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Abstract 

Background:  

Type 2 diabetes mellitus (T2DM) increases the risk of vascular cognitive impairment (VCI). It is 

unknown which type of vascular lesions and co-morbid etiologies, in particular Alzheimer 

pathology, are associated with T2DM in patients with VCI, and how this relates to cognition and 

prognosis. 

Objective:  

To compare brain MRI and cerebrospinal fluid (CSF) markers, cognition, and prognosis in 

patients  with possible VCI with and without T2DM.  

Methods:  

We included 851 memory clinic patients with vascular brain injury on MRI (i.e. possible VCI) 

from a prospective cohort study (T2DM: n=147, 68.4±7.9 years, 63% men; no T2DM: n=704, 

67.6±8.5 years, 52% men). At baseline, we assessed between-group differences in brain MRI 
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abnormalities, CSF markers of Alzheimer’s disease and cognitive profile. After two years 

follow-up, we compared occurrence of cognitive decline, stroke, and death.   

Results:  

The distribution of clinical diagnoses did not differ between patients with and without T2DM. 

T2DM patients had more pronounced brain atrophy (total and white matter volume), and more 

lacunar infarcts, whereas microbleeds were less common (all p<0.05). CSF amyloid-β levels 

were similar between the groups. T2DM patients performed worse on working memory (effect 

size: -0.17, p=0.03) than those without, whereas performance on other domains was similar. 

During follow-up, risk of further cognitive decline was not increased in T2DM.  

Conclusion:  

In patients with possible VCI, presence of T2DM is related to more pronounced brain atrophy 

and a higher burden of lacunar infarcts, but T2DM does not have a major impact on cognitive 

profile or prognosis.  

Keywords:  
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Introduction 

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cognitive dysfunction 

[1]. The etiology is likely to be multifactorial, with vascular disease as a key contributor [2]. 

Involvement of vascular disease in cognitive dysfunction, also referred to as vascular cognitive 

impairment (VCI), includes both ischemic and hemorrhagic changes in the brain, due to large or 

small vessel disease [3]. It is unknown if T2DM is associated with specific types of vascular 

lesions among patients with VCI.  

Previous imaging studies have observed associations between T2DM and an increased burden of 

lacunar infarcts and a modest increase in white matter hyperintensities (WMH) volumes, but the 

burden of microbleeds and micro-infarcts was not increased [4]. T2DM predisposes to large 

(including cardio embolic) and small vessel causes of ischemic stroke [5]. These observations on 

vascular lesions in people with T2DM are mainly derived from population-based cohorts. The 

question is which of these lesions are the prime determinants of VCI in patients with T2DM. 

Moreover, Alzheimer’s disease is an important co-morbid pathology in VCI [3]. The question is 

therefore also to which extent T2DM affects the balance between vascular brain injury and 

Alzheimer’s pathology in VCI. Although the relationship between T2DM and vascular brain 

lesions and Alzheimer pathology has been addressed in several previous population based studies 

[4,6], it has not been studied in patients with clinically manifest VCI presenting at a memory 
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clinic. This is an important knowledge gap. We cannot take for granted that patterns of brain 

changes in the general population (i.e. those at risk for cognitive impairment and dementia) are 

the same as in those with clinical features of cognitive and dementia. Yet, the brain changes that 

contribute to the clinical phenotype of the latter groups should be the prime target for preventive 

measures and are also relevant for diagnosis and prognosis in clinical practice. The current 

prospective memory clinic study examined which patterns of vascular brain injury and 

cerebrospinal fluid (CSF) markers of Alzheimer’s disease are associated with T2DM in patients 

with possible VCI. Moreover, we assessed how T2DM affects the prognosis of these patients.   

Materials and methods 

Study population 

This study involved patients from the Utrecht-Amsterdam Clinical Features and Prognosis in 

Vascular Cognitive Impairment (TRACE-VCI) study, an observational prospective cohort study 

of 860 consecutive patients with vascular brain injury on MRI (i.e. possible vascular cognitive 

impairment [VCI]) referred to a memory clinic [7]. Patients were included from the Vrije 

Universiteit Medical Center (VUMC) (n=664) and the University Medical Center Utrecht 

(UMCU) (n=196) between September 2009 and December 2013. All patients had to have 

cognitive complaints and evidence of vascular brain injury on MRI, operationalized as the 

presence of at least one of the following neuro-imaging markers: a) WMH Fazekas scale ≥2 
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(Fazekas), b) Fazekas scale 1 and two vascular risk factors (i.e. hypertension, 

hypercholesterolemia, diabetes mellitus, obesity, current smoking, or a reported history of a 

vascular event other than stroke), c) ≥1 lacunar infarcts, d) ≥1 non-lacunar (sub)cortical infarcts, 

e) ≥1 cerebral microbleeds, f) ≥1 intracerebral hemorrhage.  

Patients were not primarily selected for inclusion in the TRACE-VCI cohort based on specific 

clinical diagnoses. Presence of co-existing neurodegenerative disorders (such as Alzheimer’s 

disease) was accepted in line with earlier proposed VCI criteria [3]. Patients with a monogenic 

cause of cognitive dysfunction were excluded as were patients with other nonvascular and 

nondegenerative primary causes of cognitive dysfunction such as a brain tumor, extensive 

traumatic head injury, substance or alcohol abuse, multiple sclerosis, and patients with primary 

psychiatric disease, other than depression. Details on the inclusion and exclusion criteria of the 

cohort have been previously published [7].  

Presence of T2DM was based on medical history, use of oral antidiabetic agents or a diagnosis of 

newly diagnosed diabetes. Patients were classified as having newly diagnosed diabetes if they 

had a nonfasting glucose of ≥11.1 mmol/l or an HbA1c ≥48 mmol/mol (or ≥6.5%) [8]. For the 

present study, we excluded 9 patients from the original TRACE-VCI cohort, seven because of a 

diagnosis of type 1 diabetes mellitus, and two others because a distinction between a diagnosis of 

type 1 diabetes mellitus or T2DM could not be made based on the available information. Hence, 
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the study population consisted of 851 patients with possible VCI, 147 of whom had T2DM 

(17%) and 704 whom did not have T2DM (83%). The study was approved by the institutional 

review board of the VUMC and the UMCU. All patients provided informed consent prior to 

research related procedures.  

Interview, physical and neurological examination 

Patients received a standardized diagnostic assessment performed by a neurologist or a 

geriatrician including an interview on cognitive complaints, an informant interview, a physical 

examination and a neurological examination. Hypertension was defined as present in medical 

history, the use of antihypertensive medication, or current blood pressure above 140/90 mmHg. 

Hypercholesterolemia was determined based on medical history or medication use. Obesity was 

defined as a baseline body mass index (BMI) ≥30, calculated as weight in kilograms divided by 

height in meters squared. A vascular event other than stroke was defined as a history of 

myocardial infarction, cardiac surgery or endovascular treatment for coronary artery disease, any 

arterial occlusion or surgical intervention of a peripheral artery (such as an abdominal or leg 

artery) or carotid artery intervention (stenting or endarterectomy).  

Blood samples 

Glucose or HbA1c levels were available from 97.1% (826/851) of the patients. Plasma fasting or 

nonfasting glucose levels were collected in 84% (717/851) of the patients and HbA1c levels were 
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collected in 22% (190/851) of the patients. HbA1c levels were available in 43 of the 147 patients 

with T2DM (29%). 

MRI assessment 

Brain MRI scans were performed on a 3.0 tesla (94%, 800/851) or 1.5 tesla MRI scanner (6%, 

51/851; GE Signa HDxt (45/851) 5%, other six on four other 1.5 tesla scanners). The MRI scan 

protocol included the following sequences: 3D T1-weighted, and 2D multi-slice T2-weighted, 

T2*-weighted/susceptibility-weighted imaging (SWI) and fluid-attenuated inversion recovery 

(FLAIR) sequences. The MRI sequence parameters are described elsewhere [7]. A total of 842 

(98.9%) patients were scanned using all of these sequences. In nine patients (1.1%), no 3D T1-

weighted and/or FLAIR sequence was available.  

Visual MRI ratings and image processing 

(Non)lacunar infarcts, cerebral microbleeds, and intracerebral hemorrhages were all rated 

according to the STRIVE (Standards for Reporting Vascular Changes on Neuroimaging) criteria 

[9]. WMH’s were rated using the Fazekas scale [10] for patient classification. For the analyses 

WMH volumes were used. Ratings were performed by or under supervision of a neuroradiologist 

(in training).  
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The following stepped semi-automated processing pipeline was used to obtain WMH and brain 

volumes.   

First, automated WMH segmentation was performed on FLAIR images using the kNN-TTP 

method [11]. All WMH segmentations were checked visually. Because of slight 

undersegmentation, minimal manual corrections were performed in eight patients (<1%). 

Presence of WMHs can lead to misclassification of various tissue compartments in automated 

brain segmentation [12,13]. Lesion filling methods have been shown to reduce this 

misclassification and improve brain volume measurements [14,15]. Therefore, we performed 

WMH lesion filling on 3D T1 images using the SLF-toolbox 

(http://atc.udg.edu/nic/slfToolbox/index.html) for Statistical Parametric Mapping 12 (SPM12, 

Wellcome Department of Cognitive Neurology, Institute of Neurology, Queen Square London) 

with default settings [16,17]. Since WMH segmentation was performed on FLAIR images, 

binary WMH segmentations were transformed using the elastix toolbox for image registration 

before feeding it to the SLF toolbox [18].  

Next, lesion-filled 3D T1 images were automatically segmented using the Computational 

Anatomical Toolbox (CAT12, version r864, http://www.neuro.uni-jena.de/cat/) for Statistical 

Parametric Mapping 12 (SPM Wellcome Department of Cognitive Neurology, Institute of 

Neurology, Queen Square London; http://www.neuro.uni-jena.de/hbm2012/HBM2012-
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Dahnke02.pdf; http://www.neuro.uni-jena.de/hbm2016/GaserHBM2016.pdf). Default settings 

were used to obtain probabilistic segmentations for each of the three tissue compartments (gray 

matter, white matter and CSF). Quality assessment was performed visually on all segmentations. 

No manual editing was found to be needed. Gray matter volumes, white matter volumes and CSF 

volumes were obtained from the probabilistic segmentations using MeVisLab (MeVis Medical 

Solutions AG, Bremen, Germany), [19].  

Next, (non)lacunar infarcts, intracerebral hemorrhages and incidental findings were manually 

segmented on FLAIR images using an in-house developed MeVisLab tool (MeVis Medical 

Solutions AG, Bremen, Germany; 

https://www.narcis.nl/publication/RecordID/oai:dspace.library.uu.nl:1874%2F287431), [19]. 

These manual segmentations of infarcts, hemorrhages and other incidental findings were 

subsequently used as a mask to correct WMH segmentations, gray matter volumes, white matter 

volumes and CSF volumes.  

A total of 814 (95.6%) scans completed the pipeline. Thirty-seven scans failed to complete the 

segmentation pipeline, due to missing or inadequate scan quality (n=12), due to processing errors 

during automated brain segmentation (n=10), due to inadequate quality of brain segmentations 

(n=8) and due to errors during manual segmentation (n=7). 

CSF samples  
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CSF concentration of amyloid-β (Aβ), tau and/or total tau phosphorylated threonine 181 were 

measured in 63% (533/851) of the patients, at a central laboratory for clinics at the Department 

of Clinical Chemistry of the VUMC [20]. 

Cognitive assessment  

The Dutch version on the Mini Mental State Examination (MMSE) was used as a measure of 

global cognitive functioning [21]. The severity of cognitive symptoms was assessed using the 

Clinical Dementia Rating (CDR; 0-3) global score [22]. All patients underwent an extensive 

neuropsychological examination. The tasks were summarized in five cognitive domains: (1) 

working memory, (2) memory, (3) attention and executive functioning, (4) processing speed, and 

(5) perception and construction. The domain working memory was assessed by the Digit Span of 

the Wechsler Adult Intelligence Scale – 3rd edition (WAIS-III) [23]. The domain memory was 

assessed by the Dutch version of the Rey Auditory Verbal Learning Test (RAVLT) [24] and the 

Visual Association Test (VAT) part A [25]. The domain attention and executive functioning was 

assessed using the ratio of the Trail Making Test part B and A (TMT-B and TMT-A) [26], the 

Stroop Color Word Test [27], and the category naming tasks (animal naming, 1 minute) [28] and 

lexical fluency tasks (letters, 1 minute) [28]. The domain processing speed was assessed by the 

TMT-A [26], the Stroop Color Word Test I and II [27], and the Digit Symbol-Coding Test 

(DSCT) of the WAIS-III [23] or the Letter Digit Substitution Test (LDST) [23]. The cognitive 
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domain perception and construction was made using the Visual Object and Space Perception 

Battery, administering two separate tests known as the Incomplete Letters and Dot Counting. 

Level of education was defined according to a 7-point scale (Verhage scale 1-7; low to high 

education) [29].  

Clinical Diagnosis  

Clinical diagnoses were established at multidisciplinary consensus meetings after the 1-day 

memory clinic evaluation. Patients were divided in three categories of severity of cognitive 

impairments: dementia, MCI and no objective cognitive impairment (NOCI).  

Patients were diagnosed with dementia if there was a clear decline in cognitive function defined 

as a deficit in ≥ 2 cognitive domains at neuropsychological testing and interference in daily 

living [30]. Dementia was further classified due to its main etiology, based on internationally 

established criteria without knowledge of CSF biomarkers, in vascular, neurodegenerative or 

unknown origin [31–34]. A diagnosis of MCI was defined as complaints of deterioration in 

cognitive function from a prior baseline and objective evidence of impairment in at least one 

cognitive domain. Daily living activities were normal or mildly impaired [35]. Lastly, NOCI was 

defined as having cognitive complaints, but no objective cognitive impairments on 

neuropsychological testing (also referred to as subjective cognitive decline or subjective 

cognitive impairment) [36].   
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Follow-up Investigation 

Patients with at baseline an MMSE score of ≥20 [37], a CDR of ≤1 [24] and no 

institutionalization were eligible for follow-up, i.e. those without moderate to severe dementia at 

baseline. These criteria applied to 698 (82%) patients of the baseline population. To avoid 

selective drop-out of patients who were not able to be re-assessed at the memory clinic, we chose 

outcome measures which could also be collected by telephone interview. These included 

accelerated cognitive decline, defined as a change in CDR of ≥1 or institutionalization due to 

cognitive dysfunction during the follow-up period. Occurrence of ischemic stroke or 

intracerebral hemorrhage during follow-up was also recorded.  

Statistical Analysis 

Demographic variables, vascular risk factors, measures of global cognitive status, distribution of 

clinical diagnoses, Fazekas scale, and CSF data were compared between possible VCI patients 

with and without T2DM using independent samples t-tests for parametric data, Mann-Whitney U 

tests for non-parametric data and χ2 tests for proportions.  

Total brain, gray matter, and white matter volumes (as % of ICV) were standardized into z-

scores to allow comparison of effect sizes between different volumes. As WMH volumes did not 

follow a normal distribution, WMH volumes were log-transformed and then standardized into z-

scores. Between group differences in brain volumes were calculated using analysis of covariance 
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(ANCOVA) with age, gender and scanner type as covariates. The occurrence of other 

cerebrovascular lesions was compared between groups using logistic regression with age and 

gender as covariates.  

Raw cognitive test scores were standardized into z-scores per test, using the mean and standard 

deviation of the whole study sample. Subsequently, the test z-scores were averaged to create 

domain z-scores. If individual test scores were missing, the domain z-score was based only on 

the available tests. Between group differences in domain z-scores were calculated using analyses 

of covariance (ANCOVA) with age, gender, and level of education as covariates.  

Follow up data was analyzed using Cox proportional hazard models, to assess the risk of T2DM 

presence on the time to event for each separate outcome (change in CDR of ≥1, 

institutionalization due to cognitive dysfunction, stroke, and death). The Cox proportional hazard 

models were adjusted for age, gender and clinical diagnosis. For stroke, the model was 

additionally adjusted for vascular risk factor count (one point for each risk factor: hypertension, 

hypercholesterolemia, current smoking, obesity, history of stroke and history of reported 

vascular event other than stroke).   

Sensitivity analyses were performed excluding patients with NOCI, in order to study specifically 

MCI and dementia. Furthermore, patients could be included in the TRACE-VCI cohort based on 

the criterion of a Fazekas scale grade 1 and the presence of ≥2 vascular risk factors, one of which 
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could be T2DM. In a second sensitivity analysis we therefore controlled for this potential 

selection bias, by excluding patients that were included in the cohort solely based on this 

criterion. Finally, to evaluate the influence of Alzheimer pathology on brain atrophy and 

occurrence of lacunar infarcts and cerebral microbleeds, we stratified the between group analyses 

on brain volumes for CSF Alzheimer profile (i.e. CSF ratio tau/Aβ > 0.52) [38].  

Results 

Demographic characteristics and vascular risk factors are shown in table 1. The proportion of 

men was higher in the group with T2DM. Patients with possible VCI with and without T2DM 

were similar with regard to age. Level of education was lower in the patients with T2DM. 

Patients with T2DM more often had hypercholesterolemia, obesity and a history of a vascular 

event other than stroke. There were no between-group differences in syndrome diagnosis (NOCI, 

MCI or dementia). Regarding dementia subtypes, most patients across both groups had a 

diagnosis of Alzheimer’s disease (61% with T2DM versus 69% without T2DM). Of the 147 

patients with T2DM, 102 (69%) used oral antidiabetic agents, and 26 (18%) used insulin. 

Thirteen (9% of all patients with T2DM) patients had newly diagnosed T2DM.  

Brain MRI features at baseline are shown in table 2. Patients with T2DM had a lower total brain 

volume (as % of ICV: 71.0 ± 4.1 vs. 70.0 ± 4.1, effect size:  -0.21 [-0.36 ; -0.07], p=0.005) and a 

lower total white matter volume (% of ICV: 32.0 ± 2.3 vs. 32.5 ± 2.2, effect size -0.22 [-0.39 ; -
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0.06], p=0.008) than patients without T2DM. Difference in total gray matter volume did not 

reach significance (effect size -0.13 [-0.28 ; 0.11], p=0.07). Lacunar infarcts were more common 

in patients with T2DM than in those without T2DM (odds ratio 1.52 [1.01 ; 2.29]). There were 

no between group differences in WMH volumes, non-lacunar (sub)cortical infarcts or 

intracerebral hemorrhages. The occurrence of any microbleeds and strictly lobar microbleeds 

was lower in patients with T2DM (odds ratio 0.49 [0.33 ; 0.73], and odds ratio 0.50 [0.31 ; 0.78], 

respectively) than in patients without  T2DM. The occurrence of strictly deep microbleeds was 

similar between groups.  

Table 3 shows CSF features at baseline. CSF levels of Aβ, tau and phosphorylated tau did not 

differ between groups. Notably, although not significantly, CSF Aβ levels tended to be higher 

(i.e. less compatible with Alzheimer pathology) in patients with T2DM.  

Table 4 shows the cognitive assessment at baseline. There were no between group differences in 

global cognitive status (MMSE and CDR scores). Patients with T2DM performed worse on the 

domain working memory (effect size: -0.17, 95% confidence interval [-0.32 ; -0.01], p=0.04) 

compared to those without. On the other four domains, cognitive performance was similar 

between both groups (effect sizes ranging from -0.02 to 0.12).  

Out of the 698 patients who were at baseline eligible for follow-up, at least one outcome measure 

was available from 680 (97.4%); T2DM: 97.5%, no T2DM: 97.4%. Thirteen patients were lost to 



21 

 

follow-up and five gave no permission to collect follow-up data. Median follow-up duration was 

2.1 years (range 0.2-3.0). Follow-up outcomes are shown in table 5. Patients with and without 

T2DM did not differ with regard to occurrence of death, accelerated cognitive decline, defined as 

a change of CDR ≥ 1 or institutionalization due to cognitive dysfunction, and risk of non-fatal 

stroke.  

The sensitivity analyses excluding patients with NOCI (n=196) and excluding patients who were 

included in the cohort solely because of a Fazekas scale grade 1 and the presence of ≥2 vascular 

risk factors (n=205) showed essentially the same results as the main analyses.  

In stratified analyses according to CSF markers (supplemental table 1), in patients without a CSF 

Alzheimer profile, those with T2DM had a lower total brain volume and a lower total gray 

matter volume than those without T2DM (n=240). By contrast, in patients with a CSF Alzheimer 

profile (n=293), brain volumes did not significantly differ between patients with and without 

T2DM, although the effect sizes were largely similar to the Alzheimer negative group. The 

relation between T2DM and lacunar infarcts and microbleeds was only observed in the 

Alzheimer negative group.     

Discussion 

In memory clinic patients with possible VCI, those with T2DM had a higher burden of lacunar 

infarcts than those without T2DM. Global brain atrophy and white matter atrophy were more 
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pronounced in patients with T2DM. CSF Aβ levels tended to be higher, i.e. compatible with a 

lower burden of Alzheimer’s pathology, in patients with T2DM compared to those without 

T2DM, consistent with a less frequent occurrence of (lobar) microbleeds in patients with T2DM. 

This different pattern of brain tissue injury did not result in a markedly different cognitive profile 

or prognosis relative to patients without T2DM.  

The main novelty of our study is that it was performed in a memory clinic setting, in contrast to 

most previous studies in brain imaging and cognition in T2DM, that were mainly population 

based. We consider this clinic based setting as important. Particularly in people presenting at a 

memory clinic, the pattern and severity of cognitive deficits, brain abnormalities on MRI, and 

CSF biomarkers guide the diagnosis and prognostication, but clearly also present the primary 

leads for the development of targeted treatment measures. Additional strengths of the study 

include the large sample size, the longitudinal design and the standardized and detailed recording 

of imaging markers, CSF biomarkers and cognitive performance. Our first objective was to 

compare patterns of vascular brain injury between those with and without T2DM. We identified 

only one previous memory clinic study addressing this objective. In line with our observations, 

that study observed that T2DM was associated with an increased occurrence of lacunar infarcts, 

but no increase in WMH compared to those without T2DM [39]. Other imaging studies on 

vascular brain injury in patients with T2DM were conducted in other population types, mainly 

case-control studies in participants without cognitive impairment and population-based cohorts. 
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In those studies, T2DM is also consistently associated with a higher burden of lacunar infarcts 

compared to controls [4,40] and in several studies also with a modest increase of WMH burden 

[4,40]. The association between T2DM and microbleeds is less clear, but most studies indicate 

that the microbleed burden is not increased in T2DM [4]. All in all, with regard to vascular brain 

injury, the burden of lacunar infarcts is consistently increased in T2DM, regardless of population 

type. The previous reported association between T2DM and WMH is less clear in a memory 

clinic setting. The observed lower burden of (lobar) cerebral microbleeds in our study is 

remarkable, but may be related to this memory clinic setting, where lobar microbleeds likely 

reflect cerebral amyloid angiopathy (CAA) [41]. Therefore, it appears that among patients with 

possible VCI, T2DM is associated with a lower CAA burden.         

Previous memory clinic studies have found an association between T2DM and brain atrophy 

[39,42]. In concordance with these findings, case-control studies in participants without MCI or 

dementia and population-based studies observed that T2DM is associated with global brain 

atrophy [40]. The magnitude of the volume reduction is modest, with effect sizes of 0.2 to 0.6 

standard deviation units [40]. Our findings are compatible with these previous studies. Of note, 

this indicates that even among patients with cognitive dysfunction, those with T2DM have 

additional brain atrophy.     
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CSF Aβ levels did not differ significantly between patients with and without T2DM in our study. 

If anything, CSF Aβ levels tended to be slightly higher in patients with T2DM, reflecting a 

possible lower burden of Alzheimer’s pathology. In line with these findings, a previous large 

memory clinic study observed no association between T2DM and CSF Aβ levels [42]. The same 

study also found no association between T2DM and PET Aβ depositions [42]. Moreover, a 

population-based PET study also observed no association between T2DM and Aβ depositions 

[43]. Furthermore, in population-based autopsy cohorts, core pathological changes of 

Alzheimer’s disease were similar, or, in line with the tendency of our observations, even 

decreased in T2DM relative to controls [6,44]. In sum, the burden of Alzheimer pathology is not 

increased, or if anything, is decreased in T2DM.  

Despite the different pattern of brain injury in memory clinic patients with T2DM, detailed 

cognitive testing revealed that patients with T2DM had only a lower performance on working 

memory, whereas on the other four cognitive domains, their performance was similar to those 

without T2DM. Moreover, T2DM was not associated with accelerated cognitive decline. In 

apparent contrast with these findings, some [45–47], but not all [48] previous memory clinic 

studies found that T2DM was associated with accelerated progression from MCI to dementia 

within one to two years of follow-up.  Furthermore, several previous population-based studies 

also observed accelerated conversion from MCI to dementia in patients with T2DM compared to 

patients without, during follow-up periods ranging from five to nine years [49–51] (but see [52]). 
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Altogether, most memory clinic and population-based studies observed that T2DM is associated 

with accelerated progression from MCI to dementia. The differential findings in our cohort may 

be due to the fact that all participants were selected based on the presence of vascular brain 

injury.    

The observation that overall cognitive performance at baseline was similar in both groups 

indicates that patients with T2DM did not attend the memory clinic in an earlier or later disease 

stage than those without. This also suggests that the overall burden of pathology, which in the 

majority of patients likely involved multiple etiologies, was similar between the groups. From 

this, it may be inferred that if some brain pathologies (i.e. lacunar infarcts and atrophy) were 

more common or severe in T2DM, other brain pathologies should be less common. This may be 

the explanation for the possible lower Alzheimer’s pathology burden and the lower occurrence of 

lobar microbleeds in those with T2DM, indicating a lower CAA burden, in this setting probably 

mostly reflecting another pathological manifestation of the Alzheimer process [41]. The 

increased occurrence of lacunar infarcts in T2DM likely reflects an increased burden of 

arteriolosclerosis. The increased severity of atrophy, without increased Alzheimer pathology, 

suggest that also non-Alzheimer’s disease types of neurodegeneration contribute to cognitive 

dysfunction in T2DM [53]. Further elucidation of such other types of neurodegeneration is an 

emerging research interest in the dementia field that is clearly particularly relevant for T2DM.   
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A possible limitation of our study is that we did not define a minimal threshold for severity of 

cognitive dysfunction for inclusion in our cohort. By contrast, most diagnostic criteria for VCI 

state that this construct only applies to patients with MCI or dementia [3,54]. The rationale for 

our approach is that  some patients with cognitive decline as result of vascular brain injury may 

not present with cognitive deficits that are severe enough to be classified as MCI [7]. 

Importantly, we did perform a sensitivity analysis and showed that excluding patients without 

cognitive impairment did not affect the results in relation to T2DM status. Another limitation is 

that because all participants were selected for presence of vascular brain injury, we can only 

assess the relation between T2DM and the nature and burden of vascular injury, rather than its 

presence. Moreover, in 3.1% of the patients in the reference group no glucose or HbA1c levels 

were available and we may thus have missed some undiagnosed cases of T2DM. Yet, in light of 

this small percentage it is unlikely that that has affected our results. A final limitation is that we 

did not record detailed information about diabetes duration and rate of glycemic control.  

In conclusion, in memory clinic patients with possible VCI, those with T2DM, compared to 

patients without T2DM, had a higher burden of lacunar infarcts, likely attributable to accelerated 

arteriolosclerosis, and more brain atrophy, likely attributable to non-Alzheimer’s disease types of 

neurodegeneration. Both disease processes may be targets for disease modifying treatment, 

particularly in VCI patients with T2DM. Of note, although the pattern of brain injury was 
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different in patients with VCI and T2DM, this was not associated with clear differences in 

cognitive profile of prognosis of cognitive functioning.   
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Table 1. Demographic characteristics and vascular risk factors at baseline  

 

 
Possible VCI without 

T2DM 

n = 704 

Possible VCI with 

T2DM 

n = 147 

p-value 

Demographics 

Gender, % men   

 

367 (52) 92 (63) 0.02 

Age 

 

67.6 ± 8.5 68.4 ± 7.9 0.28 

Level of educationa 5 (3 - 7) 5 (2-7) 0.01 

Vascular risk factors 

Hypertensionb  

 

588 (84) 132 (90) 0.06 

Hypercholesterolemiac  

 

273 (39) 106 (72) < 0.001 

Current smoker  

 

143 (21) 29 (20) 0.91 

Obesityd 

 

136 (20) 40 (27) 0.04 

History of reported stroke  58 (8) 

 

17 (12) 0.20 

History of reported vascular 

event other than strokee 

 

58 (8) 25 (17) 0.002 

 

Clinical diagnosis 

No objective cognitive 

impairment 

172 (24%) 24 (16%) 0.31f`` 

MCI  163 (23%) 44 (30%) 

Dementia 369 (52%) 79 (54%) 

Vascular dementia 25 (7%) 11 (14%)  

Alzheimer’s disease 256 (69%) 48 (61%) 

Other neurodegenerative 

etiologyg 

68 (18%) 11 (14%) 

Unknown etiologyh 20 (5%) 9 (11%) 
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VCI; vascular cognitive impairment; T2DM, type 2 diabetes mellitus; MCI, mild cognitive 

impairment 

 

Data are presented as n (%), means ± SD, or median (10th percentile – 90th percentile).   
a Level 1-7 
b Based on a self-reported medical history, use of antihypertensive drugs, or a newly diagnosed 

hypertension defined as a systolic pressure > 140 mm Hg or a diastolic pressure > 90 mm Hg. 
c Based on medical history or medication use.  
d Defined as a baseline body mass index ≥30, calculated as weight in kilograms divided by height 

in meters squared. 
e Defined as a myocardial infarction, surgery or endovascular treatment for coronary artery 

disease, any arterial occlusion or surgical intervention of a peripheral artery (such as an 

abdominal or leg artery) or carotid artery intervention (stenting or endarterectomy). 
f A Mann-Whitney U test for non-parametric data was performed. 
g Frontotemporal dementia, Lewy body dementia and others such as Primary Progressive 

Aphasia, Cortical Basal Syndrome, and Progressive Supranuclear Palsy 
h Dementia of unknown origin; further examination needed to state diagnosis 
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Table 2. Brain MRI features at baseline 

 Possible VCI 

without 

T2DM 

n = 672 

Possible VCI 

with T2DM 

n = 142 

Standardized mean 

difference in z-scores 

between patients 

with VCI with and 

without T2DMa  

p-value 
 

Brain atrophyb 

Total brain 

volume  

(% of ICV ) 

 

71.0 ± 4.1 70.0 ± 4.1 -0.21 (-0.36 ; -0.07) 0.005 

Total gray matter 

volume (% of 

ICV)  

 

38.5 ± 3.1 37.6 ± 3.0 -0.13 (-0.28 ; 0.11) 0.07 

Total white 

matter volume (% 

of ICV) 

32.5 ± 2.2 32.0 ± 2.3 -0.22 (-0.39 ; -0.06) 0.008 

Cerebrovascular lesionsc 

 

WMH volume 

(ml) 

6 (2-17) 7 (3-15) 0.03 (-0.13 ; 0.19)d 

 

0.71 

 

 

 

Possible VCI 

without 

T2DM 

 

Possible VCI 

with T2DM 

 

OR (95% CI)e 

Non-lacunar 

(sub)cortical 

infarcts  

72 (10) 20 (14) 1.29 (0.75 ; 2.21) 

Lacunar infarcts  140 (20) 42 (29) 1.52 (1.01 ; 2.29) 

Intracerebral 

hemorrhages  

 

12 (2) 3 (2) 1.20 (0.33 ; 4.33) 

Any microbleeds  320 (46) 44 (31) 0.49 (0.33 ; 0.73) 

Strictly lobar 

microbleeds 

209 (30) 26 (18) 0.50 (0.31 ; 0.78) 

Strictly deep 

microbleeds 

42 (6) 7 (5) 0.81 (0.35 ; 1.84) 

Mixed 

microbleeds 

69 (10) 10 (7) 0.66 (0.33 ; 1.32) 
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VCI; vascular cognitive impairment; T2DM, type 2 diabetes mellitus; ICV, intracranial volume; 

WMH, white matter hyperintensities; OR, odds ratio; CI, confidence interval 
 

a  Data adjusted for age, gender, and scanner type. 
b Data presented as mean ± SD. 
c  Data presented as median (range) or n (%).  
d  WMH volumes were log-transformed and then standardized into z-scores. The analyses were 

adjusted for age, gender, and scanner type. 
e Data adjusted for age and gender. 
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Table 3. Cerebrospinal fluid features at baseline  

 
 

 

Possible VCI without 

T2DM 

n = 454 

Possible VCI with 

T2DM 

n = 79 

p-value 

 

CSF data  

 

Aβ42 (pg/mL) 

 

 

614 (460-929) 

 

697 (479-928) 

 

0.25 

Tau, (pg/mL) 

 

361 (255-631) 396 (231-650) 0.74 

Phosphorylated Tau (pg/mL) 

 

56 (39-82) 59 (39-82) 0.93 

Tau / Aβ42 ratio (pg/mL) 0.64 (0.28-1.29) 0.50 (0.28-1.03) 0.47 

VCI; vascular cognitive impairment; T2DM, type 2 diabetes mellitus; CSF, cerebrospinal fluid; 

Aβ, amyloid-beta; AD, Alzheimer’s disease 

 

Data presented as median (range) 
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Table 4. Cognitive assessment at baseline 

 

 

 

Possible VCI without 

T2DM 

n = 704 

Possible VCI with 

T2DM 

n = 147 

p-value 

Measures of global 

cognitive statusa 

   

Mini-mental state 

examination 

 

25 (22-28) 26 (21-28) 0.88 

Clinical dementia rating 

 

0.5 (0.5-1) 0.5 (0.5-1) 0.92 

 Possible VCI without 

T2DM 

domain z-scoresb 

Possible VCI with 

T2DM 

domain z-scoresb 

Mean difference in 

domain z-scores between 

patients with VCI with 

and without T2DMc,d 
 

p-

value 

Cognitive domains     

Working memory  

 

0.04 ± 0.88 -0.20 ± 0.88 -0.17 (-0.32 ; -0.01) 0.03 

Memory 

 

-0.04 ± 0.88 -0.02 ± 0.92 0.10 (-0.05 ; 0.26) 0.18 

Attention and executive 

functioning 

 

-0.09 ± 0.76 -0.17 ± 0.81    -0.02 (-0.16 ; 0.11) 0.73 

Information processing 

speed 

 

-0.09 ± 1.05 -0.10 ± 0.94  0.08 (-0.11 ; 0.26) 0.42 

Perception and 

construction 

 

-0.04 ± 0.95 0.06 ± 0.74 0.12 (-0.06 ; 0.30) 0.20 

VCI; vascular cognitive impairment; T2DM, type 2 diabetes mellitus 
 

a  Data presented as median (range). 
b  Unadjusted data presented as mean ± SD.  
c  Comparison of cognitive performance between patients with and without T2DM (without 

T2DM = reference).  
d Data adjusted for age, gender and level of education.  
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Table 5. Follow-up measurements 

 

 

 

Available follow-up 

dataa 

Possible VCI 

without 

T2DM 

Possible VCI 

with T2DM 

 

HR (95 % CI)c 

Follow-up datab 

Change in CDR ≥ 1 

 

No T2DM: n=477 

T2DM: n=90 

69 (15%) 13 (14%) 0.88 (0.48 ; 1.61) 

Institutionalization 

due to cognitive 

dysfunction 

 

No T2DM: n=529  

T2DM: n=107  

34 (6%) 3 (3%) 0.45 (0.14 ; 1.46) 

Occurrence of non-

fatal stroked 

 

No T2DM: n=554  

T2DM: n=110  

11 (2%) 6 (6%) 2.06 (0.68 ; 6.25) 

Death 

 

No T2DM: n=565  

T2DM: n=115  

56 (10%) 8 (7%) 0.60 (0.28 ; 1.27) 

VCI; vascular cognitive impairment; T2DM, type 2 diabetes mellitus; HR, hazard ratio; CI, 

confidence interval; CDR, clinical dementia rating 
 

a  Follow-up data was collected in 565/580 (97.4%) patients without T2DM and in 115/118 

(97.5%) of the patients with T2DM 
b  Data presented as n (%) 
c Data adjusted for age, gender and clinical diagnosis. For stroke, the model was additionally 

adjusted for vascular risk factor count (one point for each risk factor: hypertension, 

hypercholesterolemia, current smoking, obesity, history of stroke and history of reported 

vascular event other than stroke) 
d  Defined as ischemic stroke and intracerebral hemorrhage  
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Supplemental table 1. Analyses stratified for cerebrospinal fluid Alzheimer profilea 

A. Between group analyses in patients with a CSF non-Alzheimer profile  

 

 
Possible VCI 

without 

T2DM 

n = 199 

Possible VCI 

with T2DM 

n = 41 

Standardized mean 

difference in z-scores 

between patients 

with VCI with and 

without T2DMb  

p-value 
 

Brain atrophyc 

Total brain 

volume  

(% of ICV ) 

 

72.8 ± 3.8 71.7 ± 4.0 -0.36 (-0.65 ; -0.08) 0.01 

Total gray matter 

volume (% of 

ICV)  

 

40.0 ± 2.8 39.3 ± 2.7 -0.31 (-0.58 ; -0.05) 0.02 

Total white 

matter volume (% 

of ICV) 

32.7 ± 2.3 32.4 ± 2.2 -0.24 (-0.56 ; 0.09) 0.15 

Cerebrovascular lesionsd 

 OR (95% CI)e 

Lacunar infarcts 40 (20) 12 (30) 1.74 (0.81 ; 3.76) 

Any microbleeds 89 (45) 11 (27) 0.45 (0.21 ; 0.95) 

Strictly lower 

microbleeds 

54 (27) 4 (10) 0.29 (0.10 ; 0.85) 

Strictly deep 

microbleeds 

11 (6) 4 (10) 1.81 (0.54 ; 6.01) 

Mixed 

microbleeds 

24 (12) 3 (7) 0.57 (0.16 ; 1.99) 

 

B. Between group analyses in patients with a CSF Alzheimer profile 

 Possible VCI 

without 

T2DM 

n = 255 

Possible VCI 

with T2DM 

n = 38 

Standardized mean 

difference in z-scores 

between patients 

with VCI with and 

without T2DMb  

p-value 
 

Brain atrophyc 

Total brain 70.7 ± 3.5 69.0 ± 3.9 -0.29 (-0.61 ; 0.03) 0.07 
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volume  

(% of ICV ) 

 

Total gray matter 

volume (% of 

ICV)  

 

38.3 ± 2.7 37.2 ± 2.8 -0.20 (-0.50 ; 0.10) 0.19 

Total white 

matter volume (% 

of ICV) 

32.4 ± 2.1 31.8 ± 2.3 -0.25 (-0.57 ; 0.07) 0.12 

Cerebrovascular lesionsd 

 OR (95% CI)e 

Lacunar infarcts 35 (14) 6 (16) 0.96 (0.37 ; 2.25) 

Any microbleeds 119 (47) 13 (34) 0.49 (0.23 ; 1.03) 

Strictly lower 

microbleeds 

85 (34) 10 (26) 0.65 (0.30 ; 1.42) 

Strictly deep 

microbleeds 

10 (4) 1 (3) 0.58 (0.07 ; 4.76) 

Mixed 

microbleeds 

24 (10) 2 (5) 0.44 (0.10 ; 1.98) 

CSF, cerebrospinal fluid; VCI, vascular cognitive impairment; T2DM, type 2 diabetes mellitus; 

ICV, intracranial volume; OR, odds ratio; CI, confidence interval 

a CSF Alzheimer profile was defined as a CSF ratio tau/Aβ > 0.52 [39] 
b Data adjusted for age, gender, and scanner type 
c Data presented as mean ± SD 
d Data presented as n (%) 
e Data adjusted for age and gender 

 

 

 

 

 

 

 


