should prefer case (ii), i.e. we should use the MS formulation with A = k2 or the least
squares formulation and work in the ‖·‖V2

norm. However, we see from numerical experiments that

the quasi-optimality in ‖·‖V2
norm does not provide a good accuracy in H1

k(Ω) and L2(Ω) norms
(despite these being bounded by ‖·‖V2

). This is because the best-approximation error in ‖·‖V2
in the

regimes of interest can be much larger than the best-approximation error in the other norms consid-
ered. The numerical experiments in §3.3 show that the difference between the best-approximation
errors in the different norms can outweigh the different k-dependence of the quasi-optimality con-
stants.
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Figure 1 shows a simple and representative example in one dimension. The blue dashed lines
represent the real part of u(x) = eikx, solution of (2.1) in Ω = (0, 1) with f = 0, g(0) = −2ik,
g(1) = 0 and k = 30π ≈ 94.25. The red curves depict the real parts of the projections on VN ,
with n = 100 elements (corresponding to 13.47 degrees of freedom per wavelength), orthogonal with
respect to the ‖·‖V1

norm (left panel) and with respect to the ‖·‖V2
norm (right panel). In both

cases we chose L = 1. The ‖·‖V1
-orthogonal projection is visually indistinguishable from the exact

solution, while the amplitude of the ‖·‖V2
-orthogonal projection is less than half the correct one.

Table 1 shows the relative error measured in four norms (‖·‖L2(Ω), ‖·‖H1
k(Ω), ‖·‖V1

, ‖·‖V2
) of

the four orthogonal projections corresponding to the same four norms. The values in the table con-
firm quantitatively what is visible in the plot: the ‖·‖V1

-orthogonal projection has L2(Ω) and H1
k(Ω)

relative errors comparable to the best approximation in these norms, while the ‖·‖V2
-orthogonal pro-

jection has much larger relative errors. We observe similar phenomena also for non-homogeneous
problems (f 6= 0).

Figure 1: Blue dashed line: the real part of u(x) = ei30πx in Ω = (0, 1); red line: the projection of u on VN for
n = 100 orthogonal with respect to the ‖·‖V1

norm (left panel) and with respect to the ‖·‖V2
norm (right panel).

See Remark 3.2 and Table 1.

‖·‖L2(Ω) rel. err. ‖·‖H1
k(Ω) rel. err. ‖·‖V1

rel. err. ‖·‖V2
rel. err.

‖·‖L2(Ω)-orthog. proj. 0.000556 0.00308 0.0173 1.46

‖·‖H1
k(Ω)-orthog. proj. 0.000574 0.00301 0.0143 1.35

‖·‖V1
-orthog. proj. 0.000824 0.00333 0.0125 1.23

‖·‖V2
-orthog. proj. 0.615 0.615 0.589 0.764

Table 1: The relative errors measured in four different norms of the best approximations in the same four norms of
u(x) = ei30πx in Ω = (0, 1), with VN for n = 100. See Remark 3.2 and Figure 1.

Remark 3.3 (Sharpness of the quasi-optimality constants). The linear dependence on k in
the quasi-optimality bound in (3.1) comes from the ratio between coercivity and continuity constants.
We believe this k-dependence is not sharp. Figure 2 shows (in logarithmic scale) the empirical
quasi-optimality ratio Cqo(u, k, VN ) := ‖u− uN‖V1

/minvN∈VN
‖u− vN‖V1

between Galerkin and

best-approximation error for a one-dimensional experiment in Ω = (0, 1) with solution u(x) = eikx

for several values of h and k. As expected, the quasi-optimality ratio Cqo(u, k, VN ) is close to 1
for large values of kh (when VN does not contain any good approximation of u) and for small
values of hk (VN is sufficiently fine to overcome the pollution effect). (Actually for hk . 10−2

the ratio appears to be smaller than 1 because the V -orthogonal projection used to compute the
best-approximation error is ill-conditioned, so the values displayed for this regime are not reliable;
this is visible in the left corner of the figure.) The most interesting region is the “ridge” crossing
diagonally the log10 h/log10 k plane, corresponding to the pollution regime. The maximal value of
Cqo(u, k, VN ) over the considered spaces VN (i.e. over the values of h) for each k is represented
by the red continuous curve. The black dashed line is its best linear fit, showing that the empirical
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quasi-optimality ratio grows like
Cqo(u, k, VN ) ≈ k0.407,

i.e. slower than the linear growth predicted by (3.1). Other boundary value problems, e.g. non-
homogeneous ones, give similar plots with exponents between 0.4 and 0.41.

Figure 2: The empirical quasi-optimality ratio ‖u− uN‖V1
/minvN∈VN

‖u− vN‖V1
for u(x) = eikx in Ω = (0, 1) as

function of h and k. See Remark 3.3 for details.

In order to convert the quasi-optimality bounds (2.8) and (3.2) into bounds on the relative
error, we make the following assumption.

Assumption 3.4 (Oscillatory behaviour of Helmholtz solutions). Assume that u ∈ H4(Ω)
and

‖u‖Hm+1(Ω) . k ‖u‖Hm(Ω) , m = 0, 1, 2, 3. (3.3)

Remark 3.5 (Discussion of Assumption 3.4). Assumption 3.4 concerns the behaviour of u as
a function of k when k →∞. When generalisations of the IIP are used to model the scattering and
propagation of waves, the data f and g depends on k. Assumption 3.4 is therefore implicitly an
assumption on f and g, and it can be violated by choosing f and g such that the solution oscillates
on a scale smaller than k−1, like, e.g., the plane wave solution exp(ik2x · a). However, with
physically realistic f and g one expects their scales of oscillation to match the k−1 scale inherent in
the Helmholtz operator ∆ + k2. For example, scattering by an incident plane wave with frequency
k2, exp(ik2x · a), would be modelled by the Helmholtz equation ∆ + (k2)2 and not by the equation
∆ + k2.

Two situations where (3.3) has been established are the following: In 1-d, solutions of ∆u +
k2u = 0 can be written explicitly in terms of plane waves, i.e. trigonometric functions, and then it
is straightforward to prove (3.3); see [8, §3.4]. In higher dimensions, for the sound-soft scattering
problem with incident plane-wave exp(ikx · a), the analogue of (3.3) was proved for the Neumann
trace of the solution in [33, Theorems 1.1 and 1.2] and [34, Theorem 1.16 and Equation 4.10].

Lemma 3.6. For all w ∈ V ∩H2(Ω) and k ≥ k0 > 0, we have

‖w‖V1
. k1/2 ‖w‖H1

k(Ω) + k−1/2 ‖w‖H2(Ω) , ‖w‖V2
. k ‖w‖H1

k(Ω) + ‖w‖H2(Ω) . (3.4)

Proof. Using the definition of L, we find

‖Lw‖L2(Ω) . ‖w‖H2(Ω) + k2 ‖w‖L2(Ω)
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and similarly
k−1 ‖∆w‖L2(Ω) . k−1 ‖w‖H2(Ω) .

The multiplicative trace inequality

‖w‖2L2(Γ) . ‖w‖L2(Ω) ‖w‖H1(Ω)

(see, e.g., [18, Theorem 1.6.6]) implies that, given k0 > 0,

k ‖w‖2L2(Γ) . ‖w‖
2
H1

k(Ω) i.e. k1/2 ‖w‖L2(Γ) . ‖w‖H1
k(Ω) , (3.5)

for all k ≥ k0, and thus
k ‖w‖L2(Γ) . k1/2 ‖w‖H1

k(Ω) .

Now, using (3.5) applied to ∇w ∈ H1(Ω), we have,

‖∂nw‖L2(Γ) . ‖γ(∇w)‖L2(Γ) . k−1/2 ‖w‖H2(Ω) + k1/2 ‖w‖H1(Ω) ,

where here we have used γ to denote explicitly the trace operator on Γ. Similarly

‖∇Γw‖L2(Γ) . ‖γ(∇w)‖L2(Γ) . k−1/2 ‖w‖H2(Ω) + k1/2 ‖w‖H1(Ω) .

Summing all terms in the definition of the norms ‖·‖V1
and ‖·‖V2

we obtain the assertion.
The next lemma derives a priori error bounds by combining: (i) the quasi-optimality properties

of the formulations from Lemma 3.1, (ii) the scaling properties of the solutions from Assump-
tion 3.4, (iii) the scaling properties of the norms on V from Lemma 3.6, and (iv) the approximation
properties of the discrete space from [32].

Proposition 3.7 (Bound on the relative H1-error). Assume that u satisfies Assumption 3.4,
d ≤ 2, and that the discrete space Vh is as in §3.1.

(i) If the MS formulation with A = 1/3 is solved using the Galerkin method, then, given k0 > 0,

‖u− uN‖H1
k(Ω) ≤ ‖u− uN‖V1

. h2k7/2(1 + k2h2) ‖u‖H1
k(Ω) for all k ≥ k0, (3.6)

i.e., the goal (2.6) is achieved if h2k7/2 is sufficiently small, i.e. the method is hk7/4-accurate (in
the sense of Definition 2.3).

(ii) If either the least-squares formulation or the MS formulation with A = k2 are solved using
the Galerkin method, then, given k0 > 0,

‖u− uN‖H1
k(Ω) ≤ ‖u− uN‖V2

. h2k3(1 + k2h2) ‖u‖H1
k(Ω) for all k ≥ k0, (3.7)

i.e., the goal (2.6) is achieved if h2k3 is sufficiently small, i.e. the method is hk3/2-accurate (in the
sense of Definition 2.3).

Proof of Proposition 3.7. We describe the proof for d = 2, the one-dimensional case follows along
the same lines [32, §5]. Let Π : V → Vh denote the projection operator defined as ΠK

V in [32,
page 301].

Then, by [32, Theorem 6] (where, in their notation, k1 = k2 = k∗ = k∗ = 2 is given by the
C1 continuity of our spline basis, p = 3 is the polynomial degree in each direction, and σ = 4 is
implied by k1 + k2 ≤ σ ≤ p+ 1),

‖v −Πv‖Hm(Ω) . h4−m|v|H4(Ω), m = 0, 1, 2.

Combining with Lemma 3.6 and the oscillatory behaviour assumption (3.3), we find

‖u−Πu‖V1

(3.4)

.
2∑

m=0

k3/2−m ‖u−Πu‖Hm(Ω)

.
2∑

m=0

h4−mk3/2−m|u|H4(Ω)
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(3.3)

.
2∑

m=0

h4−mk9/2−m ‖u‖H1
k(Ω) = h2k5/2(1 + hk + h2k2) ‖u‖H1

k(Ω) ,

and similarly
‖u−Πu‖V2

. h2k3(1 + hk + h2k2) ‖u‖H1
k(Ω) .

Combining with the quasi-optimality results (3.1) and (3.2), we obtain the assertion.

Figure 3: The relative H1
k(Ω) errors of the standard formulation, the least squares formulation, the MS formulation

with A = 1/3 and with A = k2 for problem (2.1) in Ω = (0, 1) with u(x) = eikx. The H1
k(Ω) best-approximation

relative error is represented by the dashed black lines with stars. Here k runs from 10 to 50 000 and is chosen such
that hk6/5 = C for four different values of C, ensuring that τ∗ = 6, 8, 12, 20.
The error of the MS formulation with A = 1/3 (yellow “+” signs) and that of the standard formulation (blue squares)
is uniformly bounded, so these appear to be hk6/5-accurate. The relative error of the least squares formulation (red
circles) and the MS formulation with A = k2 (purple crosses) quickly reach 100% for all choices of τ∗, so these
appear not to be hk6/5-accurate.

3.3. Numerical experiments

We first describe experiments for the IIP (2.1) in 1-d, with Ω = (0, 1), f = 0, and g chosen so
that the exact solution is eikx. As stated in §3.1 we discretise all the formulations with Hermite
elements (C1 cubics) and uniform meshes. Figures 3, 4 and 5 display the relative H1

k(Ω) errors for
k from kmin = 10 to kmax = 50 000 (note that the numerical experiments in [5] go up to k = 1 000),
where h is tied to k via hka = C. The three figures correspond to a = 6/5, a = 7/6 and a =

3/2 respectively, while the subpanels correspond to different values of C = 4π(kminkmax)
a−1
2 /τ∗,

where τ∗ represents approximately the number of degrees of freedom per wavelength in the central
experiment of the (loglog) plot.

Our conclusions from these 1-d experiments are the following:
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Figure 4: Same as in Figure 3 with hk7/6 = C. In this case the MS formulation with A = 1/3 and the standard
formulation appear not to be uniformly bounded in k. For large values of τ∗ it appears that a long preasymptotic
regime is present and the relative errors grow only for large values of k.

Figure 5: Same as in Figure 3 with hk3/2 = C and τ∗ = 20 and 40. For τ∗ = 40 the relative errors of least squares
formulation and the MS formulation with A = k2 are bounded by 0.44 and 0.2, respectively. These two formulations
appears to be hk3/2-accurate.
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Figure 6: The 2-d analogue of Figure 3 with hk6/5 = C and τ∗ = 4 (left) and 6 (right). As in the 1-d case, the
standard formulation and the MS formulation with A = 1/3 appear to be hk6/5-accurate.

1. The standard formulation and the MS formulation with A = 1/3 appear to be hk6/5-accurate.

2. The least-squares formulation and the MS formulation with A = k2 appear to be hk3/2-
accurate.

Regarding 1: The 1-d results of Ihlenburg and Babuška recapped in §2.1.1 imply that the h-FEM
is hkaaccurate when a = (2p + 1)/(2p), i.e. when p = 3, the h-FEM is hk7/6-accurate. However,
these results are only for C0 elements and not for C1 elements. Figure 4 shows the relative errors
of the standard and MS formulations growing when hk7/6 = C, for a sufficiently large value of C.
In Proposition 3.7 we could only prove that the MS formulation with A = 1/3 is hk7/4 accurate
(although, in contrast to the results of [8, 6], this proof holds for d ≥ 1). If the linear dependence on
k of the quasi-optimality constant were replaced by k0.4 (the k-dependence that Figure 2 indicates
is sharp), then the MS formulation with A = 1/3 would be provably hk1.45-accurate.

Regarding 2: this is in agreement with the result of Proposition 3.7.

The 2-d analogues of Figures 3, 4, and 5 all exhibit the same behaviour as in 1-d (at least up to
k = 1 000). We only display the 2-d analogue of Figure 3, Figure 6, where we see that, just as in
1-d, the standard formulation and the MS formulation with A = 1/3 appear to be hk6/5-accurate.
For all these 2-d experiments, we choose Ω = (0, 1)2, f = 0, and g so that the exact solution is
eikx.

4. Iterative solution

We first recap the GMRES theory based on the field of values (§4.1), apply it to the MS and
LS formulations (§4.2), and give some numerical experiments (§4.3).

4.1. Recap of GMRES convergence theory

We now recap the GMRES convergence theory based on the field of values/numerical range,
originally due to Elman [35] and improved by Beckermann, Goreinov, and Tyrtyshnikov [36]. We
give this theory for weighted GMRES; the theory for the standard, unweighted GMRES follows
by setting the weight matrix (D below) equal to the identity.

We consider the abstract linear system

Cx = d

in Cn, where C is an n × n nonsingular complex matrix. Given an initial guess x0, we introduce
the residual r0 = d− Cx0 and the usual Krylov spaces:

Km(C, r0) := span{Cjr0 : j = 0, . . . ,m− 1}.
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Let 〈·, ·〉D denote the inner product on Cn induced by some Hermitian positive-definite matrix D,
i.e.

〈v,w〉D := w∗Dv

with induced norm ‖ · ‖D, where ∗ denotes Hermitian transpose. For m ≥ 1, define xm to be the
unique element of Km satisfying the minimal residual property:

‖rm‖D := ‖d− Cxm‖D = min
x∈Km(C,r0)

‖d− Cx‖D.

When D = I this is just the usual GMRES algorithm, and we use ‖ · ‖ to denote ‖ · ‖I , but for
more general D it is the weighted GMRES method [37] in which case its implementation requires
the application of the weighted Arnoldi process [38].

The following theorem is a simple generalisation to the weighted setting of the GMRES con-
vergence result of Beckermann, Goreinov, and Tyrtyshnikov [36]. This result is an improvement
of the so-called “Elman estimate”, originally due to Elman [35]; see also [39], [40, Theorem 3.2],
[41, Corollary 6.2], [42], and the review [43, §6].

Theorem 4.1 (Elman-type estimate for weighted GMRES). Let C be a matrix with 0 /∈
WD(C), where

WD(C) :=
{
〈Cv,v〉D : v ∈ CN , ‖v‖D = 1

}
is the field of values, also called the numerical range of C with respect to the inner product 〈·, ·〉D.
Let σ ∈ [0, π/2) be defined such that

cosσ =
dist

(
0,WD(C)

)
‖C‖D

, (4.1)

let γσ be defined by

γσ := 2 sin

(
σ

4− 2σ/π

)
,

and let rm be defined as above. Then

‖rm‖D
‖r0‖D

≤
(

2 +
2√
3

)(
2 + γσ

)
γmσ . (4.2)

References for the proof of Theorem 4.1. Theorem 4.1 is proved in [44, Theorem 5.3] using [36,
Theorem 2.1] and [45, Theorem 5.1].

We apply Theorem 4.1 below to a situation where cosσ → 0 as k → ∞. Since σ ∈ [0, π/2),
the limit cosσ → 0 corresponds to the limit σ → π/2, and it is therefore convenient to summarise
Theorem 4.1 applied to this setting as the following corollary.

Corollary 4.2. With C a matrix such that 0 /∈WD(C), let ε ∈ (0, π/2] be defined such that

sin ε =
dist

(
0,WD(C)

)
‖C‖D

i.e. ε = π/2−σ where σ is defined by (4.1). There exists C > 0 (independent of ε) such that, given
0 < δ < 1,

if m ≥ C

ε
log

(
12

δ

)
then

‖rm‖D
‖r0‖D

≤ δ.

Corollary 4.2 is proved in [44, Corollary 5.4], and implies that choosing m & ε−1 is sufficient for
the decrease of the residual to be independent of ε as ε→ 0.

Remark 4.3 (Comparison with the original Elman estimate). The original bound proved
by Elman (in the unweighted setting) is

‖rm‖D
‖r0‖D

≤ sinm σ. (4.3)

16



To see that (4.2) is a stronger result, observe that, when σ = π/2 − ε, the convergence factor in
(4.3) is

sinσ = cos ε = 1− ε2

2
+O(ε4),

which leads to requiring m & ε−2 for GMRES to converge in an ε-independent way as ε → 0. In
contrast, the convergence factor in (4.2) is

γσ := 2 sin

(
σ

4− 2σ/π

)
= 2 sin

(
π

6
− 4ε

9
+O(ε2)

)
= 1− 4ε

3
√

3
+O(ε2) as ε→ 0,

leading to m & ε−1 as stated in Corollary 4.2.

4.2. The theory applied to the MS and LS formulation

We now apply the theory in §3.3 to the MS formulation; all the results for MS with A = k2 also
hold for LS formulation (similar to in Lemma 3.1 and Proposition 3.7) because the k-dependence
of Ccont/Ccoer is the same for the two formulations (see Lemma 2.16 and Corollary 2.19).

In [1, §5.2] the implications of the original Elman estimate (4.3) were explored theoretically for
the MS formulation using GMRES in the standard l2 inner product, and computations were done
for standard GMRES in [2] (see the discussion in §6.3). We highlight that conforming discretisations
of the standard formulation (2.2) are not amenable to the analysis in §4.1, since, by Part (iii) of
Lemma 2.7, the distance between the numerical range and the origin converges to zero when the
discretisation is refined.

In this section, we explore the implications of the refined version of the Elman estimate (4.2)
for weighted GMRES, where the weight matrix corresponds to the mass matrix of one of the norms
‖·‖V1

and ‖·‖V2
. This weighted setting was inspired by the recent work on domain-decomposition

preconditioners for the Helmholtz and Maxwell equations in [45] and [44].
We first need to set up some notation for the Galerkin method applied to the MS formulation

(2.12). From now on we assume that L = 1 in the definition of the norms (2.18)–(2.19).

Notation for the matrices involved in the Galerkin method.. Let the real (C1) basis functions be
denoted by φj . Recall from (2.4) that

S`,m :=

∫
Ω

∇φ` · ∇φm dx, M`,m :=

∫
Ω

φ` φm dx, N
(0)
`,m :=

∫
Γ

φ` φmds.

Define

L
(1)
`,m :=

∫
Ω

∆φ` ∆φm, L
(2)
`,m =

∫
Ω

(∆φ` + k2φ`)(∆φm + k2φm),

N
(1)
`,m :=

∫
Γ

∇Γφ` · ∇Γφm, N
(2)
`,m =

∫
Γ

∂nφ` ∂nφm

D
(1)
k :=

1

k2
L(1) + S + k2M + k2N(0) + N(1) + N(2) and (4.4)

D
(2)
k := L(2) + S + k2M + k2N(0) + N(1) + N(2). (4.5)

With P a Hermitian positive definite matrix in CN×N , we denote the corresponding scalar product
and norm

〈v,w〉P := w∗Pv = (Pv,w)2, ‖v‖2P := 〈v,v〉P v,w ∈ CN , (4.6)

where (·, ·)2 denotes the Euclidean l2 inner product and w∗ the conjugate transpose of w. These
definitions and the definitions of the norms ‖·‖V1

(2.18) and ‖·‖V2
(2.19) imply that

‖vh‖V1
= ‖v‖

D
(1)
k

and ‖vh‖V2
= ‖v‖

D
(2)
k

, (4.7)

where v is the coefficient vectors of vh ∈ VN . Observe that D
(j)
k , j = 1, 2, are real, symmetric, and

positive definite (we have v∗D
(j)
k v > 0 for all v ∈ CN \ {0} because ‖·‖V1

and ‖·‖V2
are norms).
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Define
B

(1)
ij := b(φj , φi) and g

(1)
i = G(φi), (4.8)

where b(·, ·) and G(·) are defined by (2.13) and (2.14) respectively and A = 1/3. Similarly, define

B
(2)
ij := b(φj , φi) and g

(2)
i = G(φi), (4.9)

where b(·, ·) and G(·) are defined by (2.13) and (2.14) respectively and A = k2. The definition of
B(j) implies that

b(uh, vh) =
(
B(j)u,v

)
2

with A = 1/3 when j = 1 and A = k2 when j = 2. The linear system arising from the Galerkin
method applied to the new variational formulation is then B(j)u = g(j).

Lemma 4.4 (Continuity and coercivity in (·, ·)Dk
for left-preconditioned system).

Assume that Ω is star-shaped with respect to a ball and β satisfies both (2.21) and (2.22). Let C
(j)
cont

and C
(j)
coer be the continuity and coercivity constants of b(·, ·) in the norm ‖·‖Vj

for A = 1/3 when

j = 1 and for A = k2 when j = 2. Then∣∣∣∣∣
〈(

D
(j)
k

)−1

B(j)v,w

〉
D

(j)
k

∣∣∣∣∣ ≤ C(j)
cont ‖v‖D(j)

k

‖w‖
D

(j)
k

and

∣∣∣∣∣
〈(

D
(j)
k

)−1

B(j)v,v

〉
D

(j)
k

∣∣∣∣∣ ≥ C(j)
coer ‖v‖

2

D
(j)
k

(4.10)
for all v,w ∈ CN .

Proof. The definitions of continuity and coercivity in the ‖·‖V1
and ‖·‖V2

norms, the definition of

B(j) (4.8)/(4.9), and the norm-equivalence (4.7) imply that∣∣∣(B(j)v,w
)

2

∣∣∣ ≤ C(j)
cont ‖v‖D(j)

k

‖w‖
D

(j)
k

∣∣∣(B(j)v,v
)

2

∣∣∣ ≥ C(j)
coer ‖v‖

2

D
(j)
k

. (4.11)

The results then follow from the fact that(
B(j)v,w

)
2

=

(
D

(j)
k

(
D

(j)
k

)−1

B(j)v,w

)
2

=

〈(
D

(j)
k

)−1

B(j)v,w

〉
D

(j)
k

.

Lemma 4.5 (Continuity and coercivity in (·, ·)D−1
k

for right-preconditioned system).

Under the same assumptions as Lemma 4.4,∣∣∣∣∣∣
〈
B(j)

(
D

(j)
k

)−1

v,w

〉
(
D

(j)
k

)−1

∣∣∣∣∣∣ ≤ C(j)
cont ‖v‖(D(j)

k

)−1 ‖w‖(
D

(j)
k

)−1 , and (4.12)

∣∣∣∣∣∣
〈
B(j)

(
D

(j)
k

)−1

v,v

〉
(
D

(j)
k

)−1

∣∣∣∣∣∣ ≥ C(j)
coer ‖v‖

2(
D

(j)
k

)−1 (4.13)

for all v,w ∈ CN .

Proof. The first equation in (4.11) with ṽ := D
(j)
k v and w̃ := D

(j)
k w implies that〈

B(j)(D
(j)
k )−1ṽ, w̃

〉(
D

(j)
k

)−1 ≤ C(j)
cont

∥∥∥∥(D(j)
k

)−1

ṽ

∥∥∥∥
D

(j)
k

∥∥∥∥(D(j)
k

)−1

w̃

∥∥∥∥
D

(j)
k

,

and (4.12) follows since ∥∥∥∥(D(j)
k

)−1

ṽ

∥∥∥∥2

D
(j)
k

= ‖ṽ‖2(
D

(j)
k

)−1

from the definitions (4.6). The proof of (4.13) is analogous.
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We now focus just on left preconditioning, but highlight that analogues of the results below
hold for right preconditioning, using Lemma 4.5 instead of Lemma 4.4.

Recall from Lemma 2.17 and Theorem 2.18 that (with β satisfying (2.21) and (2.22))

C
(1)
cont ∼ k, C

(2)
cont ∼ 1, C(1)

coer ∼ 1, C(2)
coer ∼ 1.

These asymptotics imply that the ratio cosσ (4.1) is independent of k when j = 2 (i.e. when the

D
(2)
k matrix is used as a weight and A = k2), but cosσ ∼ 1/k when j = 1 (i.e. when the D

(1)
k matrix

is used as a weight and A = 1/3). Combining this with Corollary 4.2 shows that weighted GMRES

applied to (D
(j)
k )−1B(j) (with the weight D

(j)
k ) converges in a number of iterations depending

linearly on k when j = 1, and in a k-independent number of iterations when j = 2; we state these
results as the following two theorems.

Theorem 4.6 (k-dependent GMRES convergence for (D
(1)
k )−1B(1)).

Assume that Ω is star-shaped with respect to a ball, β satisfies both (2.21) and (2.22), and A = 1/3.
Let um denote the mth iterate of weighted GMRES applied to the system B(1)u = g(1), left

preconditioned with (D
(1)
k )−1, i.e. the residual rm = (D

(1)
k )−1(g(1) − B(1)um) is minimised in the

norm induced by D
(1)
k .

(i) Given k0 > 0, there exists a C1 > 0, dependent on k0 but independent of k, such that, given
0 < δ < 1, if

m ≥ C1k log

(
12

δ

)
, (4.14)

then
‖rm‖

D
(1)
k

‖r0‖
D

(1)
k

≤ δ (4.15)

for all k ≥ k0; i.e. GMRES converges in a number of iterations at most linearly dependent on k.

(ii) Moreover, let uN denote the Galerkin solution of the variational problem (2.12) (i.e. uN is
the finite-element function corresponding to the vector u), and let umN denote the finite-element
function corresponding to the mth iterate um. If the initial guess u0 = 0, then for all m satisfying
(4.14),

‖uN − umN‖V1

‖uN‖V1

≤ C
(1)
cont

C
(1)
coer

δ ∼ kδ. (4.16)

Proof. (i) From Lemma 4.4, Lemma 2.17, and Theorem 2.18 we have that C
(1)
cont ∼ k and C

(1)
coer ∼ 1,

and thus cosσ defined by (4.1) ∼ 1/k. Since cosσ = sin(π/2−σ) = (π/2−σ)(1+o(1)) as σ → π/2,
we have that the variable ε in Corollary 4.2 ∼ 1/k and then the result of Part (i) follows.

(ii) To make the expressions more compact, we write Dk for D
(1)
k in this proof, and similarly

for B, Ccont, and Ccoer. The residual-reduction bound (4.15) with u0 = 0 implies that∥∥D−1
k B(um − u)

∥∥
Dk
≤ δ

∥∥D−1
k Bu

∥∥
Dk
,

so that

‖um − u‖Dk
≤
∥∥(D−1

k B)−1
∥∥
Dk

∥∥D−1
k B(um − u)

∥∥
Dk
,

≤
∥∥(D−1

k B)−1
∥∥
Dk
δ
∥∥D−1

k Bu
∥∥
Dk
,

≤
∥∥(D−1

k B)−1
∥∥
Dk
δ
∥∥D−1

k B
∥∥
Dk
‖u‖Dk

≤ Ccont

Ccoer
δ ‖u‖Dk

=
Ccont

Ccoer
δ ‖uN‖V1

,

where we have used both the norm equivalence (4.7) and the facts that∥∥D−1
k B

∥∥
Dk
≤ Ccont and

∥∥(D−1
k B)−1

∥∥
Dk
≤ 1

Ccoer
,

which follow from (4.10).
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Theorem 4.7 (k-independent GMRES convergence for (D
(2)
k )−1B(2)). Assume that Ω is

star-shaped with respect to a ball, β satisfies both (2.21) and (2.22), and A = k2.
Let um denote the mth iterate of weighted GMRES applied to the system B(2)u = g(2), left

preconditioned with (D
(2)
k )−1, i.e. the residual rm = (D

(2)
k )−1(g(2) − B(2)um) is minimised in the

norm induced by D
(2)
k .

(i) Given k0 > 0, there exists a C2 > 0, dependent on k0 but independent of k, such that, given
0 < δ < 1, if

m ≥ C2 log

(
12

δ

)
, (4.17)

then
‖rm‖

D
(2)
k

‖r0‖
D

(2)
k

≤ δ

for all k ≥ k0; i.e. GMRES converges in a k-independent number of iterations.

(ii) Moreover, let uN denote the Galerkin solution of the variational problem (2.12) (i.e. uN is
the finite-element function corresponding to the vector u), and let umN denote the finite-element
function corresponding to the mth iterate um. If the initial guess u0 = 0, then for all m satisfying
(4.17)

‖uN − umN‖V2

‖uN‖V2

≤ C
(2)
cont

C
(2)
coer

δ ∼ δ.

Proof. The proof is very similar to that of Theorem 4.6, but we now have C
(2)
cont ∼ 1 and C

(2)
coer ∼ 1;

in particular, in Part (i), ε is now independent of k.

As highlighted at the beginning of this subsection, all the results for MS with A = k2 also hold
for LS formulation because the k-dependence of Ccont/Ccoer is the same for the two formulations
(see Lemma 2.16 and Corollary 2.19).

4.3. Numerical experiments

We now describe experiments, in both 1- and 2-d, on the behaviour of GMRES applied to the
MS formulation (involving the matrices B(1) (4.8) and B(2) (4.9)), with the approximation space
VN as described in §3.1. We discuss these results in the context of preconditioning the standard
formulation in §6.2.

Figure 7 shows, for both 1- and 2-d, the growth of the number of GMRES iterations with k
for the situations described in Theorems 4.6 and 4.7 (i.e. left preconditioning) except that Theo-

rems 4.6 and 4.7 are for GMRES with weight D
(j)
k (j = 1, 2) applied to (D

(j)
k )−1B(j), and Figures

7 display the results of standard (unweighted) GMRES applied to (D
(j)
k )−1B(j); we find the be-

haviour of weighted GMRES essentially identical (note that this situation of the behaviour of
GMRES being almost identical in the weighted and unweighted settings was also encountered in
the domain-decomposition methods of [44, 45]). We also find essentially identical results for right
preconditioning.

Although the results of Theorems 4.6 and 4.7 are independent of the mesh diameter h, in
creating B(1) (arising from (2.13) with A = 1/3) we choose h such that hk6/5 is constant, and in
creating B(2) (arising from (2.13) with A = k2) we choose h such that hk3/2 is constant; recall
that the theory and experiments in §3 imply that, with these choices, the relative H1

k -error in the
Galerkin solutions is bounded independently of k.

The 1-d results are consistent with Theorems 4.6 and 4.7 in that the number of iterations for
(D

(2)
k )−1B(2) is bounded independently of k, and the number of iterations for (D

(1)
k )−1B(1) grows

at most linearly in k. In fact, in the latter case, the growth is sublinear: the rates (calculated from
the least-squares best linear approximation) are 0.5692, 0.4235, 0.3227, and 0.2583 for τ∗ = 4, 6, 8,
and 10 respectively.

The rates of growth observed in the 2-d results are worse than predicted by Theorems 4.6

and 4.7, although the growth for (D
(2)
k )−1B(2) is still less than that for (D

(1)
k )−1B(1). Indeed, for
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Figure 7: The growth of the number of GMRES iterations with k, for both 1-d (top) and 2-d (bottom), for

(D
(1)
k )−1B(1), discretised with hk6/5 constant (left), and (D

(2)
k )−1B(2), discretised with hk3/2 constant (right).

τ∗ = 4, 6, 8, the rates of growth for (D
(1)
k )−1B(1) are 1.5829, 1.5341, and 1.3471 respectively, and

for (D
(2)
k )−1B(2) they are 0.9272, 1.1608, 1.3801.

We have performed various checks to try to resolve the discrepancies between the numerical
results and Theorems 4.6 and 4.7. Although the theorems are valid for all k ≥ k0, and k0 > 0 can
be chosen arbitrarily small, since they are obtained using Corollary 4.2, they will only be sharp in
the limit k → ∞. Indeed, the k → ∞ limit corresponds to the ε → 0 limit in Corollary 4.2, and
any deviation from the large-k asymptotics for k small is then absorbed into the constants C1 and
C2 in (4.14) and (4.17) respectively. It is therefore possible that the growth rates predicted by the
theorems only manifest themselves for larger k than considered in these numerical experiements.

5. Estimates on the finite-element error of the GMRES solution

The results of Proposition 3.7 and Theorems 4.6/4.7 can be combined in the following theorems,
but first we need to state an assumption about the solution of the IIP.

Assumption 5.1. The solution u of the IIP satisfies

‖u‖V1
∼ ‖u‖V2

∼ ‖u‖H1
k(Ω) . (5.1)

Similar to Assumption 3.4 (discussed in Remark 3.5), Assumption 5.1 is implicitly ruling out
“unphysical” f and g.

Theorem 5.2 (Summary of results about MS with A = 1/3). Assume that Ω is star-shaped
with respect to a ball, β satisfies both (2.21) and (2.22), and A = 1/3. Assume further that
Assumptions 3.4 and 5.1 are satisfied.
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Let B(1) and g(1) be the Galerkin matrix and right-hand side, respectively, of the MS formulation

(4.8), where the finite-dimensional subspace consists of C1 elements of fixed degree, and let D
(1)
k be

the symmetric, positive-definite matrix defined by (4.4). Let u be the solution of B(1)u = g(1), so
that the finite-element function corresponding to u is uN , the Galerkin solution.

Let um denote the mth iterate of weighted GMRES, where the residual rm is minimised in the

norm induced by D
(1)
k (as described in §4.1), applied to the system B(1)u = g(1), left preconditioned

with (D
(1)
k )−1. Let umN be the finite-element function corresponding to um.

Given 0 < ε < 1 and k0 > 0, there exists a C(ε, k0) and m0(ε, k0) (both independent of h and
k) such that

if hk7/4 ≤ C(ε, k0) and m ≥ m0(ε, k0)k log k then
‖u− umN‖H1

k(Ω)

‖u‖H1
k(Ω)

≤ ε (5.2)

for all k ≥ k0.

Theorem 5.3 (Summary of results about MS with A = k2). Assume that Ω, β, um, and
umN are as in Theorem 5.2, except now that A = k2 and we left precondition B(2)u = g(2) with

(D
(2)
k )−1. Assume further that Assumptions 3.4 and 5.1 are satisfied.
Given 0 < ε < 1 and k0 > 0, there exists a C(ε, k0) and m0(ε, k0) (both independent of h and

k) such that

if hk3/2 ≤ C(ε, k0) and m ≥ m0(ε, k0) then
‖u− umN‖H1

k(Ω)

‖u‖H1
k(Ω)

≤ ε (5.3)

for all k ≥ k0.

Theorems 5.2 shows that, under the condition hk7/4 sufficiently small, an approximation to the
solution of the IIP, with the error measured in the usual H1

k(Ω) norm, can be found in number
of iterations growing at most like k log k. We do not expect the hk7/4 to be optimal since the
experiments in §3 indicated that this method is hk6/5-accurate and thus Proposition 3.7 (which
dictates the mesh threshold in Theorem 5.2) is not sharp.

Theorem 5.3 shows that under the condition hk3/2 sufficiently small, an approximation to the
solution of the IIP, with the error measured in the usualH1

k(Ω) norm, can be found in k-independent
number of iterations.

Proof of Theorem 5.2. In this proof we use Ccont and Ccoer to denote C
(1)
cont and C

(1)
coer, and we

recall from Lemma 2.17 and Theorem 2.18 that Ccont ∼ k and Ccoer ∼ 1. We combine the error
bounds from Proposition 3.7 with the GMRES convergence estimates of Theorem 4.6:

‖u− umN‖H1
k(Ω) ≤ ‖u− u

m
N‖V1

≤ ‖u− uN‖V1
+ ‖uN − umN‖V1

(3.6),(4.16)

. h2k7/2(1 + k2h2) ‖u‖H1
k(Ω) +

Ccont

Ccoer
δ ‖uN‖V1

. h2k7/2(1 + k2h2) ‖u‖H1
k(Ω) +

(Ccont

Ccoer

)2

δ ‖u‖V1
.

Here we also used ‖uN‖V1
≤ CcontC

−1
coer ‖u‖V , which follows from Galerkin orthogonality ‖uN‖2V1

≤
C−1

coerB(uN , uN ) = C−1
coerB(u, uN ) ≤ CcontC

−1
coer ‖u‖V1

‖uN‖V1
. Choosing δ = ε

2 (Ccoer/Ccont)
2 ∼

k−2 and m ≥ C1k log(12/δ) ∼ k log k and using ‖u‖V1
∼ ‖u‖H1

k(Ω) from (5.1), we obtain (5.2).

Proof of Theorem 5.3. The proof is very similar to that of Theorem 5.2. The only differences are
in that Ccont/Ccoer ∼ 1 so δ ∼ 1, the ‖·‖V1

norms are replaced by ‖·‖V2
, the error bound (3.6) by

(3.7), h2k7/2 by h2k3 and (4.14) by (4.17).
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6. Conclusions

6.1. Summary of the behaviour of the MS formulation

When implementing the MS formulation (2.12), we have two choices: taking A = 1/3 or A = k2.

1. The MS formulation with A = k2 behaves similarly to the least-squares formulation (2.16)
in terms of accuracy – both empirically and from Proposition 3.7 it is hk3/2-accurate –
and this is worse than for the standard formulation (2.2). On the other hand, we have a
symmetric positive-definite preconditioner for this formulation that (empirically) gives a k-
independent number of iterations in 1-d and roughly linear growth in k in 2-d. This behaviour
is summarised in Theorem 5.3, although this theorem also predicts a k-independent number
of iterations in 2-d (at least when k is sufficiently large), which is not borne out in the range
of k in the numerical experiments in §4.3.

2. The MS formulation with A = 1/3 behaves similarly to the standard formulation in terms of
accuracy: empirically we find it to be hk6/5-accurate We again have a symmetric positive-
definite preconditioner that (empirically) gives growth ranging from k0.25 to k0.6 in 1-d, and
from k1.3 to k1.6 in 2-d. This behaviour is summarised in Theorem 5.2, although this theorem
predicts k log k growth of the number of iterations for d ≥ 1 (when k is sufficiently large).

Neither situation is ideal: with A = k2, k-independent GMRES iterations are achieved with
the preconditioner, but at the price of decreasing h compared to the standard formulation (leading
to a larger matrix). With A = 1/3, h can be chosen the same as for the standard formulation, but
the preconditioner does not achieve the goal of having k-independent number of iterations.

6.2. Discussion in the context of other work on preconditioning the Helmholtz equation

For specific geometries and decompositions, there now exist preconditioners for the Helmholtz
equation that, at least empirically, (i) give a k-independent number of GMRES iterations, and (ii)
can be computed in an efficient way. For example, the class of sequential domain-decomposition
methods falling under the heading of “sweeping” exhibit both these properties when applied in
rectangular/cuboid geometries with tensor-product grids (see, e.g., the review [17] and the refer-
ences therein), although the low-rank results that underlie these methods do not hold for general
geometries and grids [46].

As we saw in §4.2, the continuity and coercivity results of the MS formulation naturally give

1. a symmetric, positive-definite preconditioner for the formulation (with the preconditioner
depending on whether A = 1/3 or A = k2),

2. a rigorous bound on the number of the GMRES iterations, via the “Elman estimate” [35, 39]
and its improvement in [36].

Regarding 1: although the preconditioner does not give a k-independent number of GMRES
iterations (except in 1-d with A = k2), the fact that the preconditioner is a symmetric, positive-
definite matrix with the same sparsity pattern of the Galerkin matrix allows one to apply solvers
such as the conjugate gradient method.

Regarding 2: the only other rigorous bound in the literature on the number of GMRES iterations
needed to solve a Helmholtz problem is in [47]. There, the authors prove that if the Galerkin
matrix of the standard formulation of the IIP is preconditioned with the Galerkin matrix of the
corresponding problem with absorption added in the form ∆ + k2 7→ ∆ + k2 + iε, then GMRES
converges in a k-independent number of iterations when ε/k is sufficiently small. However, finding
cheap approximations of the Galerkin matrix under this level of absorption is difficult; see [45].
Therefore, the MS formulation is currently the only formulation in the literature that has both
a symmetric, positive-definite preconditioner and a rigorous bound on the number of GMRES
iterations when applying the preconditioner (albeit with the number of iterations growing with k).

6.3. Comparison with the results of [2, 3]

In [2], Ganesh and Morgenstern discretise the MS formulation of Definition 2.8 above using C1

finite-dimensional subspaces built from splines.
The philosophy in [2] is slightly different to ours: here we determined for which a the Galerkin

method is hka-accurate and then investigated solving the linear system for increasing k, with h and
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p chosen to ensure k-independent accuracy (so that the number of degrees of freedom increases
with k). In contrast, the majority of numerical experiments in [2] are for fixed h and p (i.e a
fixed number of degrees of freedom) and increasing k, in which case the accuracy of the Galerkin
solutions then decreases with k (the exception are the experiments in [2, §4.2] which demonstrate
convergence as h decreases for fixed p and k, and as p increases for fixed h and k). We therefore
cannot directly compare any of the results in [2] to ours, but we now give a brief overview.

The first main goal in [2] is to numerically optimise the parameter β (for fixed, h, p,, and k)
to minimise the number of GMRES iterations needed to solve the (unpreconditioned) system [2,
§3.1], and then in [2, §3.2] a formula is obtained for β in terms of h, p, and k that provides a good
approximation to the optimal β. [2] then consider preconditioning the linear system by adding
absorption and using additive Schwarz domain decomposition with Dirichlet boundary conditions
on the subdomains.

The paper [3] obtains the analogue of the formulation in Definition 2.8 for the interior impedance
problem for the operator ∆+k2n, and then proves that this formulation is coercive if the refractive
index n satisfies a condition that guarantees nontrapping of rays (see [24, §6]). Numerical exper-
iments demonstrating the convergence of the Galerkin solutions as h decreases for fixed p and
k, and as p increases for fixed h and k, and with a particular emphasis on non-smooth solutions
and solutions in non-starshaped domains, are given in [3, §§5.1, 5.2, 7.1, 7.2]. The convergence of
preconditioned GMRES is then investigated as in [2]: for h and p fixed and increasing k, and using
the same preconditioner.

6.4. Concluding remarks

The lack of coercivity of the standard variational formulation of the Helmholtz equation is often
cited as one of the reasons the Helmholtz equation is difficult to solve numerically; for example,
the following is the first line of [48]

“Solving discretized Helmholtz problems by iterative methods is challenging, mainly
because of the lack of coercivity of the continuous operator and the highly oscillatory
nature of the solutions.”

and Point 3 on the first page of the present paper expresses the same “lack of coercivity” sentiment
in slightly more detail.

The results of the present paper show that the situation is more subtle (and not captured just
by “lack of coercivity”); for example, both the standard formulation and the MS formulation with
A = 1/3 suffer from the pollution effect in the same way (as shown in the investigation of Q1 in
§3), but the MS formulation does not provide an immediate fix to the problems facing iterative
methods (as show in the investigation of Q2 in §4).
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