UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Sost deficiency does not alter bone’s lacunar or vascular porosity in mice

Mosey, H; Núñez, JA; Goring, A; Clarkin, CE; Staines, KA; Lee, PD; Pitsillides, AA; (2017) Sost deficiency does not alter bone’s lacunar or vascular porosity in mice. Frontiers in Materials , 4 , Article 27. 10.3389/fmats.2017.00027. Green open access

[thumbnail of Lee_Sost deficiency does not alter bone’s lacunar or vascular porosity in mice_VoR.pdf]
Preview
Text
Lee_Sost deficiency does not alter bone’s lacunar or vascular porosity in mice_VoR.pdf - Published version

Download (4MB) | Preview

Abstract

SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation, and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high-resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6/group) were sacrificed at 12 weeks of age. Fixed tibiae were analyzed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nano-computed tomography at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We, therefore, conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organization, or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.

Type: Article
Title: Sost deficiency does not alter bone’s lacunar or vascular porosity in mice
Open access status: An open access version is available from UCL Discovery
DOI: 10.3389/fmats.2017.00027
Publisher version: http://doi.org/10.3389/fmats.2017.00027
Language: English
Additional information: © 2017 Mosey, Núñez, Goring, Clarkin, Staines, Lee, Pitsillides and Javaheri. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
Keywords: Sost, osteocyte, vascular porosity, microCT, lacunar porosity
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10071467
Downloads since deposit
28Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item