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Abstract:  

Individuals with autism and individuals with dyslexia both show reduced use of previous 

sensory information (stimuli statistics) in perceptual tasks, even though these are very 

different neurodevelopmental disorders. To better understand how past sensory information 

influences the perceptual experience in these disorders, we first investigated the trial-by-trial 

performance of neurotypical participants in a serial discrimination task. Neurotypicals over-

weighted recent stimuli, enabling fast updating of internal sensory models, which is adaptive 

in changing environments; they weighted longer-term stimuli statistics according to the 

detailed stimuli distribution, enabling reliable predictions of upcoming stimuli, which is 

adaptive in stable environments. Compared to neurotypicals, individuals with dyslexia 

weighted longer-term statistics less heavily, whereas individuals with ASD weighted recent 

stimuli less heavily. Thus, investigating the dynamics of perceptual inference reveals that 

individuals with dyslexia rely more on information about the immediate past, whereas 

perception in individuals with ASD is dominated by longer-term statistics. 

 

Introspection suggests that perception merely mediates reliable responses to incoming 

stimuli. Yet sensory input is typically noisy and ambiguous. Our rich and coherent perception 
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is the outcome of integrating our sensations with our internal models, which reflect our 

estimates of the environment’s stimuli statistics. These models are updated and enriched with 

experience and, following substantial practice, support quick and effortless perception of a 

broad range of familiar stimuli.  

 

Recent findings suggest that these implicit inference processes may be altered in individuals 

with neurodevelopmental disorders, and that their ability to use sensory statistics to update 

their internal models may be impaired. For example, it has been suggested that individuals 

with developmental dyslexia, who remain slow readers even after years of practice1, are less 

efficient in learning the statistics of serially presented stimuli2–5. This difficulty is expected to 

reduce the efficiency of their predictions in a broad range of (speech6 and non-speech7) 

stimuli. Importantly, it is expected to reduce their benefits from language statistics (e.g. 

syllable distribution, morphology), which typically substantially facilitates reading rate and 

accuracy. Indeed, this deficiency has been proposed as a core impediment to attaining expert 

reading performance2-5. Interestingly, reduced integration of stimuli statistics (“hypo-priors”8) 

in several perceptual tasks was also observed for individuals with autism (also termed ASD, 

Autism Spectrum Disorder). These observations have been used to explain well-documented 

phenomena in ASD, including reduced adaptation and the often reported feeling of being 

overwhelmed with sensory stimuli9-11. 

 

The similarity between ASD and dyslexia in underuse of prior perceptual information is 

puzzling since these two populations have substantially different behavioral strengths and 

weaknesses. While individuals with dyslexia fail to become expert readers but are not 

socially challenged, high-functioning individuals with ASD who have no language deficits, 

have difficulties deciphering social cues12 but have no difficulty in decoding written script. In 
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fact, in rare cases their decoding skills may even be superior (hyperlexia13) to those of the 

general population. 

 

In this study we set out to examine the differences between neurotypicals, individuals with 

dyslexia and individuals with ASD in the acquisition and use of prior perceptual information. 

Administering a serial 2-tone frequency discrimination task allowed us to examine the impact 

of (i.e. bias by) previous trials using simple yet unfamiliar (pure tones are not ecological) 

stimuli, and quantify separately the contribution of very recent compared with earlier trials. 

We found that, compared to matched neurotypical groups, individuals with dyslexia rely 

more heavily on the immediate past, while perceptual bias in individuals with ASD is 

dominated by longer-term statistics. To better understand the balance between the effects of 

recent and longer-term statistics, we administered different stimuli distributions to large 

neurotypical populations. Using non-linear analyses we found that their use of recent 

statistics is distribution invariant, whereas their use of longer-term statistics reflects optimal 

(Ideal Observer's) integration of stimuli distribution. Applying this analysis to both 

individuals with dyslexia and individuals with ASD revealed a double dissociation. 

Individuals with ASD showed reduced integration of recent statistics whereas recent effect in 

neurotypicals and individuals with dyslexia were similar, both in its magnitude and pattern. 

In contrast, the integration of longer-term statistics in individuals with dyslexia was partial 

and sub-optimal whereas integration of longer-term statistics in individuals with ASD 

resembled that of an Ideal Observer (IO). These differences in perceptual inferences parallel 

the slow yet successful formation of high-resolution categorical representations in ASD14, 

and the fast formation of lower resolution categorical representations in dyslexia7. 
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Results 

 

The impact of sensory history is reduced in both ASD and dyslexia. 

Contraction bias — the general tendency to estimate small stimuli as larger and large stimuli 

as smaller — is a well-known phenomenon15–17 that reflects the influence of environments' 

statistics on perception. In natural environments it allows the formation of the most likely 

percept even when sensory sampling is noisy. In laboratory conditions we can use this bias as 

a window into implicit processes of integrating stimuli statistics to perception. We now 

studied this bias using serial 2-tone frequency discrimination (illustrated in Fig. 1a), where 

performers tend to “contract” the first stimulus in each trial towards the mean value of the 

preceding stimuli (Fig. 1b). Such contraction integrates the responses to the current stimulus 

with information on stimuli statistics based on previous stimuli (e.g. their mean). The 

importance of such information increases when responses are noisier. The enhanced 

contraction of the first stimulus in each trial of delayed discrimination is interpreted (within 

the Bayesian framework) as resulting from its noisier representation compared with that of 

the second stimulus, due to the task-imposed need to encode it in memory and retain it till the 

presentation of the second stimulus16.   

 

The impact of contraction bias (of the 1st tone) on trial performance depends on the relations 

between the first and second stimulus of the trial with respect to previous stimuli. If the first 

stimulus is closer to the mean than the second stimulus (Bias+ trials; Fig. 1b, left), its 

contraction increases the perceived distance between the stimuli, and consequently increases 

accuracy. Conversely, in trials where the first stimulus is farther from the mean (Bias− trials; 

Fig. 1b, right), contraction of the first stimulus towards this mean decreases the perceived 



5 

 

difference and the success rate is reduced. Consequently, participants make fewer errors 

when the first stimulus is closer to the mean of previous trials than the second stimulus (Fig. 

1b). This history-driven difference in accuracy between these two types of trials can be very 

large (e.g., chance-level performance in Bias− trials and ~90% correct in Bias+ trials18-20).  

The perceptual bias to the mean is directly reflected in the bias of participants' responses. 

They tend to answer that the 2nd stimulus is higher ("𝑓2 > 𝑓1"; Fig. 1b upper region) when 𝑓1 

is above the mean and that the 1st is higher ("𝑓1 > 𝑓2"; Fig. 1b lower region) when 𝑓1 is below 

the mean. This bias can be integrated into the common description of behavior in 

discrimination tasks, the psychometric function 𝑝("𝑓2
𝑡 > 𝑓1

𝑡")  =  Φ(α𝛿𝑡 + 𝑏0), where Φ, is 

the standard normal cumulative distribution function (i.e., Φ−1 is the probit function),  𝛿𝑡  is 

the veridical difference between the tones in trial 𝑡, 𝛼 is the individual sensitivity to this 

difference, and 𝑏0 is the bias to perceive 𝑓2
𝑡 as higher. Contraction bias can be described with 

respect to the psychometric function by introducing a trial-by-trial shift of the psychometric 

curve according to the (signed) distance of the first tone from the mean (𝑓1 − 〈𝑓〉).  

 

To assess contraction bias in neurotypical, dyslexia and ASD populations, we used the data of 

two experiments. Experiment 1 was administered to individuals with dyslexia and matched 

(age and reasoning) neurotypical (good reading) participants. Its results were previously 

published18 and are here re-analyzed. Experiment 2 was administered to participants with 

ASD (high functioning with no concomitant language difficulties), and to matched (age and 

reasoning) neurotypicals. The cognitive profile of these participants is reported in 

Supplementary Table 1. In both experiments, participants were asked to perform serial 2-

tone frequency discrimination, though the specifics of the protocols slightly differed (detailed 

in Materials and Methods).   
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For each individual, we extracted a summary estimate of the magnitude of the contraction 

bias as the difference between the average shifts in the psychometric curves, calculated for 

trials where 𝑓1 > 〈𝑓〉 and trials where  𝑓1 < 〈𝑓〉  (average probit bias 𝑏̂; see Materials and 

Methods; illustrated in Fig. 1c). All groups had a significant contraction bias 

(𝑏̂ dyslexia:mean = 0.24 ± 0.02  SEM, 𝑡27 = 11.1, 𝑝 < 10−12; 𝑏̂ matched neurotypicals: 

mean =  0.32 ± 0.03 SEM, 𝑡29 = 11.44, 𝑝 < 10−12; 𝑏̂ ASD, mean = 0.15 ± 0.03 SEM, 

𝑡36 = 4.32, 𝑝 < 0.001; 𝑏̂ matched neurotypicals, mean = 0.24 ± 0.03 SEM, 𝑡31 = 8.65,

𝑝 < 10−10; paired t-tests; Fig. 1d). Yet, in line with previous studies11,19–21, the magnitude of 

the bias was significantly smaller in both the ASD and the dyslexia groups compared with 

their corresponding, matched neurotypical groups (two sample t-tests;  𝑡56 = 2.07, 𝑝 = 0.04, 

Cohen’s d = 0.53 for neurotypicals vs. individuals with dyslexia; 𝑡67 = 2.05, 𝑝 = 0.04, 

Cohen’s d = 0.49 for neurotypicals vs. individuals with ASD; Fig. 1d). 
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Fig. 1. Contraction bias of individuals with dyslexia and individuals with ASD is smaller than 

neurotypicals'. (a) Illustration of the temporal structure of a single trial. Two pure tones were 

presented sequentially, with a quiet inter-stimulus-interval (ISI). Participants then decided whether the 

1st or 2nd tone had a higher pitch by pressing "1" or "2" and received a visual feedback. (b) Illustration 

of the contraction bias - contraction of the representation of the 1st tone towards the mean of the 

previous tones (dashed line). When the first tone (𝑓1) is closer to mean (left, blue trials), above (top) or 

below it (bottom), the perceived difference between the stimuli increases, and success rate increases 

(Bias+ trials). When the 2nd tone (𝑓2) is closer (right, red trials), this contraction reduces the perceived 

difference and accuracy decreases (Bias−  trials). (c) Illustration of the probability to respond "𝑓2 > 𝑓1" 

as a function of the difference between the tones 𝛿 (psychometric curve), plotted separately for the 

trials above (𝑓1 > 〈𝑓〉; orange) and below (𝑓1 < 〈𝑓〉; purple) the mean (b). Contraction bias can be 
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measured as the shift between the curves (average probit bias 𝑏̂; see Materials and Methods). (d) 

Contraction bias in the dyslexia (red; 𝑛 = 28) compared with matched neurotypical (blue; 𝑛 = 30), and 

in ASD (green; 𝑛 = 37), compared with matched neurotypical (blue;  𝑛 = 32) groups. Data points 

denote individual participants. Though all participants of Experiment 1 (left plots), and most 

participants of Experiment 2 (right plots) showed contraction bias, it was significantly smaller in the 

dyslexia (𝑝 = 0.04) and ASD groups (𝑝 = 0.04). Black points indicate the mean values across 

subjects; error bars indicate standard error of the mean. ∗ 𝑝 < 0.05; ∗∗∗ 𝑝 < 0.001; ∗∗∗∗ 𝑝 < 10−4; two 

sample t-tests (two-sided). 

 

Perceptual bias is dominated by recent stimuli in dyslexia and by longer-term statistics 

in ASD. 

In the analysis above contraction bias was calculated with respect to the overall mean of past 

stimuli. However, previous studies have shown that behavior of neurotypical participants 

depends on both recent stimuli (a phenomenon often termed serial dependence17,22,23), and the 

overall stimulus distribution16,24. Hence the shaping of perception by past stimuli may be 

better modelled as a combination of these contributions17. This combination may reflect an 

assumption about the stability of the environment. When the environment is stationary, the 

equally weighted empirical distribution built out of past samples, provides the best estimate 

of the current stimulus statistics. However, in a volatile environment, more recent stimuli are 

more representative of current statistics and so should be given larger weights. Therefore, the 

relative contributions of longer-term versus recent statistics reflect the balance between 

robustness and adaptability.  

 

To estimate the relative contributions of recent versus longer-term statistics to participants' 

performance, we fitted a Generalized Linear Model (GLM, see Materials and Methods) to our 

data. The model included longer-term (distance of current 1st tone from the mean frequency 
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of all trials; 𝑑∞
𝑡  in Fig. 2a) and recent contributions (distance of current 1st tone from the 

mean frequency of recent trials, e.g. 𝑑1
𝑡 , 𝑑2

𝑡  for 1 and 2 trials back, Fig. 2a) as separate terms 

(shared for all participants). In both neurotypical groups, the distance from the previous trial's 

frequency and the distance from the overall mean frequency were the two main contributors 

to the bias, in line with previous results17,25. This can be seen in the larger magnitudes of the 

estimated weights (𝑤1 and 𝑤∞) associated with the trial-specific history terms 𝑑1
𝑡 , 𝑑∞

𝑡  (Fig. 

2b-c; Materials and Methods; the ratio between 𝑤1 and 𝑤∞ depends on the specific stimuli 

distribution, as explained in the next section. Hence, each population is compared to its 

matched neurotypical group, who performed exactly the same protocol). Both the dyslexia 

group and the ASD group differed from their corresponding neurotypical groups, but in 

different ways. The bias of the dyslexia group towards the frequencies of the most recent trial 

(hereon termed bias-by-recent) was similar to that of the neurotypical group, but their bias 

towards longer-term statistics (hereon termed bias-by-longer-term) was smaller than that of 

the neurotypical group (𝑤∞ dyslexia: mean = 0.51 ± 0.09 SEM; neurotypical: mean =

0.89 ± 0.1 SEM; 𝑝 = 0.007, permutation test; Fig. 2b). The ASD group showed the opposite 

pattern. The bias-by-recent of participants with ASD was smaller than that of neurotypical 

participants (𝑤1 ASD: mean = 0.4 ± 0.12 SEM; neurotypical: mean = 0.93 ± 0.14 SEM; 

𝑝 = 0.04, permutation test; Fig. 2c), but their bias-by-longer-term did not differ from 

neurotypicals'.  

 

To assess individual variability, for each participant we introduced to the fit a random 

intercept and a random weight for each of the two main covariates 𝑑1 and 𝑑∞ (random 

effects, Materials and Methods) in addition to the shared (group) parameters, and compared 

the individual weights of 𝑑1 and 𝑑∞ in the neurotypical and test groups. In Experiment 1, the 

only weight that differed between individuals with dyslexia and their matched neurotypicals 
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was the contribution of longer-term statistics (Mann-Whitney 𝑈 = 559, 𝑝 = 0.03, Cohen’s d 

= 0.61; Fig. 2d). In Experiment 2, the only weight that significantly differed between the 

ASD group and their matched neurotypicals was the contribution of recent stimuli (Mann-

Whitney 𝑈 = 965, 𝑝 < 10−6, Cohen’s d = 1.22; Fig. 2e).  

 

These two inter-group comparisons revealed a double dissociation in the dynamics of 

acquisition of environmental statistics. The magnitude of participants with dyslexia’s bias-by-

recent was similar to that of their matched neurotypicals, but their bias-by-longer-term had a 

smaller contribution. By contrast, participants with ASD were less affected by recent events, 

but showed the same magnitude of longer-term contribution as their matched neurotypical 

participants. 
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Fig. 2. The dyslexia and ASD groups show opposite dynamics of contributions by recent and 

by longer-term statistics to their contraction bias. (a) Illustration of the covariates of the GLM 

model. Covariates capturing recent sensory history in trial 𝑡 are defined as the frequency distance 

between the frequency of the first tone in trial 𝑡 and the average of the two tone frequencies at each 

time window; e.g. 𝑑1 is the distance to the previous trial's mean frequency; 𝑑∞ is a special covariate, 

defined as the centered absolute frequency difference of the first tone in trial 𝑡. (b-c) The contribution 

of each covariate in each group. Each data point shows the estimate (mean) calculated for the 
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aggregated data of all participants. (b) The estimated group weights for participants with dyslexia 

(red; 𝑛 = 28) and neurotypicals (blue; 𝑛 = 30). Weights of the four most recent trials (𝑤1 , … , 𝑤4) in the 

dyslexia group are equal to neurotypicals' but the weight of the bias-by-longer-term (𝑤∞) is smaller. 

(c) The estimated group weights for ASD (green; 𝑛 = 37) and neurotypical (blue; 𝑛 = 32) groups. The 

weight of the bias-by-recent (𝑤1) among participants with ASD is smaller than neurotypicals' whereas 

their other weights are similar. Error bars indicate standard deviation. (d-e) group differences between 

𝑤1 and 𝑤∞ weights fitted individually. (d) The individually estimated weights of bias-by-recent (right) 

and bias-by-longer-term (left), of participants with dyslexia (red; 𝑛 = 28) and neurotypicals (blue; 𝑛 =

30) in Experiment 1. The bias-by-longer-term of individuals with dyslexia is smaller than neurotypicals' 

(𝑝 = 0.03, two-sided Mann-Whitney). (e) Same estimates for the participants with ASD (green; 𝑛 = 37 

and neurotypicals (blue; 𝑛 = 32) of Experiment 2. Here only the bias-by-recent significantly differs 

between the groups, with larger estimates for neurotypicals (𝑝 < 10−6, two-sided Mann-Whitney). Red 

squares and red horizontal lines indicate the mean and median values of each group, respectively. 

Error bars show lower to upper quartile values of the data. ∗ 𝑝 < 0.05, ∗∗∗∗ 𝑝 < 10−4. 

 

Neurotypical bias functions  

The GLM assumes that each contribution to the bias depends linearly on the corresponding 

frequency difference. This assumption enables an approximated estimation of the relative 

contribution of current, recent and earlier stimuli to perception. However, it does not enable a 

characterization of the complexity with which history is internalized. Such characterization is 

crucial for understanding how on-going bias relates to the gradual internalization of task-

relevant statistics that underlies expert level performance. Indeed, there are theoretical 

reasons to expect non-linear longer-term dependence16. Yet, previous studies have only used 

linear methods11,17,21,23,26. To study the bias with non-linear modeling, we conducted a new 

experiment online via the Mechanical Turk platform (Materials and Methods; 

Supplementary Table 2), and administered four different stimuli distributions, to four large 

groups of neurotypical participants, respectively. After replicating all the basic contraction 
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bias results (Supplementary Fig. S1), we used a Generalized Additive Model (GAM) with 

probit link function to analyze these data. The GAM replaces each linear term 𝑤𝑖𝑑𝑖
𝑡 (where 

𝑖 = 1,2,3,4 or ∞) of the GLM with an arbitrary function 𝑏𝑖(𝑑𝑖
𝑡) (estimated using thin-plate 

regression splines27). Due to the increase in estimation complexity, attaining a reliable GAM 

analysis requires reasonably consistent and less noisy performers. This was obtained by 

including only participants with 65% accuracy and above (excluding ~15% of the 

participants).  

 

We found the following non-linear frequency dependencies of the bias. The functional form 

of bias-by-recent (𝑏1, Fig. 3a-d left) was similar in all four distributions (see also serial biases 

in visual perception22,23,28). It increased gradually with distance from the current (first) tone, 

peaked at 0.4-0.5 octaves away, and then gradually decreased. A similar shape characterized 

the bias towards the frequencies of 2,3,4, and 5 trials earlier  (𝑏2 − 𝑏5), but its magnitude 

quickly decreased across trials (Supplementary Fig. S2). Still, the remaining trials had a 

significant contribution to the bias' variance (𝑏∞, i.e. all other trials, longer-term effect), even 

when 𝑏1 − 𝑏5 were calculated separately.  

 

The bias-by-longer-term was distribution sensitive, as evident in the distribution-specific 

patterns (Fig. 3a-d right, and verified by cross-validation; Supplementary Fig. S3). These 

patterns can be intuitively understood when stimuli distribution is considered. For uniform 

distributions (Fig. 3a-b), given a noisy measurement 𝑓 in the middle of the distribution, all 

plausible true stimuli around this measurement are a-priori equally likely, hence there should 

be no bias in this region. However, for noisy measurements at the edges of this distribution, 

the prior is crucially informative, since it excludes values ’outside’ the prior, pulling 

perception towards plausible, true stimulus values (consistent with an observed contraction 
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bias16). When the uniform distribution is narrower (Fig. 3b – 2 octaves wide versus Fig. 3a - 

3 octaves wide), the position of the edges is shifted (half an octave in each direction), but the 

qualitative shape of the bias function remains unchanged. With a Gaussian distribution, we 

expect a linear bias, pulling towards more probable values (Fig. 3c). With two (bimodal) 

uniform distributions we expect two typical uniform curves – one for each mode (Fig. 3d).  

 

Using the same estimation method for our participants and for an Ideal (Bayesian) Observer 

(IO)16, we could also quantitatively compare the contribution of the bias functions. These 

shapes are indeed optimal and characterize the shapes of the IO, whose sensory sensitivity (α) 

is that of our human performers, and has full knowledge of stimuli distribution (Materials and 

Methods; Supplementary Fig. S4). Fig. 3a-d right show that the human (blue) and the IO 

(superimposed in black lines) bias functions roughly overlap in each of the four tested 

distributions. Note that the enhanced bias-by-recent (and one-two earlier ones) compared 

with all other trials is advantageous when the statistics changes, but is not optimal in our 

protocols, with stationary statistics. Hence, we don't calculate the IO model of the bias-by-

recent. 

 

Before applying the GAM analyses to our test populations, we verified the following. First, 

we validated the advantage of the GAM functions compared with the GLM weights. 

Applying cross-validation, we found that for each distribution, GAM significantly increased 

the predictive power of the fits (𝑤 < 2, 𝑝 < 0.01 in all four distributions, Wilcoxon Signed-

rank, cross-validation; Supplementary Fig. S5). Second, we verified that contraction bias is 

reliably more predictive than response inertia bias (the tendency to repeat the same response 

after a success and switch it after a failure29,30; 𝑤 < 1, 𝑝 < 0.01 in all four distributions, 

Wilcoxon Signed-rank, cross-validation; Supplementary Fig. S5). Third, we verified that 
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assuming interactions between bias-by-recent and by bias-by-longer-term has no predictive 

advantage over additive summation of these functions (Supplementary Fig. S5).  

 

Fig. 3. Bias-by-recent and bias-by-longer-term stimuli statistics, estimated using Generalized 

Additive Model (GAM) for 4 different frequency distributions. (a) Broad, 3 octave, uniform (𝑛 =
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125), (b) Narrow, 2 octave, uniform (𝑛 = 94), (c) Gaussian (𝑛 = 163) and (d) Bimodal of two uniform 

(0.9 octaves each; 𝑛 = 108). Left – Bias-by-recent functions (𝑏1(𝑑1)) estimated with GAM regression. 

Each curve describes the magnitude of the bias as a function of the frequency distance (in octaves) of 

the first tone in the current trial from the previous trial mean (𝑑1). Though estimated separately, the 4 

functions are similar in shape and magnitude. At the extreme edges the correlation between the two 

covariates (𝑑1 and 𝑑∞) is very high, and thus estimated values are less reliable (most notably for 

“narrow uniform”). Right – Bias-by-longer-term (𝑏∞ (𝑑∞)) of each distribution. The x-axis shows the 

frequency distance (in octaves) of the first tone in the current trial from the mean frequency of the 

distribution (𝑑∞). Black superimposed curves show IO bias, estimated with the same model for 

simulated responses with matched noise level (yielding ~85% correct responses) and with priors 

corresponding to the distribution of each experiment (Materials and Methods). In the plots on the right, 

the x-axis zero denotes the mean of the distribution and the other values denote the relative position 

of 𝑓1 within the distribution, illustrated at the bottom of each plot (note that in the plots on the left, the 

x-values correspond to those of 𝑑1, which differ from the relative position of 𝑓1). In all plots error bars 

indicate 95% confidence intervals. Dashed line denotes zero bias. 

 

Bias-by-longer-term is optimal in ASD but sub-optimal in dyslexia 

With nonlinear GAM analyses (which yielded better predictions than GLM across data sets; 

Supplementary Fig. S6) we could now ask if indeed the bias-by-longer-term, reflecting an 

integration of the details of the stimulus distribution, is atypical and sub-optimal in dyslexia 

but preserved in ASD, and whether the bias-by-recent function of the ASD group deviates 

from that in the neurotypical group. We first administered the novel GAM analysis to the 

performance of participants with dyslexia and neurotypicals in Experiment 1. Stimuli 

distribution was Gaussian, and based on the large-scale M-Turk experiment with neurotypical 

participants, we predicted neurotypicals' linear (Fig. 3c) IO's bias-by-longer-term and typical 

bias-by-recent function. This was indeed the case for bias in neurotypicals (Fig. 4a). As 

predicted, dyslexia bias-by-recent was roughly identical to neurotypical (Fig. 4b-left). Yet, -
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their bias-by-longer-term was sub-optimal (Fig. 4b-right). It was both small in magnitude and 

did not display a linear shape, suggesting that, at the edges of the distribution, the contraction 

of individuals with dyslexia is expected to be reduced.  

 

To obtain a quantitative comparison for these non-linear estimates, we quantified the 

contribution of the bias by calculating its variance across trials, namely, the extent to which 

variability in predicted responses can be attributed to bias towards previous trials31 

(𝑉𝑎𝑟(𝑏𝑖) = 〈(𝑏𝑖
t − 〈𝑏𝑖〉)

2〉, where 𝑏𝑖
𝑡 = 𝑏𝑖(𝑑𝑖

𝑡) is the bias in trial 𝑡 and 〈𝑏𝑖〉 is the average bias 

across all trials). The variance of the bias-by-recent did not differ between individuals with 

dyslexia and neurotypicals (𝑝 = 0.37, permutation test). To account for individual variability 

in both bias-by-recent and bias-by-longer-term, we again introduced random effects. For each 

participant, we fitted a random intercept (to account for a global response preference), and a 

random slope (which could tune the magnitude of the individual bias function) for each 

function. These 3 additions (individual random intercept and slopes) to the model 

significantly increased its predictive power (cross-validation; Supplementary Fig. S7). To 

assess the individual variance of the bias-by-longer-term (𝑏∞), we compared each individual 

to its noise-matched IO. Indeed, the variance of the bias-by-recent for individuals with 

dyslexia did not differ from neurotypicals' (𝑈 = 393, 𝑝 = 0.31, Mann-Whitney; Fig. 4c), but 

variances of the bias-by-longer-term did (𝑊 = 3, 𝑝 < 10−5, Cohen’s d = 1.15, Wilcoxon 

Signed-rank; Fig. 4d). We also tested whether the difference between the contribution of the 

bias-by-recent and the (distance from) optimality of the longer-term component significantly 

differs between the two populations. We calculated the individual difference between the 

variance of the bias by-recent (𝑣𝑎𝑟(𝑏1)) and the distance between the empirical and IO bias-

by-longer-term variances (Δ𝑣𝑎𝑟(𝑏∞) = 𝑣𝑎𝑟(𝑏∞) − 𝑣𝑎𝑟(𝑏∞𝐼𝑂)). This difference (𝑣𝑎𝑟(𝑏1) −
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Δ𝑣𝑎𝑟(𝑏∞)), was significantly larger in the dyslexia group compared to the neurotypical group 

(𝑈 = 184, 𝑝 = 0.005, Mann-Whitney, Cohen’s d = 0.98). 

 

Fig. 4.  Normal bias-by-recent but abnormal bias-by-longer-term in individuals with dyslexia. 

(a-b) Left – functions of bias-by-recent (𝑏1(𝑑1)) estimated for the (matched) neurotypicals (a) (blue; 

𝑛 = 26) and participants with dyslexia (b) (red; 𝑛 = 25) who performed Experiment 1. GAM exclusion 

was based on a 65% accuracy criterion; see Materials and Methods. Estimation at the edges is noisy 
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due to high correlations with longer-term distances. Right – functions of bias-by-longer-term 

(𝑏∞(𝑑∞)). The functions of noise-matched Ideal Observer (IO)  are superimposed. In all plotted 

curves, error bars indicate standard deviation. (c-d) Individual bias variances, shown in logarithmic 

scale. (c) Variance of bias-by-recent across trials 𝑉𝑎𝑟(𝑏1). Bias-by-recent is similar in participants with 

dyslexia (𝑛 = 25) and neurotypical (𝑛 = 26) participants (𝑝 = 0.31, two-sided Mann-Whitney). (d) 

Variance of bias-by-longer-term 𝑉𝑎𝑟(𝑏∞) of each group compared with their matched IO (black). 

Neurotypicals' bias (𝑛 = 26) is similar to their matched IO (𝑝 = 0.38, two-sided Mann-Whitney), 

whereas the bias of participants with dyslexia (𝑛 = 25) is smaller (𝑝 < 10−5, two-sided Mann-

Whitney). Red squares and red horizontal lines indicate the mean and median values of each group, 

respectively. Error bars show lower to upper quartile values of the data. ∗∗∗∗ 𝑝 < 10−4. 

 

To calculate these bias functions for the ASD group we performed a new experiment 

(Experiment 3), since the frequency distribution in Experiment 2 was not sufficiently broad 

(0.65 octave). To allow a direct comparison between the bias functions in ASD and dyslexia, 

we recruited, in addition to individuals with ASD and neurotypicals, also individuals with 

dyslexia (Supplementary Table S3 describes the cognitive profiles of the three, age and 

reasoning-matched groups) and administered the same protocol to these three groups. We 

chose a bimodal distribution for the common protocol (Fig. 3d) since it yields bias-by-longer-

term within most of its equally sampled frequency range, and therefore reliable functions can 

be fitted with the smallest amount of trials. Importantly, its pattern of ideal contraction allows 

an evaluation of participants' resolution in integrating the distribution. Ideal contraction bias 

should be towards the mean of each mode rather than towards the global mean (mean across 

all trials). Contraction to the global and to the local means have the same direction at the 

edges, but opposing directions at the "inner" sections of each mode. Thus, adequate learning 

of the bimodal distribution is indicated by contraction to the local mean at the inner sections. 
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Neurotypicals (Fig. 5a) showed both the expected pattern of bias by-recent and the expected 

pattern of bias-by longer-term in bimodal distribution (Fig. 3d). Qualitatively, their bias-by-

longer-term was directed towards the local means at the inner sections of the bimodal 

distribution. Quantitatively, variance comparison of this bias component showed neither 

group differences (black line superimposed, Fig 5a, right), nor individual differences 

(introducing the same random effects components as in Experiment 1; Fig. 5e, left) with 

respect to their noise-matched IOs. The group with ASD showed a significantly smaller bias-

by-recent (Fig. 5b, left) compared with both the neurotypical group (𝑝 = 0.03, permutation 

test on group variance) and the group with dyslexia (p = 0.03, permutation test on group 

variance), though its basic shape was similar. A comparison between the individual bias 

variances revealed a significant difference between the bias-by-recent of the 3 groups (𝐻 =

37.8, 𝑝 < 10−9 Kruskal-Wallis; Fig. 5d), due to a smaller variance in the ASD group (a 

follow-up Dunn’s multiple comparisons test, 𝑍 > 4.3, 𝑝 < 10−5, bonferroni correction, 

Cohen’s d > 1 for the two comparisons). However, their bias-by-longer-term was adequate, 

indicating detailed integration of stimuli distribution, and quantitatively overlapped that of 

matched IOs (Fig. 5b, right). Dyslexia bias-by-recent was similar to neurotypical (Fig. 5c). In 

fact, the variance of their estimated bias was even slightly larger than neurotypicals' (𝑧 =

2.2, 𝑝 = 0.04, bonferroni correction, Dunn’s test). Cross-validation on the aggregated data of 

the three populations showed that estimating separate bias-by-recent functions for 

neurotypicals and individuals with dyslexia does not improve the predictive power of the 

model (𝑊 = 24, 𝑝 = 0.72, Wilcoxon Signed-rank, cross-validation), though estimating a 

separate bias-by-recent function in the ASD group did improve it (𝑊 < 1, 𝑝 = 0.009, 

Wilcoxon Signed-rank, cross-validation).  
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Yet, bias-by-longer-term in the dyslexia group was weaker, and deviated from the matched 

IOs. Qualitatively, in the "inner" parts of the two modes, the bias of participants with dyslexia 

was much smaller than the expected IO’s bias, indicating sub-optimal use of previous history. 

Quantitatively, while the individual biases of neurotypicals and of participants with ASD 

were similar to their matched IO's, in dyslexia, they were significantly smaller (𝑊 = 9, 𝑝 =

0.006, Cohen’s d = 0.85, Wilcoxon Signed-rank; Fig. 5e). Additionally, the difference 

between the contribution of the bias-by-recent and the (distance from) optimality of the 

longer-term component significantly differed between the groups (𝐻 = 28.4, 𝑝 <

10−7 Kruskal-Wallis). Post-hoc tests showed that this difference was larger in individuals 

with dyslexia than in neurotypicals (𝑧 = 3.1, 𝑝 = 0.002, bonferroni correction, Dunn’s test), 

and was smaller in individuals with ASD compared to neurotypicals (𝑧 = 2.7, 𝑝 < 10−7, 

bonferroni correction, Dunn’s test). Performance of individuals with dyslexia in this 

experiment was mildly poorer than that of neurotypicals and individuals with ASD 

(Supplementary Table S3). Hence, the Bayesian framework predicts a larger contraction 

bias for the dyslexia group,  reflecting increased use of previous statistics . However, their 

actual bias was smaller than expected (quantified by their noise-matched IO) given their 

reduced frequency sensitivity. 

 

To summarize, the sub-optimal bias functions of participants with dyslexia suggest that they 

do not adequately integrate information from longer-term statistics. By contrast, the bias-by-

longer-term of participants with ASD is optimal, suggesting adequate ability to learn complex 

distributions. Yet, their ability to quickly adapt to changes is reduced as reflected in the 

smaller magnitude of their bias-by-recent function.  
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Fig. 5. Functions of bias-by-recent and bias-by-longer-term estimated for neurotypical, ASD 

and dyslexia groups performing the same experimental protocol.  (a) neurotypicals (𝑛 = 23), (b) 

participants with ASD (𝑛 = 16) and (c) participants with dyslexia (𝑛 = 14) who participated in 

Experiment 3 (bimodal distribution). Left – The magnitude of the bias-by-recent as a function of the 

frequency distance (𝑏1(𝑑1)) of the first tone in the current trial from the previous trial mean (𝑑1). Right 

–  Bias-by-longer-term (𝑏∞(𝑑∞)). The x-axis denotes the frequency distance of the first tone in the 

current trial from the mean frequency of the distribution in octaves (𝑑∞). Black superimposed curves 

show Ideal Observer (IO) bias. The pattern of bias in both neurotypicals (a) and participants with ASD 

(b) is roughly overlapping the IO’s. The pattern of bias-by-longer-term for the dyslexia group (c) 

deviates from their IO, with an overall smaller magnitude. Error bars indicate standard deviation. (d-e) 

Individual bias variances of the groups that participated in Experiment 3, shown in log scale. (d) 

Variance across trials of bias-by-recent 𝑉𝑎𝑟(𝑏1) is a bit larger for participants with dyslexia (𝑛 = 14) 

compared to neurotypicals (𝑛 = 23;  𝑝 = 0.04, Dunn’s multiple comparisons test with bonferroni 

correction), but substantially smaller in ASD (𝑛 = 16) compared to neurotypicals (𝑝 < 10−9, Dunn’s 

multiple comparisons test with bonferroni correction). (e) Variances of bias-by-longer-term 

(𝑉𝑎𝑟(𝑏∞)) of each group compared with their noise-matched IOs. The bias of participants with 

dyslexia (𝑛 = 14) is smaller than that of their matched IOs (𝑝 = 0.006, two-sided Mann-Whitney), 

whereas the bias of neurotypicals (𝑛 = 23) and participants with ASD (𝑛 = 16) is similar to their 

matched IOs' (𝑝 = 0.8, and 𝑝 = 0.09 respectively, two-sided Mann-Whitney). Red squares and red 

horizontal lines indicate the mean and median value of each group, respectively. Error bars show 

lower to upper quartile values of the data. ∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗∗ 𝑝 < 10−4. 

 

Discussion 

 

Perceptual decisions of both individuals with dyslexia and individuals with ASD were less 

affected by previous trials compared to neurotypicals, in line with previous studies (refs 

18,19 for dyslexia, and 10,11,21 for ASD). However, individuals with dyslexia are "fast 

updaters" and "fast forgetters" compared to both neurotypicals and individuals with ASD. 
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Individuals with ASD exhibit the reverse pattern. They are “slow updaters” and “slow 

forgetters” compared to neurotypicals (and individuals with dyslexia). Using Generalized 

Additive Model (GAM) enabled us to assess the detailed non-linear bias functions of these 

two temporal scales and to characterize the integration of the statistics underlying long-term 

representations. These analyses revealed that the bias towards recent stimuli does not depend 

on the specific stimuli distribution and is largely confined to neighboring (~0.5 an octave 

away) frequencies in all three groups of participants. Yet this bias is smaller in ASD, limiting 

the rate of adaptation to new statistics. The bias-by-longer-term observed in neurotypicals 

(more than a few seconds) reflects optimal use of the information conveyed by the 

distribution, well beyond the mean and standard deviation, and largely overlapping that of an 

IO. The bimodal distribution of pure tones in Experiment 3 can be thought of as a toy 

example of two distinct categories, which individuals with dyslexia failed to internalize 

accurately (as suggested by the sub-optimal bias they manifested) in contrast to neurotypicals 

and individuals with ASD. We propose that the resolution of the learned distribution 

is indicative of the quality with which categorical representations (e.g. of 

phonemes/syllables) form, at least within session. For all three groups of participants, future 

research should study the accumulation versus forgetting of stimuli information across days 

and years. Our GAM analyses provide the tools, and the comparison to IO quantifies 

optimality. 

 

Remarkably, the patterns of perceptual biases parallel the unique pattern of difficulties and 

strengths of each of these two populations. Individuals with dyslexia are diagnosed based on 

a difficulty in efficient decoding of the written text, which relies on long-term regularities of 

spoken and written language. Failing to efficiently benefit from these regularities may pose a 

main impediment to their ability to form rich categorical representations (reviewed in7) and 
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expert-level reading skills3. The resolution of our categorical representations is not typically 

challenged in daily situations, which contain many cues. But it can be tested in challenging 

ones, for example, when individuals are asked to identify the (not very familiar) speaker. 

Identification in one’s native language, where categorical representations of speech sounds 

are rich and robust due to extensive exposure, is more accurate than in a second language, 

where speech sounds are less familiar. Individuals with dyslexia are known to have 

difficulties in second language acquisition. Yet, counter-intuitively, their performance in the 

challenging task of identifying the speaker's identity is particularly impaired (compared with 

neurotypicals) in their native language: the familiarity advantage afforded by one's native 

language is smaller in dyslexia compared with neurotypicals, suggesting slower exposure-

based enrichment of categorical representations (at least for speech)6. We predict that 

individuals with dyslexia will manifest a similarly reduced advantage of familiarity also in 

other, non-linguistic domains. 

 

By contrast, the benefit from repeating recent stimuli (<3-4 sec) is similar in neurotypicals 

and individuals with dyslexia for various types of stimuli, including written words and non-

words18. However, when the time intervals between consecutive encounters of the same non-

word increase, this benefit decays faster in individuals with dyslexia than in neurotypicals18.  

 

Individuals with ASD are less affected by recent information21 and show slower 

adaptation10,32 compared to neurotypical individuals. They show a dissociation between 

adequate learning of longer-term statistics, as suggested by their intact categorical 

representations14, and impaired integration of recent information. Their slow updating of 

recent information is manifested in both social33 and cognitive contexts. For example, 

Happé34 characterized oral sentence-reading using words that have more than one correct 
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pronunciation: one that is generally (long-term) more common, and one that is context-wise 

(temporally local) more appropriate. Individuals with ASD showed a greater preference for 

the generally more common pronunciation. A conceptually similar observation was found in 

our participants with ASD (Supplementary Table S1), who did not differ significantly from 

neurotypicals and were faster than individuals with dyslexia in decoding of pseudo words, 

which have no recent context. However, they were slow in paragraph reading, which should 

benefit from the semantic context of the recently read words. We propose that individuals 

with dyslexia rely on recent context to compensate for their slow word decoding, whereas 

individuals with ASD partially compensate for their slow use of the semantic context by 

using long-term regularities.   

 

As explained above, the "slow update" of internal representations in ASD is in line with the 

central coherence hypothesis34,35, and explains the difficulty in adequate context-specific 

responses. Yet, it seems inconsistent with the hypothesis that individuals with ASD 

overestimate the environment's volatility36. Hyper-volatility estimation is expected to yield 

larger weights to recent events, which are attributed greater information, whereas we found 

reduced weights. Similarly, our observations seem inconsistent with the hypothesis that 

individuals with ASD overweight their prediction error, which leads to overfitting their 

predictions, yielding reduced generalization37. We do not propose that individuals with ASD 

overfit. We find that they learn the stationary statistics, which are reliable across situations 

but might be less important when recent context is more relevant. Other studies also report 

that long-term priors are reliably learned by individuals with ASD38, and even several 

seconds’ intervals seem to suffice for their learning of partially novel stimuli39. We suggest 

that individuals with ASD are ‘slow adapters’. We predict that they will be slower in error 

correction and in tracking changes in the external environment, as will be manifested in both 
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perceptual and sensorimotor tasks. Still, understanding the differences between the 

implications of the different studies probably requires assessment of bias under several time 

windows of changes in environment's statistics (better characterizing the term volatility), and 

under several levels of reliability of the statistics of each environment at any given moment. 

 

Importantly, the ‘slow-update’ proposal explains seemingly unrelated observations in the 

visual modality. It has been proposed that individuals with ASD have a spatially local 

preference40. This conclusion was supported by poorer performance in global motion tasks in 

individuals with ASD. Yet, a recent meta-analysis37 showed that this difficulty can be 

explained by slower spatial integration. Thus, the relative local advantage attributed to ASD 

may, in fact, reflect slow temporal updates of internal representations from spatially local to 

spatially more global stimuli41. 

 

In summary, the conceptual dissociation that emerges from the slow-updating and fast-

forgetting characteristics of the perceptual biases observed in ASD and dyslexia, respectively, 

captures a broad range of seemingly unrelated phenomena within a unified framework. 

Importantly, it suggests a direct link between computational analyses and clinical profiles and 

applications. Specifically, it implies that a reduction in the rate of introducing new contexts 

might improve the effective integration and comprehension of these contexts by individuals 

with ASD, whereas enhancing regularities may facilitate the performance of individuals with 

dyslexia. 

 

Code Availability  
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We used the Psychtoolbox-3 MATLAB toolbox (http://psychtoolbox.org/) for creating and 

running experiments 2 and 3. The code for the online experiment which was applied via 

Mechanical-Turk is available at https://github.com/ItayLieder/Mech_turk_2afc. Analysis was 

conducted using the “mixed GAM computation vehicle with automated smoothness 

estimation” (mgcv) free package https://cran.r-project.org/web/packages/mgcv/index.html. 
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Materials and Methods 

Experimental design 

Participants 

Participants with dyslexia and neurotypical participants - Experiments 1 and 3  

Performance and biases in the 2-tone frequency discrimination task were calculated by re-

analyzing the data of adult individuals with dyslexia and neurotypicals matched in age and 

reasoning abilities, recruited and assessed by Jaffe-Dax et al. (Experiment 118). Sixty native 

Hebrew speakers (30 individuals with dyslexia and 30 good readers), students at the Hebrew 

University, were recruited for Jaffe-Dax et al.'s experiment. All the participants with dyslexia 

had been diagnosed by authorized clinicians as having a specific reading disability. Reading-

related measures were also assessed in our lab. For this analysis, we excluded two 

participants with dyslexia: one with accuracy in 2-tone discrimination < 50%; one with 

exceptionally low (negative) average probit bias (> 2.5 standard deviations). We report the 

data of the remaining 28 participants with dyslexia and 30 neurotypicals. Age, cognitive 

profile and discrimination performance of all (reported) participants of Experiment 1 are 

described in Supplementary Table 1. For Experiment 3 we invited individuals with dyslexia 

who participated in a previous experiment in the lab; 17 individuals returned to participate in 

this study, matched in age and cognitive skills (assessed by Block Design) to the two other 
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groups that participated in Experiment 3 (3 were excluded due to poor performance, <65% 

criterion chosen for GAM analysis explained below, based on our M-Turk experiment, 

retaining 14). The recruitment of the neurotypical participants for Experiment 3 is described 

in the following section. Age, cognitive profile and discrimination performance of all 

(reported) participants of Experiment 3 are described in Supplementary Table S3. 

 

Neurotypicals and participants with ASD – Experiments 2 and 3 

Recruitment of the participants with ASD was conducted through clinics, designated facilities 

and specific support groups. Recruitment of the neurotypical individuals was based on ads 

posted at the Hebrew University. All participants with ASD were clinically diagnosed with 

autism spectrum disorder according to DSM5 standards12. Forty one individuals with ASD 

and 35 neurotypicals were recruited for Experiment 2; Of the participants with ASD, two 

were excluded due to poor performance in the general reasoning task (scaled score of 4 and 3 

in Block Design42), and 2 additional participants were excluded due to poor (chance level) 

performance in the 2-tone discrimination task. The data of the remaining 37 participants are 

reported. Of the neurotypical participants, two were excluded due to poor performance (50% 

accuracy) of the 2-tone discrimination task and one due to an exceptionally large average 

probit bias (> 2.5 standard deviations). We report the data of the remaining 32 participants. 

Age, cognitive profile and discrimination performance of all (reported) participants of 

Experiment 2 are described in Supplementary Table S1. 19 of the participants with ASD 

and 26 of neurotypicals also participated in Experiment 3. Three participants with ASD and 3 

neurotypicals were excluded due to poor performance in 2-tone discrimination (<65% 

criterion, required for reliable GAM analysis, as calculated based on the M-Turk experiment), 

keeping 16 participants with ASD and 23 neurotypicals. Age, cognitive profile and 

discrimination performance of the (reported) participants of Experiment 3 are described in 
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Supplementary Table S3. In all three groups we only recruited participants with no or 

minimal (<2 years) formal musical experience, since previous studies have shown that 

individuals with musical experience perform better on frequency discrimination tasks5. Thus, 

all three groups of participants of Experiment 3, had no formal musical training, but 

participated in one previous 2-tone discrimination experiment in our lab. 

All experiments were approved by both the Ethics committee of the Psychology Department 

of Hebrew University, and the Helsinki ethics committee of Sheba Hospital (required for 

testing for individuals with ASD recruited through their adult clinic). All participants 

provided written informed consent and were compensated financially for their 

time and travel expenses.  

 

Participants of the Mechanical-Turk (M-Turk) experiment  

Six hundred and sixty-four participants (all from the US) took part in four 2-tone frequency 

discrimination experiments (different stimulus distributions). All were recruited with 

previous M-Turk approval >95% and a total number of HITs (human intelligence task) > 

1000. Our written instructions emphasized that the experiment must be performed: (1) using 

headphones in a quiet environment; (2) with either a laptop or a desktop computer and (3) 

only by people with good hearing who are between the ages of 20 to 50. Each individual 

could only participate once. They were given a payment of 2$ for 300 performed trials 

(corresponding to a duration of approximately 15-20 minutes). Participants gave their 

identifying M-Turk worker ID, age, gender and musical experience. We applied two 

performance-based inclusion criteria, based on: (1) mean performance and (2) performance 

consistency. Manipulating exclusion criteria, we found that excluding participants whose 

accuracy <65% correct (~15% exclusion) yielded consistent results throughout all our 

assessments. Assessing the consistency of performance throughout the task by measuring the 
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variability of the mean accuracy in windows of 60 trials, resulted in exclusion of only 8 more 

participants, whose variance exceeded the threshold of 4 standard deviations that we set. The 

number of participants before and after exclusions in each experiment is summarized in 

Supplementary Table S2. 

 

This rate of exclusion is largely an outcome of our choice of a non-adaptive protocol. Few 

participants had poor performance even though they understood the task and could perform 

for very large frequency differences in the demo stage. We chose a non-adaptive protocol 

since adaptive protocols introduce correlations between the parameters of consecutive trials, 

which we aimed to avoid. In a non-adaptive protocol, the difference between the tones of a 

given trial (𝛿𝑡) is always sampled from the same distribution, regardless of the participant’s 

performance, ensuring that similar stimuli statistics are presented across participants.  

The sample size for Experiment 1 was large, with 30 participants in each group, performing 

600 trials each. Group size was determined by earlier simulations that assessed the required 

number of participants and trials (~25 participants). Experiment 2 aimed to recruit groups 

of individuals of a similar size. The M-Turk data were used to determine the required number 

of participants for Experiment 3.  We administered 4 distributions (uniform of 3 octaves, 

uniform of 2 octaves, Gaussian and bimodal) and determined which is most informative with 

the smallest number of participants. We randomly sampled groups of 15 participants from the 

pool of participants in each distribution (~120) and found that in most 15-participant samples, 

we could calculate reliable bias functions for the bimodal distribution. 

 

Assessments 

All our participants performed 2-tone frequency discrimination. Lab participants 

(Experiments 1-3) were also administered a set of cognitive assessments, which evaluated 
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general reasoning skills by the standard Block Design task (WAIS-IV42), and reading abilities 

by pseudo-word and paragraph reading (described in ref 18). Results of these assessments are 

reported in Supplementary Tables S1 and S3 for Experiments 1-2, and Experiment 3, 

respectively.  

 

The 2-tone discrimination task and protocols 

In all 2-tone discrimination experiments, the design of the 2-tone discrimination task’s basic 

trial structure and protocol were similar. The specific parameters differed mildly between 

experiments, but were always exactly the same for test and neurotypical groups. On each 

trial, participants heard two serially presented tones and were asked to determine which tone 

had the higher pitch and respond accordingly. In all experiments, a short demo session of 10 

trials preceded the actual experiment. Feedback was provided during the demo; 80% success 

on the 10 demo (easy) trials was a prerequisite for continuing to the main task. In cases of 

failure to reach this success threshold, the training was repeated until the criterion was met. 

 

1. Experiment 1 – dyslexia and neurotypical groups 

Inter-stimulus interval (ISI) was 600ms, tone duration was 50ms and the delay from the 

participant’s response to the onset of the first tone of the following trial (inter-trial interval; 

ITI) was 650ms. The frequency separation between the two tones was sampled log-uniformly 

from the range of 1–30% (i.e. uniformly from the range of 17.2–454.2 cents). The task was 

administered with a set of constant stimuli designed specifically for this experiment 

(available at: https://goo.gl/UnrG1A). This sequence was roughly Gaussian18 with 

frequencies ranging between 550 and 1,800Hz (1.7 octaves). Each participant performed 600 

trials. No feedback was provided for trials after successful completion of the demo. Both our 

pilot in-lab experiments and our M-Turk experiment reported here were conducted with 
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feedback (one of the M-Turk experiment’s distributions was Gaussian). The results of these 

experiments did not differ from neurotypicals' performance in Experiment 1, indicating that 

the presence of feedback does not affect the pattern of participants' bias. 

 

2. Experiment 2 – ASD and neurotypical groups  

The ISI was 500ms, tone duration was 50ms and ITI was 1000ms. The frequency separation 

between the two tones was sampled log-uniformly from the range of 0.3–10% (uniformly 

from 5.19–165.0 cents). Tones were sampled log-uniformly between 800 and 1,250Hz (65% 

of an octave). Each participant performed 200 trials. Feedback was provided after every trial. 

 

3. Experiment 3 – ASD, dyslexia and neurotypical groups  

The ISI was 850ms, tone duration was 120ms and ITI was 650ms. In 90% of the block trials, 

the proportional frequency separations between the two tones were sampled log-uniformly 

from the range of 0.5-20% (uniformly from 8.63–315.6 cents). In the remaining 10%, the two 

tones were identical, making the task “impossible”. These trials were included to increase the 

proportion of bias related information that we could extract from the participants’ responses. 

Tones were sampled from a mixture of two non-overlapping log-uniform distributions with 

frequency ranges of 440-800Hz and 1,228-2,295Hz (0.9 of an octave spanned by each range). 

On a given trial, one of the modes was selected with equal probability, and the first tone was 

then sampled log-uniformly from that mode. Each participant performed 300 trials. Feedback 

was provided after every trial, and randomized in the “impossible” cases. 

Both experimenters and participants were blind to the purpose of the study. Importantly, 

groups were not expected to and indeed generally did not, differ in main effects (i.e. similar 

perceptual thresholds). Hence, expectations and enthusiasm were not relevant to the 

parameters we compared. 
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4. Amazon Mechanical Turk experiments 

Four 2-tone discrimination experiments were conducted on-line via the Amazon Mechanical 

Turk (M-Turk) crowed sourcing platform. The experiments were constructed in JavaScript 

and administered using web-browsers with tones that were preloaded and played using 

HTML 5 Audio. The temporal structure of each trial was the same as in Experiments 1-3 

(illustrated in Fig. 1a). In each of the four experiments (Broad uniform, Narrow uniform, 

Gaussian and a Bimodal of two uniform distributions; see Supplementary Table S2), all 

basic stimuli parameters were identical: the inter-stimulus interval (ISI) within a trial was 

840ms, tone duration was 120ms, and ITI was 650ms. The absolute difference between the 

two tones' log-frequencies was sampled uniformly from the range of 0.007-0.14 octaves 

(0.5% - 10% difference in Hz). The 2nd tone was either higher or lower than the 1st tone, with 

equal probability. The four experiments differed only in how the first tone of each trial was 

sampled, as described in Supplementary Table S2.  

 

The assessment protocol was consistent of the following: 

Familiarization with pitch  Familiarization with task  Task: block 1  block 2  

block 3. 

For familiarization with the concept of pitch, participants could click on any of 4 buttons, 

which resulted in playing 660, 780, 1,150 and 1,520Hz tones, respectively. Participants were 

asked to set the loudness to a comfortable level. Next, the participants performed a short 

training session to get familiar with the structure and interface of the task. They were given 

the following instructions: ''On each trial (question), two tones will be played consecutively: 

tone 1  tone 2. Then, I ask: which of the two tones had the higher pitch?''  

 



40 

 

Participants responded by either clicking on one of the two GUI buttons with their mouse, or 

by pressing a corresponding keyboard button. They were given visual (happy or sad smiley) 

feedback after every trial. Familiarization with the task was completed after 30 trials, or after 

7 consecutive correct answers. It was followed by an optional short break, which could be 

initiated by the participant by clicking a GUI button. The main task consisted of 300 trials, 

performed in 3 blocks of 100 trials each. A short optional break followed each block. In 

addition to feedback after each trial, at the end of each block, the participants received 

information about their mean accuracy.  

 

 

Statistical analyses 

Model fitting for both GLM and GAM was performed using the mgcv R package43,44. 

Hypothesis testing was performed using the scikit-learn and SciPy packages in Python. All 

tests used for hypothesis testing were two-sided. All comparisons were made using non-

parametric test except in the case of the probit bias comparison, where we verified the 

assumption of normality using a Shapiro-Wilk normality test. 

 

Probit models 

The probability that a participant reported hearing the frequency of the 2nd tone on trial 𝑡, 𝑓2
𝑡, 

as higher than that of the 1st , 𝑓1
𝑡, was modelled as: 

 

𝑝("𝑓2
𝑡 > 𝑓1

𝑡") = Φ(𝛼𝑠
𝑡𝛿𝑡 + 𝑏𝑡)  

 

where Φ is the standard normal cumulative distribution function (i.e., Φ−1 is the probit 

function), 𝛼𝑠
𝑡 is a participant specific frequency sensitivity, which could change with time 



41 

 

during the assessment, 𝛿𝑡 is the difference of log-frequencies 𝑓2
𝑡 − 𝑓1

𝑡 on the 𝑡th trial (all 

frequencies were expressed in logarithmic units throughout), and 𝑏𝑡 is a bias term for that 

trial that depends on stimulus history. 

 

We explored three models, in increasing order of sophistication: 

1) An aggregate model in which 𝛼𝑠
𝑡 does not depend on time, and 𝛿𝑡 = ±𝛿̅ and 𝑏𝑡 = ±𝑏̅ for 

constants 𝛿̅ and 𝑏̅.  

2) A generalized linear model (GLM) in which 𝛿𝑡 is the actual log-frequency difference on 

the trial and 𝑏𝑡 = ∑ 𝑤𝑖𝑑𝑖
𝑡4

𝑖=1 + 𝑤∞𝑑∞
𝑡  for linear weights 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤∞ associated with 

trial-specific history terms 𝑑1
𝑡 , 𝑑2

𝑡 , 𝑑3
𝑡 , 𝑑4

𝑡 , 𝑑∞
𝑡  as defined in the main text. 

3) A generalized additive model (GAM) in which 𝛿𝑡 was the frequency difference, and 𝑏𝑡 =

𝑏1(𝑑1
𝑡) + 𝑏∞(𝑑∞

𝑡 ) for non-parametric (spline-estimated) functions 𝑏1 and 𝑏∞. 

 

Average probit bias terms 

We obtained a summary estimate of the magnitude of the contraction bias in each group. In 

our regression framework, each decision is modeled as driven by the objective task difficulty 

𝛿𝑡 and a bias 𝑏𝑡 through the decision probability 𝑝(𝑦𝑡 = 1|𝛿𝑡 + 𝑏𝑡) = Φ(𝛼𝛿𝑡 + 𝑏𝑡). 

Selecting a set of trials 𝑇, we can compute the average response 〈𝑦𝑡〉𝑇. For this set of trials 

we can compute the average difficulty 〈𝛿𝑡〉𝑇 , define an average bias 〈𝑏𝑡〉𝑇 by 〈𝑦𝑡〉𝑇 =

Φ(𝛼〈𝛿𝑡〉𝑇 + 〈𝑏𝑡〉𝑇), or the equivalent 〈𝑏𝑡〉𝑇 = Φ
−1(〈𝑦𝑡〉𝑇) − 𝛼〈𝛿𝑡〉𝑇. 

Trials are grouped depending on whether 𝑓1 > 𝑓2 and whether 𝑓1 > 〈𝑓〉, yielding 4 trial types, 

where mean responses are expressed as 

〈𝑦𝑡〉𝑇

{
 

 
Φ(𝛼𝛿 + 𝑏)                  ∶ T1 = {𝑓1 > 𝑓2, 𝑓1 > 〈𝑓〉} 

Φ(𝛼𝛿 − 𝑏)                  ∶ T2 = {𝑓1 > 𝑓2, 𝑓1 < 〈𝑓〉} 

Φ(−𝛼𝛿 + 𝑏)               ∶ T3 = {𝑓1 < 𝑓2, 𝑓1 > 〈𝑓〉} 

Φ(−𝛼𝛿 − 𝑏)               ∶ T4 = {𝑓1 < 𝑓2, 𝑓1 < 〈𝑓〉} 
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where 𝑏 and 𝛿 denote a shared averaged bias and difficulty, respectively. 

An estimator of the bias 𝑏 that does not require estimating participant's precision 𝛼 can be 

derived from average response in each trial region: 

𝑏̂ =
Φ−1(〈𝑦𝑡〉𝑇1) + Φ

−1(〈𝑦𝑡〉𝑇3) − Φ
−1(〈𝑦𝑡〉𝑇2) − Φ

−1(〈𝑦𝑡〉𝑇4)

4
 

 

GLM Regression 

The Generalized Linear Model has the following form (calculating separate parameters for 4 

trials back): 

𝑝("𝑓2
t > 𝑓1

t") = Φ(𝛼𝑠
𝑡𝛿𝑡 +∑ 𝑤𝑖𝑑𝑖

𝑡4
𝑖=1 + 𝑤∞𝑑∞

𝑡 ), 

We fitted a single model to all the participants in each group, in which the weights 

𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤∞ determined the shared history-dependent bias, but the time-varying 

sensitivities 𝛼𝑠
𝑡 were participant-specific. In all analyses, responses in the first 5 trials were 

excluded. 

 

GAM Regression 

The Generalized Additive Model had the following form: 

 

𝑝("𝑓2
t > 𝑓1

t") = Φ(𝛼𝑠
𝑡𝛿𝑡 + 𝑏0 + 𝑏1(𝑑1

𝑡) + 𝑏∞(𝑑∞
𝑡 )). 

The constant offset 𝑏0 was included to ensure that the learned bias functions 𝑏1 and 𝑏∞ had 

zero means. However, it was never found to be significantly different from 0 and so is 

omitted when the model is discussed elsewhere in the text.  

 

Varying-coefficient models and lapse rate 
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As with the GLM, a single model was fit to each group of participants, with common bias 

functions, but with participant specific sensitivities 𝛼𝑠. We combined the pre-fitted 𝛼-

participant pairing in the model using the varying-coefficient models45 method. This method 

assumes linearity in the regressors, but their coefficients are allowed to change smoothly with 

the value of other variable (alphas in our case): 𝑔(𝛼𝑠)𝛿𝑠
𝑡, Here 𝛼𝑠 is the pre-fitted sensitivity 

parameter, 𝛿𝑠
𝑡 is the difference between the target tones for each participant 𝑠, and 𝑔 is some 

smooth fitted function. In both GLM and GAM regression models we added a lapse 

parameter 𝜆 to account for occasional inattentivness46: 𝑝("𝑓2
t > 𝑓1

t") =  
1

2
λ + (1 − λ)ϕ. We set 𝜆 

to a fixed 0.05 for all human performancers. IO model (described below) had 𝜆 = 0.  

 

Random effects 

In our regression analyses, GAM and GLM described above, we assumed shared bias 

functions across participants. This assumption is a statistical necessity, since we do not have 

sufficent individual data to estimate the model individually. To fit single participants, we 

assumed a shared parameter across participants, but allowed small individual deviations 

(termed random effects). Because assumed deviations are small, inference in these models is 

tractable. 

 

Cross-validations 

The quality of model fit was assessed by 10-fold cross-validation of the predictive accuracy. 

Trials were partitioned randomly into 10 validation subsets, sampled evenly across 

participants. Prediction was assessed using AUC: the area under the receiver operating 

characteristic (ROC) curve defined by comparing the model output to a swept threshold. 

Comparisons were tested for significance using a Wilcoxon Signed-rank test over cross-
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validation fold scores. All cross-validations were performed with the “scikit-learn” package 

in Python, using the same random state. 

 

Re-sampling methods 

Testing for the significance of inter-group differences was based on a permutation test. Both 

GLM and GAM models were fit to 50,000 surrogate data sets obtained by permuting 

individual participant labels (preserving all data associated with that individual). This 

permutation procedure generated a null distribution against which the true difference in 

parameters or contributions to variance of bias between the groups could be compared to 

obtain a p-value.  

 

Ideal Observer model 

A normative account of the contraction bias has been proposed by Ashourian et al16.  

This account relies on a particular model of participants: both sensation and memory 

retention (for the first tone) are noisy and participants are aware of the statistics of these 

noises. On any given trial, tone frequencies 𝑓1 and 𝑓2 need to be inferred from their noisy 

representations as they are not directly observed and the decision on whether 𝑓2 > 𝑓1 is 

uncertain. One way to reduce uncertainty and increase decision accuracy is to incorporate 

statistical knowledge about the stimulus distribution. This can be formalized using the 

framework of probabilistic inference as follows. 

 

Let 𝑝(𝑓) be the stimulus distribution assumed to be known to the participant. It is assumed 

that participants encode a noisy representation of the presented tones 𝑓1 of 𝑓1 and 𝑓2 of 𝑓2. In 

addition, by the time of decision the first tone representation is corrupted by additional 

memory noise (all noises are assumed to be independent). 
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These noise models provide likelihoods for the underlying value of tone frequencies 𝑝(𝑓𝑖|𝑓𝑖). 

Under this model, an IO uses the stimulus distribution 𝑝(𝑓) as a prior distribution to reduce 

the uncertainty in the frequency of each tone by computing the posterior distribution over 

tones  𝑝(𝑓𝑖|𝑓𝑖) ∝ 𝑝(𝑓𝑖) 𝑝(𝑓𝑖|𝑓𝑖). 

 

Thus, we model each noise distribution as Gaussian in log-frequency, centered on the true 

value, 𝑝(𝑓𝑖̃|𝑓𝑖)~𝒩(𝑓𝑖, 𝜎𝑖
2), with 𝜎2

2 = 𝜎𝑠
2 reflecting sensory noise alone, but 𝜎1

2 = 𝜎2
2 + 𝜎𝑚

2  

incorporating additional noise associated with working memory. 

 

Based on two noisy encoded tone frequencies 𝑓1̃, 𝑓2̃ the optimal decision on whether "𝑓2 >

𝑓1" is given by: 

𝟏[𝑝("𝑓2 > 𝑓1"|𝑓1, 𝑓2) >
1

2
],  

 

where 𝟏 is the truth function which equals 1 if the argument is true and 0 otherwise. This 

optimal decision can be rewritten as 𝟏[𝑚̂(𝑓1, 𝑓2) > 0] where 𝑚̂(𝑓1, 𝑓2) =

𝒎𝒆𝒅𝒊𝒂𝒏[𝑝(𝑓2 − 𝑓1|𝑓1, 𝑓2)] (see Sheppard47). In other words, an ideal decision will test 

whether the median of the posterior distribution on the frequency difference 𝑓2 − 𝑓1 exceeds 

0. This decision rule gives a deterministic result based on the internally encoded values 𝑓𝑖̃. 

 

For a trial on which a pair of tones with true frequencies 𝑓1, 𝑓2, is presented, the IO decision 

will vary with noise. We can compute the expected IO decision probability by averaging over 

different realizations of the encoding noise: 

 

𝑝("𝑓2 > 𝑓1"|𝑓1, 𝑓2) = 𝑬𝑓̃1,𝑓̃2 ~ 𝑝(𝑓1, 𝑓2|𝑓1, 𝑓2)
𝟏[𝑚̂(𝑓1, 𝑓2) > 0] 
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This probability depends on the distribution of the median 𝑚̂(𝑓1, 𝑓2) as 𝑓1 and 𝑓2 vary. We 

approximated this distribution by a Gaussian with matched mean and variance 

𝒩(𝜇̂(𝑓1, 𝑓2), 𝜎̂
2(𝑓1, 𝑓2)) where 𝜇̂(𝑓1, 𝑓2) = 𝐸[𝑚̂|𝑓1, 𝑓2] and 𝜎̂2(𝑓1, 𝑓2) = 𝑉𝑎𝑟[𝑚̂|𝑓1, 𝑓2]. 

 

Using this approximation leads to an analytical expression for the decision probability which 

resembles the non-linear probit structure of the GAM model: 

 

𝑝("𝑓2 > 𝑓1"|𝑓1, 𝑓2) ≈ Φ(
𝜇̂(𝑓1,𝑓2)

𝜎̂(𝑓1,𝑓2)
) = Φ(

𝑓2−𝑓1

𝜎̂(𝑓1,𝑓2)
+ 𝑏̂(𝑓1, 𝑓2)) 

 

With 𝑏̂(𝑓1, 𝑓2) =
𝜇̂(𝑓1,𝑓2)−(𝑓2−𝑓1)

𝜎̂(𝑓1,𝑓2)
 in particular, for “impossible” trials on which 𝑓1 = 𝑓2, we 

have 𝑏̂(𝑓1, 𝑓2 = 𝑓1) =
𝜇̂(𝑓1,𝑓2)

𝜎̂(𝑓1,𝑓2)
.  
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A Life Sciences Reporting Summary for this paper is available. 

Data availability  

The datasets generated during and/or analyzed during the current study are available from the 

corresponding author on reasonable request. 

 

Additional references: 

42. Weschler, D. Wechsler Adult Intelligence Scale - Fourth Edition . 1–3 (2008). 

43. Wood, A. S. & Wood, M. S. Package ‘mgcv’ Title Mixed GAM Computation Vehicle 

with Automatic Smoothness Estimation. (2018). 

44. Knoblauch, K. psyphy: Functions for analyzing psychophysical data in R. (2007). 

45. Trevor, H. & Tibshirani, R. Varying-coefficients Models. J. R. Stat. Soc. 55, 757–796 

(1993). 

46. Micheyl, C. Psychometric functions for pure-tone frequency discrimination. Acoust. 

Soc. Am. 130, 263–272 (2011). 

47. Sheppard, W. F. On the application of the theory of error to cases of normal 

distribution and normal correlation. Philos. Trans. R. Soc. London 192, 101–531 

(1899). 

 

https://tango.huji.ac.il/+CSCO+1h75676763663A2F2F6A6A6A2E616E676865722E70627A++/articles/nn.4615#s2

