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Mechanosensation plays a pivotal role in many aspects of
pain pathology, yet the mammalian molecular transduc-
tion apparatus responsible for this sensory modality
remains unknown. In January's edition of Nature Neuro-
science, O'Hagan, Chalfie and Goodman [1] have pro-
vided direct electrophysiological evidence that somatic
mechanotransduction in C. elegans is mediated by a com-
plex of proteins previously identified in genetic screens for
impaired touch sensation. Are the homologues of these
proteins important for pain sensation in mammals? Per-
haps surprisingly, the balance of evidence suggests that
other proteins are better candidate noxious mechanosen-
sors in mammals.

Many forms of pain, be it in acute, inflammatory or dis-
ease-related conditions, are triggered by mechanical stim-
uli. However, in mammals there is very little
understanding of the molecular transduction process that
converts mechanical stimuli into a change in membrane
excitability. Studying mechanosensation in mammals is
hampered by the diffuse and inaccessible distribution of
nerve terminals in the periphery. The few studies of recep-
tor potentials, made using extracellular recordings
(mainly from Pacinian corpuscles of the cat's mesentery),
do however suggest that mechanical stimuli depolarise
termini by directly gating cationic channels [2].

It is genetic studies in C. elegans and Drosophila that have
driven forward our molecular understanding of mechano-
sensation in a number of different cell types. The best-
characterised system is the body touch receptor neuron of
C. elegans; over 2 decades, Martin Chalfie and co-workers
have, on the basis of genetic mutant interactions, behav-
ioural analysis and gene cloning, devised an elegant

molecular model of transduction in these cells (see Refs. 3
and 4). In this model at least 9 proteins form a mechan-
otransduction complex with an ion channel at its core
formed by MEC-4 and MEC-10 (members of the DEG/
ENaC ion channel superfamily) and apparently MEC-6 (a
paraoxonase-like protein, [5]). The complex also contains
extra- and intracellular structures that the ion channel is
tethered to, via specific linker proteins (probably stoma-
tin-like MEC-2 internally, [6]), such that sheering between
them gates the channel (Fig. 1). Up until the present study
however, no one had recorded ionic currents attributable
to activation of this complex. Now though, Chalfie, Rob
O'Hagan and Miriam Goodman (a pioneer of in situ
patch-clamping in nematodes) have measured mech-
anoreceptor currents (MRCs) in body touch receptors and
provided direct evidence supporting the model of trans-
duction [1].

To record from body touch receptors, O'Hagan et al used
transgenic animals in which these cells were labelled with
GFP. Using immobilised worms, the authors released the
internal hydrostatic pressure away from the recording site
and then exposed the cell bodies of posterior, lateral
receptor neurons. Then patch-clamp recordings were
made from the cell body while the mechanosensitive neu-
rite was stimulated with a glass probe applied to the body
wall. The authors observed that both the application and
withdrawal of mechanical stimuli evoked rapidly adapt-
ing inward currents, whose amplitude was proportional
to the magnitude of the stimulus. Consistent with the cur-
rents being mediated by members of the DEG/ENaC fam-
ily, they were carried by sodium ions and blocked by
amiloride. Next, given the extensive genetic analysis of
mechanosensation in this species the investigators were
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able to extend their work by studying receptor currents in
a range of mutant animals. Firstly, it was shown that null
mutations in MEC-4, MEC-2 and MEC-6 abolished MRCs,
suggesting that these 3 proteins (which physically inter-
act) are essential for channel gating. An important control
experiment was to show that voltage-gated currents in
these mutants were normal. Subsequently, it was found
that other (behaviourally less severe) mutations in MEC-
4 and MEC-10 greatly reduced MRC amplitude and signif-
icantly altered the current-voltage relationship of MRCs.
Hence, this is the first direct demonstration that MEC-4
and MEC-10 form the mechanotransducing ion channel
in C. elegans. Finally, the group analysed MRCs in nema-
todes with a mutation in MEC-7, a β-tubulin required for
formation of touch cell specific 15-protofilament micro-
tubules, which had been hypothesised to be intracellular
"anchors" required for channel gating. Interestingly,
despite a large decrease in their amplitude and threshold,

MRCs were not abolished in these mutants suggesting that
MEC-7 is not an absolute requirement for channel gating.

This study represents a confirmation of the key aspects of
a long-standing model of mechanotransduction. How-
ever, the relationship between this system and those in
operation in mammalian somatic mechanosensation
remains unclear. In mammals there are 9 identified DEG/
ENac channels, which form two subfamilies; the epithe-
lial sodium channels (ENaCα, β, γ and δ) and the acid
sensing ion channels (ASIC1-4, and the closely related
intestinal sodium channel, INaC). ENaCα, β and γ
together form a constitutively active channel principally
associated with non-neuronal tissues. β and γ ENaC do
appear to be expressed in DRG neurons [7] but, as yet,
their function there has not been studied. However, much
interest was aroused in ASICs as potential mechanosen-
sors because they are highly expressed in sensory neurons

Schematic diagram of the proposed mechanotransduction complex in C. elegans body touch receptorsFigure 1
Schematic diagram of the proposed mechanotransduction complex in C. elegans body touch receptors. At its centre is an ion 
channel composed of MEC-4, 6 and 10, which interacts with the intracellular protein MEC-2. MEC-7 and 12 are microtubule 
proteins required for normal mechanosensation (they may be important for localisation or gating of the complex). MEC-1, 5 
and 9 are extracellular proteins whose functions await further characterisation. (Figure adapted from Ref. 4.)
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and 2 isoforms (ASIC3 and 1b) are almost exclusively
expressed in these cells. Currently, the only known activa-
tor of these channels is external acidification, which gates
4 of the 6 known splice variants when they are expressed
alone (interestingly MEC-4 and MEC-10 are not gated by
protons) [8]. However, it has been suggested that if local-
ised in a mechanotransduction complex analogous to that
found in C. elegans, ASICs might mediate mammalian
mechanosensation [9]. To test this hypothesis Michael
Welsh and Gary Lewin collaborated in generating null
mutants of ASIC1, 2 and 3 and assessing their somatosen-
sory phenotypes using the skin-nerve preparation. In stark
contrast to the dramatic effects of null mutations in MEC-
4 and MEC-10, ablation of these genes had minor effects
on mechanosensory responses. The first study found an
approximate halving of the suprathreshold firing rates of
rapidly adapting low threshold mechanoreceptors (LTMs)
in ASIC2 nulls and a minor decrease in slowly adapting
LTMs whilst the responses of all other fibre types were
unchanged from wild type values [10]. In ASIC3 knock-
outs, rapidly adapting LTMs had an increased sensitivity to
mechanical stimuli whereas Aδ-mechanonociceptors
showed a decrease in responsiveness [11] and in ASIC1
null mutants cutaneous mechanosensation was
unchanged from wild-type levels [12]. Whilst the analysis
of double and triple knockouts would be worthwhile
given the possibility that the remaining subunits function-
ally compensate for the missing ones in null mutants
(although their expression was unchanged at the tran-
scriptional level), the phenotypes of these animals is not
consistent with ASICs being major transducers of mechan-
ical stimuli in mammalian sensory nerves. Moreover, in
an analysis of a separate line of ASIC2 nulls, no alteration
in the sensitivity of rapidly adapting LTMs was found [13]
and no group has reported mechanical gating of ASICs.
Although mechanical gating of ion channels that are
mechanosensitive in situ may be difficult using in vitro sys-
tems, different subpopulations of cultured DRG neurons
are known to display distinct mechanically activated cati-
onic currents [14] and these currents are unchanged in
ASIC2 and/or 3 null mutants [15]. These data therefore
suggest that other ion channels act as the primary mech-
anotransducers in mammals.

Whilst research on body touch receptors in C. elegans
focussed attention on DEG/ENaC channels, genetic
screens of other mechanosensory systems, particularly in
Drosophila, have also revealed major roles for TRP chan-
nels in mechanosensation. In fruit flies, TRP-like channels
NOMPC [16] and Nanchung [17] have been strongly
implicated as mechanotransduction channels in Type I
mechanosensors required for touch and hearing, respec-
tively. In Drosophila larvae, Painless, a TRPV-like protein,
is expressed in nociceptor-like cells and mutants have
defective responses to noxious thermal and mechanical

stimuli [18]. Also, in C. elegans OSM-9 is required for nose
touch avoidance [19]. Research in mammalian systems
has now produced evidence suggesting TRPA1 may be the
transduction channel in hair cells [20] whilst TRPC1 has
recently been shown to be directly mechanosensitive [21].
With regard to noxious mechanosensation, TRPV4 knock-
outs were found to have behavioural deficits in response
to tail pressure [22], although this channel seems to be
expressed at much higher levels in keratinocytes than in
sensory neurons. Given that a number of TRP channels are
already known to be central to thermosensation and
inflammatory function in nociceptors, members of this
family represent interesting candidates for mammalian
noxious (and innocuous) mechanosensors.

In conclusion, the primary candidates for the role of
mammalian mechanotransducers are members of the TRP
and DEG/ENaC ion channel families, both of which are
remarkably functionally diverse. However, the evidence
supporting a function for any particular channel in mam-
malian mechanotransduction is much weaker than in
invertebrate systems. Interestingly, the diversity of DEG/
ENaC channels in C. elegans (28 homologues) in compar-
ison to mammals (mice have 8) is striking, and the obser-
vation that mechanosensitive channels in nematodes
form a distinct subgroup that all contain a specific extra-
cellular regulatory domain [23] makes extrapolation of
the C. elegans results to mammals less certain. Related to
the diversity of putative mechanosensory ion channels is
the issue of diversity in cellular systems that mediate
mechanosensation. Despite similarities, the phylogenetic
relationship between mammalian hair cells and primary
somatosensory neurons and the analogous cells types in
invertebrates is poorly established. Also, the extent to
which chemically mediated mechanosensation functions
in certain systems, potentially including some forms of
mechanically induced pain, is currently unclear (for
example see Ref. 24). Thus, much remains to be learnt
regarding the molecular basis of mechanotransduction
and when this is achieved, it should be possible to deter-
mine the evolutionary relationships of multiple mech-
anosensory systems. In addition, identification of the
molecular basis of noxious mechanosensation should
provide exciting new analgesic drug targets.
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