Amplitude and Phase Classification of ECG data

Chibueze Emmanuel Ogbonnaya
With: S. P. Preston, A. T. A. Wood and K. Bharath

University of Nottingham

pmxceog@nottingham.ac.uk

September 2, 2018
Overview

1. Electrocardiogram
2. Data Preprocessing and Registration
3. Fitting Parametric Models
4. Classification
5. Conclusion
An Electrocardiogram (ECG) is used to record the electrical activity of the heart to identify and locate pathology.

The ECG is essential for the diagnosis and management of abnormal cardiac rhythms.

Figure: ECG 12-lead placement
(a) ECG Signal for an individual from lead I

(b) Features of a Typical ECG Signal

Figure: Sample ECG Signal and Features
It is difficult to detect ECG features in a noisy ECG signal.

(a) Nice ECG signal
(b) Noisy ECG signal with baseline drift

Figure: ECG Signals of two different Healthy Controls showing effect of Noise
Healthy Controls and Heart Conditions

- Myocardial Infarction: ST elevation
- Cardiomyopathy: inverted T wave and prolonged QT interval.

(a) Normal ECG for healthy control
(b) ECG with inverted T wave

Figure: ECG changes caused by heart conditions
Segmentation of the ECG

We propose using RR intervals for functional representation of an ECG signal.

- An RR interval corresponds to a heartbeat.
- The RR interval contains important features of interest: ST segment and T wave.

![ECG signal showing RR intervals](image)

Figure: An ECG signal showing RR intervals
Chopping-up ECG signal into RR functions

(a) ECG with R peaks shown in Red
(b) Chopped-up RR functions

Figure: ECG signal and chopped-up functions
Data is taken from the PTB ECG database and contains 10 seconds recordings. We consider the conventional 12-leads.

For our data, we have ECG for

- Healthy controls
- Myocardial infarction
- Cardiomyopathy.
Registration and Fitting

- Remove noise in ECG signals through amplitude registration.
- Estimate amplitude and phase components of registered ECGs using parametric models.

Classification

Classification of ECGs using estimated amplitude and phase components.
Amplitude Registration Model

Model

\[y_i(t) = b_i x_i(t) + \sum_{j=1}^{q} a_{ji} u_j(t) \]

where \(t \in [0, 1] \). We define the following:

- \(x_i(t) \) are the observed RR functions.
- \(y_i(t) \) are the registered RR functions
- \(u_j(t) \) form an orthonormal basis function for noise.

Registration implies estimating \(a_{ji} \) and \(b_i \) with template \(f(t) \)

\[
\text{minimise} \quad \sum_{i=1}^{n} \| y_i - f \|^2.
\]
Example Solution for $f(t) = 0$

- Use the zero function as template

Solutions:

$$\hat{a}_{ji} = - b_i \langle x_i, u_j \rangle,$$

$$y_i(t) = b_i \left(x_i(t) - \sum_{j=1}^{q} \langle x_i, u_j \rangle u_j(t) \right).$$

- Estimate b_i: Constraint $\sum_{i=1}^{n} \log b_i = 0$.
- $\hat{b}_i = c_i^{-1/2} \left(\prod_{i=1}^{n} c_i^{-1/2n} \right)$.
- $c_i = \|x_i\|^2 - \sum_{j=1}^{q} \langle x_i, u_j \rangle^2$.
Amplitude Registration: Example

Figure: Left: Observed RR functions. Right: Amplitude registration.
We use sum of Gaussian functions and B-splines to fit the RR functions.

The Gaussian models have been used previously to generate synthetic ECGs in Clifford (2006).

For the Gaussian mixture model with phase \(t \in [0, 1] \), we have

\[
z(t, \alpha_i, \theta_i, \beta_i) = \sum_{j=1}^{k} \alpha_{ij} \exp \left[- \frac{(t - \theta_{ij})^2}{2\beta_{ij}^2} \right]
\]

(1)

where \(\theta_{i1} = 0 \leq \theta_{i2} \leq \ldots \leq \theta_{ik} = 1 \).
Model Fitting

To fit this model to actual ECG signal $y_i(t)$, we will need to solve the non-linear optimisation problem

$$\min_{\alpha_i, \theta_i, \beta_i} \int_0^1 (y_i(t) - z(t, \alpha_i, \theta_i, \beta_i))^2 dt$$

subject to $\theta_{i2} - \theta_{i3} < 0, \theta_{i3} - \theta_{i4} < 0, \ldots, \theta_{i(k-2)} - \theta_{i(k-1)} < 0$.

Figure: Fitting gaussian parametric models to actual ECGs ($k = 11$). Left: healthy control ECG. Right: Cardiomyopathy ECG.
Estimation of Amplitude Components

1. Determine Template $\hat{\mu}(t)$.
2. Using template, fix $\beta_i = \beta$, $\theta_i = \theta$, $i = 1, \ldots, n$
 \[
 \min_{\alpha, \beta, \theta} \int_0^1 \left(\hat{\mu}(t) - z(t, \alpha, \beta, \theta) \right)^2.
 \]
3. New Model: $z(t, \alpha_i) = \sum_{j=1}^k \alpha_{ij} \exp \left[-\frac{(t-\theta_j)^2}{2\beta_j^2} \right]$.
4. For each i, estimate α_i.
Estimation of Phase Components

1. Determine Template $\hat{\mu}(t)$.

2. Using template, fix $\beta_i = \beta$, $\alpha_i = \alpha$, $i = 1, \ldots, n$

$$\min_{\alpha, \beta, \theta} \int_0^1 (\hat{\mu}(t) - z(t, \alpha, \beta, \theta))^2 dt.$$

3. New Model: $z(t, \theta_i) = \sum_{j=1}^k \alpha_j \exp \left[- \frac{(t-\theta_{ij})^2}{2\beta_j^2} \right]$

4. For each i, estimate $\theta_{i2}, \ldots, \theta_{i(k-1)}$.
1. We conduct a two-sample Hotelling’s t-test.

2. Healthy vs Cardiomyopathy

3. NULL HYPOTHESIS: No difference in amplitude

Result

- $F = 19.3507$, p-value $= 1.4433 \times 10^{-15}$.
- Strong evidence of difference in amplitude.
Classification Results: Cardiomyopathy

Classification is done using the estimated components, for Lead I.

<table>
<thead>
<tr>
<th>Method</th>
<th>LDA</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.9714</td>
<td>0.9429</td>
</tr>
<tr>
<td>BSpline</td>
<td>0.9714</td>
<td>0.8714</td>
</tr>
</tbody>
</table>

Table: Amplitude Classification of Cardiomyopathy

<table>
<thead>
<tr>
<th>Method</th>
<th>LDA</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.9286</td>
<td>0.9000</td>
</tr>
<tr>
<td>BSpline</td>
<td>0.9571</td>
<td>0.9571</td>
</tr>
</tbody>
</table>

Table: Phase Classification of Cardiomyopathy
Classification Results: Myocardial Infarction

Classification results from Lead I.

<table>
<thead>
<tr>
<th>Method</th>
<th>LDA</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.8477</td>
<td>0.8376</td>
</tr>
<tr>
<td>BSpline</td>
<td>0.8325</td>
<td>0.8426</td>
</tr>
</tbody>
</table>

Table: Amplitude Classification of MI

Combining multiple leads by concatenation, this improves to

<table>
<thead>
<tr>
<th>Method</th>
<th>LDA</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.8782</td>
<td>0.9086</td>
</tr>
<tr>
<td>BSpline</td>
<td>0.8731</td>
<td>0.8832</td>
</tr>
</tbody>
</table>

Table: Amplitude Classification of MI (Multiple Leads)
Summary/Conclusion

- We have proposed amplitude registration models for ECG signals.
- Parametric models are a good alternative to dimension reduction techniques like FPCA.
- Variable selection possible using estimated amplitude components.
- Automation greatly improves ECG diagnosis when compared to clinicians.
- Applicable to analysis of gait data for diagnosis of Parkinson’s.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCabe et al. (2013)[2]</td>
<td>Physicians</td>
<td>Sensitivity: 65%, Specificity: 79%</td>
</tr>
<tr>
<td>Sun et al. (2012)[3]</td>
<td>ST segments using 5-order polynomial</td>
<td>Sensitivity: 92.3%, Specificity: 88.1%</td>
</tr>
<tr>
<td>Kurtek et al. (2013)[1]</td>
<td>NN (SRVF)</td>
<td>Accuracy: 90%</td>
</tr>
<tr>
<td>Previous work</td>
<td>Functional PCA</td>
<td>Accuracy: 92.86%</td>
</tr>
<tr>
<td>Proposed</td>
<td>Gaussian Model</td>
<td>Accuracy: 90.86%</td>
</tr>
</tbody>
</table>

Table: Comparison of methods for detection of myocardial infarction
Comparison: Phase Classification

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucker et al. (2013)</td>
<td>Horizontal FPCA (SRVF)</td>
<td>0.9429</td>
</tr>
<tr>
<td>Tang and Müller (2008)</td>
<td>Pairwise Synchronisation (PACE)</td>
<td>0.7857</td>
</tr>
<tr>
<td>Proposed</td>
<td>B-Spline Model</td>
<td>0.9571</td>
</tr>
</tbody>
</table>

Table: Comparison of methods for detection of Cardiomyopathy
Thank You
References

Kurtek, Sebastian and Wu, Wei and Christensen, Gary E and Srivastava, Anuj (2013)
Segmentation, alignment and statistical analysis of biosignals with application to
disease classification
Journal of Applied Statistics.

McCabe, James M and Armstrong, Ehrin J and Ku, Ivy and Kulkarni, Ameya and
Hoffmayer, Kurt S and Bhave, Prashant D and Waldo, Stephen W and Hsue,
Priscilla and Stein, John C and Marcus, Gregory M and others (2013)
Physician accuracy in interpreting potential ST-segment elevation myocardial
infarction electrocardiograms
Journal of the American Heart Association.

Li Sun and Yanping Lu and Kaitao Yang and Shaozi Li (2012)
ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection
IEEE Transactions on Biomedical Engineering.