UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?

Li, FGN; Bataille, C; Pye, S; O'Sullivan, A; (2019) Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art? Applied Energy , 239 pp. 991-1002. 10.1016/j.apenergy.2019.02.002. Green open access

[img]
Preview
Text
Li_Bataille_Pye_OSullivan_2019.pdf - Accepted version

Download (505kB) | Preview

Abstract

Energy economy models are central to decision making on energy and climate issues in the 21st century, such as informing the design of deep decarbonisation strategies under the Paris Agreement. Designing policies that are aimed at achieving such radical transitions in the energy system will require ever more in-depth modelling of end-use demand, efficiency and fuel switching, as well as an increasing need for regional, sectoral, and agent disaggregation to capture technological, jurisdictional and policy detail. Building and using these models entails complex trade-offs between the level of detail, the size of the system boundary, and the available computing resources. The availability of data to characterise key energy system sectors and interactions is also a key driver of model structure and parameterisation, and there are many blind spots and design compromises that are caused by data scarcity. We may soon, however, live in a world of data abundance, potentially enabling previously impossible levels of resolution and coverage in energy economy models. But while big data concepts and platforms have already begun to be used in a number of selected energy research applications, their potential to improve or even completely revolutionise energy economy modelling has been almost completely overlooked in the existing literature. In this paper, we explore the challenges and possibilities of this emerging frontier. We identify critical gaps and opportunities for the field, as well as developing foundational concepts for guiding the future application of big data to energy economy modelling, with reference to the existing literature on decision making under uncertainty, scenario analysis and the philosophy of science.

Type: Article
Title: Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.apenergy.2019.02.002
Publisher version: https://doi.org/10.1016/j.apenergy.2019.02.002
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Energy modelling, Climate policy, Energy policy, Decarbonisation, Energy data, Big data
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > Bartlett School Env, Energy and Resources
URI: https://discovery.ucl.ac.uk/id/eprint/10071340
Downloads since deposit
28Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item