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SUMMARY

The relationship between mesoscopic local field
potentials (LFPs) and single-neuron firing in the
multi-layered neocortex is poorly understood. Simul-
taneous recordings fromall layers in theprimaryvisual
cortex (V1) of the behaving mouse revealed function-
ally defined layers in V1. The depth of maximum spike
power andsink-sourcedistributions of LFPsprovided
consistent laminar landmarks across animals. Coher-
ence of gamma oscillations (30–100 Hz) and spike-
LFP coupling identified six physiological layers and
further sublayers. Firing rates, burstiness, and other
electrophysiological features of neurons displayed
unique layer andbrain statedependence.Spike trans-
mission strength from layer 2/3 cells to layer 5 pyrami-
dal cells and interneuronswasstronger duringwaking
compared with non-REM sleep but stronger during
non-REM sleep among deep-layer excitatory neu-
rons. A subset of deep-layer neurons was active
exclusively in the DOWN state of non-REM sleep.
These results bridge mesoscopic LFPs and single-
neuron interactions with laminar structure in V1.

INTRODUCTION

A characteristic feature of the neocortex is its laminar organiza-

tion. The cortical columnar microcircuitry is viewed as a stack of

interconnected yet distinct neuronal networks in which each

lamina possesses somewhat unique patterns with different spe-

cific inputs, projection targets, and feedback connections

(Mountcastle, 1997; Callaway, 1998; Douglas and Martin 2004;

Harris and Shepherd, 2015). How the laminar structure relates

to mesoscopic physiological patterns, such as local field poten-

tial (LFP) oscillations and physiological interactions of single

neurons across layers, is not well understood. Numerous oscilla-

tory and transient LFP patterns of functional relevance have
500 Neuron 101, 500–513, February 6, 2019 ª 2019 The Authors. Pu
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been described in various neocortical regions. However, their

relationship to afferents, intracortical connectivity, and the firing

patterns of individual neurons has been largely unexplored

(Mitzdorf, 1987; Buzsáki et al., 2012).

Using multisite recording silicon probes that span all cortical

layers, we sought to characterize layer-specific physiological

patterns and neuronal cross-talk between layers in the primary

visual cortex (V1) of freely behavingmice. The well-characterized

anatomical connectivity and the diverse neuronal types of V1

(Jiang et al., 2015; Gouwens et al., 2018) make this cortical

area ideal to investigate how the different cell types in different

layers interact during physiological operations, such as sensory

processing and offline states, such as sleep. Previous record-

ings in the hippocampus, using a similar approach, have led to

a solid understanding of the relationship between extracellular

signals and anatomical connectivity. LFP patterns can identify

layers in vivo with <25–50 mm precision (Fujisawa et al., 2008;

Berényi et al., 2014; Senzai and Buzsáki, 2017) and have been

used to identify the unique relationship between upstream activ-

ity levels and hippocampal spike outputs and relate such input-

output transformation to behavior (Fernández-Ruiz et al., 2017).

Similar strategies have been followed in the V1 of waking mon-

keys (Schroeder et al., 1998; Maier et al., 2010; Xing et al.,

2012; Dougherty et al., 2017) and other cortical areas in rodents,

mostly under anesthesia (Sakata and Harris, 2012; Reyes-Puerta

et al., 2015). In these previous studies, layer boundaries were

estimated mainly by depth criteria, and the relationship among

LFP depth profiles, neuronal activity, and interlayer interactions

in different behavioral states was not addressed quantitatively.

Our goal was to define layers functionally in V1 of the mouse

and relate them to classical anatomical layers. Because sponta-

neous mesoscopic patterns in the primate V1 are characterized

by gamma (Engel et al., 2001; Atallah and Scanziani, 2009), alpha

(Schroeder et al., 1998; Maier et al., 2010; Klimesch et al., 2007),

and slow (Haider et al., 2013) oscillations, we searched for their

corresponding patterns in the mouse. Finally, we examined the

brain state-dependent spike transmission probabilities among

putative principal cells and inhibitory interneurons across

cortical layers in waking and sleep to quantify their brain state

dependence.
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Electrophysiological Landmarks Identify V1 Layers

(A) Schematic of the spatial arrangement of the main cellular types in V1.

(B) Histological verification of probe location along V1 cellular layers. Small electrolytical lesions were performedwith the two electrodes highlighted on the silicon

probe sketch (red rectangles).

(C) Multi-unit (MUA) spectral power (500 Hz to 5 kHz) distribution along probe track.

(D and E) Average current source density (CSD) map and LFP traces for DOWN-UP transitions of non-REM sleep (D) and for (E) visual stimulation. (A)–(E) are from

the same animal. Letters a–e and a0–e0 indicate the five electrophysiological landmarks chosen to align depth profiles across animals (asterisks).

(F) Comparison of CSD landmarks from DOWN-UP transitions and visual evoked responses (n = 13 mice). Red dots and whiskers represent mean and SD; black

dots individual animals. *p < 0.05 (signed rank test).

(G) Distance variations between physiological landmarks across all animals.

(H) Laminar distribution of MUA power (mean ± SEM; n = 19 mice) in normalized depth coordinates.

(I and J) Average CSD depth profile of DOWN-UP transitions (n = 19 mice) (I) and (J) visual responses (n = 13 mice) in normalized depth coordinates.
RESULTS

Anchoring Mesoscopic Patterns to Physiological
Landmarks
Mice (n = 19) were implanted with a single-shank, 64-site linear

silicon probe and recorded during free behavior in their home

cage. The probe was placed parallel with the orientation of the

apical dendrites of pyramidal neurons in the V1 (Figure 1). In

our initial experiments, small electrolytic lesions were made to

calibrate the positions of the recording sites with histological

verification (n = 4; Figures 1A and S1). Subsequently, we used

the characteristic depth distribution of LFPs and unit firing to

identify five physiological landmarks that reliably anchored the

recording sites in V1 across animals and recordings. The most

prominent landmark was a large-amplitude peak of the depth

profile of power between 500 Hz and 5 kHz corresponding to

mid-layer 5 (Figure 1C, depth c). This peak likely reflected the

aggregated power from the high firing rates of the large layer 5

pyramidal (Ray and Maunsell, 2010). The remaining four land-

marks (Figures 1D and 1I, depths a, b, d, and e) were obtained

from the depth distributions of the most prominent current
source density (CSD) sinks and sources of spontaneous slow os-

cillations of non-rapid eye movement (REM) sleep (Steriade

et al., 1993).

To investigate the origin of landmarks a–e, we compared the

slow oscillation sinks and sources with those of light-evoked re-

sponses in the waking mouse (Figures 1E and 1J; 100 ms light

pulses). Visual stimulation produced an early sink (b0) at the

border between layers 3 and 4, which likely reflected afferent

activation from the lateral geniculate body (Mitzdorf, 1987). The

early sink was accompanied by a source in superficial layers

(a0) and a sink-source pair corresponding to the border between

layers 5 and 6 (sink, d0) and lower layer 6 (source, e0) (Reyes-Pu-
erta et al., 2015; Niell and Stryker, 2008). Sink b, associated with

the ‘‘UP’’ state of slow oscillation during non-REM sleep, was

slightly but significantly deeper than the light-evoked sink b0 in
the layer 3/4 border (39 ± 49 mm; p < 0.05, signed rank test;

n = 13 mice; Figure 1F), whereas the other sinks and sources

occurred at the same depth as those seen with visual stimulation

(p > 0.05, signed rank test). Importantly, the distances between

the five landmarks were consistent across animals and varied

<100 mm from mouse to mouse (Figure 1G; n = 19). The
Neuron 101, 500–513, February 6, 2019 501
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Figure 2. Cortical Layer Identification by LFP Criteria

(A) Averaged pairwise gamma (30–100 Hz) LFP coherence during wake for all channels along V1 depth (n = 19 mice).

(B) Gradient descent clustering of the cross-coherence matrix separated six putative layers (clusters). Layer boundaries calculated from the gradient decent

clusters in all mice and in different brain states (mean ± SEM) are shown.

(C) ICA decomposition of gamma band LFPs into six main independent components (ICs). The voltage (V) loadings of ICs are shown as a function of depth

(mean ± SEM). Note that the boundaries of ICs correspond approximately to the boundaries predicted from the gamma coherencematrix. Depth landmarks (a–e)

are the same as in Figure 1 and apply to (A)–(C).

(D) Relative gamma band power for each IC.
consistent depth localization of spike power and CSD sinks and

sources during non-REM sleep across animals allowed us to

project all subsequent physiological data onto normalized depth

coordinates and construct averagemaps across all animals (Fig-

ures 1I and 1J; STAR Methods).

To test whether layers could be further disambiguated by the

depth localization of LFPs, we examined coherence in the

gamma band (30–100 Hz) across all recording sites (Figures 2A

and S2). Each site served as a reference, and pairwise coher-

ence with each of the remaining 63 sites was determined itera-

tively. Using a gradient-descent algorithm (Berényi et al., 2014;

STAR Methods), the recording sites were clustered on the basis

of their resulting cross-coherence matrix, resulting in six clusters

whose five boundaries were consistent across animals when

projected into normalized depth coordinates (Figure 2A; p >

0.05, signed rank test for cluster boundaries across animals).

The depth distribution of the six gamma coherence clusters cor-

responded roughly to the six cortical layers in each brain state

(Figures 2B and S2; p > 0.05, ANOVA for comparison across

different states), suggesting that gamma oscillations in V1 have

a highly specific laminar structure. To isolate layer-specific

gamma oscillations by another method, we also used indepen-

dent component analysis (ICA) decomposition of the band-

passed (30–100 Hz) LFPs (Fernández-Ruiz et al., 2017; Fig-

ure S2). ICA yielded six main independent components (ICs)

that were highly consistent across animals (p < 0.001, Spear-

man’s correlation for ICs spatial loadings), and their depth distri-

bution was related to the anatomically defined layers (Figure 2C).

This method has the additional advantage of removing volume-

conducted currents (Fernández-Ruiz et al., 2012) that accounted

for 0.34 ± 0.11 of V1 gamma LFP variance. The superficial

gamma ICs had a significantly larger power compared with the

deeper ones (top three versus bottom three; Figures 2D and

S4; 0.14 ± 0.04 versus 0.08 ± 0.03 relative power for ICs 1–3

versus 4–6; p = 1.1 3 10�7, rank sum test).
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Brain State-Dependent Features of LFPs
Spectral analysis of the LFP traces revealed depth- and brain

state-dependent variation of characteristic frequencies (Figures

3 and S3). Slow oscillation power (0.5–3 Hz) was dominant in

non-REM sleep (see Supplementary Information; brain state

comparison: p = 4.0 3 10�4, Kruskal-Wallis test; n = 19 mice),

especially in deeper layers (layer comparison: p = 4.1 3 10�5,

Kruskal-Wallis test; Figures 3C and S3). Slow oscillation was

phase-coupled to gamma frequency power in superficial layers

(69 ± 12 Hz; modulation index 2.7 ± 0.5 3 10�3) and to the

high-gamma (>100 Hz) band in deep layers (Figure 3D; modula-

tion index 2.3 ± 0.33 10�3). Slow gamma oscillations (30–60 Hz)

dominated in superficial layers, especially in the waking state fol-

lowed by REM and non-REM sleep (Figures 3 and S3; p = 0.028).

Although LFP phase coherence rapidly decreased across

layers, especially at higher frequencies (Figure S2A), phase-

amplitude cross-frequency coupling revealed reliable interlam-

inar interactions. In the waking animal, the dominant 3–6 Hz

band was phase-coupled to a 15–25 Hz band signal in

multiple layers (22 ± 5 Hz; modulation index 4.8 ± 1.2 3 10�4),

possibly corresponding to the spiky component of the pattern,

to high gamma frequency (60–100 Hz) in the superficial layers

(90 ± 13 Hz, modulation index 2.7 ± 0.7 3 10�4), and

to the epsilon band (>100 Hz) in layer 5 (modulation index

6.4 ± 1.8 3 10�4), likely reflecting unit firing (Figure 3D).

The most prominent LFP pattern in the waking mouse was a

3–6 Hz oscillation with largest power in layer 4 (Figure 3C, level

b; p = 2.0 3 10�6, Kruskal-Wallis test; n = 19 mice). This strong

power increase was due mainly to frequent epochs of a 3–6 Hz

rhythm during waking immobility, in which the waveforms occa-

sionally split into short ‘‘spike’’ and longer ‘‘wave’’ components

with a depth profile distribution similar to the depth distribution

of alpha waves (8–12 Hz) in monkey V1 (Bollimunta et al.,

2008; Figures 3A and 3B). The 3–6 Hz bandwas cross-frequency

phase-coupled to a 15–25 Hz band signal in multiple layers
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Figure 3. Layer-Specific LFP Patterns in V1

(A) Laminar LFP traces of 3–6 Hz rhythm in the waking, immobile mouse, from layers 2, 4, and 6.

(B) For comparison, laminar LFP traces of alpha rhythm in the monkey (reproduced from Bollimunta et al., 2008). Note similar spike and wave waveforms in both

cases, as denoted by red arrow.

(C) Depth distribution of mean-subtracted LFP power spectra during non-REM sleep and waking. Arrow, slow gamma band in layer 4.

(D) On the left, phase-amplitude cross-frequency coupling between the slow oscillation band (1–3 Hz) recorded in layer 6 during non-REM sleep and LFP

amplitude across all channels. Note phase coupling to high gamma in superficial layers (arrow). On the right, cross-frequency coupling with the 3–6 Hz LFP phase

recorded in layer 4. Note phase coupling of 15–30 Hz (arrow), high gamma (asterisk) in superficial layers, and unit firing-induced high-frequency power in layer 5

(double arrows).

(E) CSD and averaged LFP depth profile of the 3–5 Hz rhythm.

(F) Spike phase preference distribution of putative principal neurons and interneurons from all layers. Only neurons with significant phase coupling to the 3–6 Hz

oscillation were included (p < 0.05, Rayleigh test).
(22 ± 5 Hz, modulation index 4.8 ± 1.2 3 10�4), possibly corre-

sponding to the spiky component of the pattern, to high gamma

frequency (60–100 Hz) in the superficial layers (90 ± 13 Hz, mod-

ulation index 2.7 ± 0.73 10�4), and to the epsilon band (>100 Hz)

in layer 5 (modulation index 6.4 ± 1.83 10�4), likely reflecting unit

firing (Figure 3D).

CSD analysis of the 3–6 Hz rhythm showed a depth distribu-

tion of sinks and sources similar to those of the slow oscillation

(compare Figure 3E with Figure 1I). The duration of the non-

spiking periods of this waking rhythm (50–150 ms) was also

similar to the DOWN state of slow oscillation. However, whereas
the spiking-associated phase of the waking 3–6 Hz rhythm was

short, the duration of the UP state of slow oscillation varied

extensively and showed a lognormal distribution (Watson et al.,

2016). Both principal cells and interneurons were strongly

phase-locked to the trough of the layer 4-recorded 3–6 Hz

rhythm (Figure 3F).

Volume-conducted theta power (6–9 Hz) from the hippocam-

pus allowed us to distinguish between waking immobility and

ambulation (STARMethods). As soon as the animal startedmov-

ing, the 3–6 Hz rhythm vanished, accompanied by increased

slow gamma power. The antagonism between movement and
Neuron 101, 500–513, February 6, 2019 503



the 3–6 Hz oscillation was quantified by the negative correlation

between its power and the power of theta oscillation (p < 0.01,

signed rank test; Figure S2C). Visual stimulation also blocked

an ongoing 3–6 Hz rhythm. However, the offset of visual stimulus

often induced a short rebound train 3–6 Hz oscillation (Einstein

et al., 2017; Figure S2I).

Assignment of Neurons to Physiologically Defined
Layers
Because ‘‘layer’’ designation is traditionally based on the depth

distribution of cell bodies, whereas our depth classification of

the LFP patterns (Figure 2) reflects largely a combination of

afferent-dendritic excitation and inhibition, we sought to estab-

lish a disciplined way to relate LFP-, CSD-, and ICA-based depth

estimation to the recorded neurons in different anatomically

defined layers.

Unit clustering was performed as described previously (Fuji-

sawa et al., 2008) using one session from each of the 19 mice,

yielding a total of 1,472 units. The physiological identity of clus-

tered units was determined using a multi-step approach (Fig-

ure 4). First, the unfiltered waveform was quantified by the

trough-to-peak latency of the extracellular spike (Fujisawa

et al., 2008; Senzai and Buzsáki, 2017; Niell and Stryker, 2008).

This initial classification yielded a bimodal distribution of units

with narrow-waveform spikes (putative interneurons, n = 251 I

cells) and wide-waveform spikes (putative principal cells,

n = 1,075 E cells; Figure 4A; for unclassified units, see Figure S4).

We next took advantage of the simultaneously recorded units

to physiologically identify them as E cells or I cells by their

short-latency temporal interactions with other neurons (Fujisawa

et al., 2008). Putative monosynaptic connections are associated

with precisely timed spike transmission at short-latency (<4 ms)

offsets between two recorded neurons, as detected by narrow

significant peaks (excitatory) or troughs (inhibitory) in the

cross-correlogram (CCG; Figures 4B and 4C; Alonso and Marti-

nez, 1998; Barthó et al., 2004). Using these criteria, 347 and

100 units were classified as CCG-based E and I cells, respec-

tively (Figure 4A). These CCG-based classification results over-

lapped well with the waveform-based classification results

(97.4% of CCG-based E cells were classified as waveform-

based E cells, and 98.0% of CCG-based I cells were classified

as waveform-based I cells), supporting the adequate separation

on the basis of trough-to-peak latency feature.

We also validated the physiological identification of inhibitory

neurons using an optogenetic strategy. A subset of neurons in

PV-Cre::Ai32 (n = 5) and VGAT-Cre::Ai32 (n = 9) mice were iden-

tified optogenetically as inhibitory neurons (Figures 4D and 4E;

blue and green diamonds, respectively, in Figure 4A). Fourteen

of 15 optogenetically identified PV cells (n = 11) and 40 of 52

VGAT cells were part of the inhibitory group defined by the spike

waveform criterion. These results further support the adequate

separation of I cells on the basis of waveform only and also

show that a minor fraction of inhibitory neurons (n = 12 of 52)

had wider waveforms and were initially falsely combined with

the E cell group.

To link neurons to physiological layers, we examined the rela-

tionship between the six gamma ICs and spiking of all neurons.

Similar to the LFP-only analysis, spike-IC phase coupling (STAR
504 Neuron 101, 500–513, February 6, 2019
Methods) also showed clear depth stratification, indicating that

units were preferentially modulated by local gamma oscillations

(Figures 5A and S5). Around and above depth level b (i.e., layer

3/4 border; first three components), unit-IC coupling of both

putative E and I neurons had a peak in the slow gamma range.

In deep layers, unit-IC coupling shifted toward the fast gamma

band. This fast gamma (60–100 Hz) phase preference also

segregated E and I neurons along the cortical depth (Figure S5).

We therefore used the spike-gamma phase coupling profile of all

units against the six ICs to perform K-means clustering (STAR

Methods). This procedure yielded eight clusters (Figure 5B). By

projecting back the K-means-clustered units to cortical depth,

we found that the clusters largely corresponded to the anatom-

ically defined cell body layers (Figure 5C). The top two clusters

may correspond to neurons in layers 2 and 3 (blue and cyan),

and the third cluster surrounded landmark b (green) and corre-

sponded to the layer 3/4 border sink (Figure 1I). Three clusters

surrounded landmark c (yellow, red, and pink), the presumed

center of layer 5, with the lowest of the three clusters surrounding

landmark d, the deep sink, likely corresponding to layer 5/6

(Reyes-Puerta et al., 2015). The bottom two clusters (black and

gray) were designated as layer 6 neurons. The remaining unit an-

alyses were performed on these clustered groups of neurons.

Layer-Specific and Brain State-Dependent Features
of Unit Firing
The various physiological features of the recorded principal

neurons as a function of depth are summarized in Figure 6 (see

Figure S6 for interneurons). Long-term mean firing rates of V1

principal cells showed a strongly skewed distribution in each

layer. The fastest firing group corresponded to those in layers

5A and B (Figure 6, red and magenta groups), while the slowest

ones were the superficial layers (Figure 6A; p = 3.7 3 10�83,

Kruskal-Wallis test). Deep-layer neurons were significantly

more active during waking compared with non-REM sleep (Fig-

ure 6B; see Figure S6 for other state comparisons) (Sakata and

Harris, 2012; Petersen and Crochet, 2013).

A characteristic physiological feature of cortical pyramidal

neurons is their bursting property (Nowak et al., 2003). Bursting

was determined by calculating the number of spikes in the

3–10 ms bins of the spike autocorrelograms divided by the num-

ber of spikes in the 200–300 ms bin. In general, superficial layer

neurons exhibited more bursting behavior, followed by layer 6

and layer 4 neurons, while layer 5 neurons had the lowest burst

indices (Figure 6C; p = 5.23 10�37, Kruskal-Wallis test). Another

measure of spike dynamic is the relationship of the neuron’s

initial phasic response versus sustained firing to a given input.

We calculated this transient/steady firing rate index by dividing

the peak firing rates at 0–200 ms by the mean firing rates at

100–200 ms after the UP state onset of slow oscillation (Figures

6D and S2C). By this measure, deep layer 5 neurons showed the

strongest transient responses (layer difference, p = 5.63 10�10).

During the DOWN-UP state transition, layer 5B neurons fired

first, followed by superficial and layer 6 neurons (Sakata andHar-

ris, 2009; Beltramo et al., 2013; Figure 6E; p = 1.3 3 10�38). The

distribution of spike firing latency during the 3–6 Hz rhythm of

waking displayed characteristic laminar differences (Figure 6F;

p = 2.6 3 10�10), similar to spike latencies during slow
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Figure 4. Neuronal Classification on the Basis of Physiological Features in V1

(A) Units (n = 1,472 from 19mice) were first classified on the basis of trough-to-peak (TP) latency and shown as a function of normalized recorded depth. Each dot

corresponds to one unit. Units with trough-to-peak latency < 0.55 ms were tentatively classified as narrow-waveform putative interneurons (I cells; blue). Wide-

waveform units were grouped into putative excitatory cells (E cells; red) and inhibitory interneurons (I cells; blue), on the basis of the bimodality of the marginal

distribution of TP latencies (top histogram).

(B) Example cross-correlograms between a monosynaptically connected E-E-I triplet. Red dotted line, level of significance. The excitatory nature of the post-

synaptic neuron is demonstrated by its excitatory action on an identified interneuron. Autocorrelograms and waveforms of each neurons are shown in the

bottom raw.

(C) I-E-I triplet. Inhibition is inferred from the short (<4 ms) latency suppression of spiking of the postsynaptic cell. Neurons identified as putative E and I cells by

short-latency spike cross-correlogram (CCG) are marked by magenta (CCG-based E cells) and light blue circles (CCG-based I cells), respectively, in (A).

(D) Example PV-expressing interneuron from a PV-Cre::AI32 mouse in response to blue light activation.

(E) Example GABA-expressing inhibitory interneuron from a VGAT-Cre::AI32 mouse in response to blue light activation. PV and VGAT-expressing neurons are

marked by blue and green diamonds, respectively, in (A).
oscillations. The mean vector length of phase locking to the

3–6 Hz rhythm was strongest in the superficial layers and

weakest in layer 6 (Figure 6G; p = 7.6 3 10�50). Spike-gamma

(30–100 Hz) coupling was stronger in the waking animal

compared with non-REM in all layers but layer 5A (Figure 6H).

The strongest spike-LFP coupling was observed in the 3–6 Hz

band (Figures 3F and S7), followed by the slow gamma
(30–60 Hz) band, each with characteristic cortical depth and

brain state-dependent profiles (Figure S7).

Within-Layer and Inter-layer Interactions among
Neurons
Of the 102,332 potential neuron pairs in all mice and sessions,

we identified putative excitatory (E, n = 525) and inhibitory
Neuron 101, 500–513, February 6, 2019 505
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Figure 5. Identification of Cell Body Layers by Spike-LFP Criteria

(A) Spike-gamma IC coherence for each principal cell (top) and interneuron (bottom) during waking. For each vertical plot, the reference signal was one of the six

ICs. Only units with significant modulation (p < 0.05, Rayleigh test) with gamma band are displayed. Units were sorted according to their depth location. White

lines indicate group averages.

(B) Spike-gamma IC coupling profile of all V1 units (n = 1,326) in t-distributed stochastic neighbor embedding (t-SNE) space. Eight clusters (color coded) were

obtained with K-means.

(C) K-means-clustered units are displayed as a function of normalized depth and high-gamma (60–100 Hz) phase preference (reference in layer 5). Circles,

principal cells; squares, interneurons. Landmarks a–e are indicated by dashed lines. Right: summed cell density of the eight groups, marked by anatomical cell

body labels and putative anatomical layer correspondences. L6A and L6B, superficial and deep sublayers of layer 6. The yellow units do not have traditional cell

body layer name (labeled ‘‘L5?’’).
(I, n = 323) monosynaptic connections by the spike transmis-

sion probability method (Figures 7 and S7). This is a strongly

under-sampled estimate, because the spike transmission

probability-based method requires simultaneous recordings

of spikes of both pre- and postsynaptic neurons, and large

numbers of spikes are needed to detect weak synapses (Galar-

reta and Hestrin, 2001; Schwindel et al., 2014; English et al.,

2017). Although many identified excitatory connections were

detected within the same layer (layers in these calculations refer

to IC-based clusters) for both E-I (Figures 7A and 7B; n = 173 of

385 connections) and E-E (n = 19 of 90) pairs as well as inhibi-

tory I-E pairs (Figure S8; n = 98 of 323 connections), there

were also many cross-layer excitatory and inhibitory pairs (I-I

pairs were too few to draw meaningful conclusions). A consid-

erable fraction of layer 2/3 principal cells had monosynaptic

connections with layer 4 and 5 interneurons (54.7%) and prin-

cipal cells (22.7%) (Figures 7E and 7G). Of the 172 putative

excitatory connections of L2/3 pyramidal cells, 10 (5.8%) and

39 (22.7%) targeted L2/3 and L4/5/6 excitatory neurons,

respectively, in addition to contacting 29 (16.9%) and 94

(54.7%) L2/3 and L4/5 interneurons, respectively. Most individ-

ual presynaptic principal neurons had only a single partner

target in the recorded population but a small fraction targeted
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multiple partners (Figures 7B and 7C). A typical interneuron

typically had one presynaptic partner, but a small fraction

many, up to 16 (Figure 7C). Almost half of the E-I connections

(168 of 392 [42.9%]) received reciprocal I-E connections when

all layers were considered. Reciprocal E-I-E connections were

almost twice more frequent in layer 5 (60%–70%) than in other

layers (Figure S7C).

To quantify the brain state-dependent changes in the spike

transmission probabilities, we calculated the peak-to-baseline

ratio of CCGs (Fujisawa et al., 2008; Senzai and Buzsáki, 2017)

between E-I cells (Figures 7D and 7E) and between E-E cells (Fig-

ures 7F and 7G) as well as between I-E pairs (Figure S8) in

different brain states. We observed that spike transmission

strength between layer 2/3 E cells and deep layer I and E cells

became weaker during non-REM sleep compared with waking

(L2/3 E cells to L5 I cells, p = 0.0012; L2/3 E cells to L4 I cells,

p = 0.0010; and L2/3 E cells to L5 E cells, p = 0.015; signed

rank test; Figures 7D–7F, 7H, and 7I). In contrast, putative E-E

spike transmission in the deep layers (layer 5/6 to layer 5/6

principal cells) significantly increased during non-REM sleep

compared with waking (p = 0.0061, signed rank test; Figures

7G and 7I). These results indicate that communication from su-

perficial to deep layers increases during waking, while excitatory
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Figure 6. Physiological Properties of Neurons in Different Layers

(A) Log firing rates in no-REM sleep. Colors correspond to the eight clusters of Figure 5C. Large circles, group means. Landmarks a–e are indicated by

dashed lines.

(B) Firing rate ratios between waking and non-REM sleep. Significant differences between states are indicated for each group.

(C) Log burst index of units as a function of depth.

(D) Transient-steady ratio of firing rate during UP state of non-REM sleep.

(E) Latency of spikes after DOWN-UP transitions during non-REM sleep.

(F) Spike-phase preference to the 3–6 Hz LFP rhythm recorded in layer 4.

(G) Mean resultant length (modulation strength) of units during 3–6 Hz rhythm.

(H) Brain state-dependent changes of spike-gamma LFP coupling between wake and non-REM.

**p < 0.01 and ***p < 0.001 (rank-sum test).
interactions become stronger within deep layers during non-

REM sleep. These findings were also reflected by unit-LFP

coupling when all eight unit clusters were compared with the

six gamma ICs (Figure 7I). When all I-E pairs were considered,

spike suppression probability during waking was significantly

stronger compared with non-REM (I-E dip wake, 24.1%; non-

REM sleep, 22.8% relative to the CCG baseline; p = 0.006,

signed rank test; Figure S8F).

DOWN State-Active Neurons
We found five neurons in four mice that were specifically and

dominantly active during the DOWN state of non-REM slow

oscillation (Figures 8A and 8B). All DOWN state-active neurons

were found in deep layers 6. Four neurons had bursty autocorre-

lograms, while the fifth one was regular spiking. These five neu-
rons were not only active during the DOWN state but mainly

silent during the UP state (35.2 ± 23.1 Hz during DOWN,

4.3 ± 3.1 Hz during UP; p < 0.016, rank sum test). During light

flash presentation, their spiking activity was further reduced at

the time when the remaining neurons robustly responded (Fig-

ure 8C). During optogenetic activation of PV neurons or VGAT

neurons, the DOWN state-active neurons were also suppressed,

indicating that at least some classes of interneurons innervate

them. However, �30 ms after the optogenetic stimulation, they

rebounded to high level of activity, while the remaining popula-

tion of principal neurons was still suppressed (Figure 8D).

Cross-correlation between the DOWN state-active cells and

other principal cells showed an inverse correlation not only dur-

ing non-REM but also in the waking animal (Figures 8E–8H). In

summary, the rare DOWN state-active neurons showed a robust
Neuron 101, 500–513, February 6, 2019 507
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Figure 7. Spike Transmission Probability Changes across Brain States

(A) E-I monosynaptic connections. Putative inhibitory (blue) and excitatory (red) unit pairs are shown as a function of recording depth and trough-to-peak (TP)

latency of units. Magenta lines with black ends indicate putative monosynaptic pairs from E to I neurons.

(B) Examples of E to I divergence and convergence from two different mice.

(C) Distributions of E-I divergence and convergence.

(D and E) E-I spike transmission probability change across waking and non-REM sleep states in an example pair (left) and all pairs (right) for L2/3 to L5 (D) and L2/3

to L4 (E).

(F) Comparison for all E-I pairs. The sizes of the dots indicate the magnitude of difference between states. Red, stronger transmission during wake; blue, stronger

transmission during non-REM sleep.

(G and H) E-E spike transmission probability change across waking and non-REM sleep states for L5/6 to L5/6 (G) and L2/3 to L5 (H).

(D–H) *p < 0.05, **p < 0.01 signed-rank test.

(I) Comparison for all E-E pairs.

(J) Changes between waking and non-REM sleep in spike-gamma LFP coupling ratio for E and I neurons.

*p < 0.05, **p < 0.01, and ***p < 0.001 (rank-sum test). Neuron groups 1–8 are as in Figure 5C.
inverse correlation with the activity of all other neurons during

both sleep and waking.

DISCUSSION

Depth profiles of unit power and sink-source distributions of slow

oscillations of non-REM sleep provided consistent physiological

landmarks in V1 across animals. We report the following find-

ings: (1) Coherence and ICA of gamma oscillations (30–100 Hz)

and spike-gamma LFP coupling identified six physiological

layers and distinguished further sublayers. (2) Firing rates, bursti-

ness, and other physiological features of neurons displayed
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distinct layer and brain state dependence. (3) Monosynaptic

connections, quantified by a spike transmission probability

method, revealed highly structured distributions within and

across layers. Connection strengths were skewed, with a minor-

ity of highly connected hubs. Spike transmission between E-E

pairs and E-I pairs from layer 2/3 to layer 5 was stronger during

waking compared with non-REM sleep but stronger among

deep-layer excitatory neuron pairs during non-REM sleep. (4)

The most prominent LFP pattern during waking was a 3–6 Hz

rhythm with characteristic phase preferences of spikes across

layers. (5) Spiking of a small subset of neurons in deep layers

was anticorrelated with all other neurons, and these neurons
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Figure 8. DOWN State-Active Neurons

(A) Histogram of an example neuron. Time zero corresponds to the DOWN-UP state transition of slow oscillation.

(B) Normalized group firing rate histograms for all principal cells (red, E), interneurons (blue, I), and five DOWN state-active neurons (black; n = 4mice; mean ± SE).

(C) Light-evoked activity of principal cells, interneurons, and a DOWN state-active neuron from an example session (n = 500 repetitions; mean ± SEM).

(D) Suppression of spiking activity by optogenetic activation of interneurons (blue line) for all principal cells, interneurons, and five DOWN state-active neurons

(mean ± SEM).

(E and F) Spike cross-correlations between a DOWN state-active neuron and all other principal cells (D-E pairs) and interneurons (D-I pairs) during non-REM sleep

(E) and waking (F) from a single mouse. Color code, normalized counts.

(G and H) Cross-correlations between spikes of five DOWN state-active neurons and spikes of all other principal cells and interneurons during non-REM sleep (G)

and waking (H); n = 4 mice.
were most active in the DOWN state of slow oscillations. Our

findings link mesoscopic LFPs and single-neuron interactions

with multilayered anatomical organization in V1.

Physiological Identification of Functional Layers in the
Neocortex
The term ‘‘layer’’ has been used differently in different structures.

For example, in the hippocampus, apical and basal dendritic

layers are distinguished from somatic layers of the same neu-

rons. In contrast, ‘‘layer’’ in the neocortex traditionally refers to

histologically distinct somatic layers. However, a given somatic

layer (e.g., layer 2) is also the apical dendritic layer of other neu-

rons (e.g., layer 3 and layer 5 neurons). Afferents from different

upstream regions can preferentially target neurons of a given

layer or multiple layers. For example, although the highest den-

sity of thalamocortical afferents is present in layer 4, collaterals
of these axons also innervate both superficial and deep layers,

contacting several types of neurons (Harris and Shepherd,

2015). Nevertheless, afferents from different sources typically

segregate on different segments of dendrites (Bock et al.,

2011). Similarly, inhibitory interneurons of the same class

converge on the same neuronal domains, whereas different

types converge on distinct somadendritic domains of their tar-

gets. In addition, biophysical experiments demonstrate that

different segments of pyramidal neurons are electrically isolated,

and each functional class of inputs is initially processed in rela-

tive independence of the other (Larkum et al., 1999). Our exper-

iments identified these physiologically distinct layers.

Previous work in the hippocampus has shown that coherence

in the gamma frequency range, measured across electrodes in

the same layer innervated by the same afferents, is high over

long lateral distances, whereas coherence across electrodes
Neuron 101, 500–513, February 6, 2019 509



placed just 100 mmapart but in different layers is low (Fernández-

Ruiz et al., 2017). Similar segregation by coherence has been

described between superficial and deep layers in the V1 of the

monkey (Maier et al., 2010). We hypothesize that segregation

of excitatory and inhibitory inputs on the orderly arranged prin-

cipal cell populations may be responsible for the observed

layer-specific extracellular gamma currents (Fernández-Ruiz

et al., 2017).

Both the gradient-descent algorithm performed on gamma

oscillation and ICA identified six strata, which can be regarded

as functionally distinct layers. Spike-gamma LFP phase-

coupling, in turn, allowed us to relate these physiological layers

precisely to the depth distribution of neuronal somata. This addi-

tional step effectively separated layer 6 neurons into deep and

superficial groups and divided layer 5 neurons into three sub-

groups. By depth criteria, two of these three groupsmay be clas-

sified as layer 5A (cortico-cortical with thin apical dendrites) and

5B (cortical-subcortical with thick apical dendrites) neurons,

respectively (Harris and Shepherd, 2015). Our third, most super-

ficial group may represent a transitional form between layer 4

and layer 5 neurons. Our clustering method also identified two

groups in layers 2/3, possibly corresponding to layer 2 and layer

3 neurons. Our physiology-based classification of principal neu-

rons will require confirmation by future optogenetic experiments

using available genetic markers of layer and sublayer-specific

pyramidal neurons (Gouwens et al., 2018). Overall, our findings

demonstrate that physiological properties of neurons, especially

their relationship to gamma LFP, can be exploited to relate them

to classical anatomy-based layer segregation. In turn, the

spiking activity of the classified groups can be examined for

their contribution to brain state-dependent collective network

patterns.

3–6 Hz Oscillation
The most prominent LFP pattern in the waking V1 was a 3–6 Hz

oscillation. We hypothesize that this rhythm is an evolutionary

precursor of the primate alpha activity in the visual cortex. First,

the 3–6 Hz oscillation is the dominant rhythm in the waking

mouse as is the case for the 8–12 Hz alpha oscillation in the pri-

mate. Its power is highest in layer 4, and its current sink-source

depth distribution is similar to the alpha waves in the monkey

(Dougherty et al., 2017; Bollimunta et al., 2008, 2011). Another

similarity to alpha oscillations is the strong phase-power and

power-power coupling between 3–6 Hz and gamma oscillations

(Osipova et al., 2008). Second, the behavioral correlates of

the 3–6 Hz oscillations are similar to alpha. Both are most

prominent during quiet waking, occur in several seconds-long

bouts, and are reduced or eliminated by movement and arousal

and reduced in non-REM sleep (Klimesch et al., 2007; Arroyo

et al., 2018; present observations). Yet their probability can

be increased by the offset of visual stimulation in the mouse

(Einstein et al., 2017; present findings) and rat (Pickenhain

and Klingberg, 1967) and by milk reward in the cat (Buchwald

et al., 1964). When visual cues are presented during the

3–6 Hz oscillations, the responses of V1 pyramidal neurons

are reduced (Einstein et al., 2017; Arroyo et al., 2018), similar

to attenuated visual evoked responses in humans (Klimesch

et al., 2007). Intracellular recording in layer 2/3 pyramidal cells,
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parvalbumin and somatostatin-expressing neurons in V1 of

mice revealed large amplitude, rhythmic hyperpolarizations at

3–6 Hz after the offset of visual stimulation, and spiking be-

tween the hyperpolarization (Einstein et al., 2017), as observed

for interneurons, including parvalbumin-expressing cells in our

study. Similar rhythmic hyperpolarizations were observed in

layer 2/3 pyramidal neurons at 2 Hz under anesthesia and

blocked by visual stimulation (Sun and Dan, 2009). Third, we

observed the strongest spike-LFP coupling in all cortical layers

in the 3–6 Hz band. The earliest and strongest firing was

present in layers 4 and 5B, coinciding with the LFP sink in layer

4 followed by neurons in the superficial layers, similar to

neuronal patterns during alpha oscillations in different cortical

layers in the monkey (Dougherty et al., 2017; Bollimunta et al.,

2008, 2011).

We found similar sink-source distributions during the 3–6 Hz

rhythms and slow oscillations of non-REM sleep. It is generally

believed that the neuronal substrate of several slow-frequency

oscillations in the neocortex is the thalamocortical resonant

network and that the distinct patterns, such as slow oscillations,

alpha rhythm, mu rhythm, and sleep spindles, and their timing

circuits are set largely by the combination of subcortical neuro-

modulatory inputs affecting both thalamic and neocortical tar-

gets (Steriade et al., 1993; Lörincz et al., 2009; McCormick and

Bal, 1997; Crunelli and Hughes, 2010). The increased tone of

cholinergic and monoaminergic afferents during movement,

arousal, and visual stimulation are known to suppress thalamo-

cortical oscillations (McCormick and Bal, 1997), including alpha

oscillations in humans (Osipova et al., 2008), 6–9 Hz thalamo-

cortical oscillations in rats (Buzsáki et al., 1991), and the

3–6 Hz rhythm in mice (Pinto et al., 2013). In sum, although the

frequency of the primate alpha is more than twice higher than

the 3–6 Hz rhythm in the mouse, many of their physiological fea-

tures are remarkably similar. In support of the evolutionary con-

servation hypothesis, the frequency of the V1 rhythm increases

with brain size from mouse (4 Hz; Einstein et al., 2017) to cat

(6–12 Hz; Buchwald et al., 1964; Lörincz et al., 2009) to human

(8–12 Hz; Klimesch et al., 2007).

State Dependence of Firing Patterns and Interlaminar
Interactions
Both firing rates and bursting properties of principal cells varied

across different layers. In agreement with previous observations

in different cortical areas and species, layer 2/3 pyramidal neu-

rons had the lowest median firing rates, followed by layer 4

and layer 6 neurons, whereas the highest firing rate cells resided

in layer 5 (Sakata and Harris, 2012; Petersen and Crochet, 2013).

The lower firing rates of layer 2/3 excitatory neuronsmay, at least

in part, result from their resting membrane potentials being

�10 mV hyperpolarized relative to superficial layer pyramidal

neurons, according to in vitro measurements (Petersen and

Crochet, 2013). Layer 2/3 pyramidal neurons may therefore

require substantially more excitatory synaptic input to drive

them to action potential threshold compared with L5 pyramidal

neurons. Deep-layer neurons increased their excitability during

waking (Sakata and Harris, 2012), as quantified by their firing

rates, whereas no such state dependence was present in super-

ficial neurons.



Layer 5 neurons are often segregated into intrinsically bursting

and regular firing neurons on the basis of in response to intracel-

lular current injection (Silva et al., 1991). In our experiments, we

found that layer 5 neurons, in general, had the lowest propensity

to induce spike clusters at short interspike intervals. On the other

hand, layer 5 neurons had the highest index of transient/steady

ratio during the UP state of slow oscillation, reminiscent of the

neuron’s response to sustained intracellular depolarization

(Nowak et al., 2003).

We identified monosynaptic connections between pairs of

neurons both within and across layers using short-term spike

transmission probability (Fujisawa et al., 2008; Schwindel et al.,

2014; Alonso and Martinez, 1998). The magnitude of both spike

transmission probability and single neuron-induced excitatory

postsynaptic potentials (EPSPs) (in E-I and E-E connections)

and IPSPs (I-E connections) showed a lognormal distribution

(Song et al., 2005), implying that a very small number of strong

connections aremixedwith a large number of weak connections.

Detection of monosynaptic connections by the spike transmis-

sion probability method depends on the combination of the

strength of the synapse and the number of spikes available in

a given recording session (Schwindel et al., 2014), therefore it

is biased toward neuronal pairs with stronger connections,

such as E-I connections and I-E pairs (English et al., 2017;

Branco and Staras, 2009). This relationship may explain why

only a small fraction of all possible E-E connections (Schwindel

et al., 2014; Cossell et al., 2015) was detected and why more

E-I than E-E pairs were identified in our study. Yet our under-

sampled population can still be regarded as representative for

the relative distribution of the connectivity features.

Surprisingly, most E-I and I-E connections were across layers,

including deep-to-superficial and superficial-to-deep links.

Layer 2/3 neurons innervated >3 times as many layer 4/5 prin-

cipal cells and interneurons as their peers in the home layer.

Connection strength tended to cluster around a few hub neurons

(Fujisawa et al., 2008; English et al., 2017; Bock et al., 2011; Song

et al., 2005). We also found that reciprocal connections between

E and I neurons (Song et al., 2005) varied across layers and were

almost twice as frequent in layer 5 compared with other layers.

These findings indicate that cortical connectivity is highly struc-

tured, and interlaminar interactions are fundamental to multi-

layer cortical operations (Song et al., 2005). The use of higher

density, multishank probes in future experiments will undoubt-

edly increase the yield of synaptically connected neurons and

provide more reliable quantification than we found in the present

experiments. This expected progress is facilitated by the fact

that the number of neuron pairs increases as the square of the

number of units recorded.

Spike transmission probability between superficial and deep

layers was stronger in the waking animal for both E-I and E-E

pairs, compared with non-REM sleep. This finding, combined

with the suggestion that thalamocortical synapses are not

affected by brain state (Stoelzel et al., 2009), supports the hy-

pothesis of top-down control of visual processing (Gilbert and

Li, 2013; Bastos et al., 2015). In contrast, spike transmission

strength increased between E-E pairs and I-E pairs during non-

REM sleep, preserving the E-I balance (Atallah and Scanziani,

2009) even during the UP state of slow oscillation, associated
with strong recurrent excitation of deep layer pyramidal neurons

(Sanchez-Vives and McCormick, 2000). The present study

compared only distinct brain states, such as waking and sleep.

However, the translaminar recordings combined with quantified

spike transmission probability measures can be also used to

monitor within and interlaminar interactions in visual or other

cortical areas for studying cortical processing in perception,

learning, and motor planning.

DOWN State-Active Neurons
A small subset of layer 6 neurons showed a robust inverse cor-

relation with the activity of other principal cells and interneurons

in all brain states, whichwas particularly striking during non-REM

sleep. We named these cells DOWN state-active neurons

because they are specifically and selectively active during the

DOWN state of slow oscillations (Steriade et al., 1993). The iden-

tity of the DOWN-state active neuron is not known at present. On

the basis of their location and brain state correlates, they might

correspond to a subset of GABAergic interneurons that express

neuronal NOS (nNOS). These nNOS-expressing neurons in-

crease their c-Fos expression during non-REM sleep and are

distributed mostly in deep cortical layers (Gerashchenko et al.,

2008). Optogenetic identification and manipulation of these neu-

rons in future experiments may reveal their exact physiological

contribution to slow oscillations and other network functions.
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Behavior-dependent short-term assembly dynamics in the medial prefrontal

cortex. Nat. Neurosci. 11, 823–833.

Galarreta, M., and Hestrin, S. (2001). Spike transmission and synchrony detec-

tion in networks of GABAergic interneurons. Science 292, 2295–2299.

Gerashchenko, D., Wisor, J.P., Burns, D., Reh, R.K., Shiromani, P.J., Sakurai,

T., de la Iglesia, H.O., and Kilduff, T.S. (2008). Identification of a population of

sleep-active cerebral cortex neurons. Proc. Natl. Acad. Sci. USA 105,

10227–10232.

Gilbert, C.D., and Li, W. (2013). Top-down influences on visual processing.

Nat. Rev. Neurosci. 14, 350–363.

Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin,

S.M., Feng, D., Anastassiou, C., Barkan, E., et al. (2018). Classification of elec-

trophysiological and morphological types in mouse visual cortex. bioRxiv.

https://doi.org/10.1101/368456.

Haider, B., H€ausser, M., and Carandini, M. (2013). Inhibition dominates sen-

sory responses in the awake cortex. Nature 493, 97–100.

Harris, K.D., and Shepherd, G.M. (2015). The neocortical circuit: themes and

variations. Nat. Neurosci. 18, 170–181.

Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., Patel, S.,

and Tolias, A.S. (2015). Principles of connectivity among morphologically

defined cell types in adult neocortex. Science 350, aac9462.

Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). EEG alpha oscillations:

the inhibition-timing hypothesis. Brain Res. Brain Res. Rev. 53, 63–88.

Larkum,M.E., Zhu, J.J., and Sakmann, B. (1999). A new cellularmechanism for

coupling inputs arriving at different cortical layers. Nature 398, 338–341.

Levenstein, D., Buzsaki, G., and Rinzel, J. (2018). Excitable dynamics of NREM

sleep: a unifying model for neocortex and hippocampus. bioRxiv. https://doi.

org/10.1101/312587.

http://refhub.elsevier.com/S0896-6273(18)31085-7/sref1
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref1
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref2
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref2
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref3
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref3
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref3
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref4
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref4
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref4
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref5
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref5
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref5
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref5
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref6
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref6
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref7
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref7
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref7
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref7
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref8
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref8
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref8
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref8
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref9
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref9
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref9
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref10
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref10
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref10
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref11
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref11
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref11
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref12
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref12
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref12
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref13
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref13
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref13
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref14
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref14
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref14
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref15
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref15
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref15
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref16
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref16
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref17
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref17
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref18
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref18
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref18
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref19
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref19
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref20
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref20
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref20
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref21
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref21
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref22
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref22
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref22
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref23
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref23
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref24
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref24
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref24
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref25
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref25
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref25
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref25
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref26
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref26
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref26
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref27
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref27
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref27
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref28
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref28
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref29
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref29
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref29
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref29
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref30
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref30
https://doi.org/10.1101/368456
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref32
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref32
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref32
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref33
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref33
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref34
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref34
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref34
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref35
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref35
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref36
http://refhub.elsevier.com/S0896-6273(18)31085-7/sref36
https://doi.org/10.1101/312587
https://doi.org/10.1101/312587


Lörincz, M.L., Kékesi, K.A., Juhász, G., Crunelli, V., and Hughes, S.W. (2009).

Temporal framing of thalamic relay-mode firing by phasic inhibition during the

alpha rhythm. Neuron 63, 683–696.

Maier, A., Adams, G.K., Aura, C., and Leopold, D.A. (2010). Distinct superficial

and deep laminar domains of activity in the visual cortex during rest and stim-

ulation. Front. Syst. Neurosci. 4, 31.

McCormick, D.A., and Bal, T. (1997). Sleep and arousal: thalamocortical

mechanisms. Annu. Rev. Neurosci. 20, 185–215.

Mitzdorf, U. (1987). Properties of the evoked potential generators: current

source-density analysis of visually evoked potentials in the cat cortex. Int. J.

Neurosci. 33, 33–59.

Mountcastle, V.B. (1997). The columnar organization of the neocortex. Brain

120, 701–722.

Niell, C.M., and Stryker, M.P. (2008). Highly selective receptive fields in mouse

visual cortex. J. Neurosci. 28, 7520–7536.

Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M., and McCormick,

D.A. (2003). Electrophysiological classes of cat primary visual cortical neurons

in vivo as revealed by quantitative analyses. J. Neurophysiol. 89, 1541–1566.

Osipova, D., Hermes, D., and Jensen, O. (2008). Gamma power is phase-

locked to posterior alpha activity. PLoS ONE 3, e3990.

Pachitariu, M., Steinmetz, N.A., Kadir, S.N., Carandini, M., and Harris, K.D.

(2016). Fast and accurate spike sorting of high-channel count probes with

KiloSort. In Advances in Neural Information Processing Systems 29 (NIPS

2016), D.D. Lee, M. Sugiyama, I. Guyon, and R. Garnett, eds., pp. 4448–4456.

Petersen, C.C., and Crochet, S. (2013). Synaptic computation and sensory

processing in neocortical layer 2/3. Neuron 78, 28–48.

Pickenhain, L., and Klingberg, F. (1967). Hippocampal slow wave activity as a

correlate of basic behavioral mechanisms in the rat. Prog. Brain Res. 27,

218–227.

Pinto, L., Goard, M.J., Estandian, D., Xu, M., Kwan, A.C., Lee, S.H., Harrison,

T.C., Feng, G., and Dan, Y. (2013). Fast modulation of visual perception by

basal forebrain cholinergic neurons. Nat. Neurosci. 16, 1857–1863.

Ray, S., and Maunsell, J.H. (2010). Differences in gamma frequencies across

visual cortex restrict their possible use in computation. Neuron 67, 885–896.

Reyes-Puerta, V., Sun, J.J., Kim, S., Kilb, W., and Luhmann, H.J. (2015).

Laminar and columnar structure of sensory-evoked multineuronal spike

sequences in adult rat barrel cortex in vivo. Cereb. Cortex 25, 2001–2021.

Sakata, S., and Harris, K.D. (2009). Laminar structure of spontaneous and sen-

sory-evoked population activity in auditory cortex. Neuron 64, 404–418.

Sakata, S., and Harris, K.D. (2012). Laminar-dependent effects of cortical state

on auditory cortical spontaneous activity. Front. Neural Circuits 6, 109.

Sanchez-Vives, M.V., and McCormick, D.A. (2000). Cellular and network

mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3,

1027–1034.
Schomburg, E.W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

DAPI Sigma-Aldrich D9542 SIGMA

NeuroTrace 500/525 Green Fluorescent Nissl Stain Thermo Fisher Scientific N21480

Deposited Data

Electrophysiology data Buzsáki lab http://buzsakilab.com/wp/datasets/

Experimental Models: Organisms/Strains

Mouse: B6;129S-Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze/J The Jackson Laboratory JAX: 012735

B6;129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory JAX: 008069

B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J The Jackson Laboratory JAX: 012569

B6.Cg-Tg(Camk2a-cre)T29-1Stl/J The Jackson Laboratory JAX: 005359

B6J.129S6(FVB)-Slc32a1tm2(cre)Lowl/MwarJ The Jackson Laboratory JAX: 028862

Software and Algorithms

Analysis tools Buzsáki lab https://github.com/buzsakilab/buzcode

MATLAB MathWorks https://www.mathworks.com/

Kilosort Pachitariu et al., 2016 https://github.com/cortex-lab/KiloSort

Phy Kwik Team https://github.com/kwikteam/phy

ICA algorithms EEGLAB https://sccn.ucsd.edu/eeglab/

Wavelet analysis toolbox Torrence and Compo, 1998 http://atoc.colorado.edu/research/

wavelets/

Other

Silicon probe: 1shank (H3) Cambridge NeuroTech https://www.cambridgeneurotech.com/

silicon-probes

Intan RHD2000 Intan Technologies http://intantech.com/RHD2000_

evaluation_system.html

450nm laser diode Osram Laser Diodes PL450B

520nm laser diode Osram Laser Diodes PL520B

LD current controller Thorlabs LDC202C
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and resource may be directed to, and will be fulfilled by the Lead Contact, Dr. György

Buzsáki (gyorgy.buzsaki@nyumc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal handling procedures were approved by the Institutional Animal Care and Use Committee of New York University

Medical Center. We used several lines of transgenic mice Mice (n = 19; n = 3 Ai35; n = 5 PV-Cre::Ai32; n = 9 VGAT-Cre::Ai32;

n = 1 CaMKII-Cre::Ai35; n = 1 CaMKII-Cre::Ai32) for optogenetic tagging of the recorded units.

METHOD DETAILS

Surgery and electrode implantation
A total of 19 male mice (28-35 gr, 3-8 months old) were implanted with recording electrodes under isoflurane anesthesia. These pro-

cedures were performed in two steps.

In the first step, a ground electrode (100-mm diameter tungsten wire) was implanted in the contralateral cerebellum and head plate

base was placed around the implantation target area (the primary visual cortex, V1). After 13 day of recovery from the first step, mice
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underwent the silicon probe implantation procedure. A single shank silicon probe (Cambridge NeuroTech H3 64x1 probe) was

mounted on a movable microdrive for recording the activity of multiple single-units and local field potentials (LFPs) in V1. The

high-density silicon probe had 64 recording sites (100k–1MU impedance each site), aligned on the linear edge of the

probe (20-mm vertical separation). After the craniotomy above the target implantation site, the probe was implanted at

anteroposterior: +1.0mm, mediolateral: +2.5 mm, with a 21� angle from dorso-ventral axis and a 10� angle from the mediolateral

axis, so that the probe was perpendicular to the brain surface at the target site. The probe was lowered to 1.0 mm below the brain

surface. For optogenetic tagging of specific cell types, an optic fiber was placed right above the skull over the implantation site. The

back end of the fiber was coupled to a laser diode (450 nm blue, Osram) (Stark et al., 2012).

After the second operation (< 30 min), mice were allowed to recover overnight in their home cage before the recording session.

Extracellular electrophysiological recording
We recorded from the mice while they slept or walked around freely moving in the home cage for of 68 hr. Electrophysiological data

were acquired using an Intan RHD2000 system (Intan Technologies LLC) digitized with 20 kHz rate. The wide-band signal was down-

sampled to 1.25 kHz and used as the LFP signal.

For optogenetic tagging of specific neuron types, blue laser light pulses were delivered above the V1. The maximum light power at

the tip of the optic fiber was 1 to 3mW (450 nm,Osram Inc). 10ms light pulses with 40%, 70%and 100%of themaximumpower were

delivered (n = 500 times at each intensity, 1 Hz). At the beginning or the end of the recording session, light from laser diode (520 nm,

Osram) was delivered in the home cage to induce light-evoked responses of V1 neurons (n = 500 times, 400 ms duration

pulses, 0.5 Hz).

Electrolytic lesions
In four mice, a small current was delivered through two of the recording sites to produce an electrolytic lesion for subsequent histo-

logical verification of the recording depths. Themouse was anesthetized with isoflurane and placed in a stereotaxic apparatus. A thin

metal bar (anal electrode) lubricated with vaseline was inserted in the anus of the animal and 4 to 10 mA current was applied between

the anal electrode and target electrode channel on the silicon probe for 5-10 s per channel. After electrolytic lesioning procedure,

mice were returned to their home cage. After two days, the animal was sacrificed.

Histological processing
At the end of the recording session or two days after the electrolytic lesion, mice were overdosed with pentobarbital injection

(100 mg/kg body weight), perfused with saline and 4% paraformaldehyde before their brains were rapidly removed. After overnight

post fixation in 4% paraformaldehyde solution, the brain was washed in PBS three times. Coronal sections (50 mm) were cut on a

vibratome (Leica, VT1000S) and brain slices were collected in PBS. To identify the borders between neocortical layers, fluorescent

Nissl staining was performed. The procedure consisted of one time 10 min wash with PBS-0.1% Triton solution (PBS-T) for perme-

abilization, 20 min incubation in NeuroTrace 500/525 Green Fluorescent Nissl Stain diluted by 300-fold, two times of 10 min wash in

PBS-T, three times of 5 min wash in PBS, and 2 hr wash in PBS. After the washing procedures, brain sections were mounted in Fluo-

romount with DAPI (Sigma) and imaged with a confocal laser-scanning microscope (Zeiss, LSM 700).

Spike sorting
Spike sorting was performed semi-automatically, using Kilosort (Pachitariu et al., 2016). This was followed by manual adjustment of

the waveform clusters using the software Phy. Following parameters were used for the Kilosort clustering.

ops.Nfilt 6 * numberChannels

ops.nt0 64

ops.whitening ‘full’

ops.nSkipCov 1

ops.whiteningRange 64

ops.criterionNoiseChannels 0.00001

ops.Nrank 3

ops.nfullpasses 6

ops.maxFR 20000

ops.fshigh 300

ops.ntbuff 64

ops.scaleproc 200

ops.Th [4 10 10]

ops.lam [5 20 20]

ops.nannealpasses 4

ops.momentum 1./[20 800]

ops.shuffle_clusters 1
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ops.mergeT 0.1

ops.splitT 0.1

ops.initialize ‘no’

ops.spkTh 31
Detection of monosynaptic functional connectiveties
Cross-correlograms of spike trains of neuron pairs can reveal putative synaptic connections between them (Fujisawa et al., 2008;

Barthó et al., 2004; Stark and Abeles, 2009). This takes the form in the cross-correlogram of short time-lag (1–4 ms) positive or nega-

tive deviations from baseline indicating putative excitatory or inhibitory connections, respectively. Such detection is based on testing

the null hypothesis of a homogeneous baseline at short time-scale (Stark and Abeles, 2009). To this end, cross-correlograms binned

in 0.5-ms windows were convolved with a 7-ms standard deviation Gaussian window resulting in a predictor of the baseline rate. At

each time bin, the 99.9999 percentile of the cumulative Poisson distribution (at the predicted rate) was used as the statistical

threshold for significant detection of outliers from baseline. A putative connection was considered significant when at least two

consecutive bins in the cross-correlograms within +1.5 to +4ms passed the statistical threshold. Corrected spike transmission prob-

ability was calculated as described in English et al. (2017).

Classification of units based on spike waveforms
Units with maximumwaveform amplitude with positive sign were classified as ‘positive waveform units’, and those with negative sign

as ‘negative waveform units’. Putative fiber potential was identified by the kurtosis of the normalized waveform (maximum ampli-

tude = 1), calculated as the second derivative of negative waveform units. If the kurtosis was larger than ± 5SD of the mean, they

were classified as putative fiber units. For the remaining negative waveform units, units with the trough-to-peak latency (TP latency)

> 0.55 ms were tentatively classified as putative E cells and those with TP latency % 0.55 ms were classified as putative I cells.

Optogenetic tagging of PV cells and VGAT cells
To optogenetically tag PV cells and VGAT cells in V1, PV-Cre::Ai32 mice and VGAT-Cre::Ai32 mice were used, respectively. 10 ms

light pulses were delivered every 1 s for 500 times. Light-triggered post-event histogram was binned at 1 ms width. If the peak firing

rate in a 1-6mswindow after the light delivery (average of the first and secondmaximum value) was larger than the ± 8 SD of themean

of the baseline (–100-0 ms before the light delivery), the unit was defined to be optogenetically activated.

Data analysis
Brain state scoring

Spectrograms for brain statescoringwereconstructedwitha1 ssliding10swindowFFTof1250HzLFPdataat log-spaced frequencies

between 1 and 100 Hz. Three types of signals were used to score state in our recordings: broadband LFP, narrowband theta frequency

LFP, and electromyogram (EMG). For broadband LFP signal, principal components analysis (PCA) was applied to the z-transformed

(1-100Hz) spectrogram. The first PC in all caseswas based on power in the low (< 20Hz) frequency range and had oppositely weighted

power in the (> 32Hz) higher frequencies. Theta dominancewas taken to be the ratio 5-10Hz and 2-16Hz power from the spectrogram.

EMG was extracted from the intracranially recorded signals by detecting the zero time-lag correlation coefficients (r) between

300-600Hz filtered signals (using a Butterworth filter at 300 – 600 Hzwith filter shoulders spanning to 275 – 625 Hz) recorded at all sites

(Schomburgetal., 2014).Thestatescoringalgorithmwasperformedbyaseriesofdivisionswith thresholdssetat the troughbetween the

peaks of distributions in these three metrics (Watson et al., 2016) (https://github.com/buzsakilab/buzcode/tree/master/detectors/

detectStates/SleepScoreMaster). First, non-REM time points were extracted via a threshold at the trough between the peaks in the

broadband PC1 histogram. Among the remaining time points, REMwas recognized by finding time points with both EMG values below

the bimodal dip in thatmetric and theta in the uppermodeof the distribution.Wakingwasdefinedas7min or longer arousals. After auto-

matedbrain state scoring, all statesweremanually reviewedby the experimenter andminor correctionsweremadewhendiscrepancies

between automated scoring and user assessment occurred (Watson et al., 2016).

Detection of UP and DOWN states

Slow waves were detected using the coincidence of a two-stage threshold crossing in two signals: a drop in high gamma power

(100-400 Hz, representative of spiking) and a peak in the delta-band filtered signal (0.5-8 Hz) (Levenstein et al., 2018). The gamma

power signal was smoothed using a sliding 80-ms window, and locally normalized to account for non-stationaries in the data. Two

thresholds were used for event detection in each LFP-derived signal: a ‘‘peak threshold’’ and a ‘‘window threshold.’’ Time epochs in

which the delta-filtered signal crossed the peak threshold were taken as putative slow wave events, with start and end times at the

nearest crossing of the window threshold. To determine the delta threshold, all peaks in the delta-filtered signal greater than 0.25

standard deviations were detected as candidate delta peaks and binned by peak magnitude. The peri-event time histogram

(PETH) for spikes from all cells was calculated around delta peaks in each magnitude bin and normalized by the mean rate in all

bins. The smallest magnitude bin at which spiking (i.e., the PETH at time = 0) was lower than a set rate threshold was taken to be

the peak threshold. The window threshold was set to the average delta value at which the rate crosses this threshold in all peak

magnitude bins. The gamma power threshold was calculated similarly but using a drop below a gamma power magnitude instead
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of peaks above a delta magnitude. Once the thresholds were calculated, candidate events were then detected in the delta and

gamma power signals, and further limited to a minimum duration of 40 ms. Slow wave events were then taken to be overlapping in-

tervals of both the gamma and delta events.

Depth normalization in V1

To calculate standardized depth coordinates across animals, we aligned depth profiles using electrophysiological landmarks. These

included the largest amplitude peak of the depth profile of high-frequency LFP power (500 Hz - 5 kHz) corresponding to mid-layer 5

and four prominent sinks and sources from the averagedDOWN-UPCSDmaps for each animal (see Figure 1). Depth profiles from the

different animals were aligned according to these landmarks and the distance between each of themwas ‘‘warped’’ (either extended

or stretched) accordingly. Linear interpolation of inter-electrode distance was performed to obtain distance in mm. Estimated pia

surface was 80 mm above landmark a.

Independent Component Analysis of LFPs

To separate the different sources that contribute to the LFP mixed signal, we employed independent component analysis (ICA) anal-

ysis as has been described and validated previously for hippocampal recordings (Fernández-Ruiz et al., 2012; Schomburg et al.,

2014; Fernández-Ruiz et al., 2017). ICA is a blind source-separation technique (Comon, 1994) that can isolate spatially segregated

stable patterns of activity in a mixed signal recorded with an array of sensors. Applied to linear profiles of LFP it can separate

physiologically meaningful sources. Here, we applied ICA to spatially contiguous LFP channels after filtering in the gamma band

(30 – 100 Hz). Prior to application of the ICA algorithm, we performed a principal component analysis (PCA) reduction andmaintained

only the first ten PCs for subsequent ICA decomposition. The ICA algorithm (runinca; Bell and Sejnowski, 1995) takes a time series of

data with dimension equal to the number of recording sites, and returns a time series of the same dimensionality, but rotated so that

each dimension represents a different IC. The inverse of the mixing matrix that transforms the LFP data into the ICs gives the channel

weight of each component that is captured for each electrode. When projected to the anatomical location of the electrodes, this

corresponds to the spatial voltage loadings of each IC (Fernández-Ruiz et al., 2012). We ranked the components by the amount

of variance they explain in the original data (relative power).

Gamma coherence and gradient descent clustering

Using coherence as similarity measure, an interaction-energy based clustering was implemented as previously done for hippo-

campal LFP7. Every site served as a reference against all the other referred sites. The resulting values were clustered using a

gradient-descent algorithm, so that each site was merged with that cluster for which the resulting coherence gain after merging

was the largest. Starting from random initial assignments, the clustering algorithm formed stable but fewer clusters corresponding

to a local energy minimum. Energy of cluster A is defined as:

EA =
�1

NA

X

i;j˛A

Cij

Where, Cij is the coherence between ith and jth sites andNA is the number of recording sites in cluster A. The energy gap between two

different assignments to cluster A and B of site i is:

DEAB
i =

1

NB

X

j˛B

Cij � 1

NA

X

k˛A

Cik

If the energy gap is positive, site i is moved into cluster B, otherwise it remains in cluster A. Since themethod results only local minima

of energy and stochastic components, such as the random initial condition and update order affects, clustering consistency was veri-

fied by repeating the process several times.

Spectral analysis, cross-frequency coupling, and spike-LFP coupling

To perform spectral analysis at a high resolution in time and frequency, the complex wavelet transform (CWT) of the LFP (or ICs) was

calculated using complex Morlet wavelets (Torrence and Compo, 1998). Wavelets were calculated using a logarithmically spaced

frequency vector in the band of interest. Phase-amplitude cross-frequency coupling for a given LFP recording was assessed using

the modulation index measure (MI; Tort et al., 2008). Phase time-series were binned into phase intervals and the mean wavelet

amplitude was calculated for each of them. TheMI was obtained bymeasuring the divergence of the observed amplitude distribution

from the uniform distribution. The statistical significance of the MI values (p value) was assessed by a surrogate analysis (n = 1000

surrogates) with random shifts between the phase and amplitude time series. Mean-subtracted spectral analysis was obtained by

calculating the mean power or coherence across all V1 channels for each session and subtracting it from each channel value. For

the presented plots, grand averages were calculated as the mean across all animals.

The phase-locking of spikes to LFP features at each frequency was measured for individual units using the wavelet phase from

30-100 Hz (20 logarithmically spaced wavelet scales) at the time of each spike9. Modulation indices were calculated using the

mean resultant length of the phases, and significance was estimated using the Rayleigh test for non-uniformity (p < 0.05) using circular

statistics. Preferred frequency ofmodulationwas determined as the largestmean vector length of each significantlymodulated neuron.

Classification of units using spike-LFP phase coupling

To classify V1 units, we took advantage of the layer-specificity of gamma oscillations (Figure 2). For each unit, we first calculated

their spike-phase modulation by the 6 gamma ICs. Next, we used the matrix of spike-IC phase coupling of all V1 units (excitatory
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and inhibitory) against all six ICs to perform k-Means clustering. The ‘cityblock’ metric was used as distance measure. We reduced

the dimensionality of the data with t-Distributed Stochastic Neighbor Embedding (t-SNE) method by optimizing the Kullback-Leibler

divergence of distributions between the original space and the embedded space, computing the Mahalanobis distance. We found

the optimal number of clusters in the data to be eight by employing the silhouette criterion.

Calculation of unit burstiness

Burstiness was determined by calculating the average number of spikes in the 1.5–13.5ms bins of the spike autocorrelogram divided

by the average number of spikes in the 200–300 ms bins.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
All statistical analyses were performed with standardMATLAB functions. No specific analysis to estimate minimal population sample

were used, but the number of animals, trials, and recorded cells were larger or similar to those employed in previous works. Unless

otherwise noted, for all tests, non-parametric two-tailed Wilcoxon rank-sum (equivalent to Mann-Whitney U-test), Wilcoxon signed-

rank or Kruskal-Wallis one-way analysis of variance were used. For multiple comparisons, Tukey’s honesty post hoc test was em-

ployed. Boxplots represent median and 25th/75th percentiles and their whiskers the data range. In some of the plots outlier values

were not shown but they were always included in the statistical analysis.

DATA AND SOFTWARE AVAILABILITY

LFP and spike data have been deposited in buzsakilab.com and are freely available for further analyses.
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