
Darwinian Code Optimisation

Michail Basios

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

January 18, 2019

2

I, Michail Basios, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

Programming is laborious. A long-standing goal is to reduce this cost through

automation. Genetic Improvement (GI) is a new direction for achieving this goal. It

applies search to the task of program improvement. The research conducted in this

thesis applies GI to program optimisation and to enable program optimisation. In

particular, it focuses on automatic code optimisation for complex managed runtimes,

such as Java and Ethereum Virtual Machines.

We introduce the term Darwinian Data Structures (DDS) for the data structures

of a program that share a common interface and enjoy multiple implementations. We

call them Darwinian since we can subject their implementations to the survival of the

fittest. We introduce ARTEMIS, a novel cloud-based multi-objective multi-language

optimisation framework that automatically finds optimal, tuned data structures and

rewrites the source code of applications accordingly to use them. ARTEMIS achieves

substantial performance improvements for 44 diverse programs. ARTEMIS achieves

4.8%, 10.1%, 5.1% median improvement for runtime, memory and CPU usage.

Even though GI has been applied succesfully to improve properties of programs

running in different runtimes, GI has not been applied in Blockchains, such as

Ethereum. The code immutability of programs running on top of Ethereum limits

the application of GI. The first step of applying GI in Ethereum is to overcome the

code immutability limitations. Thus, to enable optimisation, we present PROTEUS,

a state of the art framework that automatically extends the functionality of smart

contracts written in Solidity and makes them upgradeable. Thus, allowing developers

to introduce alternative optimised versions of code (e.g., code that consumes less

gas), found by GI, in newer versions.

Impact

The main impact of this thesis is the introduction of two novel optimisation frame-

works (ARTEMIS and PROTEUS) that automatically improve the performance (ex-

ecution time, memory consumption, and CPU usage) and enable program optimi-

sations for users’ programs with minimal effort. We also provide both frameworks

as open-source services (http://www.darwinianoptimiser.com), allowing

the research community to interact with them. We show how the code optimisation,

a process time-consuming, brittle, expensive with unclear benefits for many projects

can be done automatically using Genetic Improvement.

With this thesis, we extend the existing literature in different ways. First, we

introduced the term “Darwinian Data Structures" and we formalised the Darwinian

data structure selection and optimisation problem DS2. We showed that it is possible

to improve the performance of large code bases automatically by discovering and

optimising sub-optimal parts of the code cheaply, fast and without affecting the

functionality of the system.

Second, we tackled and provided a solution to the problem of code immutability

of programs running on distributed environments, such as the Blockchain, by propos-

ing upgradeable smart contracts. We introduced PROTEUS, the first framework, to

best of our knowledge, that provides automatic transformation of Ethereum smart

contracts such that they can be upgraded after published on the Blockchain. Thus,

enabling the possibility of program optimisation and the application of Genetic

Improvement techniques to improve the performance of Blockchain systems. By

applying GI on smart contracts, we can improve the “Gas" consumption on the

Ethereum Blockchain by providing alternative code implementations, similarly to

http://www.darwinianoptimiser.com

Abstract 5

the approach that ARTEMIS follows. PROTEUS also allows other GI techniques to be

applied such as automatic bug fixing automatic test generation and prioritisation.

Broader usage of PROTEUS on the Blockchain, and subsequently the application

of GI, has the potential to lead to faster contract execution and less number of

duplicate contracts on the Ethereum Blockchain. This means that the size of the

Blockchain will be smaller and the transactions can be processed faster. A smaller

and faster Blockchain has a significant impact on the global energy consumption

because this means that the overall energy consumption of the network is going to

be smaller as well; an Ethereum network may contain thousands of nodes across

different countries. Similarly, ARTEMIS can be applied to optimise different metrics

to a variety of programs and systems, not limited to Blockchain. Thus, ARTEMIS can

have broader applicability, and many can benefit by its optimisations.

Finally, we provide clear research ideas of how our work can be extended and

the problems that still need to be solved for future work. We also provide information

on how new researchers can start working on their research by using our research

findings and our open-source optimisation frameworks.

Acknowledgements

I would like to thank all the people that helped me during my PhD, either directly

with my research or indirectly with their advice and support.

First, I thank my supervisor Earl Barr for his guidance, support, and for having

an excellent collaboration. I would also like to thank my second supervisor Ilya

Sergey for his suggestions. Special thanks to all the colleagues from UCL for their

generous feedback and fun discussions we had during our meetings and Microsoft

for the support of this research.

I am very grateful to Graham Barrett for his help and guidance. I would also

like to especially thank my wonderful friends Dr. Leslie Kanthan, Dr. Lingbo Li,

Dr. Fan Wu, Dr. David Martinez, Dr. Wei Chen, Petros Kyrkillis, Rhyan Barret

and Aaliaan Khan for making my experience in London great. I would also like

to thank my Edinburgh supervisor Stratis Viglas for his guidance and my amazing

colleagues Mihaela Dragomir, Aurora Constantin, Fabian Nagel, Andreas Chatzis-

tergiou and Maria Nadejde. I cannot ignore my great undergraduate colleagues and

friends Alexandros Spathoulas, Panagiotis Karavidas, Nikos Anyfantis, Konstantinos

Chimos, Giorgios Christopoulos, Panagiotis Papantonakis and Antonis Antonis for

their true friendship and help.

Last, I am very thankful to my parents, for their unconditional support to my

decisions and my beautiful sister for always being there for me.

Publications

• Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. 2018.

"Darwinian Data Structure Selection". In Proceedings of the 26th ACM

Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’18)

• Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. "Opti-

mising darwinian data structures on Google guava." In International Sympo-

sium on Search Based Software Engineering, pp. 161-167. Springer, Cham,

2017. Best Challenge Paper Award.

• Michail Basios, Ilias Sergey, Earl T. Barr. "Proteus: A framework for upgrade-

able Ethereum Smart Contracts". Under Review.

Contents

1 Introduction 17

1.1 Objectives of the Research . 19

1.2 Contributions . 20

1.3 Organisation of the PhD Thesis . 22

2 Literature Review 24

2.1 Search-Based Software Engineering (SBSE) 25

2.1.1 Requirements Engineering 25

2.1.2 Effort Estimation . 26

2.1.3 Software Product Line . 26

2.1.4 Software Testing . 27

2.1.5 Other Areas . 27

2.1.6 SBSE Industrial Applications 28

2.2 Genetic Improvement . 29

2.2.1 Code Representation . 32

2.2.2 Search-Based Parameter Tuning 34

2.2.3 Improvement using Genetic Programming 39

2.2.4 Patch-Based Genetic Improvement 40

2.3 Data Structure Selection and Tuning 41

2.3.1 Java Virtual Machine . 43

2.3.2 Java Collection Framework 44

2.3.3 Tradeoffs in Collection Implementations 45

2.3.4 Empirical Rigorous Performance Evaluation 47

Contents 9

2.3.5 Data Structure Optimisation and Bloat 48

2.4 Blockchain . 51

2.4.1 Consensus Layer . 54

2.4.2 Types of Blockchain Systems 55

2.4.2.1 Permissionless Blockchain 55

2.4.2.2 Permissioned Blockchain 56

2.4.2.3 Hybrid Blockchain 57

2.4.3 Ethereum Blockchain . 57

2.4.3.1 Ethereum Account Types 59

2.4.3.2 A Smart Contract Example. 60

2.4.3.3 Ethereum Virtual Machine 61

2.4.3.4 Contract State Transitions / Transactions 64

2.4.3.5 Message calls 65

2.4.3.6 Function Dispatch 65

2.4.3.7 Types of Message Calls 66

2.4.4 Security issues with Solidity smart contracts 69

2.4.5 Research Findings on Ethereum Smart Contracts 71

3 Darwinian Data Structure Selection 74

3.1 Motivating example . 77

3.2 Darwinian Data Structure Selection and Tuning 78

3.3 Artemis . 80

3.3.1 Darwinian Data Structure Store 81

3.3.2 Discovering Darwinian Data Structures 82

3.3.3 Code Transformations . 83

3.3.4 Search Based Parameter Tuning 85

3.3.5 Deployability . 86

3.4 Evaluation . 86

3.4.1 Corpus . 87

3.4.2 Experimental Setup . 90

3.4.3 Research Questions and Results Analysis 91

Contents 10

3.4.4 Optimising Google Guava library using ARTEMIS 102

3.5 Threats to Validity . 104

3.6 Summary . 105

4 Upgradeable Ethereum Smart Contracts 106

4.1 Immortal Bugs . 112

4.2 Motivating Example . 113

4.3 Approach . 116

4.3.1 Delegating Calls to Other Contracts 118

4.3.2 Solidity Syntax . 122

4.3.3 Proteus Rewriting Rules 123

4.3.4 Mutable Implementation Mode 124

4.3.4.1 Trampoline Rewriting Rules 125

4.3.4.2 Rewriting Rules for Contract C’ 130

4.3.4.3 Mutable Implementation Code Transformation

Example . 133

4.3.5 Mutable Interface Mode 135

4.3.5.1 Rewriting Rules for Mutable Interface 138

4.4 Implementation . 141

4.4.1 Deployability . 143

4.4.2 Deployment Process . 143

4.4.3 Summary . 144

5 Conclusions and Future Work 145

5.1 Conclusions . 145

5.2 Future Work . 147

Bibliography 149

List of Figures

2.1 Flowchart of a Genetic Algorithm. 29

2.2 Example of the crossover genetic operation. Sections of trees’ struc-

ture of the selected parents are swapped to create children [1]. . . . 32

2.3 Selected mutation operators by Deep Parameter Optimisation frame-

work [2]. 37

2.4 Java Collection Framework. 45

2.5 Memory layout of an ArrayList with integers for a 32-bit JVM. . 46

2.6 When an ArrayList is used with default parameters, it allocates

memory for 10 entries. 47

2.7 An instance illustrating the problem of reporting misleading metrics:

the ’best’ method is shown on the left and the empirical rigorous

method is shown on the right (Figure borrowed from [3]). 50

2.8 Blockchain is a chain of blocks of transactions linked by hash pointers. 51

2.9 Transaction Example: In blockchain, an account with a key pair

(public key and private key) is representing a wallet for submitting

transactions. 52

2.10 Cryptocurrency Market Capitalisation. Source: www.coinmarketcap.com,

27/10/2017. 53

2.11 Comparison between public, consortium and private Blockchain.

Table taken from [4]. 56

2.12 Account types on Ethereum [5]. External account is controlled by

a private key and does not contain code. Contract is controlled by

EVM code. 58

www.coinmarketcap.com

List of Figures 12

2.13 Number of Ethereum addresses in 31 October 2017. (Source:

https://etherscan.io/chart/address) 59

2.14 When a transaction is accepted on the Blockchain, each mining node

change their Blockchain state. 61

2.15 The EVM is a simple stack-based architecture [5]. 62

2.16 Internal fields of a transaction. 64

2.17 Function dispatch example in smart contracts. 66

2.18 Visualisation of function calls between contracts. 68

3.1 Example of how ARTEMIS maps the extracted darwinian data struc-

tures and its parameters to a search-based optimisation problem. . . 78

3.2 System Architecture of ARTEMIS. 80

3.3 DDS in the Java Collections API. 82

3.4 Process of generating the uniformly selected at random Github cor-

pus. First, a Github project is selected randomly, then if it contains

a maven build system, it compiles and its tests run succesfully it is

added in the corpus. 88

3.5 Answers RQ2. Description. 93

3.6 Answers RQ2. Description. 95

3.7 Best execution time of uniformly selected GitHub programs. The

median value is 95.4% and mean is 94.7%. Median number of DDS

is 9.5 and mean is 11.6. Median number of DDS changes is 5 and

mean is 4.8. 96

3.8 Best memory consumption of the uniformly selected GitHub pro-

grams. The median value is 89.1% and mean is 86.8%. Median

number of DDS is 9.5 and mean is 11.6. Median number of DDS

changes is 5 and mean is 4.6. 97

3.9 Best CPU usage of the uniformly selected GitHub programs. The

median value is 5.1% and mean is 8%. Median number of DDS is

9.5 and mean is 11.6. Median number of DDS changes is 5 and mean

is 4.5. 98

https://etherscan.io/chart/address

List of Figures 13

3.10 Optimal solutions with large improvement in at least one measure. . 102

4.1 State of the art update mechanism for smart contracts. 107

4.2 Different types of clients that interact with Ethereum Smart Contracts.108

4.3 MultiSig bug. The contract owner is meant to be defined us-

ing the init function only by the contract owner. However, the

hacker managed to change the owner of the contract by calling the

init(owners) function of the AbstractWallet contract, using the

fallout function of the Wallet contract. 112

4.4 Smart contract transformation. 116

4.5 Trampoline and Contract interaction for the mutable implementation

mode. After the Trampoline is deployed, its code is immutable.

Each call to a function of the Trampoline is delegated to one of

the upgradeable contracts. The user can deploy a new contract that

will have the same function signatures, but the internal code can be

modified. 125

4.6 EVM uses an intenal immutable virtual function table as a lookup

table of functions for resolving function calls in a dynamic/late

binding manner. 136

4.7 Dynamic virtual function mechanism used by the Trampoline. The

logic of how EVM dispatches functions internally is exposed to the

developer through the code contained in the Trampoline. 138

4.8 System Architecture of Proteus. 142

4.9 Contract Deployment. The Trampoline contract and the initial user’s

contract is given as an input by the user. PROTEUS generates two

transactions: a) The first one publishes the Trampoline contract

on the Blockchain b) the second one updates the address that the

Trampoline should forward the calls. 144

List of Tables

3.1 Data structure groups. 83

3.2 DaCapo projects. #Star, #Loc are the number of stars and line of

codes respectively. All these subjects are retrieved from the official

Dacapo Benchmark page on 11th Jan 2017. 88

3.3 Subject projects studied in this research. #Star, #Loc, #Test, and

Coverage(%) are the number of stars, line of code, number of tests,

and the line coverage ratio, respectively. All these subjects are

retrieved through GitHub on 11th Jan 2017. 89

3.4 Hardware characteristics. 90

3.5 DDS changes for optimal solutions across all measures. 100

4.1 Table with mutability modes of PROTEUS. Mutable Implementation 124

4.2 Trampolinify Contract Rule. PROTEUS injects a set of meta variables

and helper functions in the body of the Trampoline contract. 127

4.3 Constructor Injection rule. Initialise meta variables when contract is

created. 128

4.4 Upgradeable Functions rule. public and external functions are

forwarding the call to the upgradeable contracts. 129

4.5 Upgradeable Functions with Returns. public and external func-

tions are forwarding the call to the upgradeable contracts. The return

value is assigned to the corresponding meta-variable. 130

4.6 Unexposed Functions rule (F1). internal and private functions

are not exposed through the Trampoline. Those functions can be

updated with the new version of contract C. 131

List of Tables 15

4.7 The same set of of meta-variables that were added in the

Trampoline are also added in the code of contract C’. 131

4.8 PROTEUS allows calls to the contract C’ only from the Trampoline

address. This rule forbids any other calls. 132

4.9 PROTEUS allows calls to the contract C’ only from the Trampoline

address. This rule forbids any other calls. 132

4.10 Table with mutability modes of PROTEUS. Mutable Interface. 136

4.11 Dynamic Function Dispatch Rule. PROTEUS injects a set of meta

variables and helper functions in the body of the Trampoline contract.139

4.12 Constructor Expansion rule. The vtable is populated with the

default function definitions of contract C. 140

4.13 Constructor Expansion rule. The vtable is populated with the

default function definitions of contract C. 141

Chapter 1

Introduction

“Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of non-critical parts of their programs, and

these attempts at efficiency actually have a strong negative impact when

debugging and maintenance are considered. We should forget about small

efficiencies, say about 97% of the time: premature optimization is the root

of all evil. Yet we should not pass up our opportunities in that critical

3%.”
— Donald E. Knuth [6]

Under the immense time pressures of industrial software development, develop-

ers are heeding one part of Knuth’s advice: they are avoiding premature optimisation.

Indeed, developers appear to be avoiding optimisation altogether and neglecting the

“critical 3%". When selecting data structures from libraries, in particular, they tend to

rely on defaults and neglect potential optimisations that alternative implementations

or tuning parameters can offer. This, despite the impact that data structure selection

and tuning can have on application performance and defects. A similar pattern is

observed in the development of programs (smart contracts) for Blockchain systems

(e.g., Ethereum). Developers tend to rely on existing default smart contract templates

published on the Blockchain, without having the possibility of upgrading and using

more gas-efficient (gas is the execution fee compensating the computing resources of

miners for running smart contracts) or with fewer bugs alternative implementations.

17

Considering four examples. Selecting an implementation that creates unnec-

essary temporary objects for the program’s workload [7]. Selecting a combination

of Scala data structures that scaled better, reducing execution time from 45 to 1.5

minutes [8]. Avoiding the use of poor implementation, such as those in the Oracle

bug database that leak memory [9]. Selection of under-optimised smart contracts

that cost more gas than necessary, overcharging its creators and users [10].

Optimisation is time-consuming and challenging, especially on large code

bases with multiple conflicting non-functional properties (such as execution time

and memory consumption). Manually optimising non-functional properties, while

keeping the functional behaviour of software is challenging because of the enormous

space of alternative solutions. Optimisation is also brittle. An optimisation for one

version of a program can break or become a de-optimisation in the next release.

Another reason developers may avoid optimisation are development fads that focus

on fast solutions, like “Premature Optimisation is the horror of all Evil" and “Hack

until it works" [11]. In short, optimisation is expensive and its benefits unclear for

many projects. Developers need automated help.

A long-standing goal is to reduce the optimisation cost through automation. We

use recent findings in the area of Search-Based Software Engineering as a generic

technique for automatically finding optimal solutions for the optimisation problems

we define in this thesis. For providing a more scalable and faster framework, we then

focus on a more specific subarea of Search-Based Software Engineering that uses

Genetic Improvement (Section 2.2). Genetic Improvement (GI) is a new direction

for achieving this goal. It has recently received notable awards, demonstrating its

acceptance and success within the software engineering community [12, 2, 13, 14,

15, 16, 17]. GI uses optimisation and machine learning techniques, mainly search

based, to change and improve existing software automatically. This thesis applies GI

to program optimisation and to enable program optimisation. In particular, it focuses

on automatic code optimisations for complex managed runtimes, such as Java and

Ethereum Virtual Machines.

Most of the existing GI-based optimisation approaches rely on the Plastic

1.1. Objectives of the Research 18

Surgery Hypothesis, which assumes that the solutions exist in the code base. How-

ever, good solutions can also be found from external code repositories. To ensure

scalability of their approaches, existing frameworks usually modify programs at

the ‘line’ level of granularity. Recently, finer level modifications (at the ‘parameter’

level of granularity) have shown that better solutions can be found [18]. However,

sometimes optimising in a ‘higher’ granularity level than parameters (for example in

‘data structure’ level or algorithm level) can be more rewarding than just tuning the

parameters.

In this thesis, we investigate how GI can improve existing software by applying

code transformantions in a higher than parameter granularity level; e.g., alternative

data structures or libraries. Our approach introduces solutions not only from the

code base of the subject program, but also from external code repositories. We also

provide automatic code transformation such that GI can be applied in systems that

limit code upgradeability. More specifically, we investigate the usage of search-based

approach for improving automatically non-functional properties (execution time,

memory consumption, CPU usage and gas-consumption) of users’ code and we

show its applicability on multiple languages (Java, C++, and Solidity) and different

managed runtime systems (Java Virtual Machine or Ethereum Virtual Machine).

Next, we provide an introduction to the objectives of this thesis. We then

describe our contributions to the scientific community and provide an overview of

the structure of this thesis.

1.1 Objectives of the Research

The primary objective of this research is to help developers perform optimisations

and automatic code transformations cheaply and efficiently. We aim to provide two

frameworks, one that solves the Darwinian Data Structure Selection and Tuning

problem and one that enables program optimisation on Ethereum Blockchain by

introducing the notion of upgradeable smart contracts. We also want to provide

the foundations of building a third framework that will automatically apply GI to

optimise non-functional properties of Blockchain systems. The detailed goals and

1.2. Contributions 19

objectives of this thesis are as follows:

• Investigate the possibility of automatic extraction of Darwinian Data Structures

and its parameters from large code bases.

• Formally define the Darwinian Data Structure selection and tuning problem

as a search-based optimisation problem and show its generalisability across

different domains and languages.

• Perform a thorough statistical rigorous evaluation of the proposed frameworks.

• Identify existing optimisation limitations of Blockchain systems that provide

managed runtimes for executing user’s code (smart contracts).

• Transform automatically Ethereum smart contracts such that they can be

upgraded, after being published on the Blockchain. This is the crucial first step

that enables program optimisation on Ethereum Blockchain. Thus, allowing

the use of GI and its significant findings to be applied to the Blockchain.

• Propose a new research area of applying GI to improve non-functional proper-

ties of Blockchain distributed systems automatically; e.g., gas consumption,

automatic bug fixing or test generation and prioritisation.

1.2 Contributions
The main contribution of this thesis is the introduction of two novel optimisation

frameworks (ARTEMIS and PROTEUS) that automatically improve the performance

(execution time, memory consumption, and CPU usage) and enable program optimi-

sations for users’ programs with minimal effort. We also provide both frameworks

as open-source services (http://www.darwinianoptimiser.com), allowing

the research community to interact with them. We show how the code optimisation,

a process time-consuming, brittle, expensive with unclear benefits for many projects

can be done automatically using Genetic Improvement.

With this thesis, we extend the existing literature in different ways. First, we

introduced the term “Darwinian Data Structures" and we formalised the Darwinian

http://www.darwinianoptimiser.com

1.2. Contributions 20

data structure selection and optimisation problem DS2. We showed that it is possible

to improve the performance of large code bases automatically by discovering and

optimising sub-optimal parts of the code cheaply, fast and without affecting the

functionality of the system.

To provide evidence to the effectiveness of our framework, we conducted an

extensive empirical study on 43 projects; a) 30 uniformly selected at random projects,

b) 8 popular well-written projects and c) a Benchmark from Dacapo proposed and

accepted by the scientific community. We also used Random Testing to further

test and validate the effectiveness of the proposed framework. For all 43 subjects,

ARTEMIS can successfully find variants that outperform the original for all three

objectives. On extreme cases, ARTEMIS discovered 31% improvement on execution

time, 70.68% improvement on memory consumption, and 78.86% improvement on

CPU usage.

Second, we tackled and provided a solution to the problem of code immutabil-

ity of programs running on distributed environments, such as the Blockchain, by

introducing upgradeable smart contracts. PROTEUS, is the first framework, to best of

our knowledge, that provides automatic transformation of Ethereum smart contracts

such that they can be upgraded after published on the Blockchain. Thus, enabling the

possibility of program optimisation and the application of Genetic Improvement tech-

niques to improve the performance of Blockchain systems. By applying GI on smart

contracts, we can improve the “Gas" consumption on the Ethereum Blockchain by

providing alternative code implementations, similarly to the approach that ARTEMIS

follows. PROTEUS also allows other GI techniques to be applied such as automatic

bug fixing automatic test generation and prioritisation.

A broader usage of PROTEUS on the Blockchain and subsequently, the appli-

cation of GI has the potential to lead to faster contract execution and less number

of duplicate contracts on the Ethereum Blockchain. This means that the size of the

Blockchain will be smaller and the transactions can be processed faster. A smaller

and faster Blockchain has a huge impact on the global energy consumption because

this means that the overall energy consumption of the network is going to be smaller

1.3. Organisation of the PhD Thesis 21

as well; an Ethereum network may contain thousands of nodes across different

countries.

Finally, we provide clear research ideas of how our work can be extended and

the problems that still need to be solved for future work. We also provide information

on how new researchers can start working on their research by using our research

findings and our open-source optimisation frameworks.

1.3 Organisation of the PhD Thesis
Initially, we provide an introduction to the code optimisation problems that this

thesis tries to solve and point out their importance. Then we focus on the literature

review and identify the related scientific work that tried to provide solutions to those

problems and what are their advantages and disadvantages.

We introduce ARTEMIS, a novel cloud-based multi-objective optimisation frame-

work that automatically finds optimal, tuned data structures and rewrites applications

to use them. We describe the system architecture and present experiments that show

how the proposed approach outperforms other provided solutions. Then we focus

on code optimisation on top of Blockchain systems, and we introduce PROTEUS,

a framework that automatically extends the functionality of smart contracts code

written in Solidity. We discuss the evaluation of the generated smart contracts and

conclude by showing how PROTEUS can be used in practice. We further focus on

the Blockchain and present the foundations for a new optimisation framework that

improves the gas consumption of Ethereum smart contracts by automatically trans-

forming their code to use more efficient implementations of costly external libraries.

Finally, we provide a conclusion with the findings of this thesis and potential future

research work.

The structure of the rest of the thesis is organised as follows:

Chapter 2: Literature Review: Briefly surveys state-of-the-art related work in ge-

netic improvement, code optimisation, data structure bloat and Blockchain

technology.

Chapter 3: Darwinian Data Structure Selection: Presents ARTEMIS, a multi-

1.3. Organisation of the PhD Thesis 22

objective code optimisation framework that automatically selects and opti-

mises the data structures of a project. The Darwinian Data Structure Selection

problem is formulated and experiments that show the efficiency of the approach

are presented.

Chapter 4 Upgradeable Smart Contracts: Introduces PROTEUS, a framework

that automatically solves the problem of mutability on Ethereum smart con-

tracts. The architecture of the framework is presented as well as the different

transformation modes that are supported. Finally, the transformation rules are

defined and potential security issues are discussed.

Chapter 5 Conclusions and Future Work: Concludes the thesis with a discussion

on the threats to validity and suggestions for potential future work directions.

Chapter 2

Literature Review

In this chapter, we review the related research areas and findings necessary to

establish a foundation for the research undertaken in this thesis. Our research focuses

mainly on two areas: 1) code optimisation by automatic selection and tuning of data

structures and 2) enabling of program optimisation on programs running on top of

Blockchain through program transformation.

First, we present the literature review related to SBSE and its applicability for

automatic code optimisatiom. We analyse the data structures of the programming

languages (Java, C++, Solidity) that we optimise in this thesis. We then detail the

characteristics of their managed runtimes and how developers’ code practices can

affect the performance (execution time, memory consumption, CPU usage) of a

program. We dive into the Java Virtual machine’s details and show how the usage

of its collection API can affect the performance of a program. Next, we focus on

how to correctly measure the performance of complex programs running on top of a

managed runtime using statistical rigorous performance evaluation methods.

Our research focuses on data structure selection and tuning. To understand why

the optimisation framework selects various data structures against others and how it

tunes them, we need to present the related research work on Data Structure optimi-

sation and code performance improvement (Section 2.3). To evaluate correctly the

performance of the optimised code and the statistical importance of our experiments,

we present the related work on the area of rigorous statistical Java performance

evaluation and various profiling techniques (Section 2.3.4).

2.1. Search-Based Software Engineering (SBSE) 24

Then, we describe the essential characteristics of Blockchain systems, and more

particularly, the Ethereum Blockchain. We investigate the properties of Ethereum

Virtual Machine (EVM) and its programming language (Solidity) and analyse how

they can affect the applicability of automatic code optimisation.

2.1 Search-Based Software Engineering (SBSE)
In Software engineering, we can view many activities as optimisation problems where

the goal is to find better solutions based on one or multiple evaluating functions.

Search-Based Software Engineering (SBSE) [19, 20] is a sub-field that contains that

body of work that uses search-based optimisation algorithms (i.e. Hill Climbing [21],

Simulated Annealing [22], Random Search, Genetic Algorithms [23]) to solve a

software engineering problem. It has been a sub-field of Software Engineering

since 2011 [24] with very successful and generic applicability. Previous work has

applied SBSE in a variety of software engineering problems, such as requirements

engineering [25, 26, 27], software effort estimation [28, 29, 30], performance and

energy optimisation [2, 31], system architecture design [32], software testing [33],

code transplantation [12], bug fixing and maintenance [34].

2.1.1 Requirements Engineering

Requirements engineering is an essential part of the Software Engineering pro-

cess [35]. It refers to the process of defining, documenting and maintaining require-

ments [36] in the engineering design process. A problem that project managers come

during this process is what to select among requirements and how to prioritise them.

The aim is to meet the demands of stakeholders (e.g., minimise the cost of the budget)

and maximise the value of the delivered software product [37] (e.g., maximise the

revenue). We can formulate both the selection and prioritisation of requirements as

search problems. Thus, we can apply SBSE successfully to automatically provide

good and robust solutions which allow more natural adaption of the software process

to requirement changes. SBSE can optimise multiple conflicting objectives and find

solutions that will find a good trade-off between them. As a result, SBSE helps the

project managers to take better and more informed decisions when designing the

2.1. Search-Based Software Engineering (SBSE) 25

next release.

2.1.2 Effort Estimation

When developing software, it is essential for an organisation to predict accurately

the effort required for the project to be delivered under the detailed budget [38,

29]. Underestimation may lead to not successful delivery of the project while

overestimation may lead to unnecessary bigger budget allocation [39, 40]. Existing

research [29, 30, 41, 42] has shown that we can utilise SBSE for the effort estimation

problem. By applying a multi-objective evolutionary approach that tries to maximise

the estimation accuracy but at the same time minimise uncertainty, it is possible

to build more robust estimation models than humans, who tend to provide over-

optimistic estimations [43]. In a similar context, we can apply SBSE for estimating

the cost of a software project. Kirsopp et al. [44] improve the cost estimations by

using search to predict unknown attributes of a project; they search near neighbour

projects that share similar values for the known attributes.

2.1.3 Software Product Line

Another area that we can apply SBSE successfully is the Software Product Line

(SPL) [45]. The idea is to identify and extract differences in features from a given

number of software products that provide some common functionalities. We can

consider SPL problems as complex search optimisation problems because of the large

search space that the high variability of various products (expressed by their feature

models) create. The goal of SPL engineering is to optimally manage the extraction,

analysis, evolution and application of the feature model and the SPL architecture

combined with the products constructed from them [46]. After converting the SPL

problem to an optimisation problem, SBSE can identify such features and combine

them to construct similar software products that can benefit from the commonalities

shared by all features. SBSE finds optimal (or near optimal) choices of products.

SBSE is useful for the SPL problem also because of its multi-objective optimisation

nature; many of the problems need to find a right balance of multiple competing and

conflicting software engineering concerns.

2.1. Search-Based Software Engineering (SBSE) 26

2.1.4 Software Testing

Software testing is a critical component of software development because it provides

information about the quality of the system and how well it is developed to meet the

required specifications. A project may contain various levels of testing, such as Unit

Testing, Integration Testing, Acceptance Testing and System Testing. Because of this

variety of levels of testing and the different requirements, many techniques have been

applied (including SBSE) for generating, executing and verifying tests [47, 48, 49].

The two most popular applications of SBSE in testing involve the optimisation of

the test data generation [50, 51] and the optimisation of the test data selection and

prioritization [52].

Optimising the test data generation is a process difficult and slow because of the

vast search space that the large pool of possible software inputs generates. A good

search strategy is needed to find a combination of inputs that will simultaneously

satisfy specific coverage criteria. SBSE is applied successfully in the test generation

problem because it can find near-optimal solutions in a vast search space.

Optimising test data selection and prioritisation is necessary because sometimes

it is not possible to execute all the given tests of an application. The goal is to select

a set of test cases that achieve the same (or nearly the same) level of test adequacy as

the entire set. SBSE is applied to prioritise the tests and select that subset such that it

minimises the cost of testing while maximising the coverage criteria.

In this thesis, we use Unit Testing and Regression Testing to verify the cor-

rectness of the altered program that the proposed frameworks (ARTEMIS) optimise.

Regression testing is useful as it provides confidence that changes to the source code

do not break the existing behaviour of the program. By using regression testing,

which has been shown to be effective in many software testing practices [53], we

minimise the threat to validity and correctness of a program after the proposed

framework alters it.

2.1.5 Other Areas

Other work has applied SBSE to automatically search for re-factoring solutions that

may improve various code quality metrics, such as readability, efficiency, adapt-

2.1. Search-Based Software Engineering (SBSE) 27

ability and extensibility [54]. SBSE has also been used during the design phase

of software engineering, for architecture design, software clustering and software

re-factoring [55], with different objectives and formulations. Except for software

processes, SBSE has been applied successfully to optimise the software itself. Meta-

heuristic search has been applied to search for optimisation sequences in source

code [56]. Other work used SBSE to parallelise better tasks on supercomputers [57].

Souza et al. [58] studied thoroughly the effectiveness and efficiency of SBSE

and how it compares with human-provided solutions. For different problems such as

next release, test case selection and the work-group formation, those studies showed

the superiority of SBSE solutions. More specifically, professional software engineers

compared the quality between SBSE solutions and human-provided solutions and

showed that the quality of SBSE solutions is, in most cases, better or similar to the

human-provided ones [58]. Also, the SBSE solutions are usually more consistent,

and there is much less effort to obtain them.

2.1.6 SBSE Industrial Applications

All those applications of SBSE have made it mature enough that many industrial

applications have started to appear [59, 60] and other new promising tools are under

open-source development and testing. EvoSuite [61] is a real-world tool, used by

many open-source projects and companies like Google, that automatically generates

test suites, satisfying a coverage criterion for programs written in Java. Sapienz [33]

is another industrial application, used by Facebook, that automatically generates

tests for Android applications. Sapienz generates tests that optimise multi-objective

goals; minimising the length of test sequences while maximising coverage and

fault revelation. µSCALPEL [12] is a tool that aims to automatically migrate one

piece of code from one system into another, entirely unrelated, system (a process

name “software transplantation"). µSCALPEL successfully auto-transplanted the

H.264 video encoding functionality from the x264 system to the VLC media player

automatically, showing that code transplantation is possible and can have wider

adaption. Another tool implemented by Li et al. [25] that handles uncertainty during

the optimisation of the next release problem has been adopted by Microsoft Visual

2.2. Genetic Improvement 28

Figure 2.1: Flowchart of a Genetic Algorithm.

Studio, under closed beta test and has shown promising results. The key strength of

those proposed tools that makes them successful is the fact that they can automatically

solve very complex problems that are difficult to find the exact solution in reasonable

time deterministically.

2.2 Genetic Improvement
Genetic Improvement (GI) is a new area of SBSE that focuses on improving one

or more properties of software by using Genetic/Evolutionary Algorithms [62]. A

genetic algorithm (GA) is a metaheuristic method inspired by the process of natural

selection. Genetic algorithms belong to the larger class of evolutionary algorithms

(EA) and can be applied to solve constrained and unconstrained optimisation prob-

lems. Genetic algorithms can provide high-quality solutions to optimisation and

search problems by relying on bio-inspired operators such as mutation, crossover and

selection [63]. In this thesis, we use genetic improvement to improve the performance

of the software automatically and to scale on larger code bases.

In a genetic algorithm, given a population of candidate solutions (called individ-

uals) to an optimisation problem, the intention is to evolve that population towards

better solutions. Each candidate solution has a set of properties (its chromosomes)

which can be mutated and modified [23]. Typically, the algorithm starts with a

randomly produced population of individuals, which is called a generation. Then,

2.2. Genetic Improvement 29

it evolves the population iteratively (each iteration is a generation) until specific

conditions are met (as shown in Figure 2.1). For every generation, the algorithm

evaluates a fitness function for each individual; the fitness represents the value of

the objective function in the optimisation problem being solved (i.e., the execution

time of a program). The algorithm then stochastically selects the fittest individuals

from the current population and alters them (through mutation or crossover) to form

a new generation. The new generation of potential candidate solutions produces the

population in the next iteration of the algorithm. The algorithm finishes when it finds

the desired solution specified by the user or when it has produced the maximum

number of generations.

Although Genetic Improvement has a long history that traces back to the foun-

dations of computer science, the original explicit usage of Genetic Improvement

term was in 1995 (as surveyed by Petke et al. [62]) by Ryan and Walsh [64], who

used genetic programming to convert serial programs to parallel ones automatically.

The GI area became very popular when Harman et al. [65] introduced the GISMOE

challenge to the research community. With this challenge, the authors noticed the

demand and need in the software engineering area of optimising non-functional and

functional properties of software in a multi-objective setting. They also pointed out

that some SBSE techniques [19] can automatically or semi-automatically fulfill this

demand. Additionally, they noted that GI has the potential for a broad adaption

because of it is generality and adaptability. At the same time, they mentioned open

challenges such as “human in the loop” optimisation and high dimensional Pareto

surfaces visualisation.

GI has had a wider adaption because it can find better solutions in a vast

search space, which comes from relaxing the restrictions on program correctness.

Optimisation of software indicates that some of its aspects should be changed to

improve some functionality and some should remain the same, such that the software

does not work differently. For example, GI may automatically fix a bug but should

guarantee that it does not introduce new bugs because of its changes. To ensure

that the changes in the program do not break any functionality of the original pro-

2.2. Genetic Improvement 30

gram, existing work [66] used only semantic-preserving transformations. However,

semantic-preserving transformations limit the search space and the likelihood of

finding better solutions. Besides, this is not guaranteed always to provide correct

solutions, as Orlov et al. [66] showed; when improving the existing Java bytecode

by using a semantic-preserving crossover, they found out that GI generated faulty

individuals.

We can apply GI successfully with outstanding optimisation results, prominently

in problems that can trade-off constraints on the functional attributes for better

performance. Such an illustration is the GI-modified shader simplification software

that obtained 67% reduction in runtime by having slightly lower image fidelity [67].

Still, such use cases that allow this tradeoff are limited. Thus, we need techniques to

check the preserving of equivalent functionality when making changes to a program.

Most of the empirical work in GI uses software testing to verify if the same

software functionalities remain after applying GI. The concept is that if the set

of test cases is all the possible test cases, then the functional equivalence and test

equivalence is similar. However, this is not possible as the number of test cases

can be unlimited in theory. Thus, most of the current research relaxes the notion

of equivalence to a finite set of test cases. It assumes that if the modified, by GI,

software passes those test cases then the functionality does not change.

Genetic Improvement is not limited to problems that optimise non-functional

properties [68, 69, 70] of software such as execution time, memory consumption,

CPU usage, and energy consumption. It has also been applied successfully to

optimise the functionality or correctness of the software; finding or fixing the bugs

automatically [71, 72, 73]. Most of these approaches rely on the Plastic Surgery

Hypothesis [74], which assumes that the solutions exist in the code base. More

specifically, Plastic Surgery Hypothesis states that we can use fragments that exist

already in the source to construct new code. So, in practice, there is no need to

generate new code, but to effectively cut and paste the code from other parts of the

program.

2.2. Genetic Improvement 31

Figure 2.2: Example of the crossover genetic operation. Sections of trees’ structure of the
selected parents are swapped to create children [1].

2.2.1 Code Representation

The way the source code is represented or how a problem is formulated dictates what

options are available when we apply GI on a program under optimisation. Usually,

developers face a challenge when deciding the format that they will represent the

code because this choice may limit or improve the possibility of finding better

solutions. It is not clear to the developer which representation to follow, and a solid

understanding of the problem is necessary. The most common representations of

source code used when applying GI are: 1) abstract syntax trees, 2) machine code

and 3) patches.

When evolving the source code, developers usually will keep copies of the code

with the changes they want to make and then evaluate it based on the chosen objec-

tive functions. The copies that improve the most the non-functional or functional

properties of interest are given as the final solutions to the problem. Typically, those

changes happen to the abstract syntax tree (AST) representation of the code. Each

node of an AST is either a function with child nodes or a terminal node. GI makes

2.2. Genetic Improvement 32

changes to the AST by changing or rearranging the nodes of the AST (Figure 2.2).

Then it parses back the AST to its source code. A mutation happens by chang-

ing a single node with an equivalent node that preserves the syntax. Syntactically

equivalent nodes have the same input (from children nodes) and output (to their

parent nodes) data types. A crossover occurs when two or more nodes are rearranged

together to form new nodes; in the simplest case, a crossover selects a node in both

branches of the AST and swaps them (Figure 2.2).

Other work has used GI to evolve programs represented directly as machine

code [66, 75]. Orlov et al. [66] evolved the programs directly in their Java bytecode

format, without any intermediate representation. Their approach relies on the notion

of compatible crossover, which provides correct programs by conducting compati-

bility checks on the source and target bytecode sections. By evolving sequences of

annotated bytecode, they claim that they can apply more straightforward crossover

operators than using branches or types. Schulte et al. [75] also applied GI to soft-

ware represented as assembly code to repair defects while maintaining the desired

behaviour. They illustrated their approach on Java bytecode and x86 assembly repre-

sentation of programs that target embedded software; the aim is to optimise energy

and memory efficiency. They evolved the programs by permutating, erasing and

repeating the set of instructions in the compiled code, which each represents a single

statement from the source code. They also stated the benefits of assembly-level

repair over source code level repairs and pointed out the ability to repair applications

written in multiple different languages, and the ability to repair bugs that were before

intractable, even on non-trivial programs.

Applying GI to improve the software may cause many code changes, and

sometimes the optimisation process may be slow and not scalable. That is especially

true when GI uses the complete program representation because it generates a huge

search space. Thus, in most cases, it cannot scale to more extensive programs.

Typically, just a few changes to the software may improve the software significantly.

Much work focused on how GI can converge and try to find solutions only on pre-

defined parts of the code, minimising the number of statements that it needs to search.

2.2. Genetic Improvement 33

Essentially, GI can follow a process to evolve a program which is similar to the

approach developers follow to produce patches. Developers usually provide patches

with small fixes on particular functionalities of the code. By applying such evolving

patches to software, we only need to keep a single copy of the original program,

resulting in significant memory reduction. Accordingly, GI can apply automatic

patch fixing, a method which is called Patch-Based Genetic Improvement.

Barr et al. [74] claimed that we could further improve the optimisation process

by using existing code bases to generate many such patches automatically. Gen-

Prog [76] followed such a patch-based approach, instead of a full AST representation.

They represent patches as a sequence of edits to the AST, where each edit is a tuple

consisting of an operation and node numbers. When estimating the cost of automatic

bug fixing on the cloud, the authors observed that ASTs copies of the code that had

the bugs fixed were of much bigger size than human-written patches and also very

memory consuming; 1.7 GB for each node in the cloud. In their experiments, the

human-written patches were no more than 50 lines, meaning that two variants were

identical in all other parts of the code except those 50 lines.

There is a diverse collection of applications that have used Genetic Improvement.

Examining the genetic improvement approaches used in those applications, we

categorise them into the three following categories: a) Parameter tuning for software

improvement, b) genetic programming and c) patch-based genetic improvement, etc.

2.2.2 Search-Based Parameter Tuning

Another area of SBSE that has attracted much attention is the Search Based Parameter

Tuning. The idea is that, usually, software systems come with various parameters

exposed which can be tuned to improve the system’s performance for different

evaluation metrics. Manually finding those parameters is a time-consuming process

with no guaranteed results because of the huge number of combinations that the

developer has to try. Hence, we can improve the system’s performance by searching

for the optimal values of those parameters automatically. To further enhance the

performance of the system and identify optimisation opportunities, researchers

applied several techniques to discover more implicit parameters and tune them

2.2. Genetic Improvement 34

altogether.

Previous work has applied successfully automatic parameter tuning to com-

pilers. Parameter tuning can be applied relatively easily to a compiler because it

provides a well-defined set of parameters/flags and their selection/tuning can have

immediate performance results. Depending on the objective functions that we want

to optimise and the hardware that our application runs, we may choose a specific

set of parameters. For example, we may choose a set of parameters that minimises

power consumption, when compiling the application to run on embedded systems;

similarly to the action that Apple took to deliberately use different optimisation

settings for applications running on older phones [77, 78].

Manually finding a right combination of such parameters is a time consuming

and laborious task for the developer because of the large number of parameter settings

that compilers provide. For example, GCC has at least 54 different optimization

techniques that have been implemented into the compilation routines [79]. This

yields 254, or nearly 1015 different possible settings. Thus, automatic and efficient

solutions are necessary. Stephenson et al. [80] used evolutionary algorithms to

search the space of compiler heuristics automatically. They obtained an average

speedup of 23% (up to 73%) for the applications in their test suite. Furthermore,

they created useful generic heuristics by evolving a compiler’s heuristic over several

benchmarks. Boussaa et al. [81] introduced NOTICE, a framework that achieves

optimal performance by automatically tuning compiler optimisation options based on

user-specified properties. The proposed framework uses multi-objective optimisation

techniques to provide solutions with trade-offs between various non-functional

properties.

Automatic parameter tuning has also been applied extensively to enhance the

performance of Machine Learning models [82, 83, 84, 85]. Tantithamthavorn et

al [86] used automated parameter tuning techniques to improve the performance of

their Machine Learning algorithms. They managed to improve by 40% the ability of

their application to discover faults. Lam et al. [82] tuned both the parameters and the

structure of neural networks by using an enhanced version of a genetic algorithm;

2.2. Genetic Improvement 35

they implemented a faster version of GA by using a representation with floating-point

numbers instead of binary numbers. Tsai et al. [87] also tuned the parameters and

structure of a neural network by introducing a new hybrid Taguchi-genetic algorithm

(HTGA). HTGA approach combines the traditional genetic algorithm (TGA), which

has a robust global search capability, with the Taguchi method [88], which can

utilise the optimum offspring. Both methods showed, by being tested on a sunspot

forecasting application, that the proposed neural networks trained with the proposed

GA provide better results than those of traditional feed-forward neural networks,

regarding accuracy (fitness values).

Other work [68, 89, 90, 91, 92] showed how parameter tuning can be used to

automatically improve the energy consumption of applications. Schulte et al. [89]

introduced a general post-compilation approach called Genetic Optimisation Al-

gorithm (GOA), which aims to improve measurable non-functional properties of

programs that compile to x86 assembly. Their algorithm combines meta-data from

profile-guided optimisation, evolutionary computation and mutational robustness

and searches for program variants that retain the required functional behaviour while

improving non-functional behaviour. They evaluated their proposed framework on

eight benchmark applications and achieved 20% less energy consumption on average

while 7 out of 8 benchmarks retained the required functional behaviour. Bruce

et al. [68] used GI to provide more energy efficient mobile applications. More specif-

ically, they reduced energy consumption by up to 25% by using GI to automatically

find more energy efficient versions of the MiniSAT Boolean satisfiability solver for

three applications.

Often, tuning the parameters exposed by a system does not provide the desired

performance improvement. Hence, much work has focused on discovering and

extracting implicit parameters from the programs under optimisation and expose

them as tunable parameters. We can then use search-based techniques to tune both

the explicit and implicit parameters.

The Software Tuning panel for Autonomic Control (STAC) [93] identified and

extracted a limited number of implicit parameters by using transition flows of the

2.2. Genetic Improvement 36

Figure 2.3: Selected mutation operators by Deep Parameter Optimisation framework [2].

program that were also similar for the shallow parameters. STAC was not fully

automatic as it requires initial human effort to characterise shallow parameters. Also,

it was limited as it can find only a subset of deep parameters automatically.

Hutter et al. [94] tuned both explicit and implicit parameters of the SPEAR

SAT solver. They exposed almost all tunable variables possible, and, they created a

huge search space. However, exposing every possible parameter means that some

of them may not provide any performance benefits when tuned. Their approach,

in the current form, has scalability limitations and to overcome that we need to

exclude some of those parameters. One commonly used approach to eliminate such

parameters is sensitivity analysis.

Hoffmann et al. [95] used parameter tuning to improve output quality and

non-functional properties of applications, whose behaviour changes based on the

input workload; a quite typical scenario for many dynamic applications nowadays.

They fed their application with various datasets and tuned their parameters based on

those datasets. They proposed PowerDial, a framework that traces the Pareto-best

candidates produced during this training process and interchanges them respectively

during the application running. For instance, if for some reason there is a resource

shortage, the application dynamically selects another set of parameters (from the

Pareto-best ones) that can decrease the quality of the output but simultaneously

enabling the application to run and not crash.

Wu et al. [18] proposed the Deep Parameter Optimisation approach, a mutation-

2.2. Genetic Improvement 37

based method [96] that automatically exports “deep” parameters from the program

under optimisation, leading to a stream of research work in this area [97, 98, 99, 100,

101, 102, 103]. The proposed framework identifies a number of constant definitions

in the source code and turns them to tunable parameters. Those constant definitions

are usually fixed-numerical values that either the developers pick randomly or by

applying some domain knowledge; ’magic numbers’ as named by White et al. [104].

The constant definitions are not restricted to primitive data types [105]. Wu et

al. [18, 106] added nine C and Java fundamental operator classes (Figure 2.3)

to increase the number of exposed tunable parameters. To deal with the huge

search space and the scalability constraints, Wu et al. [18] applied a mutation-based

sensitivity analysis to automate the process of finding candidate deep-parameters

fully. They next applied NSGA-II to seek for optimal values for those parameters

that balance the non-functional properties of interest.

Though the idea of exposing additional tunable parameter is similar to our

proposed framework, ARTEMIS, their approach did not optimise data structure

selection, which can sometimes be more rewarding than just tuning the parameters.

Moreover, they applied their approach to a memory management library to benefit

that library’s clients. The extent of improvement usually depends on how much a

program relies on that library. In contrast, ARTEMIS directly applies to the source

code of the program, making no assumptions about which libraries the program

uses, affording ARTEMIS much wider applicability. Also their approach relies on the

Plastic Surgery Hypothesis [74], which assumes that the solutions exist in the code

base. Our approach, on the other hand, does not rely on the hypothesis but relies

on a set of transformation rules. Our approach can automatically generate these

transformation rules from the library code or library documentation exhaustively,

therefore the approach guarantees a comprehensive set of transformation rules.

In other work, Manotas et al. [31] extracted implicit data structure parameters

and later tuned them to improve the energy consumption of Java applications. Bruce

et al. [107] exposed deep parameters to improve face detection software that used

the Viola-Jones algorithm in OpenCV, by allowing a trade-off between execution

2.2. Genetic Improvement 38

time and classification accuracy. Their results showed that execution time could

be decreased by 48% if a 1.80% classification inaccuracy is allowed (compared to

1.04% classification inaccuracy of the initial, unmodified algorithm).

2.2.3 Improvement using Genetic Programming

Many of the work in the Genetic Improvement focuses on automatic source code

modifications of the software with the intent to enhance functional and non-functional

properties of it. The usual process followed is that we represent the source code

in a more understandable and structured format such that we can modify it easily

and quickly. Next, we apply Genetic Programming (GP) to guide the selection

and creation of code variations. GP can be considered as a hyper-heuristic [108]

search methodology. It searches in the space of program variants, and it composes

functions or models that solve specific problems that depend on input test cases. The

usage of Genetic Programming is essential to address scalability problems that other

approaches such as exhaustive search face when the search space is huge.

Langdon et al. [109] noted how Genetic Programming could be used success-

fully to many real-world problems such as machine learning and image processing

benchmarks, and program quality improvement while reducing their size. Besides,

they presented experiments and revealed how to speed up the search for optimal

solutions, by choosing as a seed the current version of the program. They also

demonstrated that, in some use cases, a small set of test cases could be good enough

to generate the optimal solutions.

Other work has used Genetic Programming for bug fixing. Gao et al. [110]

automatically detected and repaired bugs associated with memory leaks. They mod-

elled the memory behaviour (trace memory allocations and usage) of the program by

expressing it as a Control Flow Graph. This simplified representation of the program

was suitable for this optimisation problem as the focus was only on memory leak

related bugs. They assessed their approach on 15 benchmarks that contained memory

leaks. They identified 89 memory leaks and managed to fix 28% of them automat-

ically. Goues et al. [76] also researched the bug fixing problem and introduced a

more generic approach. They represented the program as an array of statements and

2.2. Genetic Improvement 39

did not adopt the simplified Control Flow Graph representation. They used Genetic

Programming for searching the space and guided the bug fixing process by using

test cases. After the GP finds a solution (bug fix), they apply a post-processing step

(by using a hill-climbing clean-up process) to remove the unnecessary changes to

the code.

White et al. [111] used a multi-objective GP algorithm to produce both energy

efficient and good quality pseudo-random number generators. In their experiments,

they revealed that only 1/4 of the test cases is enough to generate the Pareto-optimal

solutions of their optimisation problem.

Arcuri and White et al. [112, 113] showed that extra techniques, combined with

a good seed to guide the search, can be applied to improve the optimisation process

of multi-objective algorithms. They recommended the usage of co-evolved test

cases to support the maintenance of the programs’ semantics. They evaluated their

proposed approach on 8 benchmarks and showed how they succeeded to discover a

non-trivial optimisation that compilers did not find. Arcuri et al. [112, 113] used the

same approach of co-evolution for bug fixing. They used genetic programming to

evolve a buggy program simultaneously with a set of test cases. The authors claimed

that this strategy has no restrictions on the type of bugs that it can fix, under the

assumption that the input comes with the source code and a formal specification.

2.2.4 Patch-Based Genetic Improvement

Ackling et al. [114] applied GI to transform buggy applications and produce patches.

Before the evolutionary optimisation process begins, the genetic algorithm takes

as input a modification table with the possible permitted modifications on the AST

representation of the program. They use this guided evolutionary process to generate

patches, and next they evaluate them on a set of predefined test cases. In their

evaluation, they showed that this approach is much quicker in finding patches than

random search; the found patch fixes contained only 1 to 8 alterations on average

Langdon et al. [115] used a similar approach to automatically improve the

execution time of complex systems with large code bases. They represented the

program as an array of statements, rather than using a predefined table with possible

2.3. Data Structure Selection and Tuning 40

modifications on the AST representation. They performed simple modifications on

the program such as plain inserts, deletes or swapping of statements. They further

used a hill climbing process for removing unnecessary changes to the code after the

optimisation process finished. In their evaluation, they presented impressive results.

Not only their optimised program was 70 faster than the initial one, but also they

achieved small semantic improvements.

Petke et al. [116] likewise used code from other SAT solvers (code donors) to

obtain a SAT solver that will tackle a specific class of problems. They also noted that

GI could automatically improve the code faster than a developer that would provide

the best possible code improvement. Plus, they showed that growing the code base

affected the final improved version of the SAT solver positively. Bruce et al. [68]

used a similar strategy to evolve patches that improve both the execution time and

energy consumption. Their evaluation on three medium size programs showed 25%

improvement in the energy consumption.

2.3 Data Structure Selection and Tuning

In this thesis, we concentrate on improving the performance (execution time, mem-

ory consumption and CPU usage) of programs, by utilising search-based software

engineering techniques. More specifically, we focus on enhancing the performance

of programs by optimising the process of selection and tuning of their data structures.

Hence, we initially describe the essential properties of data structures that affect

the most the performance of a program. Then, we present the approach that one

should follow to measure correctly the different measures of the program and how to

conduct statistical rigorous experiments.

Nowadays, the memory available to the runtime of a programming language

has increased significantly; a program can have access to Giga bytes of memory.

Programs store a massive amount of data directly in their memory space through

the use of data structures. For instance, a program may store the most frequently

accessed data in a large cache in memory; usually implemented by a map or set.

Handling such notable amounts of data indicates that the program will spend a

2.3. Data Structure Selection and Tuning 41

significant amount of resources on data management. When investigating what

influences the performance of numerous programs written in Java, C#, C++ or other

programming languages, we observed that the data structure types and their particular

implementations were a vital factor.

The amount of available memory and the approach used to store and access

those data affects the performance of an application profoundly. Less memory

available to the application may impact its speed negatively. If the application

has limited memory and wants to access a significant amount of data, then it will

spend much time in reading and writing data from the disk; the disk is slower than

accessing data from memory. In other cases, the application may allocate a large

amount of memory, but may not use it and thus it remains unutilised, not allowing

other applications that could benefit from using it. Hence, we need to find a proper

trade-off between memory consumption and other requirements, such as execution

time.

Nearly every modern programming language provides the developer a collection

framework library with abstract data types for handling groups of data (e.g., Lists,

Maps, Trees), hiding the details of the underlying data-structure implementation.

Typically, the collection framework is abstract, well-defined, and it gives the de-

veloper the possibility to choose the appropriate collection implementation and its

default parameters. Finding the appropriate collection and its parameters for every

occurrence in the code is a difficult, laborious and often infeasible task [117, 118].

A large number of collection occurrences in programs and its significant number of

different parameters construct a big search space.

Manual exploration of the search space is time-consuming and challenging with

no guaranteed results. This task is considered even more difficult because of the

complexity of understanding what and how a data structure implementation and

its parameters affect the performance of the application. Often, the developer’s

assumption about the advantages of one implementation over the other can be

misleading and point to inefficient choices, even in cases that the developer has

domain knowledge. Thus, developers need help so they can have access to insights

2.3. Data Structure Selection and Tuning 42

about the performance impact of their data structure selections as well as automatic

help for better selection and tuning.

2.3.1 Java Virtual Machine

To demonstrate how we can improve the performance of a program using GI through

ARTEMIS, we used applications written in Java, as it is a language that provides a

well-defined set of collections with the most commonly used data structures. Hence,

for the rest of this chapter, we will analyse the most common characteristics of

collections that affect the performance of applications written in Java. These collec-

tions, such as ArrayList, HashMap and HashSet, are known as the Java Collection

Framework (JCF).

Java is a general-purpose, object-oriented programming language which was

designed with the primary goal to be platform independent. A Java program is

compiled to Java bytecode and can run on different platforms, without the need of

re-compilation. The compiled bytecode is executed on top of a Java Virtual Machine

(JVM), which provides operating system style functionalities. Example of such pro-

vided functionalities are memory management through garbage collection, automated

exception handling, synchronisation, threading and just in time compilation.

Java was initially considered a slow programming language, when compared to

languages that compile to native code, but eventually gained a lot of performance

improvement with the introduction of Just-in-time compilation (JIT) and other

dynamic-based performance optimisations. By using the JIT compiler, the Java

Virtual Machine continuously analyses the code being executed and identifies the

hottest parts (such as function calls or loops) of the code. It then compiles those

parts to native code when the speedup that the compilation provides outweighs the

overhead of compiling that code. After the JIT compiler has recompiled the code, it

usually runs faster within that specific platform.

Identifying how data structures affect the performance of a program becomes

very challenging when it runs on a complex managed runtime environment, such

as the Java Virtual Machine (JVM). JVM performs various complex optimisations

and features which are not obvious to the developer. Thus, there are a number of

2.3. Data Structure Selection and Tuning 43

sources of non-determinism in JVM (e.g., JIT, thread scheduling, garbage collection)

that affect the overall performance of a program and make it difficult to properly

benchmark it; in contrast to compiled programming languages such as C++ with

more stable performance. Hence, it may sometimes not be apparent to the developer

how a particular code that he/she wrote affects the performance of the program.

Because of this lack of easy understanding of the performance impact that data

structures have, developers tend to use only a subset of the available data structures

that they feel familiar with. Also they use data structures that are considered to work

well in most general use cases, without however thinking the potential benefits that

other data structures can have. In real-world Github open-source applications (as we

describe in Section 3.4), we noticed the extensive usage of one implementation over

the others; e.g., ArrayList, which is considered to work very well in most cases,

has a much bigger use when compared with LinkedList. We observed that there

are many optimisation opportunities by using other data structures and by tuning

their parameters which are neglected or not discovered.

2.3.2 Java Collection Framework

The Java collections framework (JCF) is a set of classes and interfaces that im-

plement commonly reusable container-like data structures [119]. The framework

(Figure 2.4) contains a) interfaces: abstract data types that represent collections,

b) implementations of the collection interfaces and c) polymorphic algorithms: for

useful computations on objects that implement collection framework; e.g., sorting,

searching, composition, shuffling and so on.

Collections do not need to be assigned a certain capacity when instantiated,

since they come with some default values; e.g., the initial size of an ArrayList is

10. However, most collections provide parameters that allow the developer to change

the default capacity value. A collection can grow and shrink in size automatically

when items are added or removed; e.g., an ArrayList will increase its size by 1.5 if

the number of items exceeds the available pre-allocated memory.

There are 4 main types of Java collections available List, Map, Set and Queue

(Figure 2.4). For each of those data structures there exist usually more than one

2.3. Data Structure Selection and Tuning 44

Figure 2.4: Java Collection Framework.

available implementation under the corresponding interface; e.g., for the List data

structure, the developer can use either an ArrayList, a LinkedList or a Vector.

Some of the implementations are thread-safe (e.g., Vector) and some are not (e.g.,

ArrayList). Some of them store data sorted (e.g., TreeMap) and some do not

contain duplicate elements (e.g., TreeMap).

2.3.3 Tradeoffs in Collection Implementations

Choosing a suitable collection implementation is a process that needs careful analysis

and understanding of the internal details.

Time Usually developers choose a collection based on the asymptotic time

complexity of the operations on them. In most cases, this approach works for large

datasets, but it is not a good measure when the collection contains a small number

of items. For small sizes, the constant values matter [118]. Also, using only the

asymptotic cost is not enough because the performance of a collection depends on

other factors such as the data locality of items (as shown in Figure 2.5), the cost

and the approach used to increase or decrease its size, the cost of computing a hash

2.3. Data Structure Selection and Tuning 45

<Integer> <Integer> <Integer> <Integer>
List

0 1 2 3

Reference

4 bytes 4 bytes 4 bytes 4 bytes

4 bytes 4 bytes 4 bytes 4 bytes

int int int int

Figure 2.5: Memory layout of an ArrayList with integers for a 32-bit JVM.

function etc.

Memory Consumption Collections differ significantly between them also on

the space that they consume and the data they store. In Java, all data are stored in

collections as references to objects. Thus, someone has to calculate not only the size

of the data itself but also the additional space consumed by the reference (e.g., extra

4 bytes for each entry in an ArrayList) to estimate the memory consumption of the

implementation that wants to choose. In Figure 2.5 we see the memory layout of

an ArrayList implemented in Java. Except for the apparent increase in memory

because of using references instead of accessing data directly, there is an additional

time overhead as well. This overhead comes from the need of converting primitive

types into objects and the reverse and the extract step for accessing data through

references and not directly. In our example, if the developer chooses a LinkedList

instead, each object stores a reference to the actual element, and two references to

the next and previous entries in the list adding extra memory overhead (2∗4 bytes

for each entry stored).

Time/Memory Tradeoff It is significant to mention that when choosing an im-

plementation of a particular collection, there is usually a tradeoff between execution

time and memory consumption. For example, we can initially define an ArrayList

2.3. Data Structure Selection and Tuning 46

Figure 2.6: When an ArrayList is used with default parameters, it allocates memory for
10 entries.

with large size, such that we do not need to resize it when we insert new data. This

way we can improve the execution time, but we will waste potentially much memory;

e.g., in Figure 2.6 space for 10 entries is pre-allocated, but we insert only three items

in the ArrayList. On the other hand, we can pre-allocate less memory, but that will

impact the execution time negatively because of the need to dynamically resize each

time the ArrayList is full. Similarly, selecting a LinkedList over ArrayList

would save memory space but would make update operations slower.

2.3.4 Empirical Rigorous Performance Evaluation

Our optimisation framework, ARTEMIS, supports multi-objective optimisation and,

more specifically, aims to optimise execution time, memory consumption and CPU

usage. Getting correct measurements for those objectives affects the optimisation

process significantly. Usually, one of the main concerns when benchmarking Java

applications is on how to do the benchmark correctly, because there exist non-

determinism at run-time and many factors that affect performance, as we mentioned

previously in Section 2.3.1.

A lot of research work [120, 121, 122, 123, 124, 125] has pointed out the

difficulty of quantifying correctly managed runtimes. More specifically, recent

work on Java performance benchmarking [126, 127] pointed out the significance

of conducting a careful, well-chosen and well-motivated experimental design. The

authors also mentioned that results presented in every Java performance study are

subject to the available benchmarks, the implementation of the Virtual Machine, the

hardware and their benchmark inputs. Thus, when reporting performance results,

we need to appropriately describe the exact details of how we obtained them and

follow suggested research methodologies. Otherwise, the results that we report may

present a skewed view. Mytkowicz et al. [120] presented such surprising skewed

2.3. Data Structure Selection and Tuning 47

results by showing that systems researchers can easily make the wrong conclusions

from an experiment and introduce measurement bias because of seemingly harmless

aspect in the experimental setup. They further pointed out the significance of such

measurement bias in leading to a performance analysis that may present wrong

conclusions and how the existing research papers (survey of 133 recent papers)

ignore and do not report measurement bias.

There exist several performance benchmarking methodologies used in the many

research papers that try to provide robust benchmark methodologies to address

the issues mentioned previously [3, 126]. Some of them suggest to run the same

experiments for many executions and report mean and median confidence intervals

and effect sizes. Other methodologies report the best performance and some other

report the worst. In some experiments the same experiment is run multiple times

within a single VM invocation in some others they include for every experiment a

VM invocation as well.

2.3.5 Data Structure Optimisation and Bloat

A body of work [128, 117, 129, 130, 131, 132, 103] has attempted to identify bloat 1

arising from data structures. In 2009, Shacham et al. [118, 133] introduced a semantic

profiler that provides online collection-usage semantics for Java programs. They

instrumented Java Virtual Machine (JVM) to gather the usage statistics of collection

data structures. Using heuristics, they suggest a potentially better choice for a data

structure for a program. Though developers can add heuristics, if they lack sufficient

knowledge about the data structures, they may bias the heuristics and jeopardise the

effectiveness of the approach. Also, the proposed approach is specific to the JVM

the authors use, meaning that this approach is not transferable to other non-JVM

programming languages.

The proposal of this thesis, ARTEMIS directly uses the performance of a data

structure profiled against a set of performance tests to determine the optimal choices

of data structures. Those performance tests are selected from a well accepted

1A program is bloated when execution time and memory consumption is high compared to what
the program actually accomplishes.

2.3. Data Structure Selection and Tuning 48

performance benchmark (Dacapo) and from a set of randomly selected Github

projects that follow ARTEMIS’s constraints. Therefore, ARTEMIS does not depend

on expert human knowledge about the internal implementation and performance

differences of data structures to formulate heuristics. Instead. ARTEMIS relies on

carefully-chosen performance tests to minimse bias. Furthermore, ARTEMIS directly

modifies the program instead of providing hints, thus users can use the fine-tuned

program ARTEMIS generates without any additional manual adjustment.

Other frameworks provide users with manually or automatically generated

selection heuristics to improve the data structure selection process. JitDS [134]

exploits declarative specifications embedded by experts in data structures to adapt

them. CollectionSwitch [135] uses data and user-defined performance rules to select

other data structure variants. Brainy [136] provides users with machine learning

cost models that guide the selection of data structures. ARTEMIS does not require

expert annotations, user-defined rules or any machine learning knowledge. Storage

strategies [137] changes VMs to optimize their performance on collections that

contain a single primitive type; ARTEMIS rewrites source code and handles user-

defined types and does not make VM modifications.

In 2014, Manotas et al. [31] introduced a collection data structure replacement

and optimisation framework named SEEDS. Their framework replaces the collection

data structures in Java applications with other data structures exhaustively and

automatically select the most energy efficient one to improve the overall energy

performance of the application. Conceptually, ARTEMIS extends this approach to

optimise both the data structures and their initialization parameters. ARTEMIS also

extends the optimisation objectives from single objective to triple objectives and

used Pareto non-dominated solutions to show the trade-offs between these objectives.

Due to a much larger search space in our problem, the exhaustive exploration search

that used by SEEDS is not practical, therefore we adopted meta-heuristic search.

Furthermore, ARTEMIS directly transforms the source code of the programs

whilst SEEDS transforms the bytecode, so ARTEMIS provides developers more

intuitive information about what was changed and teaches them to use more efficient

2.3. Data Structure Selection and Tuning 49

Figure 2.7: An instance illustrating the problem of reporting misleading metrics: the ’best’
method is shown on the left and the empirical rigorous method is shown on the
right (Figure borrowed from [3]).

data structures. Moreover, ARTEMIS can be more easily applied to other languages

as it does not depend on language specific static analysers and refactoring tools such

as WALA [138] and Eclipse IDE’s refactoring tools. In order to support another

language we just need the grammar of that language and to implement a visitor

that extracts a program’s Darwinian data structures. We note that ANTLR, which

ARTEMIS uses, currently provides many available grammar languages 2.

Apart from the novelties mentioned above, we conduct the largest empirical

study to our knowledge compared to similar work. In the studies mentioned above,

only 4 to 7 subjects were included in the experiments. Our study included the

DaCapo benchmark, 30 sampled Github subjects and 8 well-written popular subjects

to show the effectiveness of ARTEMIS, therefore our results are empirically more

meaningful. We also applied ARTEMIS in C++.

To mitigate instability and incorrect results we followed state of the art evalua-

tion methods [3, 139, 140, 141]. Initially, as those methodologies suggest, before

we run the experiments, we differentiate VM start-up and steady-state. We run each

experiment for 30 runs, and we compute effect sizes and mean and median interval

confidences; reporting best or worst values may be misleading as the example in

Figure 2.7 shows. We followed all the suggested techniques and methodologies to

2https://github.com/antlr/grammars-v4/

https://github.com/antlr/grammars-v4/

2.4. Blockchain 50

Figure 2.8: Blockchain is a chain of blocks of transactions linked by hash pointers.

guarantee that our results are robust and correct and our methodology is statistically

rigorous.

2.4 Blockchain
In this section, we focus on the related research findings regarding the Blockchain

technology. We give an introduction to the most popular Blockchain platform

(Ethereum [142]) that allows developers to build decentralised applications. We

describe Ethereum Virtual Machine (EVM) and its execution model. We then

introduce Solidity, a high-level Javascript-like language to write applications (smart

contracts) that run on top of EVM. We discuss the current characteristics of Solidity

that limit the applicability of automatic search-based optimisation techniques. We

then present the notion of Gas which is a unit used for paying miners for executing

code in Ethereum. Finally, we discuss how search-based techniques can be used to

minimise the amount of gas a smart-contract consumes. Then, we point out how

significant impact such optimisation can have in an open, decentralised network,

with thousands of nodes, which consumes a vast amount of electricity.

In recent years, Blockchain technology has become very popular as the de-

centralised technology used in Bitcoin [143] and other cryptocurrencies. Industrial

sectors, led by the Financial sector, realised that they could use the Blockchain tech-

nology for diverse applications far beyond cryptocurrencies. In academia, Blockchain

attracted interest because of the research problems that arise when having a single

real-world system that combines so many different research areas, such as cryptog-

raphy, distributed database management, programming languages and economic

2.4. Blockchain 51

Figure 2.9: Transaction Example: In blockchain, an account with a key pair (public key and
private key) is representing a wallet for submitting transactions.

incentives.

Bitcoin is the first real-world public implementation of Blockchain with signifi-

cant success. Bitcoin was first proposed in 2008 [143] on the cryptography mailing

list at metzdowd.com by an anonymous author called Satoshi Nakamoto. The de-

scribed Blockchain by Nakamoto is a continuously growing public distributed ledger

that stores committed transactions (see Figure 2.9) in a chain of blocks (Figure 2.8).

The main characteristics of the Blockchain technology are: persistent data (once

data are written in the Blockchain they cannot be removed or lost), decentralised

environment (any user can join the network), audibility (chain blocks include all

history of transactions) and anonymity (users participate in the network by using

private and public key cryptography). To allow transactions take place in a decen-

tralised environment with no trusted authorities, Blockchain uses several essential

technologies such as asymmetric cryptography for digital signatures (a user wallet

consists of a public and private key), cryptographic hashes, and distributed consensus

mechanisms (Proof of Work, Proof of Stake).

Apart from cryptocurrencies, Blockchain has been used (or is under develop-

ment to be used) in various services such as digital assets (store and track diamond

purchases on the Blockchain), energy trading (connect energy grid with a Blockchain

grid for payments), automotive industry (cars connected into a Blockchain can auto-

matically pay toll fees) and other online payments use cases [144, 145, 146, 147].

Additionally, Blockchain is considered a promising technology for the Internet in-

metzdowd.com

2.4. Blockchain 52

Figure 2.10: Cryptocurrency Market Capitalisation. Source: www.coinmarketcap.com,
27/10/2017.

teraction systems of the future, such as smart contracts [148], public services [149],

Internet of Things (IoT) [150, 151] and health services [152].

The most popular Blockchain product (October 2017), as we mentioned previ-

ously, is Bitcoin with tremendous success (capital market of 91-92 billion dollars

in October 2017 according to coinmarketcap3). Then Ethereum [153] was intro-

duced as the first successful public implementation of a Blockchain that supports

programmable Smart Contracts and a capital market of 28 billion dollars in October

2017. The hype continued with other public products that leverage the Blockchain

technology, such as Monero [154], ZCash [155] that provide anonymous transactions,

Ripple that aims to become the cryptocurrency that financial institutions will use

to do payments and IOTA [156], a product that connects Internet of Things devices

using a distributed network. Figure 2.10 shows other popular public Blockchain

projects. Last but not least, there exist some commercial products that aim to provide

private Blockchain solutions such as IBM Hyperledger [157], R3 Corda [158] or

Ethereum Alliance.

Technically, a Blockchain is a distributed peer-to-peer shared ledger (fully

3 https://coinmarketcap.com

www.coinmarketcap.com
https://coinmarketcap.com

2.4. Blockchain 53

replicated between all participants or so-called miners) that allows transactions

between several members in a verifiable and permanent way [143, 153], without the

need of a trusted third party, e.g., banks, credit card companies, etc. The Blockchain

maintains a consistent view in a secure and fault-tolerant way in a permission-less

environment accessible to everyone. Users smoothly join and leave the system

without having any global knowledge of the number of participants and yet the

Blockchain network operates smoothly.

Users communicate with the Blockchain through transactions which are verified

and accepted by its miners. The term “transactions" implies that either that completes

and is accepted as part of the Blockchain or not done at all. An accepted transaction

in the Blockchain is immutable, and no other transaction can modify it. Every

transaction is always cryptographically signed by the sender (creator), ensuring that

only the participant holding the keys can make such a transaction. Conceptually, we

can consider Blockchain as a transaction-based state machine, and each transaction

updates its state.

In a database context, we can see a Blockchain as a distributed database where

each node has a full copy of the data and transactions happen using cryptographic

methods; instead of using some sql-like query language. Miners are continually

monitoring the transactions broadcasted in the peer-to-peer network, pick a number

of them and construct a block of transactions which they then propose for inclusion

in the shared ledger. Each block contains a list of transactions and some metadata,

such as timestamp, a Merkle hash of the transactions, the hash to the parent block.

If all other miners accept a miner’s block, then it is added in the Blockchain, and

usually, the miner gets a reward.

2.4.1 Consensus Layer

A consensus protocol includes the rules that determine how to add a block in the

Blockchain and how to reward miners. The Bitcoin and Ethereum blockchain use

the proof of work consensus protocol, in which a miner has to solve a puzzle before

suggesting a block in the Blockchain. The lead miner announces the block to all

other miners. Other miners verify that the proposed block follows specific predefined

2.4. Blockchain 54

rules and constraints, e.g., preventing “double spending". If the block is valid, then

miners include it in their copy of the Blockchain. To resolve issues where blockchain

splits into multiple chains, miners follow the chain with the longest length.

Most of the existing Blockchain systems rely on the proof of work (PoW) [159]

consensus mechanism. PoW works by providing each peer voting rights based on

their “computing power", by solving proof of work puzzles and building the relevant

hash blocks. In Bitcoin, the PoW requires the brute-force finding of hash-value that

has specific characteristics. More specifically, a miner has to find a nonce value, such

that when merged with the block parameters (e.g., the hash of the previous block and

a Merkle hash), the value of the hash has to be smaller than the current hash value.

The miner that will find first such a nonce creates the new block and transmits it to

the Blockchain network; it takes approximately 10 minutes to find such a block on

Bitcoin. The other peers of the network verify the specific properties of the block

and include the block in their copy of the Blockchain.

Proof-of-stake (PoS) [160] was proposed to provide an alternative faster version

of PoW. In PoS-based cryptocurrencies, the creator of the next block is determined

based on various combinations of random selection and wealth or age (i.e., the stake).

The idea is that instead of solving the Proof-of-Work, the miner that creates a block

has to give a proof that it owns a specific amount of coins before being accepted by

the network. Creating a block includes sending coins to oneself, which confirms the

ownership. The network Blockchain network specifies the number of target coins

by adjusting a difficulty mechanism, similar to PoW. The difficulty ensures that the

Blockchain will add new blocks in some approximate constant time.

2.4.2 Types of Blockchain Systems

Based on who has access to the Blockchain and how it adds new blocks, there exist

Permissionless, Permissioned and Hybrid Blockchains (Figure 2.11) .

2.4.2.1 Permissionless Blockchain

A permissionless Blockchain is public, decentralised, anonymous and open to ev-

eryone. The environment is untrusted, and everyone can participate in validating

2.4. Blockchain 55

Figure 2.11: Comparison between public, consortium and private Blockchain. Table taken
from [4].

transactions and mining new blocks. Bitcoin and Ethereum are the two most famous

examples of permissionless blockchain systems. The consensus mechanism used

in permissionless blockchain is one that allows the network to agree on a shared

state, even though untrusted participants may try to trick the network; under the

assumption that the number of trusted participants is at least 51%. The most popular

consensus algorithms used in permissionless Blockchains are Proof of Work and

Proof of Stake. However, their scalability and transaction throughput is low when

compared to traditional distributed database systems.

2.4.2.2 Permissioned Blockchain

Permissioned Blockchains attracted attention after Bitcoin and Ethereum became

popular. Financial and other sectors started looking at how to use Blockchain

technology to solve problems between participants that may not trust each other, how

to share data securely and how to avoid third-party intermediaries. A permissioned

Blockchain is one that restricts the number of participants in the consensus algorithm.

In particular, the existing peers need to approve a new participant before joining

those that can propose and validate transactions in the Blockchain. Usually, the

number of participants in a permissioned Blockchain system is small (between 10

to 100), there is no notion of a currency and the consensus algorithm used is not

proof-based. Because all the participants are known, faster consensus algorithms can

2.4. Blockchain 56

be used such as PBFT [161] or Paxos [162] allowing higher transaction throughput

and better scalability. Example of permissioned Blockchains, popular to the financial

industry, are IBM Hyperledger Fabric [157], Private Ethereum Consortium [163] (a

version of Ethereum which runs on top of different consensus algorithm and limited

to specific participants only) and Corda R3 [164].

2.4.2.3 Hybrid Blockchain

Other work has proposed Hybrid Blockchain solutions [165, 166, 167] to address

scalability issues of permissionless Blockchains. In particular, Hybrid Blockchains

try to combine public and private Blockchains into a single network. In a hybrid

Blockchain, a specific number of supernodes (usually fast servers with significant

processing power) are considered miners and allowed to validate transactions, but

anyone can participate in the network. The consensus protocol used is also a version

of PBFT [161] because the supernodes (miners) are few and known to each other.

Note that users have to trust the specific number of supernodes, thus there is some

kind of centralisation in the network. Other solutions try to address scalability issues

by storing some of the data on-chain and some off-chain [168, 169, 170]

2.4.3 Ethereum Blockchain

The focus of our paper is on Ethereum Blockchain, the first public implementation of

a Blockchain that supports programmable smart contracts. Ethereum is considered a

more generalised Blockchain platform that combines the notion of public economic

consensus via proof of work (or eventually proof of stake) with the abstraction

power of a stateful Turing-complete virtual machine. Ethereum allows developers to

generate applications that benefit from the decentralisation and security properties

of Blockchains, bypassing the need for building a new Blockchain for each new

application. Members use Ethereum for simple transactions, similarly to Bitcoin, but

additionally to write decentralised applications using smart contracts.

The success of Ethereum as a public Blockchain led to a private permissioned

Ethereum Blockchain version used by various (financial mostly) institutions. More

specifically, cloud providers, such as Microsoft Azure, provide Blockchain as a

2.4. Blockchain 57

Figure 2.12: Account types on Ethereum [5]. External account is controlled by a private key
and does not contain code. Contract is controlled by EVM code.

service that allows participants to create their private Blockchain network. Then,

they can easily run their decentralised applications on top of it. Institutions are more

interested in the immutability aspect of the Blockchain as they can use it as a proof

to regulators that particular transactions happened; without someone having the

ability to remove those transactions. Also, institutions aim to combine legal contracts

with programmable smart contracts, with the aim to minimise the cost by removing

third-party legal intermediaries [144].

Another reason to use private Ethereum Blockchain is the fact that participants

can share data easily because the Ethereum protocol will keep the data consistent

automatically on the background. Last, for private Blockchains, the participants

would like to be more flexible, when they develop decentralised applications, and

to use more traditional software deployment and versioning mechanisms, which

currently do not exist. Thus, the participants are more willing to agree on upgrading

existing smart contracts with new features and not rely on immutable code that they

cannot change in case of bugs.

2.4. Blockchain 58

Figure 2.13: Number of Ethereum addresses in 31 October 2017. (Source: https://
etherscan.io/chart/address)

2.4.3.1 Ethereum Account Types

Contrary to Bitcoin that has only user accounts that hold coins, Ethereum provides

two types of accounts. Both those accounts share the same address space. Ethereum

has traditional external accounts (user wallets that hold the Ether coin) that use

asymmetric public and private key pairs. It also has contract accounts (smart con-

tracts) that are managed by code saved in them and run on top of Ethereum Virtual

Machine (EVM) (Figure 2.12). Users can send Ether coins between them using

standard transactions, but also they can add more complicated logic in programmable

contracts, which can also commit transactions.

The address of an external account is its public key, and the address of a

contract account is automatically assigned when created; the address of the contract

is generated from the address of the contract creator and the number of transactions

sent from that address (“nonce"). EVM handles equally both types of accounts

with the only distinction that the external accounts do not have storage and code

associated with them. The way a user sends Ether from his wallet to another user’s

wallet is similar to sending Ether to a smart contract. The user enters the receptient’s

address that he/she wants to send the Ether, without necessarily knowing if that is an

external owner or a smart contract account.

The smart contracts provided in Ethereum are quite attractive to users as they

can run distributed applications (Dapps). Dapps can include storage, payments, and

cryptographic services all in the context of a contract script. Users have used smart

https://etherscan.io/chart/address
https://etherscan.io/chart/address

2.4. Blockchain 59

contracts to build a wide range of distributed application including applications

that can exchange automatically financial instruments (money, content, currencies,

financial derivatives, savings wallets, wills, etc), autonomous governance applica-

tions [171] or even gambling applications [172]. Figure 2.13 shows the number

of available accounts (both user account addresses and smart contract addresses)

deployed on Ethereum between January 2016 and October 2017. We can see that

there are more than 10 million accounts in Ethereum and from those addresses, more

than 1 million are smart contract accounts.

A deployed Ethereum smart contract is public, and anyone can interact with

it through transactions. Once a smart contract is deployed, its code is immutable.

That means that we can access the functions the contract has, but we can not add

more functions to it. In particular, because Blockchain is running in a trustless

environment, the idea is that participants should trust only the code deployed and

not have trust on some other entity that has the right to update the contract. Thus,

developers should test well the functionalities of a smart contract, before they deploy

it on the Blockchain; they will not be able to fix bugs if the contract has any.

The code of an Ethereum contract is written in a low-level, stack-based bytecode

language referred to as Ethereum virtual machine (EVM) code. Usually, develop-

ers define contracts using higher-level programming languages (e.g., Solidity, a

Javascript-like language), which are compiled to EVM code. To invoke a contract at

a specific address, users send a transaction to the contact’s address. A transaction

usually includes payment (to the contract) for the execution (in Ether) and input data

for invocation.

2.4.3.2 A Smart Contract Example.

Listing 2.1 is a straightforward simplified contract, written in Solidity, which can be

used to issue new tokens/currencies inside the Ethereum ecosystem; a highly used

contract by different organisations to raise funding in Ether. When the creator of

the MyToken contract publishes it on the Blockchain, the EVM executes the code

inside the constructor first. The constructor assigns an initial amount of tokens to

the contract creator. The contract uses a mapping called balances that keeps track

2.4. Blockchain 60

1 c o n t r a c t MyToken {
2 mapping (address => uint256) p u b l i c b a l a n c e s ;
3 c o n s t r u c t o r (uint256 s u p p l y) {
4 b a l a n c e s [msg . sender] = s u p p l y ;
5 }
6 f u n c t i o n t r a n s f e r (address _to , uint256 _ v a l u e) {
7 r e q u i r e (b a l a n c e s [msg . sender] >= _ v a l u e) ;
8 r e q u i r e (b a l a n c e s [_ t o] + _ v a l u e >= b a l a n c e s [_ t o]) ;
9 b a l a n c e s [msg . sender] −= _ v a l u e ;

10 b a l a n c e s [_ t o] += _ v a l u e ;
11 }
12 }

Listing 2.1: "A simple contract in Solidity that can be used to issue a new token."

Figure 2.14: When a transaction is accepted on the Blockchain, each mining node change
their Blockchain state.

users and their number of tokens. A user can transfer the token to any other user or

contract by sending a transaction that calls the transfer function in Line 6. The

transaction should contain the information of the sender, the value (amount of Ether

sent to the contract), the gas to be spent and the included data of the invocation

transaction function; all those data are stored in variable name called msg which is

part of the Ethereum instruction set.

2.4.3.3 Ethereum Virtual Machine

The EVM runtime environment is sandboxed and runs in isolation, meaning that

the code inside EVM has no access to network, filesystem or other processes. EVM

2.4. Blockchain 61

Figure 2.15: The EVM is a simple stack-based architecture [5].

maps addresses (160-bit words) to account states. An account state contains code,

persistent private storage, nonce and the balance (see Figure 2.15). EVM also has

access to several global parameters (e.g., the current number of Ether, the gas price,

the current block difficulty or current block gas limit), but the accounts store the

most states. The Ethereum Virtual Machine has three areas where it can store items

a) storage, b) memory and c) stack. During execution, EVM maintains an infinitely

expandable byte-array termed “memory", the “program counter" pointing to the

current instruction, and a stack of 32-byte values. At the start of execution, memory

and stack are empty, and the program counter is zero.

Ether Ether is the cryptocurrency that comes with the Ethereum Blockchain

platforms. When Ethereum first went public the total number of Ether was 90

million. New Ether are generated continously with a predefine rate, which are used

as payment to the miners that find and add new blocks in the Blockchain. Ether is

considered a necessary element, a fuel, for running the Ethereum on a fully open

decentralised setting. It is a method of reimbursement made by the consumers of the

platform to the machines executing the requested transactions. Note that Ether can

be ignored, if desired, on private Ethereum networks.

Gas Ethereum supports the code execution in an open distributed system; each

2.4. Blockchain 62

miner of the Blockchain executes the code. To pay miners for the resources they

use to execute the code, Ethereum introduced a measure which is called “gas". The

Blockchain network pays the miners in gas based on the amount of work they did.

Gas is also essential for putting an upper limit on how much work a transaction can

execute; this is necessary for an open environment where some participants may

deliberately consume many resources. When a user creates a transaction, he/she

associates a default amount of gas with it. While the EVM is executing a transaction,

the gas is gradually consumed based on what operations it executes. The creator of

the transaction sets the gas price (in Ether) upfront and the maximum amount that

wants to pay. Usually, miners will prioritise those transactions that pay the highest

price of gas. If the transaction executes successfully, the remaining gas returns to the

sending account. If the transaction uses all the gas but has not yet finished, then the

EVM throws an out of gas exception error and reverts all the modifications made by

the transaction, without refunding the gas.

Storage Each account has a storage area where all state variables reside. EVM

implements storage as a key-value store of 256-bit words and is persistent among

function calls. Operations for reading and modifying storage are quite expensive to

use; obtaining a new storage cell costs 20,000 gas, transforming an occupied cell

costs 5,000 gas, reading a cell costs 200 gas. It is not feasible to enumerate storage,

and a contract cannot read/write other contract’s storage apart from its own. We

can resemble the storage with a hard drive; once the code runs, the EVM records

everything, and in the next contract call, we will have access to all the earlier acquired

data.

Memory Each account can also use the memory, of which a contract receives a

freshly cleared instance for each message call. Memory is used to hold temporary

values; e.g., function arguments, local variables and storing return values. We can

compare memory with RAM; when the computer (in our case the EVM) is switched

off, it erases all the data that reside in memory. Structurally, memory is a linear byte

array. Initially, its size is zero, and it expands by words of 256-bits. It costs only

three gas items to read and record one digital word. As for the memory extension,

2.4. Blockchain 63

Figure 2.16: Internal fields of a transaction.

it becomes more expensive depending on the current size. The storing of several

Kbytes will be cheap enough, but 1Mbyte will already cost millions of gas because

the price grows quadratically.

Stack The EVM is a stack-based machine with a maximum size of 1024 ele-

ments of 256 bits each. It is used to conduct all the EVM calculations, and costs as

much to use as the memory. Access to the stack is limited to the top end and data

are moved from stack to storage or memory. It is not feasible to access arbitrary

elements deeper in the stack without first removing the top of the stack. If a Stack

overflow happens, the contract implementation stops and EVM throws an exception.

2.4.3.4 Contract State Transitions / Transactions

An external account can launch two types of transactions: a sending transaction and

a contract-creating transaction. A sending transaction is a standard transaction, con-

taining a receiving address, an ether amount, a data byte-array and some additional

parameters, and a signature from the private key associated with the sender account

(Figure 2.16). A contract creating transaction looks like a standard transaction, ex-

cept the receiving address is blank. When the Blockchain accepts a contract-creating

transaction, the data byte-array in the transaction represents the EVM code, and the

2.4. Blockchain 64

value returned by that EVM execution is the code of the new contract; by default,

the EVM executes the code defined in the constructor of the contract. The address of

the new contract is deterministically computed based on the sending address and the

number of times that the sending account has made a transaction before (called the

account nonce). When the called account is an external account, a simple balance

transfer occurs. Otherwise, when the called account is a contract, after the balance

transfer, the called contract’s code is executed.

A transaction belongs to a block. A block is a unit of agreement among

Ethereum nodes. EVM has special instructions that read the block number and the

cryptographic hash values of some previous blocks. Since a block defines a prior

block but not a unique successor, blocks in the network sometimes may form a tree,

but, as far as the states of EVM are concerned, only one branch in the tree matters.

Because of this, we can think of EVM as a sequentially executed machine.

2.4.3.5 Message calls

A contract can call other contracts, send Ether to regular accounts or even create other

new contracts, by using message calls. Message calls are quite similar to transactions

as they both have a source address, a target address, data payload (calldata), Ether,

gas and return data. Each contract has access to the calldata payload. The payload

of calldata is an immutable, non-persistent area where the function identifier and

its arguments are stored, and has a similar structure to memory. After a message call

has finished execution, it can return data and store them at a location in the caller’s

memory preallocated by the caller. Calls are limited to a depth of 1024, meaning that

for more complex operations, developers should favour loops over recursive calls.

2.4.3.6 Function Dispatch

To execute a particular function of a contract, the user must specify the name of the

function in the transaction’s calldata (msg.data). The EVM uses an identifier

from the calldata (function definition and its parameters) to load the corresponding

code. In particular, EVM contains an immutable internal mapping (vtable) with key

a unique function idenfier (generated by the 4 first bytes of the result of the kec-

cak256 hash function, bytes4(keccak256("f(param)"))) and value a reference

2.4. Blockchain 65

Figure 2.17: Function dispatch example in smart contracts.

that points to the correct section of code for execution. If the function identifier

matches one of the function identifiers of the contract, the EVM executes the code of

the function. Figure 2.17 shows an example of how EVM dispatches a function writ-

ten in Solidity and the corresponding EVM pseudocode that the compiler generates.

The EVM loads the corresponding bytecode for the withdraw function, by using its

identifier’s value 0xe3710ed0.

If none of the contract’s functions matches the given function identifier, the

EVM executes an unnamed function, called the fallback function (Figure 2.17). The

fallback function cannot have arguments (except the ones in msg.data), cannot

return data and is always externally visible. If a contract receives Ether (without

any data in the message call), the EVM executes the fallback function and, if it

contains the payable keyword, then it allows the contract to receive Ether. The

fallback function has a limit of 2300 gas when the user chooses the send command

for sending Ether, without allowing other more complex operations except basic

logging; the send command has no way to specify the gas amount. Similarly to other

functions, the fallback function can execute complex operations, as long as there is

enough gas passed on to it.

2.4.3.7 Types of Message Calls

Solidity supports two other very important variations of message call, the

delegatecall and callcode commands. Those two variations allow the code

2.4. Blockchain 66

1 c o n t r a c t C a l l e r {
2 f u n c t i o n foo (Relay r e l a y , T a r g e t t a r g e t , u i n t i n p u t) {
3 r e l a y . f _ d e l e g a t e _ c a l l (t a r g e t , i n p u t) ;
4 }
5 }
6
7 c o n t r a c t Relay {
8 u i n t p u b l i c dummy ;
9 address p u b l i c s e n d e r _ a d d r e s s ;

10
11 f u n c t i o n f _ c a l l (address t a r g e t , u i n t i n p u t) {
12 // Use Target’s storage, Target is modified
13 t a r g e t . c a l l (s i g () , i n p u t) ;
14 }
15 f u n c t i o n f _ c a l l c o d e (address t a r g e t , u i n t i n p u t) {
16 // Use Relay’s storage, Target is not modified
17 t a r g e t . c a l l c o d e (s i g () , i n p u t) ;
18 }
19 f u n c t i o n f _ d e l e g a t e _ c a l l (address t , u i n t i n p u t) {
20 // Use Relay’s storage, Target is not modified
21 t a r g e t . d e l e g a t e c a l l (s i g () , i n p u t) ;
22 }
23 f u n c t i o n s i g () r e t u r n s (by te s4) {
24 re turn by te s4 (keccak256 (" set_dummy (uint256) ")) ;
25 }
26 }
27
28 c o n t r a c t T a r g e t {
29 u i n t p u b l i c dummy ;
30 address p u b l i c s e n d e r _ a d d r e s s ;
31
32 f u n c t i o n set_dummy (u i n t i n p u t) {
33 dummy = i n p u t ;
34 // sender_address is Relay’s address for call and

callcode
35 // sender_address is Caller’s address for delegatecall
36 s e n d e r _ a d d r e s s = msg . sender ;
37 }
38 }

Listing 2.2: Code that demonstrates the differences between callcode, delegatecall,
and call commands.

2.4. Blockchain 67

Figure 2.18: Visualisation of function calls between contracts.

of a target address to be executed in the context of the calling contract. The

delegatecall and callcode instructions were introduced as low level instruc-

tions to implement libraries in Solidity. The main feature of a library is that it does

not own any storage, but it can have access to the storage of the contract that is using

the library. Thus, a library provides functions which can be executed by multiple

different contracts, avoiding the need to have duplicate code in the Blockchain.

In this thesis, we use delegatecall and callcode to provide upgreadale

contracts to the user. In particular, we utilise the properties of those commands to

execute dynamically code from another contract (we name them child contracts) in

the context of an existing contract (we name this contract as parent contract). To

undestand the differences between those message calls, we use the example code

in Listing 2.2 (modified version from stackoverflow [173]) and its abstract visual

representation in Figure 2.18.

In Listing 2.2, we define three contracts: Caller, Relay and Target. Target

is the main contract that contains the final code to be executed and in which all calls

will eventually conclude. Relay is an intermediate contract that forwards calls to the

Target contract, and it contains three simple set functions. Caller contract acts as

the user that will call the f_delegate_call function of Relay contract.

When Relay does call on Target, the code runs in the context of Target, but

2.4. Blockchain 68

Relay uses the storage of Target. When Relay does callcode or delegatecall

on Target, the code runs in the context of Relay; the code of Target is in Relay.

Whenever the code writes to storage, it writes to the the storage of the Relay contract,

instead of the Target contract. EVM matches the storage beteen contracts by using

an offsetting mechanism. More specifically, the variables of the child contract are

references to the variables of the parent contract; the first integer in the parent

contract correlates with the first integer in the child contract.

When a contract is called, there is a special variable msg.sender that stores

the address of the caller and a msg.value variable that refers to the amount of Ether

sent to the contract. Those two variables are vital to Ethereum because they are

used to associate users with their wallet accounts as well as to provide Ether transfer

and payment between them. When delegatecall is used to forward the call to a

new contract, it also propagates the msg.sender and the msg.value unchanged to

the new contract; callcode does not forward those two variables and this is the

main difference with delegatecall. In particular, when Relay does callcode

on Target, msg.sender inside Target is Relay (Figure 2.18). When an account

Caller invokes Relay, and Relay does delegatecall on Target, msg.sender

inside Target is Caller. That means that Target has the same msg.sender and

msg.value as Relay.

2.4.4 Security issues with Solidity smart contracts

Solidity was designed as a new high-level programming language that aimed to be

a Turing complete language and allow developers to write smart contracts easily.

However, many vulnerabilities and attacks on the Ethereum Blockchain happened

because of design flaws of the language (e.g., transaction.origin command) or

because developers did not use it properly.

The most popular hack incident that happened in Ethereum was the DAO

incident [174] where the attacker exploited the reentrancy vulnerability to steal over

3.600.000 Ether (30M USD the time the hack happened). More specifically, DAO

was a smart contracted designed to represent a fully autonomous, decentralised

organisation where rules and the structure of traditional organisations are specified

2.4. Blockchain 69

in the code, without the need for a central authority. Another popular hack happened

to MultiSig contract [175], in which the attacker managed to steal 150,000 Ether

(30M USD) because of a wrong usage of the delegatecall command.

Most of such hacks happened in Ethereum because of the following security

issues:

• Call to unknown. Solidity supports call forwards using call, delegatecall,

send functions and there is a risk that those calls may execute unknown

malicious code. We need tools, like PROTEUS, that will help developers use

those functions properly by automatically re-writing their code, using proven

re-writing rules.

• Re-entrancy. A contract may allow a function to re-enter a caller function

before it terminates; a function is executed multiple times, while the scope was

to allow only one execution. Such vulnerability was used to the DAO attack

and later led to Ethereum fork [174].

• Private, Public confusion. Some design decisions that developers of the

Solidity language have taken, which are different from most commonly used

programming language have, introduced errors. For example, if a function

does not include the keyword private or public in its definition, is by default

public; in Java and other popular languages the default value is private.

This confusion led to a function in the Parity Multisig Wallet to be public

instead of private and as a result to be called by a hacker.

• Immutability. When developers identify a buggy contract, they cannot update

it, and thus they have usually to kill it or prevent other users from calling it,

trying at the same time to move its money or metadata in other contracts.

• Lost Ether. If a transaction refers to an unknown (orphan) address and sends

money (Ether) to it, then that money is lost and cannot be retrieved [175].

• Transaction Ordering Dependency. Errors may appear when the assumed state

of the Blockchain is different from the real one. During the mining process,

2.4. Blockchain 70

miners give an order to transactions, and this order may affect the correct

execution. Sergey et al. [176] analysed in depth this problem by examining

the similarities between multi-transactional behaviours of smart contracts and

classical shared-memory concurrency issues.

2.4.5 Research Findings on Ethereum Smart Contracts

Most of the research on Ethereum focuses on identifying security issues and bugs

in smart contracts. Delmolino et al. [177] presented a study in which they taught

students how to program smart contracts, and they exposed numerous common traps

in designing secure smart contracts. They noticed problems such as contracts that

do not refund their users, sensitive user data exposed without encryption, and lack

of incentives for the developers to take specific actions. They further proposed

approaches to mitigate these faults and suggest best practices for smart contracts

programming. However, they did not develop a systematic approach for detecting

such smart contracts problems.

Atzei et al. [178] described many attacks related to Solidity, the EVM and

the Ethereum Blockchain, execution model. They also defined 12 vulnerabilities

which contract creators should take into consideration when writing contracts. Cook

et al. [179] also focused on Ethereum Smart contract security issues and recom-

mended a live monitoring and protection system for smart contracts.

Luu et al. [180] recommended methods to improve the operational semantics of

Ethereum and decrease the number of vulnerabilities in contracts. They introduced

Oyente, a symbolic execution-based tool that finds potential security issues in smart

contracts. OYENTE takes as input the bytecode of a contract and the Ethereum

global state and notifies the developer about security problems. Oyente targets

issues such as mishandled exceptions, transaction-ordering dependence, timestamp-

dependencies and reentrancy. Among 19,336 Ethereum contracts, Oyente succeeded

to flag 8,833 of them as vulnerable.

Kalra et al. [181] also focused on smart contract bugs. They presented ZEUS, a

formal verification framework for smart contracts that allows users to build and verify

correctness and fairness policies over them. ZEUS uses both abstract interpretation

2.4. Blockchain 71

and symbolic model checking to verify contracts for safety. In their evaluation, the

authors state that about 94.6% of contracts (that hold cryptocurrency worth more

than $0.5 billion) are vulnerable.

Tikhomirov et al. [182] provided a comprehensive classification of code issues

in Solidity and developed SmartCheck, a static analysis tool to discover security

vulnerabilities. They use ANTLR to parse Solidity source code and a custom

grammar to generate an XML-based intermediate representation; they use XPath

queries to detect vulnerabilities. SmartCheck cannot detect bugs that require more

sophisticated techniques, but it has the benefit of notifying developers for fixing

simple bugs fast.

Nikolic et al. [183] proposed a new class of trace vulnerabilities, after investi-

gating multiple invocations of a contract over its lifetime. They focused on finding

contracts that lock user’s fund permanently, leak them accidentally to arbitrary users,

or anyone can kill them. They developed MAIAN, a tool that precisely specifies and

reasons about trace properties. In their evaluation of approximately one million con-

tracts, MAIAN flagged 34,200 (2,365 distinct) contracts vulnerable, in 10 seconds

per contract.

Other researchers have focused their attention on finding solutions for other is-

sues that smart contracts introduce such as data privacy, gas consumption, blockchain

scalability and secure communication between Blockchain and other external re-

sources. Chen et al. [10] developed GASPER, an automatic analysis tool that detects

gas-costly programming patterns. GASPER takes as input the bytecode of the

contract and uses symbolic executions to generate a control flow graph to detect

such patterns. Zhang et al. [184] presented Town Crier, an authenticated data feed

system that acts as a bridge between smart contracts and existing external websites,

which are already generally trusted for non-blockchain applications. It combines a

blockchain front end with a trusted hardware back end to scrape HTTPS-enabled

websites and serve source-authenticated data to relying on smart contracts. Kosba

et al. [148] presented Hawk, a decentralised smart contract system that preserves

transactional privacy from the public’s view by not storing financial transactions in

2.4. Blockchain 72

the clear on the Blockchain. Christidis et al. [185] focused on the issues that have to

be solved when connecting Blockchain networks with the Internet of Things (IoT)

devices and they identified some solutions and workarounds.

Even though some of those research findings point out the limitations and the

security issues that arise because of the immutability aspect of smart contracts in

Ethereum, they do not tackle this problem. None of the existing research work, to the

best of our knowledge, focus on providing upgradeable smart contracts or providing

a solution to achieve that automatically.

Chapter 3

Darwinian Data Structure Selection

In this chapter, we propose ARTEMIS, a framework that automatically improves the

performance of a program by selecting and tuning its data structures. Our goal is

to expose Darwinian Data Structures from the source code of an application and

express their selection and tuning as an optimisation problem that can be solved

using Genetic Improvement. We show that our proposed approach generalises to

different programming languages (Java, C++), and we perform a rigorous statistical

evaluation of the improvements that ARTEMIS achieves.

When selecting data structures from libraries, in particular, developers tend to

rely on defaults and neglect potential optimisations that alternative implementations

or tuning parameters can offer. This, despite the impact that data structure selection

and tuning can have on application performance and defects. Data structures are a

particularly attractive optimisation target because they have a well-defined interface;

many are tunable; and different implementations of a data structure usually represent

a particular trade-off between time and storage, making some operations faster but

more space-consuming or slower but more space-efficient. For instance, an ordered

list makes retrieving the entire dataset in sorted order fast, but inserting new elements

slow, whilst a hash table allows for quick insertions and retrievals of specific items,

but listing the entire set in order is slow. We introduce Darwinian data structures,

distinct data structures that are interchangeable because they share an abstract data

type and can be tuned. We call them Darwinian Data Structures (DDS), since we

can subject their implementations to survival of the fittest. The Darwinian data

74

structure optimisation problem is the problem of finding an optimal implementation

and tuning for a Darwinian data structure used in an input program.

We aim to help developers perform optimisation cheaply, focusing solving the

data structure optimisation problem. We present ARTEMIS, a cloud-based optimi-

sation framework that identifies Darwinian data structures and, given a test suite,

automatically searches for optimal combinations of implementations and parameters

for them. ARTEMIS is language-agnostic; we have instantiated it for Java and C++,

and present optimisation results for both languages (Section 3.4). ARTEMIS’ search

is multi-objective, seeking to simultaneously improve a program’s execution time,

memory usage, and CPU usage while passing all the test suites. ARTEMIS scales to

large code bases because is uses a Genetic algorithm on those regions of its search

space with the most solutions (Section 3.3.4). ARTEMIS is the first technique to apply

multi-objective optimisation to the Darwinian data structure selection and tuning

problem.

ARTEMIS promises to change the economics of data structure optimisation.

Given a set of Darwinian data structures, ARTEMIS can search for optimal solutions in

the background on the cloud, freeing developers to focus on new features. ARTEMIS

makes economical small optimizations, such as a few percent, that would not pay for

the developer time spent realizing them. And sometimes, of course, ARTEMIS, by

virtue of being used, will find unexpectedly big performance gains.

ARTEMIS is a source-to-source transformer. When ARTEMIS finds a solution,

the program variants it produces differ from the original program only at constructor

calls and relevant type annotations. Thus, ARTEMIS’ variants are amenable, by

design, to programmer inspection and do not increase technical debt [186]. To ease

inspection, ARTEMIS generates a diff for each changes it makes. Developers can

inspect these diffs and decide which to keep and which to reject.

We report results on 8 popular diverse GitHub projects, on DaCapo benchmark

which was constructed to be representative, and a corpus of 30 GitHub projects,

filtered to meet ARTEMIS’s constraints and sampled uniformly at random. In this

study, ARTEMIS achieves substantial performance improvements for all 43 projects

75

in its corpus. In terms of execution time, CPU usage, and memory consumption,

ARTEMIS finds at least one solution for 37 out of 43 projects that improves all

measures. Across all produced optimal solutions, the median improvement for

execution time is 4.8%, memory consumption 10.1% and CPU usage 5.1%. This

result is for various corpora, but it is highly likely to generalise to arbitrary programs

because of the care we took to build a representative corpus (Section 3.4.1).

These aggregate results understate ARTEMIS’s potential impact. Some of our

benchmarks are libraries or utilities. All of their clients will enjoy any improve-

ments ARTEMIS finds for them. Three examples are the Apache project’s power-

ful XSLT processor xalan, Google-http-java-client, the unbiquitious

Java library for accessing web resources, and Google’s in-memory file system

Jimfs. Section 3.4 shows that ARTEMIS improved xalan’s memory consump-

tion by 23.5%, while leaving its execution time unchanged; ARTEMIS improved

Google-http-java-client’s execution time by 46% and its CPU usage by

39.6%; finally, ARTEMIS improved Jimfs’s execution time by 14.2% and its CPU

usage by 10.7%, while leaving its memory consumption unchanged.

Our principal contributions follow:

• We formalise the Darwinian data structure selection and optimisation problem

DS2 (Section 3.2).

• We implement ARTEMIS, a multi-language optimisation framework that au-

tomatically discovers and optimises sub-optimal data structures and their

parameters.

• We show the generalizability and effectiveness of ARTEMIS by conducting

a large empirical study on a corpus comprising 8 popular GitHub project, 5

projects from the DaCapo benchmark, and 30 Github projects, filtered then

sampled uniformly. For all 43 subjects, ARTEMIS find variants that outperforms

the original for all three objectives.

• We provide ARTEMIS as a service, along with its code and evaluation artifacts

at http://darwinianoptimiser.com.

http://darwinianoptimiser.com

3.1. Motivating example 76

1 <T> List<T> getAsList(T value) {
2 if (value == null)
3 return null;
4 List<T> result = new ArrayList<T>();
5 result.add(value);
6 return result;
7 }

Listing 3.1: A function from http-java-client.

3.1 Motivating example
Listing 3.1 contains a code snippet from google-http-java-client1, a pop-

ular Java library for accessing efficiently resources on the web. In the Listing 3.1,

getAsList packages HTTP headers and is invoked frequently from other methods

because they use it every time they construct an HTTP request. Thus, its functionality

is important for the performance of google-http-java-client.

Listing 3.1 uses ArrayList to instantiate the result variable. However, other

List implementations share the same functionality but different non-functional

properties. Thus, replacing ArrayList with other List implementations may affect

the performance of the program. Considering the variant created when replacing

ArrayList (Listing 3.1, line 4) with LinkedList, when we compare it with the

original program against the same test set for 30 runs (Section 3.3), we see that the

google-http-java-client achieves a median 46%, with 95% Confidence

Interval [45.6%, 46.3%] improvement in execution time (Section 3.4).

ARTEMIS, our optimization framework, automatically discovers underperform-

ing data structures and replaces them with better choices using search-based tech-

niques (Section 3.3.4). First, it automatically creates a store of data structures from

the language’s Collection API library (Section 3.3.1). Then, ARTEMIS traverses the

program’s AST to identify which of those data structures are used and exposes them

as parameters to the ARTEMIS’s OPTIMIZER (Section 3.3.4) by transforming line 4

into

1 List<T> result = new D<T>();

1https://github.com/google/google-http-java-client

https://github.com/google/google-http-java-client

3.2. Darwinian Data Structure Selection and Tuning 77

Figure 3.1: Example of how ARTEMIS maps the extracted darwinian data structures and its
parameters to a search-based optimisation problem.

where D is the tag that refers to the exposed parameter associated with the defined

data structure type (Section 3.3).

Listing 3.1 does not specify the initial capacity size of the ArrayList, so the

default size 10 was used. If the instantiated List object contains less than 10 items,

the default capacity can result in memory bloat. If the List object contains more

than 10 items, the default capacity can slow the execution time; more memory

realllocation operations will happen. Therefore, an appropriate value must be chosen

to find a good tradeoff between memory and execution time.

ARTEMIS automatically exposes such arguments as tunable parameters, then

adjusts them to improve the runtime performance of the program. For instance,

ARTEMIS changes line 4 to the code below:

1 List<T> l = new ArrayList<>(S);

where S refers to the exposed parameter associated with the amount of pre-allocated

memory. A real example of how ARTEMIS exposes data structures and its parameters

for tuning can be seen in Figure 3.1. More specifically, ARTEMIS extracts two data

structures, a List and a Map data structure, and one tunable parameter which referes

to the pre-allocated default size of the List data structure.

3.2 Darwinian Data Structure Selection and Tuning
This section defines the Darwinian data structure and parameter optimisation problem

we solve in this paper.

Definition 1 (Abstract Data Type). An Abstract Data Type (ADT) is class of objects

3.2. Darwinian Data Structure Selection and Tuning 78

whose logical behavior is defined by a set of values and a set of operations [187].

A data structure concretely implements an ADT. For the corpus of programs

C and the ADT a, the data structure extraction function dse(a,C) returns all data

structures that implement a in C. This function is integral to the definition that

follows.

Definition 2 (Darwinian Data Structure). When ∃d0,d1 ∈ dse(a,C)∧d0 6= d1∧d0

and d1 are observationally equivalent modulo a, d0 and d1 are Darwinian data

structures.

In words, Darwinian data structures are darwinian in the sense that they can

be replaced to produce program mutants whose fitness we can evaluate. The ADT

a has Darwinian data structures when it has more than one data structure that are

equivalent over the operations the ADT defines. In Java, List is an ADT and

ArrayList, which implements it, is a data structure. LinkedList also implements

List, so both ArrayList and LinkedList are Darwinian. For the ADT a and the

corpus C, Darwinian data structures are interchangeable. Thus, we can search the

variants of P ∈C formed by substituting one Darwinian data structure for another to

improve P’s nonfunctional properties, like execution time, memory consumption or

CPU usage.

Just as we needed a function to extract an ADT’s data structures from a corpus

for Definition 2, we need a function that returns the ADT that a data structure

implements: when d = dse(a,C), let adte(d,C) = a. Let ΓD bind fully scope-

qualified declarations of names to Darwinian data structures in C. We use ΓD when

creating variants of a program via substitution. We are interested not just searching

the space of Darwinian data structures, but also tuning them via their constructor

parameters. To this end, we assume without loss of generality that a defines a

single constructor c and we let n.c(x) denote calling identifier n’s constructor c with

parameters x : τ .

To create a variant of P ∈C that differs from P only in its k bindings of names

to Darwinian data structures or their constructor initialization parameter, we define

3.3. Artemis 79

Figure 3.2: System Architecture of ARTEMIS.

φ(P,(n,di)
k,dk

j ,x j) =

P[(n.c(xi))
k/(n.c(x j))

k], if ∃di,d j s.t. adte(di) 6= adte(d j)

P[(n,di)
k/(n,d j)

k][(n.c(xi))
k/(n.c(x j))

k], otherwise

Definition 3 (Darwinian Data Structure Selection and Tuning). For the real-valued

fitness function f over the corpus C, the Darwinian data structure and tuning problem

is

argmax
(ni,di)k∈Γk

D,d
k
j∈adte(di,C)k,x j∈τ

f (φ(P,(ni,di),d j,x j))

This vector-based definition simultaneously considers all possible rebinding

of names to Darwinian data structures in P; it is also cumbersome, compared to

its point-substitution analogue. We could not, however, simply present a scalar

definition and then quantify over all potential DDSS substitutions, as doing so would

not surface synergies and antagonisms among the substitutions.

3.3 Artemis
The ARTEMIS’s optimisation framework solves the Darwinian Data Structure Se-

lection problem.xxx Figure 3.2 illustrates the architecture with its three main com-

ponents: the DARWINIAN DATA STRUCTURES STORE GENERATOR (DDSSG), the

EXTRACTOR, and the OPTIMISER. ARTEMIS takes the language’s Collection API

library, the user’s application source code and a test suite as input to generate an

3.3. Artemis 80

optimised version of the code with a new combination of data structures. The DDSSG

builds a store that contains data structure transformation rules. The EXTRACTOR

uses this store to discover potential data structure transformations and exposes them

as tunable parameters to the OPTIMISER (see Section 3.3.2). The OPTIMISER uses

a multi-objective genetic search algorithm (NSGA-II [188]) to tune the parame-

ters [18, 70, 189, 190, 191] and to provide optimised solutions (see Section 3.3.4).

A regression test suite is used to maintain the correctness of the transformations and

to evaluate the non-functional properties of interest. ARTEMIS uses a built-in profiler

that measures execution time, memory and CPU usage.

ARTEMIS relies on testing to define a performance search space and to preserve

semantics. ARTEMIS therefore can only be applied to programs with a test suite.

Ideally, this test suite would comprise both a regression test suite with high code

coverage for maintaining the correctness of the program and a performance test

suite to simulate the real-life behaviour of the program and ensure that all of the

common features are covered [192]. Even though performance test suites are a more

appropriate and logical choice for evaluating the non-functional properties of the

program, most real world programs in GitHub do not provide such performance test

suite. For this reason, we use the regression test suites to evaluate the non-functional

properties of the GitHub projects of this study whenever a performance test suite is

not available.

3.3.1 Darwinian Data Structure Store

ARTEMIS needs a Darwinian data structure store (DDSS) from which to choose when

creating variants. Let A be a set of ADTs known to be Darwinian. A developer can

augment this set; Figure 3.3 shows that ARTEMIS knows by default. For our corpus

C of Java benchmarks augmented with JDK libraries over A,

DDSS =
⋃
a∈A

dse(a,C). (3.1)

To build the default DDSS for Java, ARTEMIS extracts and traverses each

project’s class hierarchy, similar to the one illustrated in Figure 3.3. This hier-

3.3. Artemis 81

Collection

List Set

LinkedListArrayList TreeSetHashSet

Figure 3.3: DDS in the Java Collections API.

archy shows potential Darwinian data structures of a specific interface. When this

traversal finishes, ARTEMIS extracts all the implementations of a particular Dar-

winian data structure; e.g., List, ArrayList, LinkedList. ARTEMIS considers

these implementations mutually replaceable. For Java, a default DDSS is provided

by ARTEMIS, which the developer can edit. For other languages, the DDSS can

be provided manually by the user and this step can be skipped. The OPTIMISER,

described next, uses the store during its search.

The developer can also extend the store with custom user-supplied implementa-

tions or with implementations from other third-party libraries such as Google Guava

Collections2, fastutil3 and Apache Commons Collections4.

3.3.2 Discovering Darwinian Data Structures

The EXTRACTOR takes as input the program P’s source code, identifies Darwinian

data structures in P modulo its store (Section 3.3.1), and outputs a scope-qualified list

of names of Darwinian data structures and their constructor parameters (Extracted

Data Structures and Parameters in Figure 3.2). For all a ∈ DDSS, EXTRACTOR’s

output realises dse(a,P) (Section 3.2). To mark potential substitions to the trans-

former, the EXTRACTOR outputs a templated version of the code which replaces

the data structure with data structure type identifiers (Templated Source Code in

Figure 3.2).

2 https://github.com/google/guava
3 https://github.com/vigna/fastutil
4 https://github.com/apache/commons-collections

https://github.com/google/guava
https://github.com/vigna/fastutil
https://github.com/apache/commons-collections

3.3. Artemis 82

Table 3.1: Data structure groups.

Abstract Data Type Implementation

List ArrayList, LinkedList
Map HashMap, LinkedHashMap

Set HashSet, LinkedHashSet
Concurrent List Vector, CopyOnWriteArrayList

Concurrent Deque ConcurrentLinkedDeque,
LinkedBlockingDeque

Thread Safe Queue ArrayBlockingQueue, Syn-
chronousQueue,
LinkedBlockingQueue, De-
layQueue,
ConcurrentLinkedQueue, Linked-
TransferQueue

To find DARWINIAN data structures, the EXTRACTOR builds an Abstract Syntax

Tree (AST) from its input source code. It then traverses the AST to discover potential

data structure transformations based on a store of data structures as shown in Ta-

ble 3.1. For example, when an expression node of the AST contains a LinkedList

expression, the EXTRACTOR marks this expression as a potential DARWINIAN data

structure that can take values from the available List implementations: LinkedList

or ArrayList. The EXTRACTOR maintains a copy of the AST, referred to as the

REWRITER, where it applies transformations, without changing the initial AST. When

the AST transformation finishes, the REWRITER produces the final source code which

is saved as a new file.

3.3.3 Code Transformations

When implementing ARTEMIS, we encountered coding practices that vastly increase

the search space. Many turn out to be known bad practices [193]. Consider List-

ing 3.2. In lines 2 and 8, we see two LinkedList variables that the Extractor marks

DARWINIAN and candidates for replacement by their equivalent ArrayList imple-

mentation. In these lines, user is violating the precept to "program to the interface",

here List, but is, instead, declaring the variable to have the concrete, data structure

not ADT, type LinkedList. This bad practice [193] adds dependencies to the code,

limiting code reuse. They are especially problematic for ARTEMIS, because they

force ARTEMIS to apply multiple transformations to replace and optimise the data

3.3. Artemis 83

1 void func1(){
2 LinkedList<T> v;
3 v = new LinkedList<>();
4 v.add(new T());
5 int value = func3(v);
6 }
7 void func2(LinkedList<T> v){
8 LinkedList<T> v1 = new LinkedList<>();
9 int value = func3(v1);

10 }
11 int func3(LinkedList<T> v){
12 T t = v.get(0);
13 return 2*t.value;
14 }

Listing 3.2: Code to illustrate bad practices.

structure. Further, func3 takes a LinkedList as a parameter, not List, despite

the fact that it only calls the get method defined by List on this parameter. This

instance of violating the "program to the interface" precept triggers a compilation

error if ARTEMIS naïvely changes func1’s type. ARTEMIS transforms the code to

reduce the OPTIMISER’s search space and handle these bad practices. ARTEMIS

supports thee transformations - parserless, supertype, and profiler.

The parserless mode changes greadily each appearance of a Darwinian imple-

mentation. When optimising List, it exhaustively tries every implementation of

List for every List variable. It is parserless, since it needs only a regular expression

to identify rewritings. This makes it simple, easily portable to other languages, and

fast, so it is ARTEMIS’ default. However, it generates invalid programs and a large

search space.

ARTEMIS’ sypertype transformation converts the type of a Darwinian imple-

mentation to that of their Darwinian ADT, for example LinkedList<T>→ List<T>

on lines, 2,7,8 and 11. For Listing 3.2, this tranformation exposes only two DDS to

the OPTIMISER and produces only syntactically valid code. To implement this trans-

formation, ARTEMIS invokes Eclipse’s re-factoring functionality via its API, then

validates the result. ARTEMIS aims to be language-agnostic without any additional

dependencies on language specific tools. For this case, ARTEMIS auto performs this

3.3. Artemis 84

transformation by adding the supertype as an equivalent parameter in the store of data

structures. Whenever the AST visitor traverses a variable or parameter declaration

expression it may replace the DARWINIAN data structure with its supertype.

"All data structures are equal, but some data structures are more equal than

others" 5; some DDS affect a program’s performance more than others, as when

one stores only a few, rarely accessed items. To rank DDS, ARTEMIS profiles its

input program to identify costly methods. The EXTRACTOR uses this info to identify

the subset of a program’s DDS worth considering for optimisation. ARTEMIS’

instrumentation is particularly important for large programs.

3.3.4 Search Based Parameter Tuning

The OPTIMISER searches a combination of data structures that improves the per-

formance of the initial program while keeps the original functionality. Practically,

we can represent all those data structures as parameters that can be tuned using

Search Based Software Engineering approaches [20]. Because of the nature of the

various conflicting performance objectives, the problem we faced here requires a

multi-objective optimisation approach to search the (near) optimal solutions. We

used evolutionary optimisations algorithm as experiments in which data structure

replacement abd constructor parameters was done randomly, it generated only 20%

viable variants. Under GP, viable variants increased each generation, reaching nearly

100%.

An array of integers is used to represent the tuning parameters. Each parameter

refers either to a Darwinian data structure or to the initial size of that data structure.

If the parameter refers to a data structure, its value represents the index in the list of

Darwinian data structures. The OPTIMISER keeps additional mapping information to

distinguish the types of the parameters. For each generation, the NSGA-II applies

tournament selection, followed by a uniform crossover and a uniform mutation

operation. In our experiments, we designed fitness functions to capture execution

time, memory consumption, and CPU usage. After fitness evaluation, ARTEMIS

applies standard non-dominated selection to form the next generation. ARTEMIS

5Adapted from "Animal Farm" by George Orwell

3.4. Evaluation 85

repeats this process until the solutions in a generation converge. At this point,

ARTEMIS returns all non-dominated solutions in the final population.

Search Space size: We used GA because the search space is huge. Let D be

the definitions of darwinian data structures in program P. Let I be the number of

implementations for a particular d ∈ D. The size of the search space is:

∏
d∈D

I(d)∗ |dom(d.c)|, where d.c is d’s constructor. (3.2)

3.3.5 Deployability

ARTEMIS provides optimisation as a cloud service. To use the service, developers

only need to provide the source code of their project in a Maven build format and a

performance test suite invoked by mvn test. ARTEMIS returns the optimised source

code and a performance report. ARTEMIS exposes a RESTful API that developers

can use to edit the default store of Darwinian data structures. The API also allows

developers to select other Search Based algorithms; the OPTIMISER uses NSGA-II

by default. To use our tool from the command line, a simple command is used:

1 ./artemis input−program−src

where this command defaults to ARTEMIS’s built in DDSSG. ARTEMIS writes the

source of an optimized variant of its input for each measure. ARTEMIS also supports

optional parameters to customise its processing.

3.4 Evaluation

To demonstrate the performance improvements that ARTEMIS automatically achieves

and its broad applicability, we applied it to three corpora: 8 popular GitHub projects,

5 projects from the Dacapo Benchmark, and 30 projects, filtered to meet ARTEMIS’s

requirements, then sampled uniformly at random from Github. To show also that

ARTEMISis language-agnostic, we applied it to optimise Guetzli6 (Section 3.4.3), a

JPEG encoder written in C++.

6https://github.com/google/guetzli

https://github.com/google/guetzli

3.4. Evaluation 86

3.4.1 Corpus

ARTEMIS requires projects with capable build systems and an extensive test suites.

These two requirements entail that ARTEMIS be able to build and run the project

against its test suite. ARTEMIS is language-agnostic but is currently only instantiated

for Java and C++, so it requires Java or C++ programs.

Our first corpus comprises eight popular GitHub projects. We selected these

eight to have good test suites and be diverse. We defined popular to be projects that

received at least 200 stars on GitHub. We deemed a test suite to be good if its line

coverage met or exceeded 70%. This corpus contains projects, usualy, optimised

and peer code-reviewed by experienced developers. We applied ARTEMIS on those

projects to investigate whether it can provide a better combination of data structures

than those selected by experienced human developers.

This first corpus might not be representative, precisely because of the popularity

of its benchmarks. To address this threat to validity, we turned to the DaCapo

benchmarks [126]. The authors of DaCapo built it, from the ground up, to be

representative. The goal was to provide the research community with realistic, large

scale Java benchmarks that contain a good methodology for Java evaluation. Dacapo

contains 14 open source, client-side Java benchmarks (version 9.12) and they come

with built-in extensive evaluation. Each benchmark provides accurate measurements

for execution time and memory consumption. DaCapo first appeared in 2006 to work

with Java v.1.5 and has not been further updated to work with newer versions of Java.

For this reason, we faced difficulties in compiling all the benchmarks and the total

number of benchmarks were reduced to 5 out of 14 (see Table 3.2). In this corpus

we use the following five: fop, avrora, xalan, pmd and sunflow.

Because of its age and the fact that we are only using subset of it, our DaCapo

benchmark may not be representative. To counter this threat, we uniformly sampled

projects from GitHub (Figure 3.4). We discarded those that did not meet ARTEMIS’s

constraints, like being equipped with a build system, until we collected 30 projects

(see Figure 3.4). Those projects are diverse, both in domain and size. The selected

projects include static analysers, testing frameworks, web clients, and graph process-

3.4. Evaluation 87

Figure 3.4: Process of generating the uniformly selected at random Github corpus. First, a
Github project is selected randomly, then if it contains a maven build system, it
compiles and its tests run succesfully it is added in the corpus.

Table 3.2: DaCapo projects. #Star, #Loc are the number of stars and line of codes respec-
tively. All these subjects are retrieved from the official Dacapo Benchmark page
on 11th Jan 2017.

Dacapo Benchmark Project #Star #LoC

fop 85 213,244
avrora 6 76,155
xalan 9 170,710
pmd 1,998 117,538
sunflow 44 168,740

ing applications. Their sizes vary from 576 to 94K lines of code with a median of

14881. Their popularity varies from 0 to 5642 stars with a median of 52 stars per

project. The median number of tests is 170 and median line coverage ratio is 72%

(see Table 3.3).

Collectively, we systematically built these corpora to be representative in order

to demontrate the general applicably of the ARTEMIS’ optimization framework. The

full list of the programs used in this experimental study are available online7 in the

project’s website.

3.4. Evaluation 88

Table 3.3: Subject projects studied in this research. #Star, #Loc, #Test, and Coverage(%)
are the number of stars, line of code, number of tests, and the line coverage ratio,
respectively. All these subjects are retrieved through GitHub on 11th Jan 2017.

Uniformly Selected Projects #Star #LoC #Test Coverage(%)

adyliu/jafka 10,698 11,944 71 71.5%
zilaiyedaren/zxing 21,164 42,521 378 68.3%
HotelsDotCom/plunger 26 3,865 175 82.8%
johnewart/shuzai 0 680 8 56.4%
rayzeng/fqueue 0 3,929 10 48.9%
lsloan/OpenLRS 0 5,229 28 26.8%
BiBiServ/jobproxy 2 2,524 28 28.1%
fuinorg/event-store-commons 4 12,652 208 58.2%
roby-rodriguez/rubix-verifier 0 576 3 81.0%
apache/commons-validator 83 23,520 527 95.9%
kinow/tap-plugin 4 2,804 34 62.7%
lynchmaniac/poilight 2 2,192 35 89.3%
gabe-alex/HospitalInfectionsMonitoringSystem 0 1,033 1 12.5%
dick-the-deployer/dick-worker 0 1,348 18 66.8%
light-4j 885 11,663 38 42.1%
truth 1,584 2,857 33 31.9%
documents4j 193 33,308 640 68.5%
jsoniter 0 48,267 792 59.6%
cmn-codec 176 24,927 19 27.5%
tablesaw 1,292 13,922 75 55.5%
querqy 0 1,058 1 9.2%
mapper 3 1,343 18 31.1%
bootique 0 3,207 61 90.7%
Glowstone 356 12,956 63 35.0%
rest-assured 8 14,962 78 18.1%
milo 0 29,116 873 76.5%
javapoet 832 39,272 170 48.6%
guice 4 14,504 114 55.5%
TelegramBots 741 94,659 588 27.1%
epubcheck 6 705 16 66.7%

Popular Projects #Star #LoC #Test Coverage(%)

google/google-http-java-client 572 20,637 636 69.1%
jOOL 898 26,128 1,175 90.9%
joda-time 3,890 86,192 4226 86.9%
google/jimfs 1,148 17,244 5,380 91.7%
google/gson 7,525 24,395 1,016 94.2%
cglib 539 36,513 974 90.2%
solo 5,642 27,820 977 89.0%
twitter/GraphJet 344 14,881 94 90.7%

3.4. Evaluation 89

Table 3.4: Hardware characteristics.

Characteristic Value

processor Intel 8 cores E5-2673 v3 CPU
clock speed 2.5 GHz per core

memory 14 GB 1600 MHz DDR3
disk 250 GB SSD

operating system Ubuntu 16.04.4 LTS

3.4.2 Experimental Setup

Experiments were conducted using Microsoft AzureTM D4-v2 machines with one

Intel E5-2673v3 CPU featuring 8 cores and 14GB of DRAM and built with Oracle

JDK 1.8.0 and Ubuntu 16.04.4 LTS (Table 3.4).

Performance measurements may lead to incorrect results if not handled care-

fully [194]. Thus, a statistical rigorous performance evaluation is required [3, 140,

195]. To mitigate instability and incorrect results, we differentiate VM start-up and

steady-state. We ran our experiments in a fresh Azure VM that contained only the

JVM and the subject. We use JUnit, which runs an entire test suite in a single JVM.

We manually identified and dropped startup runs, then we spot-checked the results

to confirm that the rest of the runs achieved a steady state and were exhibiting low

variance. All of the means and medians we reported fall within the computed interval

with 95% confidence. To assure the accuracy and reduce the bias in the measurement,

program profiling period was set as 0.1 seconds, and each generated solution was run

for more than 30 simulations. Also we use Mann Whitney U test [196] to examine if

the improvement is statistically significant.

To measure the memory consumption and CPU usage of a subject program,

we use the popular JConsole profiler8 because it directly handles JDK statistics and

provides elegant API. We extended JConsole to monitor only those system processes

belonging to the test suite. We use Maven Surefire plugin9 to measure the test suite’s

execution time because it reports only the execution time of each individual test,

7https://darwinianoptimiser.com/corpus
8http://openjdk.java.net/tools/svc/jconsole/
9http://maven.apache.org/components/surefire/maven-surefire-

plugin/

https://darwinianoptimiser.com/corpus
http://openjdk.java.net/tools/svc/jconsole/
http://maven.apache.org/components/surefire/maven-surefire-plugin/
http://maven.apache.org/components/surefire/maven-surefire-plugin/

3.4. Evaluation 90

excluding the measurement overhead that other Maven plugins may introduce.

For the OPTIMISER, we chose an initial population size of 30 and a maximum

number of 900 function evaluations. We used the tournament selection (based

on ranking and crowding distance), simulated binary crossover (with crossover

probability 0.8) and polynomial mutation (with the mutation probability 0.1). We

determined these settings from calibration trials to ensure the maturity of the results.

Since NSGA-II is stochastic, we ran each experiment 30 times to obtain statistical

significant results. We used a genetic algorithm such as NSGA-II for the optimisation

process as it can find better solutions and faster than random search, and it can scale

to a larger search space. In our experiments, we initially started by using random

search, but we realised that ARTEMIS would generate many projects that would

fail compiling and the search process would be slow. On the other side, NSGA-

II converged towards better solutions after the first generations. Because of this

difference that we found when running ARTEMIS, we did focus on NSGA-II, and we

do not present any experiments about using random search.

3.4.3 Research Questions and Results Analysis

ARTEMIS aims to improve all objectives at the same time. Therefore the first research

question we would like to answer is:

RQ1: What proportion of programs does ARTEMIS improve?

To answer RQ1, we applied ARTEMIS to our corpus. We inspected the generated

optimal solutions from 30 runs of each subject by examining the dominate relation

between the optimal and inital solutions regarding the optimisation objectives. We

introduce the terms strictly dominate relation and non-dominated relation to describe

the relation. Defined by Zitzler et al. [197], a solution strictly dominates another

solution if it outperforms the latter in all measures. A solution is non-dominated

with another solution if both outperform the other in at least one of the measures.

For DaCapo, ARTEMIS found at least one strictly dominant solution for 4 out of

5 projects; it found no such solution for sunflow. It found 1072 solutions, from

which 3% are strictly dominant (median is 5.5 solutions per project) and 64% are

3.4. Evaluation 91

non-dominated (median is 18 solutions per project).

For the popular Github projects, ARTEMIS found at least one strictly dominant

solution for all 8 projects. The total number of solutions found is 10218 and 16%

of them are strictly dominant (median is 50 solutions per project) and 59% are

non-dominated (median is 749.5 solutions per project).

For the sampled Github projects, ARTEMIS found a strictly dominant solution

for 25 out of 30 projects, but found no solution for projects rubix-verifier,

epubcheck, d-worker, telegrambots and fqueue. It found 27503 of

which 10% of them are strictly dominant (median is 24 solutions per project) and

66% are non dominant (median is 125 solutions per project). With these results, we

answer RQ1 affirmatively:

Finding1: ARTEMIS finds optimised variants that outperform the original pro-

gram in at least one measure for all programs in our representative corpus.

This finding understates ARTEMIS’s impact. Not only did it improve at least one

measure for all programs, ARTEMIS found solutions that improve all measures for

88% of the programs.

Having found that ARTEMIS finds performance improvements, we ask "How

good are these improvements" with:

RQ2: What is the average improvement that ARTEMIS provides for each pro-

gram?

Though ARTEMIS aims to improve all candidate’s measures, it cannot achieve

that if improvements are antagonistic. In some domains, it is more important to

significantly improve one of the measures than to improve slightly all measures; e.g.,

a high frequency trading application may want to pay the cost of additional memory

overhead in order to improve the execution time. Our intuition is that the OPTIMISER

will find many solutions on the Pareto-front and at least one of them will improve

each measure significantly.

We answer RQ2 quantitatively. We report the maximum improvement (median

value with 95% confidence interval) for execution time, memory and CPU usage for

3.4. Evaluation 92

http-java-client jimfs jOOL cglib gson GraphJet solo joda-time
40

60

80

100

120

140

Re
la

tiv
e

di
ffe

re
nc

e
(\%

)

5/11 4/12 9/27 5/16 6/11

4/6 9/19 5/11
Execution Time
Memory
CPU

(a) Best execution time of popular GitHub programs. The median value is 93.3%, mean is 86.4%.
Median number of DDS is 12 and mean is 14.6. Median number of DDS changes is 4 and mean is
5.

solo
http-java-client gson cglib jOOL jimfs joda-time GraphJet

40

60

80

100

120

140

Re
la

tiv
e

di
ffe

re
nc

e
(\%

)

7/19 2/11 4/11 8/16 14/27

3/12 6/11 3/6
Execution Time
Memory
CPU

(b) Best memory consumption of popular GitHub programs. The median value is 86% and mean is
84%. Median number of DDS is 12 and mean is 14.6. Median number of DDS changes is 4 and
mean is 5.85.

http-java-client jOOL jimfs gson cglib solo GraphJet joda-time
40

60

80

100

120

140

Re
la

tiv
e

di
ffe

re
nc

e
(\%

)

5/11 17/27 5/12 6/11 4/16
12/19 3/6 5/11

Execution Time
Memory
CPU

(c) Best CPU usage of popular GitHub programs. The median value is 90.3% and mean is 84.6%.
Median number of DDS is 12 and mean is 14.6. Median number of DDS changes is 5 and mean is
7.42.

Figure 3.5: Answers RQ2. Description.

each subject of the three corpora. We use bar charts with error bars to plot the three

measures for each program. In Y axis, we represent the percentage of improvement

for each measure. A value less than 100% represents an improvement and a value

greater than 100% means degradation; e.g., 70% memory consumption implies that

the solution consumes 70% of the memory used in the input program.

Selected popular GitHub programs. Figure 3.5a presents the three measures

of the solutions when the execution time is minimised, for each program from the

3.4. Evaluation 93

popular GitHub programs. We observe that ARTEMIS improves the execution time of

every program. google-http-java-client’s execution time was improved

the most; its execution time was reduced by M=46%, 95% CI [45.6%, 46.3%]. We

also notice that this execution time improvement did not affect negatively the other

measures, but instead the CPU usage was reduced by M=41.6%, 95% CI [39.6%,

43.6%] and memory consumption remained almost the same. The other interesting

program to notice from this graph is solo, a blogging system written in Java; its

execution time improved slightly by 2% but its memory consumption increased by

20.2%. Finally, for this set of solutions, the median execution time improvement is

14.13%, whilst memory consumption slightly increased by 1.99% and CPU usage

decreased by 3.79%. For those programs, ARTEMIS extracted a median of 12 data

structures and the optimal solutions had a median of 4 data structures changes from

the original versions of the program.

Figure 3.5b shows the solutions optimised for memory consumption. We notice

that ARTEMIS improves the memory consumption for all programs, with a median

value of 14%. The execution time was improved by a median value of 2.8% for these

solutions, while the median value of CPU usage is slightly increased by 0.4%. We

notice that solo has the best improvement by M=31.1%, 95% CI [29.3%, 33%], but

with an increase of M=8.7%, 95% CI [8.5%, 8.9%] in execution time and M=21.3%,

95% CI [20.6%, 22%] in CPU usage. Graphjet, a real-time graph processing

library, has the minimum improvement of M=0.9%, 95% CI [0.6%, 1.1%]. The

optimal solutions had a median of 4 data structures changes per solution.

Figure 3.5c presents solutions optimised for CPU usage. The median CPU

usage improvement is 9.7%. The median value of execution time improved by 5.2%

and the median value of memory consumption improved by 2.3%. The program with

the most significant improvement in CPU is http-java-client with M=49.7%,

95% CI [48%, 51.4%], but with a decrease in memory of M=9.8%, 95% CI [7.5%,

12.9%]. The optimal solutions make a median of 5 data structures changes to the

original versions of the program.

DaCapo. Figure 3.6 presents all solutions optimised for execution time and

3.4. Evaluation 94

fop avrora xalan pmd sunflow

60

80

100

120

Re
la

tiv
e

di
ffe

re
nc

e
(\%

)

7/18 5/18 3/16 7/18 2/4

Execution Time
Memory

(a) Best execution time of the Dacapo benchmark. The median value is 95.20% and mean is 95.6%.
Median number of DDS is 18 and mean is 14.8. Median number of DDS changes is 5 and mean is
4.8.

xalan fop sunflow avrora pmd

60

80

100

120

Re
la

tiv
e

di
ffe

re
nc

e
(\%

)

3/16 5/18 2/4 3/18 8/18

Execution Time
Memory

(b) Best memory consumption of the Dacapo benchmark. The median value is 95.7% and mean is
92.1% . Median number of DDS is 18 and mean is 14.8. Median number of DDS changes is 3 and
mean is 4.2.

Figure 3.6: Answers RQ2. Description.

memory consumption for the DaCapo benchmark. We used only two measures for

the DaCapo benchmark as those were the ones built in the benchmark suite. We

chose not to extend or edit the profiling method of DaCapo, to avoid the risk of

affecting the validity of its existing, well tested profiling process.

ARTEMIS found solutions that improve the execution time for every program

without affecting significantly the memory consumption, except project xalan

which had improvement (M=4.8%, 95% CI [4.6%, 5.7%] in execution time but with

an increase (5.8%, 95% CI [3.5%, 7%]) in memory consumption. All solutions for

optimised memory consumption did not affect execution time, except for a slight

increase for program fop. Finally, for this set of solutions, the median percentage of

execution time improvement is 4.8%, and 4.6% for memory consumption. For this

set of programs, ARTEMIS extracted a median of 18 data structures per program, and

the optimal solutions had a median of 5 data structures changes for the execution

time optimised solutions and 4 for the memory optimised solutions.

Sampled GitHub programs. Figure 3.7, Figure 3.8, Figure 3.9 present all solu-

3.4. Evaluation 95

ja
fk

a
zx

in
g

lig
ht

-4
j

tru
th

m
ap

pe
r

jso
ni

te
r

qu
er

qy
sh

uz
ai

bo
ot

iq
ue re

st
-a

ss
ur

ed do
cu

m
en

ts
4j

Op
en

LR
S

jo
bp

ro
xy

ta
bl

es
aw

pl
un

ge
r ru
bi

x-
ve

rif
ie

r
ev

en
t-s

to
re

-c
m

n
Gl

ow
st

on
e

m
ilo cm

n-
va

lid
at

or
ta

p-
pl

ug
in

gu
ice

po
ilig

ht
ho

sp
ita

l-s
ys

te
m

ja
va

po
et

ep
ub

ch
ec

k
d-

wo
rk

er Te
le

gr
am

Bo
ts

cm
n-

co
de

c
fq

ue
ue

40608010
0

12
0

14
0

Relative difference (\%)

6/
18

3/
12

7/
16

8/
20

5/
14

8/
16

11
/1

9
4/

7
7/

16
5/

9
7/

13
6/

15
5/

7
6/

16
6/

12
1/

3
5/

8
3/

16
5/

7
1/

4
4/

7
4/

6
3/

6
3/

6
2/

10
4/

43
1/

3
5/

7
6/

9
3/

5

Ex
ec

ut
io

n
Ti

m
e

M
em

or
y

CP
U

Fi
gu

re
3.

7:
B

es
te

xe
cu

tio
n

tim
e

of
un

if
or

m
ly

se
le

ct
ed

G
itH

ub
pr

og
ra

m
s.

T
he

m
ed

ia
n

va
lu

e
is

95
.4

%
an

d
m

ea
n

is
94
.7

%
.

M
ed

ia
n

nu
m

be
ro

f
D

D
S

is
9.

5
an

d
m

ea
n

is
11
.6

.M
ed

ia
n

nu
m

be
ro

f
D

D
S

ch
an

ge
s

is
5

an
d

m
ea

n
is

4.
8.

3.4. Evaluation 96

zx
in

g
ja

fk
a do

cu
m

en
ts

4j
lig

ht
-4

j cm
n-

co
de

c
ta

bl
es

aw
qu

er
qy

tru
th

m
ap

pe
r

fq
ue

ue
jso

ni
te

r re
st

-a
ss

ur
ed

pl
un

ge
r

bo
ot

iq
ue

ev
en

t-s
to

re
-c

m
n

Op
en

LR
S

Gl
ow

st
on

e
sh

uz
ai

m
ilo

po
ilig

ht
ja

va
po

et
jo

bp
ro

xy
ep

ub
ch

ec
k

ta
p-

pl
ug

in
gu

ice Te
le

gr
am

Bo
ts

d-
wo

rk
er

ho
sp

ita
l-s

ys
te

m cm
n-

va
lid

at
or ru

bi
x-

ve
rif

ie
r

40608010
0

12
0

14
0

Relative difference (\%)

6/
12

8/
18

5/
13

5/
16

6/
9

4/
16

6/
19

8/
20

8/
14

1/
5

5/
16

5/
9

5/
12

6/
16

7/
8

8/
15

6/
16

3/
7

4/
7

1/
6

3/
10

3/
7

3/
43

3/
7

3/
6

6/
7

2/
3

4/
6

1/
4

3/
3

Ex
ec

ut
io

n
Ti

m
e

M
em

or
y

CP
U

Fi
gu

re
3.

8:
B

es
tm

em
or

y
co

ns
um

pt
io

n
of

th
e

un
ifo

rm
ly

se
le

ct
ed

G
itH

ub
pr

og
ra

m
s.

Th
e

m
ed

ia
n

va
lu

e
is

89
.1

%
an

d
m

ea
n

is
86
.8

%
.M

ed
ia

n
nu

m
be

ro
f

D
D

S
is

9.
5

an
d

m
ea

n
is

11
.6

.M
ed

ia
n

nu
m

be
ro

f
D

D
S

ch
an

ge
s

is
5

an
d

m
ea

n
is

4.
6.

3.4. Evaluation 97

lig
ht

-4
j do
cu

m
en

ts
4j

m
ap

pe
r

ja
fk

a
tru

th
pl

un
ge

r
jso

ni
te

r
zx

in
g cm

n-
co

de
c

bo
ot

iq
ue

Gl
ow

st
on

e
ta

bl
es

aw
Op

en
LR

S
sh

uz
ai

qu
er

qy re
st

-a
ss

ur
ed

m
ilo

jo
bp

ro
xy

ev
en

t-s
to

re
-c

m
n

ja
va

po
et

ta
p-

pl
ug

in Te
le

gr
am

Bo
ts

ep
ub

ch
ec

k
gu

ice cm
n-

va
lid

at
or

ho
sp

ita
l-s

ys
te

m
po

ilig
ht

d-
wo

rk
er

fq
ue

ue ru
bi

x-
ve

rif
ie

r
40608010

0

12
0

14
0

Relative difference (\%)

5/
16

3/
13

8/
14

6/
18

6/
20

4/
12

5/
16

7/
12

3/
9

8/
16

5/
16

4/
16

11
/1

5
4/

7
11

/1
9

5/
9

4/
7

4/
7

5/
8

3/
10

3/
7

2/
7

4/
43

3/
6

2/
4

3/
6

2/
6

3/
3

1/
5

1/
3

Ex
ec

ut
io

n
Ti

m
e

M
em

or
y

CP
U

Fi
gu

re
3.

9:
B

es
tC

PU
us

ag
e

of
th

e
un

if
or

m
ly

se
le

ct
ed

G
itH

ub
pr

og
ra

m
s.

T
he

m
ed

ia
n

va
lu

e
is

5.
1%

an
d

m
ea

n
is

8%
.

M
ed

ia
n

nu
m

be
ro

f
D

D
S

is
9.

5
an

d
m

ea
n

is
11
.6

.M
ed

ia
n

nu
m

be
ro

f
D

D
S

ch
an

ge
s

is
5

an
d

m
ea

n
is

4.
5.

3.4. Evaluation 98

tions optimised for execution time, memory consumption and CPU usage for the

sampled GitHub programs. As with the previous corpora, ARTEMIS found solutions

that improved each measure significantly. ARTEMIS improves the median value of

execution time across all projects by 4.6%, memory consumption by 11.4% and

CPU usage by 4.6%.

ARTEMIS found solutions with antagonistic improvement for projects jafka

and documents4j. ARTEMIS found a solution that improves the execution time

of jafka, a distributed publish-subscribe messaging system, by M=12%, 95% CI

[11.2%, 13.6%], but also increases its memory consumption by M=23.6%, 95% CI

[21.4%, 25.7%]. It also found a solution that improves the memory consumption of

documents4j (M=38%, 95% CI [38%, 41%]) but introduced extra CPU usage

M=26.1%, 95% CI [24.2%, 28%]. A median of 9.5 data structures were extracted

and the optimal solutions had a median of 5 data structures changes from the original

versions of the program.

Observing again the numbers across the three corpora, we can say that they

are quite consistent, showing that ARTEMIS finds optimal solutions that improve

significantly the different optimisation measures. We also see that the number of

Darwinian Data structures extracted (between 9.5 and 18) and the optimal solutions

DDS changes (between 4 and 5) are quite similar for the three corpora.

Analysing all results from the 3 corpora we conclude the discussion of RQ2

with:

Finding2: ARTEMIS improves the median across all programs in our corpus by

4.8% execution time, 10.2% memory consumption, and 5.1% CPU usage.

RQ3: Which Darwinian data structures does ARTEMIS find and tune?

We ask this question to understand which changes ARTEMIS makes to a pro-

gram. Table 3.5 contains the transformations ARTEMIS applied across all optimal

solutions. We see that the most common transformation for all measures is re-

placing ArrayList with LinkedList, it appears 91, 86 and 87 times respectevely

across all measures. This transformation indicates that most developers prefer to

3.4. Evaluation 99

Table 3.5: DDS changes for optimal solutions across all measures.

Tranformation Time Memory CPU

HashMap -> LinkedHashMap 60 53 57
LinkedList -> ArrayList 16 13 18
HashSet -> LinkedHashSet 22 21 21
LinkedBlockingQueue -> LinkedTransferQueue 1 2 2
ArrayList -> LinkedList 91 86 87
LinkedHashSet -> HashSet 7 8 5
Vector -> CopyOnWriteArrayList 1 0 2
LinkedHashMap -> HashMap 17 23 19

use ArrayList in their code, which in general is considered to be faster, neglecting

use cases in which LinkedList performs better; e.g., when the program has many

list insertion or removal operations. Except HashMap to LinkedHashMap, the other

transformations happen relatively rare in the optimal solutions. Last, the median

number of lines Artemis changes is 5.

Finding3: ARTEMIS extracted a median of 12 Darwinian data structures from

each program and the optimal solutions had a median of 5 data structure changes

from the original versions of the program.

RQ4: What is the cost of using ARTEMIS?

In order for ARTEMIS to be practical and useful in real-world situations, it

is important to understand the cost of using it. The aforementioned experimental

studies reveal that, even for the popular programs, the existing selection of the data

structure and the setting of its parameters may be sub-optimal. Therefore, optimising

the data structures and their parameters can still provide significant improvement on

non-functional properties. To answer this research question, the cost of ARTEMIS

for optimising a program is measured by the cost of computational resources it uses.

In this study, we used a Microsoft AzureTM D4-v2 machine, which costs £0.41 per

hour at a standard Pay-As-You-Go rate10, to conduct all experiments.

The experiments show that an optimisation process takes 3.05 hours on average

10https://azure.microsoft.com/en-gb/pricing/

https://azure.microsoft.com/en-gb/pricing/

3.4. Evaluation 100

for all studied subjects. The program GraphJet and jimfs are the most and the

least time-consuming programs respectively, with 19.16 hours and 3.12 minutes

optimisation time. Accordingly, the average cost of applying ARTEMIS for the

subjects studied is £1.25, with a range from £0.02 to £7.86. The experimental results

show that overall cost of using ARTEMIS is negligible compared to a human software

engineer, with the assumption that a competent software engineer can find those

optimisation in a reasonable time.

ARTEMIS transforms the selection of data structure and sets parameters by

rewriting source code, thereby allowing human developers to easily investigate its

changes and gain insight about the usage of data structures and the characteristics of

the program.

Finding4: The cost of using ARTEMIS is negligible, with an average of £1.25

per project, providing engineers with insights about the optimal variants of the

project under optimisation.

RQ5: Is ARTEMIS practical and applicable to other languages?

To show the versatility of the ARTEMIS framework, we ask RQ2, RQ3 and RQ4

over Google guetzli, a very popular JPEG encoder written in C++. We used the

STL containers and their operations as Darwinian data structures. More specifically,

we considered the push_back and emplace_back as equivalent implementations

of the same functionality and exposed those as tunable parameters to ARTEMIS’s

optimiser. We collected a random sample of images (available online 11) and used it

to construct a performance suite that evaluates the execution time of guetzli.

We answer RQ2 by showing that ARTEMIS found an optimal solution that

improves execution time by 7%. We answer RQ3 by showing that ARTEMIS extracted

and tuned 25 parameters and found an optimal solution with 11 parameter changes.

ARTEMIS spent 1.5 hours (costs £0.62) to find optimal solutions which is between

the limits reported in RQ4. Last, we spent approximately 4 days to extend ARTEMIS

11http://darwinianoptimiser.com/corpus

http://darwinianoptimiser.com/corpus

3.4. Evaluation 101

●
●

●

● ● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

● ●

●

●
● ●

● ●
●

●

●

●

●

●

●

96

99

102

1 3 5 7 9 11 13 15 17 19 21
Optimal solutions (versions of Guava library) generated by ARTEMIS

R
el

at
iv

e
pe

rf
or

m
an

ce
 v

al
ue

 (
%

)

●●● ●●● ●●●CPU usage execution time memory usage

Figure 3.10: Optimal solutions with large improvement in at least one measure.

to support C++, using the parserless mode.

Finding5: ARTEMIS is language-agnostic and can succesfully optimise code in

other programming languages, such as C++.

3.4.4 Optimising Google Guava library using ARTEMIS

ARTEMIS’s potential impact may be bigger if applied on libraries, because all of

their clients will enjoy any improvements ARTEMIS finds for them. To assess how

effectively ARTEMIS can improve libraries, we used Guava1 as an instance of its

application. Guava is a very popular open-source set of common libraries for Java. It

consists of 252,688 Lines of Code, which are tested by 1,674,425 test cases with

61.7% branch coverage.

First, we wanted to see what is the improvement that ARTEMIS can achieve for

Google Guava on each of the objectives and how the other objectives are affected.

To report correct results, we compute the mean response time and report the 95%

confidence interval. Then, we use effect size [198] for measuring the performance

impact. To quantify the effects, we use Cohen’s d [198] strength values: small

(0.2 < d ≤ 0.5), medium (0.5 < d ≤ 0.8) and large (0.8 < d). In Figure 3.10, we plot

the mean values for the optimal solutions that contain at least one large improvement

1https://github.com/google/guava

https://github.com/google/guava

3.4. Evaluation 102

for one of the three measurements. The maximum improvement for each measure is

9% execution time, 13% memory usage and 4% CPU usage.

Next, we investigate how many of the solutions strictly dominate the original

program. A solution is said to strictly dominate another if it outperforms the other in

all measures. If ARTEMIS can provide solutions that strictly dominate the original

program, those solutions can be very valuable because they represent options to

improve the program without sacrificing any of the other objectives. The number

of strictly dominating solution for Guava was 14 out of 51 final solutions. Those

14 solutions provide a wide range of options for users to choose depending on their

favour of different objectives.

Next, we ask what is the computational cost of ARTEMIS when we run it

for Google Guava. An extremely high computational cost may make the system

impractical to use in real-world situations. Therefore, we measured its cost on Guava

subject in terms of machine hours. In this study, a Microsoft Azure D4-v2 machine,

which costs £0.41 per hour2, was used to conduct all experiments. This cost of

using is negligible compared to a human software engineer. Moreover, ARTEMIS

transforms the selection of data structure and sets the parameter on source code level,

which means such optimisation does not need to be carried frequently.

Last, we question how many Darwinian Data Structures where selected and

tuned. To minimise the search space we applied ARTEMIS only to the most used

code in Guava, as identified by the preprocessor. As a result, ARTEMIS extracted

only 6 Darwinian data structures in total from the Guava library. Across all the

optimal solutions that ARTEMIS produced, 1 to 6 data structures were changed in

each solution, with a median of 3 data structures. For instance, ARTEMIS replaced

HashMap with LinkedHashMap in 42 of the 135 changes across all optimal solutions.

In those experiments, we showed how ARTEMIS automatically selects and

optimises the data structures and their arguments in popular libraries such as Google

Guava. On a large real-world system, Guava, ARTEMIS found 9% improvement on

execution time, 13% improvement on memory consumption and 4% improvement

2 https://azure.microsoft.com/en-gb/pricing/

https://azure.microsoft.com/en-gb/pricing/

3.5. Threats to Validity 103

on CPU usage separately, and 27.45% of the final solutions provides improvement

without sacrificing other objectives. Lastly, we estimated the cost of optimising

Guava in machine hours. With a price of £0.41 per machine hour, the cost of

optimising a real-world system such as Guava in this study is less than £7.85.

Therefore, we conclude that ARTEMIS is a practical tool for optimising data structures

in large real-world libraries.

3.5 Threats to Validity

Section 3.4.1 discusses the steps we took to address the threats to the external

validity of the results we present here. In short, we built three subcorpora, each

more representative than the last, for a total of 43 programs, diverse in size and

domain. The biggest threat to the internal validity of our work is the difficulty of

taking accurate performance measurements of applications running on VM, like the

JVM. Section 3.4.2 details the steps, drawn from best practice, we took to address

this threat. In essence, we conducted calibration experiments to adjust the parameters

such that the algorithm converges quickly and stops after the results become stable.

For measuring the non-functional properties, we carefully chose JConsole profiler

that directly gathers runtime information from JDK, such that the measurement

error is minimised. Moreover, we carefully tuned JConsole to further improve the

precision of the measurements by maximising its sampling frequency such that it

does not miss any measurements while minimising the CPU overhead. To cater for

the stochastic nature of ARTEMIS and to provide the statistic power for the results, we

ran each experiment 30 times and manually checked that experiments had a steady

state and exhibited low variance.

The scalability of our approach is another threat to external validity. The

subjects involved in this study vary in size, from hundreds of lines of code to almost

a million lines of code. According to our experimental results, the effectiveness of

our approach remains the same from small subjects to large subjects. Our approach

also makes small source code changes (5 lines per project in average). Therefore, it

is expected that our approach will scale up to even larger subjects and this threat is

3.6. Summary 104

reduced.

3.6 Summary
In this chapter, we introduced ARTEMIS, a novel multi-objective multi-language

search-based framework that automatically selects and optimises Darwinian data

structures and their arguments in a given program. ARTEMIS is language agnostic,

meaning it can be easily adapted to any programming language; extending ARTEMIS

to support C++ took approximately 4 days. Given as input a data structure store

with Darwinian implementations, it can automatically detect and optimise them

along with any additional parameters to improve the non-functional properties of the

given program. In a large empirical study on 5 DaCapo benchmarks, 30 randomly

sampled projects and 8 well-written popular Github projects, ARTEMIS found strong

improvement for all of them. On extreme cases, ARTEMIS found 46% improve-

ment on execution time, 44.9% improvement on memory consumption, and 49.7%

improvement on CPU usage. ARTEMIS found such improvements making small

changes in the source code; the median number of lines ARTEMIS changes is 5.

Thus, ARTEMIS is practical and can be easily used on other projects. At last, we

estimated the cost of optimising a program in machine hours. With a price of £0.41

per machine hour, the cost of optsimising any subject in this study is less than £8,

with an average of £1.25. Therefore, we conclude that ARTEMIS is a practical tool

for optimising the data structures in large real-world programs.

Chapter 4

Upgradeable Ethereum Smart

Contracts

The main concept of the Ethereum Blockchain is that smart contracts are self-

managed entities that function independently based on the rules written in the

code, without the need of any trusted party. The Blockchain consensus protocol

enforces the reliable execution of smart contracts and is considered the only trusted

entity. Ethereum, being a fully decentralised Blockchain network, allows anyone

to participate and interact with any published smart contract, unlike traditional

distributed applications on cloud servers that limit who can interact with them.

This property of the Blockchain increases the security risk when developing smart

contracts because they are more vulnerable to participants that want to exploit

potential bugs and security issues.

When developing a smart contract, the developers should take into account all

those risks and verify carefully its correctness (i.e., if its implementation follows the

best available practices) and validity (i.e., if the code matches the business logic of the

contract). However, writing bug-free code for smart contracts is a very challenging

task [174, 175]. The manual editing of contracts is error-prone, and the existing

available formal verification tools cannot capture all potential bugs that may appear

in it [178]. This difficulty further increases by the fact that the code of a smart

contract is immutable. As a result, many buggy smart contracts have appeared in the

Blockchain, having a significant negative impact [174, 175] to their users and to the

106

Figure 4.1: State of the art update mechanism for smart contracts.

trust of the Blockchain.

Because of the Blockchain immutability, the rules of Ethereum do not allow

changing a published contract’s code. Only in one extreme use case it was possible

to change the code of an existing published contract. More specifically, the Etherum

community decided to change the code of an existing published contract by reversing

the history of the Blockchain. This happened with the famous Dao contract hack

(50 million dollars at the time of the hack were taken from a buggy smart contract).

The Ethereum community followed a hard fork solution, meaning that all miners

had to reverse back all transactions. However, this solution is undesirable and it has

led to a heated debate between Ethereum users [199] and a split to the Blockchain

(Ethereum vs Ethereum classic). Thus, in practice, it is almost impossible to change

any code published on Ethereum.

Hence, smart contracts rest on a paradox: They are immutable, but bugs are

inevitable. The current state of practice is maintaining out-of-block address on a

website to the current free-of-known bugs version (Figure 4.1). This mechanism has

a number of problems. The security of the website is an attack vector that has been

compromised. There’s the potential for a gap between the publishing of the new

version on the Blockchain and updating address. After address update, some clients

might use the stale, known buggy address because nothing prevents them from using

the old address.

In this thesis, we focus on solving and automating this process. More specif-

107

Figure 4.2: Different types of clients that interact with Ethereum Smart Contracts.

ically, we aim to solve the problem of updating smart contracts by providing a

framework (PROTEUS) that will allow developers to deploy upgradeable smart con-

tracts, avoiding inconsistencies between the out-of-block address on the website

and the real contract on the Blockchain. Also, PROTEUS aims to prevent users from

accidentaly calling old buggy contracts, as it will force users to check and provide

the latest version of the contract that they want to use.

Types of Ethereum Clients When developers find a bug, they need to replace

their smart contract with a newer version (published on a new address). This

process is not trivial and error prone because EVM does not provide any built-in

upgrading mechanism, and the manual contract replacement has an immediate effect

on contract’s clients. More specifically, all clients of the contract have to update their

applications to use the new contract, which is published in a new address. Depending

on how clients interact with it and how their applications are built, we have the

following scenarios (see Figure 4.2):

• The user interacts with the contract through his/her wallet account. The

interactions that happen in such scenario are usually simple transactions for

108

sending and receiving Ether tokens. In this case, the user can relatively easily

switch to the new contract by updating just the contract’s address in the wallet.

• The user has developed an off-chain application that is a client to the contract

and interacts with it through function calls and transactions. Depending on

where the smart contract is called in the code, the user needs to do the changes

accordingly. Also the user needs to update the address to which those calls

refer. Because the application is off-chain and written in a more traditional

language, such as Javascript, there are no restrictions on changing the code

and releasing a new version of the application.

• The user has published a smart contract on the Blockchain that interacts with

the old contract through an address that is set either dynamically (through a

transaction) or statically in the code. If the address is set dynamically, then

the owner of the contract can update it through a function call and the calls

are redirected to the new contract. However, if the contract’s address is set

statically in the code, then this dependent contract should also be considered

buggy; the code is immutable and as a result we cannot change it to interact

with the new contract. This dependency problem can recursively escalate to

other consumer contracts.

Duplicate Smart Contracts When developing a new decentralised application

that is backed by a smart contract, developers usually use pre-existing published

smart contracts. More specifically, there is a community of Ethereum developers

that have implemented and provided some basic templated smart contracts (available

on GitHub [200] or the official Ethereum website [201]) and tutorials on best devel-

opment practices. Those contracts are the ones that developers consider safe to use,

as they are usually well tested and peer-reviewed. Because most developers follow

this process and because currently the variety of decentrilised applications is limited,

a significant number of duplicate contracts are published on Ethereum. However,

the current development process is not always successful, and many buggy smart

contracts have appeared in the Blockchain, having a significant negative impact

109

([174, 175]) for their users and the trust of the Blockchain.

Because of the big number of duplicate contracts, when one of them is hacked,

it means that other clones are usually vulnerable. In the Multisig wallet bug use

case, when the contract was hacked, a race started between ’good’ (white-hat group)

developers (some of them are from the Ethereum core team) that want to fix the buggy

contracts and other potential hackers that want to exploit all the other vulnerable

contracts [202, 203, 204]. If the ’good’ developers are faster than the hackers, they

will also hack the faulty contracts with the intention of moving their money into some

safe account. Next, a new version of the faulty contract is provided, and transactions

are sent to it based on the previous state of the old contract. This is a process not

trivial and not guaranteed to be succesful. Next, all users are notified that they should

use the newer version and ignore the old one.

Trust in Ethereum Even though the Blockchain’s selling point is that we do not

need to trust anyone else except for the network itself, we see that in practice, there is

some level of trust. In the example of the multi-sig hack, users trust and expect that

the white-hat developers will distribute the money back to the initial users. Other

smart contracts, have pre-defined an owner or a group of owners that have more

permissions that the contract’s users. The contract owners have the ability to disable

a contract (contract suicide) and transfer its money to an address that the owner will

specify dynamically or that is already specified in the contract [205].

The Ethereum ecosystem is not limited only to trustless applications. For

example, an exchange creates individual smart contracts for its users and manages

their tokens. In this case, the users trust the exchange, which can perform actions

on the smart contracts such as freeze it, transfer the funds, etc. There is also trust

that the exchange will return the funds to the user, even if the exchange looses them

because of some bug [206]. Other examples include private Ethereum Blockchains

where there is some level of trust between the participants and there is a need of

fixing potential bugs in smart contracts by providing new versions of it, after an

agreement between the parties. Thus, when developing real world applications, there

is a need for trusted parties even though the environment is considered fully trustless.

110

Upgradeable Smart Contracts Even though contracts published in the

Blockchain are immutable, it does not mean that the code of a smart contract

(if written in a specific format) cannot be updated. The current semantics of EVM

allow the developer to provide upgradeability functionalities if they write smart

contracts in a specific way, which can be achieved by implementing a versioning

system using interfaces. In this chapter, we present PROTEUS, a framework that

automatically extends the functionality of smart contracts written in Solidity and

makes it upgreadable. PROTEUS takes the Solidity code of a smart contract (not

published yet) as input and converts it to an upgradeable smart contract. PROTEUS

allows users to choose what properties of the smart contract they want to be mutable

(function implementations or interfaces) and automatically rewrites them. We prove

that our changes to the smart contract will not change the properties and the main

functionalities of the initial smart contract.

Contributions The contributions of our approach are as follows:

1. We are the first, to best of our knowledge, that addresses the problem of

updating Ethereum smart contracts.

2. We improve the state of the art by providing an immutable Trampoline that

cannot be hacked

3. The state of art requires ad-hoc error-prone setup. We provide an automatic

transformation to contracts.

4. We provide PROTEUS, a source to source rewriting framework that automati-

cally makes a smart contract upgradeable.

5. We provide various upgradeability modes based on user preferences.

6. We forbid calls to contracts that are invalidated. We protect users from sending

a transaction to disabled addresses and potentially losing their funds.

7. We increase awareness to the Blockchain community about Smart Contract

issues that we have found during our research.

4.1. Immortal Bugs 111

Initial address
Reference to Wallet’s owner
address variable.

Figure 4.3: MultiSig bug. The contract owner is meant to be defined using the init function
only by the contract owner. However, the hacker managed to change the owner
of the contract by calling the init(owners) function of the AbstractWallet
contract, using the fallout function of the Wallet contract.

4.1 Immortal Bugs

Bugs in immutable code are immortal. The lack of upgradeability mechanisms in

Ethereum and the careless usage of low-level Solidity functions has led to costly

immortal bugs. Next, we describe two such use cases and discuss potential solutions

that will prevent such bugs in the future.

MultiSig Contract Hacked. On 19 July 2017, the Parity wallet version 1.5 and

above contained a critical vulnerability that enabled the theft of 30 million worth of

ETH. The vulnerability discovered in these particular Parity wallets used a multi-

signature contract called Wallet.sol (see Figure 4.3). A reasonably straightforward

attack allowed the hacker to take ownership of a victim’s wallet. The attacker

sent two transactions to each of the affected contracts: the first to obtain exclusive

ownership of the MultiSig, and the second to move all of its funds. The cause

of this bug was the carelessly use of the low-level function delegatecall in the

MultiSig contract. The Ethereum community suggests that developers should use

delegatecall function only if they are familiar and experts in understanding how

it works and recommends avoiding it otherwise.

The contract creators of the MultiSig contract used such low levels instructions

4.2. Motivating Example 112

to propagate the contract initialisation to another library contract [175, 204], aiming

to avoid duplicate contracts published on the Blockchain and also to allow potential

future updates on the contract; i.e, to move funds in case of a bug. The contract

developers manually coded the desired functionality, relying on peer reviews to

validate its functionality. However, none from the peer reviews had spotted the bug

in the delegatecall that allowed the attacker to call a function that he was not

intended to do. As the bug revealed, the process followed to write smart contracts

with advanced functionalities (i.e., upgradeability) is ineffective and may lead to

costly bugs in the Blockchain.

Ethereum Address Phishing. An initial coin offering (ICO) for a startup project

called CoinDash was suddenly stopped when it was discovered that the sale had

been compromised shortly after it began [207]. In total, the ICO was able to raise

7.53m before the Ethereum address, used to gather users’ funds, was altered to a

fake one by an unidentified hacker, resulting in the Ether going to another source;

phishing attack. This bug could have been avoided if the users had been forced to

double check the contract in which they are sending their Ether or if the organisers

had provided a mechanism that would perform such checks.

PROTEUS forces users to interact with a contract only if the user has previously

checked the address of the calling contract (user has to know always what to call).

This would increase awareness among users about the potential security issues that

may arise when they call a smart contract and also provide a mechanism that will

prevent it. This mechanism would be also useful to prevent and aware users about

many address phishing attempts [208] that are lately observed around Ethereum and

other addresses.

4.2 Motivating Example

Listing 4.1 contains a simplified version of a real smart contract published on

Ethereum (King of Ether [178]) that allows users to bid on an Auction contract.

The logic of this Auction contract is that if a new user sends a better offer than the

existing proposals, then it should reimburse the users that are outbid. In Line 7, the

4.2. Motivating Example 113

1 pragma solidity ^0.4.15;
2 contract CrowdFund {
3 address[] private refundAddr;
4 mapping(address => uint) public refundAmount;
5
6 function refund() public {
7 for(uint i; i < refundAddr.length; i++) {
8 require(refundAddr[i].transfer(refundAmount[refundAddr[i]]));
9 }

10 }
11 }

Listing 4.1: A contract that is vulnerable to Denial of Service attack.

refund() function refunds all users by iterating over the list of outbid addresses,

and applying the transfer function. However, if one transfer transaction fails in the

middle of a for loop, all reimbursements fail.

This approach is problematic as a malicious contract can permanently stall this

contract by making it fail in a strategic way. In particular, contracts that bulk perform

transactions or updates using a for loop can be vulnerable to a denial of service

attack, if a call to another contract or transfer fails during the loop. If the call that

refunds the frontrunner fails continuously, the auction is stalled, and the malicious

user becomes the de facto winner. In this particular use case, the attacker can spam

the contract, causing the array to become very large so it runs out of gas and reverts.

As a result, this contract may lock users’ funds, without the developer being able to

fix this immortal bug.

We can fix this vulnerability of the contract by providing a newer version of the

refund() function that does not exceed a predefined amount of gas (see Listing 4.2).

This version is considered safe as it prevents an out of gas exception. Additionally,

the refund() function stores an iterator in a private variable that will make the

while loop exit, when gas drops below a certain threshold. We observe that in the

particular fix, only the internal implementation of the refund() contract changed; its

function definition and the rest of the contract remains the same. However, because

the contract is already published and its code is immutable, we cannot change the

functionality of the existing contract, but only provide a new contract in a new

address and inform clients about this change.

A solution to the code immutability limitations is to use an approach that con-

4.2. Motivating Example 114

1 pragma solidity ^0.4.15;
2 // Safe against the list length causing out of gas issues
3 contract CrowdFundV1{
4 address[] private refundAddr;
5 mapping(address => uint) public refundAmount;
6 uint256 nextIdx;
7
8 function refund() public {
9 uint256 i = nextIdx;

10 while(i < refundAddr.length && msg.gas > 200000) {
11 refundAddr[i].transfer(refundAmount[i]); i++;
12 }
13 nextIdx = i;
14 }
15 }

Listing 4.2: A version of the contract that is not vulnerable to Denial of Service attack.

tains two contracts. This first one is the CrowdFund() contract, which includes the

code with the desired functionality. The second contract is a Proxy contract, which

we call Trampoline, that forwards calls to the CrowdFund() contract. Listing 4.3

shows a simplified Trampoline version of the CrowdFund() contract that allows calls

from the refund() function to be forwarded to a dynamically set address that points

to the current version of CrowdFund() contract. This mechanism can be considered

similar to the Java dynamic class loading approach using reflection, in which code

can be loaded and used during code execution.

1 pragma solidity ^0.4.4;

2 contract Trampoline {

3 address public c_version;

4 address public owner;

5
6 modifier onlyowner() {

7 require(msg.sender == owner);

8 _;

9 }

10
11 function update(address version) public onlyowner {

12 c_version = version;

13 }

14 function refund() public {

15 require(version.delegatecall(bytes4(keccak256("refund()"))));

16 }

17 }

Listing 4.3: A Trampoline contract that forwards calls to the CrowdFund contract.

4.3. Approach 115

Figure 4.4: Smart contract transformation.

The owner of the contract will publish both the Trampoline and the CrowdFund

contract, but will ask clients to interact only with the Trampoline. If a bug suddenly

happens, the owner of the contract can update the Trampoline, such that it forwards

the calls to the newer version of the contract. In the particular example, the original

version and the new version of the contract differ only in a function implementation,

and thus the format of the client calls will not change. Thus, the transition is smooth

to contract clients. However, as we will explain next, the manual writing of a

Trampoline version of a contract is a process laborious and error-prone and the

provided version of this example is simple without any security guarantees.

4.3 Approach

To provide upgradeability properties to Ethereum smart contracts, we use the call

forwarding properties of the delegatecall and callcode commands and addi-

tional features of Solidity. More specifically, we build PROTEUS, a source to source

transformation tool, written in Java, that takes as input the Solidity code of a smart

contract and outputs an upgradeable smart contract. PROTEUS automatically con-

structs two new contracts: a proxy (Trampoline) contract that delegates calls to other

contracts and an upgradeable modified version of the input contract that allows those

delegates (see Figure 4.4). Clients interact only with the Trampoline contract, whose

code is immutable. However, we can update dynamically the address in which the

Trampoline will forward the calls, allowing it to execute the new version of the code.

4.3. Approach 116

This mechanism indirectly allows developers to update on the background the code

of the contract that the clients use, without breaking functionality.

Trampoline The Trampoline is lightweight as it contains mostly the function

definitions of a contract in which it will delegate the calls. We can think of the

Trampoline as an Abstract Class of a traditional object-oriented language, and every

upgradeable contract as an implementation of this Abstract class. The Trampoline

contains the variable declared in the program, storage and states, and it allows the

upgradeable contract to access them; similarly to how a child class has access to

public or protected variables of a parent abstract class that it implements. Also, the

Trampoline contains additional meta-variables that PROTEUS generates and uses to

provide the desired call delegate properties.

Contract Owner To provide upgradeability in smart contracts, we need to intro-

duce an entity which will be responsible for deciding when to upgrade the contract.

This entity can be a single individual contract owner or a group of owners that vote

before updating a smart contract. We assume that the clients of such contracts trust

that the owner will not perform malicious acts; e.g., a dodgy owner could update the

contract such that it may benefit from it. To increase the trust, the contract owner

can use other advanced techniques (e.g., voting smart contracts) provided by the

Ethereum, to allow users to vote on a potential upgrade and only then to have the

ability to upgrade a smart contract. For simplicity, we will assume that this entity is a

single contract owner. Also, our focus is on the code transformations that will allow

the contract upgradeability, and we let further advanced solutions for increasing the

trust of this approach for future work.

To achieve transparency, the contract owner exposes to clients both the address

of the Trampoline and the address of the contract that it forwards the calls to (contract

C). However, in the default version, the clients can only interact with the Trampoline

contract, and PROTEUS’s built-in guards forbid direct calls to C. In particular, contract

C accepts calls that are coming from the Trampoline only, avoiding accidental calls

that users may make to contract C.

The proposed solution to upgrade smart contracts works because a new version

4.3. Approach 117

of the existing published contract can still run within the context of the Trampoline.

All the states of the Trampoline and its storage are available and accessible to the

new version of the contract. To avoid mistakes and bugs that may appear when

manually coding this setup, PROTEUS has a set of rewriting rules to do the code

transformations automatically. PROTEUS also has a built-in mechanism to deploy

the contracts and update them with newer versions. Note that those transformations

happen after the developer has written the contract. Thus, the developer does not

need to change the contract’s code manually to make it upgradeable.

4.3.1 Delegating Calls to Other Contracts

As we mentioned in Section 2.4.3.5, by delegating calls between contracts, we

can execute the code of a contract within the context of the caller’s contract. The

proposed Trampoline contract uses the delegatecall and callcode instructions

to forward calls between contracts. However, those instructions are considered

advanced, and not careful usage may lead to undesired contract behaviour. The

essential features of those instructions that can easily confuse the developer are 1)

signature function construction 2) default function visibility, 3) uncertainty about the

original message sender and 4) variable declaration order mismatch.

Function Signature Construction The delegatecall function gets as input a

string that represents the function definition and a list of its parameters. When

constructing the string manually, the developer can easily introduce bugs as there is

no in-place mechanism to check if the string is correctly representing the function that

the call should be forwarded; Solidity compiler does not support such functionality.

Only during the contract execution such bug may be revealed, but sometimes that

may not even be obvious.

We demonstrate a simple example of code that contains a bug due to wrong

function signature construction. In Listing 4.4, Line 4, the code delegates the

calls to the setN(uint) function of the Callee contract. We can observe that

function definition setN(uint _n) in the Calle contract and the string parameter

"setN(int256)" differ on the type of the numerical type used. The function

definition inside the string uses a signed integer, but the Calle’s real function is using

4.3. Approach 118

an unsigned integer. This difference can introduce arithmetic overflow bugs. The

Solidity compiler doesn’t identify this type mismatch, and the user may publish this

buggy contract in the Blockchain. The call to the delegatecallSetN() will be

forwarded to the Callee contract, but because the function signature does not match

correctly any of the functions , the Callee fallout() function will be executed

instead of the setN(uint _n).

1 contract Caller {

2 uint public n;

3 function delegatecallSetN(address _c, uint _n) public {

4 require(_c.delegatecall(bytes4(keccak256("setN(int256)")),_n));

5 }

6 }

7 contract Callee {

8 uint public n;

9 function setN(uint _n) public {

10 n = _n;

11 }

12 }

Listing 4.4: A Trampoline contract that forwards calls to the CrowdFund contract.

Default Function Visibility By default, if a function or variable does not contain

the private or public statement is public. This is different from traditional pro-

gramming languages that have default private-visibility for their functions. This

property of the Solidity language can confuse developers, as the multi-sig wallet

showed [175]; the developers of the contract accidentally allowed a function that

should have been private to be called by anyone. The probability of introducing bugs

increases if functions are used in a more advanced context. We consider that delegate

calls is an advanced feature of the Solidity language. We believe that Solidity should

adopt a default-private level of visibility for contract functions. This change would

have likely prevented the multi-sig exploit and others like it.

Sender’s address propagation When a contract is called, there is a special vari-

able msg.sender that stores the address of the user’s or contract’s account that

sent the transaction. The usage of the delegatecall to forward the call to a new

contract, propagates the initial sender to the new contract as well. That means that

4.3. Approach 119

the final contract will not know if the call was direct from the user. On the contrary,

the usage of the callcode does not propage the original message sender but the

address of the Trampoline contract. Thus, additional checks should be added to the

contract to understand and get the original message sender.

Variable Declaration Order Mismatch The delegatecall instruction was in-

troduced as a low-level instruction to implement libraries in Solidity. The main

property of a library is that it does not have any storage, but it can directly access

the storage of the contract that uses it. Similarly, in our case, the direct usage of

the delegatecall function allows the upgradeable contract to access the storage of

the Trampoline contract. In particular, the variables of the upgradeable contract are

references to the variables defined in the Trampoline contract.

Variables are matched using an offsetting approach; the first integer in the

Trampoline contract correlates to the first integer in the upgradeable contract. This

offsetting mechanism is different from traditional programming languages where

the variables match based on their names. This difference can confuse the developer

who can easily introduce bugs without realising it.

1 contract GiveawayLib {

2 uint public threshold;

3 uint public count;

4 uint public amount;

5 address owner;

6 mapping(address=>bool) public claimed;

7
8 constructor(uint _amount, uint _threshold) public {

9 owner = msg.sender;

10 amount = _amount;

11 threshold = _threshold;

12 }

13
14 function addClaim() public {

15 if (!claimed[msg.sender] && count < threshold) {

16 claimed[msg.sender] = true;

17 msg.sender.transfer(amount * 1 ether);

18 count++;

19 }

20 }

21 }

4.3. Approach 120

22
23 contract Giveaway {

24 address owner;

25 uint public count, amount, threshold;

26 uint public amount;

27 uint public threshold;

28 mapping(address=>bool) public claimed;

29 address libAddress;

30
31 constructor(address _libAddress) public payable {

32 owner = msg.sender;

33 libAddress= _libAddress;

34 count = 0;

35 threshold = 3;

36 amount = 5;

37 }

38
39 function claim() public payable{

40 require(libAddress.delegatecall(

41 bytes4(keccak256("addClaim()"))));

42 }

43 function() public {

44 require(libAddress.delegatecall(msg.data));

45 }

46 }

Listing 4.5: Sample code that shows how calls are forwarded between different contracts

in Solidity.

We give an example of how easily a variable declaration order mismatch can

happen, by using a contract and a library in Listing 4.5. The logic of the contract

is that an individual can give an amount of Ether as a reward to the first users that

claim it. The count variable in Line 3 keeps track the total number of claims and the

claimed variable in Line 6 limits the number of claims per user. The contract uses

the claim() function in Line 39 and fallback function in Line 44 to interact with

the library.

This example is buggy because the ordering of the variables between the con-

tract and library is different. The delegate calls to GiveawayLib library reference

different variables from what they are supposed to. In particular, the addClaim()

function uses the threshold variable, which is stored at position 0 in GiveawayLib.

4.3. Approach 121

However, in the Giveaway contract, the address owner variable is stored at posi-

tion 0. This causes the delegate call to addClaim() to reference the address owner.

Thus, the actual threshold used for the maximum number of claims is equal to the

value of the owner address which is a 32-bit unsigned integer. As a result, the

contract allows unintentionally more users to claim the giveaway; the Giveaway

contract may lose all of its ether in one claim. Also, note that similar vulnerability

can happen because of mismatch on the variable size. In the particular example, the

variables are 32 bits and (i.e. storage slot 0 has a 32-bit int in the library and 2 16-bit

variables in the contract)

Another vulnerability from using delegatecall() is when the callee contract

has public or external functions that handle sensitive data. An attack could call that

function through a specially modified msg.data. This can cause unwanted results

such as changing the owner of the contract. To ensure that this does not happen, all

functions in the contract should have the appropriate visibility keywords. PROTEUS

protects against such bugs as it automatically generates the order of the declared

variables as well as it prevents the code transformation if the visibility keywords are

not used in every function of the contract.

4.3.2 Solidity Syntax

In Listing 4.6 we provide the subset of the Solidity language that PROTEUS uses.

A program P is constructed by a sequence of contract declarations. A contract

C consists of a constructor, a sequence of function definitions (∀ f ∈C), function

modifier definitions (∀m ∈C), and variable declarations (∀v ∈C). Each contract has a

unique identifier (id). A contract can have at most one constructor (constructorDef).

If the constructor is not defined, then a default empty constructor is used when the

contract is deployed. Function modifiers (modifierDef) are compile-time source

code roll-ups. Function modifiers are typically used in smart contracts to make sure

that certain conditions are met before proceeding to execute the rest of the body of

code in the method. From the mutability keywords that Solidity provides, we focus

on the view and payable keywords. The view keyword is used to forbid any state

changes to a function and the payable keyword is used to allow a function to accept

4.3. Approach 122

Ether.

Listing 4.6 shows the subset of the Solidity language that we use in the rewriting

rules of PROTEUS.

P ::= C*

C ::= contract id { B* } ;

B ::= stateVarDeclr | constructorDef | modifierDef | funcDef

stateVarDeclr ::= type (public | private)* id (= expr)? ;

constructorDef ::= constructor paramList modifierList block

modifierDef ::= modifier id paramList? block

funcDef ::= function id? paramList modifierList returnParameters? (;

| block)

paramList ::= ((parameter (, parameter)*)?)

modifierList ::= (id (() exprList?))?

| view | payable | public | private)*

exprList ::= expr (, expr)*

parameter ::= type id?

id ::= [a-zA-Z$_] [a-zA-Z0-9$_]*

type ::= address | bool | string | int | uint | byte

expr ::= Standard, see the Solidity documentation for details [209].

block ::= Standard, see the Solidity documentation for details [209].

Listing 4.6: Syntax of a subset of Solidity.

4.3.3 Proteus Rewriting Rules

PROTEUS provides various versions of the contract based on the upgradeability

preferences of the user; developers can explicitly specify which parts of a contract

should be upgradeable. The different versions that PROTEUS can provide are based

on the table preferences as shown in Table 4.1. More specifically, PROTEUS provides

developers with two mutability options: a) Mutable Implementation and b) Mutable

4.3. Approach 123

Table 4.1: Table with mutability modes of PROTEUS. Mutable Implementation

Type Mutable Force Address Check

Implementation 1 0
Interfaces 0 0

Interface. Also, PROTEUS provides the option (Force Address Chec) which forces

the users to provide the address of the contract in which the Trampoline delegetes

the call, before calling it. This is necessary to avoid accidental calls to the old version

of the contract and to notify users about the update that happened. In the first mode,

the user can change the internal implementation of functions in a contract. In the

second mode, PROTEUS can add or delete functions in the initial contract.

The proposed rewriting rules should provide the following properties:

• Functions of the contract can be updated in the newer versions.

• Functions can be added or deleted in the newer versions.

• An owner should be introduced that is allowed to upgrade a contract. We

present a single owner in this paper, but multiple owners with a multi-signature

can be used as well.

• All the calls to the new contract should be through the Trampoline. We want

to forbid direct calls to the versionable contract as that may confuse the users

and lead to money loss.

• Prove that the changes do not affect the functionality of the original contract.

4.3.4 Mutable Implementation Mode

The first mode that PROTEUS supports is the change of function implementations of

a contract (Table 4.1). In this mode, we consider that the signature of each function

does not change, but the internal implementation can be modified. In particular,

given an initial smart contract C, PROTEUS automatically generates a Trampoline

contract T and an upgradeable version C’ of the initial contract .

Figure 4.5 shows a visual representation of how the Trampoline contract for-

wards calls to upgradeable contracts. Initially, the developer deploys both the first

4.3. Approach 124

Figure 4.5: Trampoline and Contract interaction for the mutable implementation mode.
After the Trampoline is deployed, its code is immutable. Each call to a function
of the Trampoline is delegated to one of the upgradeable contracts. The user
can deploy a new contract that will have the same function signatures, but the
internal code can be modified.

version of the contract (Contract v.1) and the Trampoline on the Blockchain.

Next, the developer calls the update(address) function of the published Tram-

poline and gives as input the address of the Contract v.1. The address of the

Trampoline contract is then published to the users who can start interacting with

it. To deploy a newer version of the contract, the developer firstly uses PROTEUS

to get its upgradeable version. Then, the developer publishes the new contract

with the changes (Contract v.2) on the Blockchain and sends a transaction to the

update(address) function of the Trampoline with the new address of the upgrade-

able contract. All the calls to the Trampoline are now forwarded to the new version

of the contract.

4.3.4.1 Trampoline Rewriting Rules

In this section, we introduce the rewriting rules that PROTEUS uses to generate

automatically the Trampoline contract.

Delegating Calls to Functions with Returns Solidity cannot return data from

4.3. Approach 125

functions when a delegate call is used. The delegatecall() and callcode()

functions return a boolean value, which indicates whether the invoked function

terminated (true) or caused an EVM exception (false). To access the actual data

returned from a function, we need to know the encoding and the size of the return

data in advance. Then, low-level inline assembly code should be used. Using inline

assembly code is error prone, it discards several important safety features of Solidity

and developers are advised to avoid using it [210]. Our transformation rules, do not

use low assembly code, to avoid its limitations.

To handle this limitation, we introduce a preprocessing step (rewriting rule)

to generate a list of return meta-variables for each function that has a return state-

ment, under the constrain that only primitive types (uint, boolean, address) are

supported. More specifically, when a call is delegated to a funtion that returns, we

store the data that the function returns to the corresponding meta-variable; we inject

code inside the return functions. The name of each variable is constructed from the

name of the contract (C), name of the function (f) and the data return type (T). We

construct the variable name following this approach to reassure that it is unique and

it corresponds to the data returned for this specific function.

Formally, let R map contracts to that contract’s list of their return meta variables.

Then, ∀ f ∈C,

f u n c t i o n f (~p) r e t u r n s (T var) → T CfT ;

Trampolinify Contract (Rule 4.2) The Trampolinify Contract rule generates

the basic code structure of the Trampoline contract from the input contract C. In

particular, this rule introduces additional variables and helper functions necessary to

support the function dispatches. This rule also injects the generated list of variables

from the previous rewriting rule (Rule 4.2, Line 6). We use the term "meta-variables"

for those injected variables, to distinguish them from the existing variables of the

input contract. PROTEUS inserts the meta-variables and the helper functions before

any existing contract variable and function definition, to prevent variable mismatch

bugs. The Trampolinify Contract rule introduces 4 meta-variables, one function and

one function modifier as follows:

4.3. Approach 126

1 c o n t r a c t C {
2 B
3 } w�Trampolinify Contract

1 c o n t r a c t Tc {
2 address v e r s i o n , owner ;
3 address t r a m p o l i n e , msg_sender ;
4
5 // meta-variables for returns
6 Tr Cr frTr,∀r∈R(c)

7
8 m o d i f i e r check_owner () {
9 r e q u i r e (msg . sender == owner) ;

10 _ ;
11 }
12
13 f u n c t i o n u p d a t e (address v) check_owner {
14 v e r s i o n = v ;
15 }
16 B
17 }

Rule 4.2: Trampolinify Contract Rule. PROTEUS injects a set of meta variables and helper
functions in the body of the Trampoline contract.

• The owner meta-variable stores the address of the contract owner.

• The version meta-variable stores the address of the current version of the

upgradeable contract.

• The trampoline meta-variable stores the address of the Trampoline. This

meta-variable is used in the upgradeable contract’s code to check that the call

is coming from the Trampoline contract and to forbid any other external calls

(see Section 2.4.3.7).

• The meta-variable msg_sender is used to store the original sender

(msg.sender) of the transaction, because the callcode does not forward the

original sender. By introducing this meta-variable, we store both the address

of the original sender as well as provide the address of the Trampoline to the

upgradeable contract.

4.3. Approach 127

1 c o n s t r u c t o r (~p) {
2 B
3 }
4 ’ | ’
5 f u n c t i o n C (~p) {
6 B
7 } w�Constructor Injection

1 bool a l l o w E x e c u t i o n = t rue ;
2
3 c o n s t r u c t o r (~p) {
4 t r a m p o l i n e = address (t h i s) ;
5 owner = msg . sender ;
6 msg_sender = msg . sender ;
7 I n j e c t e d C o n s t r u c t o r (~p) ;
8 }
9

10 f u n c t i o n I n j e c t e d C o n s t r u c t o r (~p) p r i v a t e {
11 r e q u i r e (a l l o w E x e c u t i o n == t rue) ;
12 a l l o w E x e c u t i o n = f a l s e ;
13 by te s4 s i g =

by te s4 (keccak256 (" I n j e c t e d C o n s t r u c t o r (~p) ")) ;
14 r e q u i r e (! v e r s i o n . c a l l c o d e (s i g ,~p)) ;
15 }

Rule 4.3: Constructor Injection rule. Initialise meta variables when contract is created.

• The update(address v) function is used by the contract owner/s to update

the contract that the trampoline delegates the calls to.

• The check_owner(address v) modifier is used as a guard for functions that

only the contract owner is allowed to call.

Constructor Injection (Rule 4.3) The purpose of the Trampoline contract is to

forward all calls to contract C’ and execute its code. When the Trampoline is first

deployed, it needs to instantiate the meta-variables injected and execute the code

of the constructor. Because the constructor’s code may call other private functions

of the input contract, which are not available to the Trampoline, it is necessary to

delegate the constructor’s functionality to contract C’.

The Constructor Injection rule introduces changes to the constructor such

4.3. Approach 128

1 f u n c t i o n f (~p) p u b l i c ’ | ’ e x t e r n a l
2 {
3 B
4 } w�Upgradeable Functions

1 f u n c t i o n f (~p) p u b l i c ’ | ’ e x t e r n a l {
2 msg_sender = msg . sender ;
3 by te s4 s i g = by te s4 (keccak256 (" f (~p) ")) ;
4 r e q u i r e (! v e r s i o n . c a l l c o d e (s i g ,~p)) ;
5 }

Rule 4.4: Upgradeable Functions rule. public and external functions are forwarding the
call to the upgradeable contracts.

that it provides the desired upgradeability properties. First, it injects code that

instantiates the meta-variables defined by the Trampolinify Rule (Rule 4.3, Lines

2-4). The owner of the contract and the msg_sender are set, as well as the address

of the Trampoline. Next, it introduces a new function (InjectedConstructor())

that contains the existing code of the constructor. This code is forwarded to the

upgradeable contract and executed through the callcode() function inside contract

C. The functionality of the InjectedConstructor() function is injected to contract

C’; as we show in Rule 4.9. The InjectedConstructor() function is introduced

as a second constructor of contract C’ which will be instantiated automatically only

when the Trampoline is deployed on the Blockchain.

The visibility of the InjectedConstructor() is private (Rule 4.3, Line 11)

and it can be executed only once, during the Trampoline deployment (Rule 4.3, Line

12). In cases that the developer does not provide the constructor of a contract, we

have added a post-processing step that generates the default constructor with the

meta-variables instantiation.

Upgradeable Functions (Rule 4.4) The Upgreadable Functions rule transforms

all the functions of C that can be upgradeable. PROTEUS applies this rule to all func-

tions that are public or external. PROTEUS first assings the msg.sender to the

metavariable msg_sender; this is necessary to propagate the original message sender

to C’, when using the callcode() function. Next, it constructs the parameters of

4.3. Approach 129

1 f u n c t i o n f (~p) p u b l i c | e x t e r n a l r e t u r n s (T) {
2 B
3 } w�Upgradeable Functions with Returns (UF)

1 f u n c t i o n f (~p) p u b l i c r e t u r n s (T) {
2 msg_sender = msg . sender ;
3 by te s4 s i g = by te s4 (keccak256 (" f D e l e g a t e (~p) ")) ;
4 r e q u i r e (! v e r s i o n . c a l l c o d e (s i g ,~p)) ;
5 re turn CfT ;
6 }

Rule 4.5: Upgradeable Functions with Returns. public and external functions are for-
warding the call to the upgradeable contracts. The return value is assigned to the
corresponding meta-variable.

the callcode() by extracting the function name and its parameters. Each funciton

signature is the first 4 bytes of the keccak256() hash function. In the Line 4, the

rule checks that the function was successfully executed. If the execution fails, then

the the transaction reverts and all changes that have happened in the contract are

discarded. If a function contains the return statement, then the function returns the

corresponding meta-variable (Rule 4.4, Line 5).

Upgradeable Functions with Returns (Rule 4.5) This rule is similar to Rule 4.4,

with the difference that it handles functions with returns and it delegates calls to a

different function of C’. More specifically, this rule forwards calls to a modified

function of f() (fDelegate(), Rule 4.5, Line 3). The fDelegate() is an interme-

diary (helper) function for each public or external function f() of C that returns

a value and assings it to the corresponding meta-variable. As we show, in Rule 4.9,

this trick allows us to execute the code of a function with return succesfully.

Unexposed Functions The Trampoline forwards only functions that are public

or external. Thus, all other functions and function modifiers should be excluded

from the code of the Trampoline. The Unexposed Functions rule in Table 4.6

excludes from the Trampoline all private and internal functions.

4.3.4.2 Rewriting Rules for Contract C’

Next, we describe the rules to generate the modified upgradeable contract C’.

4.3. Approach 130

1 f u n c t i o n f (~p) p r i v a t e
2 ’ | ’ i n t e r n a l ’ [’ r e t u r n s (T) ’] ’ {
3 B
4 }
5 ’ | ’
6 m o d i f i e r f (~p) p r i v a t e
7 ’ | ’ i n t e r n a l {
8 B
9 } w�Unexposed Functions

1 ε

Rule 4.6: Unexposed Functions rule (F1). internal and private functions are not exposed
through the Trampoline. Those functions can be updated with the new version of
contract C.

1 c o n t r a c t C {
2 B
3 } w�Meta-variable Declaration

1 c o n t r a c t C’ {
2 address v e r s i o n , owner ;
3 address t r a m p o l i n e , msg_sender ;
4 // meta-variables for returns
5 Tr Cr frTr,∀r∈R(c)

6 }

Table 4.7: The same set of of meta-variables that were added in the Trampoline are also
added in the code of contract C’.

Meta-variable Declaration (Rule 4.7) The Meta-variable Declaration rule intro-

duces the meta-variables necessary to support the delegating of calls to contract C’.

The meta-variables of C’ are references to those of the Trampoline. Because EVM

matches them using offsetting, the variables should be declared in the same order in

Trampoline and C’. Thus, this rule ensures that the meta-variables declared in the

C’ contract have the same order with the meta-variables declared in the Trampoline.

Trampoline Only Calls (Rule 4.8) The Trampoline Only Calls rule is used to

allow only the calls in contract C’ that are coming from the Trampoline contract.

PROTEUS adds this restriction to forbid unecessary or accidental calls directly to

4.3. Approach 131

1 f u n c t i o n f (~p) p u b l i c ’ | ’ e x t e r n a l {
2 B
3 } w�Trampoline Only Calls

1 f u n c t i o n f (~p) p u b l i c ’ | ’ e x t e r n a l {
2 r e q u i r e (msg . sender == t r a m p o l i n e _ a d d r e s s) ;
3 B
4 }

Table 4.8: PROTEUS allows calls to the contract C’ only from the Trampoline address. This
rule forbids any other calls.

1 f u n c t i o n f (~p) p u b l i c ’ | ’ e x t e r n a l r e t u r n s (T v a l ’ | ’ T) {
2 B
3 } w�Functions with Returns

1 f u n c t i o n f (~p) p r i v a t e r e t u r n s (T v a l ’ | ’ T) {
2 B
3 }
4 f u n c t i o n f D e l e g a t e (~p) p u b l i c ’ | ’ e x t e r n a l r e t u r n s (T v a l

’ | ’ T) {
5 r e q u i r e (msg . sender == t r a m p o l i n e) ;
6 // assign to meta-variable of the function
7 C f T = f (~p) ;
8 }

Table 4.9: PROTEUS allows calls to the contract C’ only from the Trampoline address. This
rule forbids any other calls.

contract C’ and also to prevent users from using an older version of contract C’. Users

should automatically call the latest version of the contract, through the Trampoline.

Functions with Returns (Rule 4.9) To properly achieve delegates on function

with returns, PROTEUS uses this rule to split an input function f() to two functions

(f() and fDelegate()). The code of the new f() function is similar to the input

f() function, but the visibility is different. The new f() function should be called

externally only through the fDelegate() function and thus the visibility is changed

to private. The fDelegate() checks that the call is from the Trampoline contract

and executes f(). Then, it assigns the result to the corresponding meta-variable of

function f(). PROTEUS uses this mechanism because it allows it to get the final

4.3. Approach 132

1 contract C {
2 mapping(address => uint256) balances;
3
4 constructor() public {
5 balances[msg.sender] = 200;
6 }
7 function setBalance(address customer, uint256 _n) public {
8 balances[customer] = _n;
9 }

10 function getBalance(address customer) public view returns
(uint256) {

11 return balances[customer];
12 }
13 }

Listing 4.7: Sample contract given as input to PROTEUS.

return value from f(), without the need of making complicated rewriting inside its

code and avoiding further logic that handles internal if statements and early returns

of the function.

4.3.4.3 Mutable Implementation Code Transformation Example

Next, we show a full example of how PROTEUS applies the above mentioned rewrit-

ing rules to a sample contract. Listing 4.7 contains a simple contract C, which

allow the contract owner to store user balances in the Blockchain. The contract C

contains a constructor, in which it initialises default variables. It also contains

two functions, one that allows the contract owner to add a new balance for a

user (setBalance(address,amount)), and one that returns the balance of a user

(getBalance(address)).

Listing 4.8 contains the code of the Trampoline, with which the users inter-

act. First, we note that the necessary meta-variables are added. Next, because the

setBalance(address,uint256) function is public, PROTEUS decides to make it

upgradeable and thus all calls are forwarded to contract C’. We also note that PRO-

TEUS generated a meta-variable that stores the result of the getBalance(address)

function and returns it to the user (Listing 4.8, Line 38). Listing 4.9 contains the

generated upgradeable C’ contract with the necessary changes as described in the

above rewriting rules.

We have to note, that PROTEUS automatically generates those contracts and

further deploy them on the Blockchain, without the developer spending effort in

4.3. Approach 133

understanding the generated code or manually changing it. The Trampoline’s code

is immutable and will not be generated again for the newer version of the contract.

To provide a newer version of the contract, the developer should provide a modified

contract C and then PROTEUS will transform it to upgradeable contract.

1 contract TRAMPOLINE {

2 // #### META-VARIABLES START ####

3 address public C_VERSION_, C_OWNER_;

4 address public TRAMPOLINE_ADDRESS_, MSG_SENDER_;

5 uint256 getBalance_var0;

6 modifier CHECK_CONTRACT_OWNER() {

7 require (msg.sender == C_OWNER_);

8 _;

9 }

10 function UPDATE(address version) public CHECK_CONTRACT_OWNER

{

11 C_VERSION_ = version;

12 }

13 // #### META-VARIABLES END ####

14 mapping(address => uint256) balances;

15
16 constructor public {

17 TRAMPOLINE_ADDRESS_ = address(this);

18 C_OWNER_ = msg.sender;

19 constructorInjector();

20 }

21 function constructor_injector(){

22 require (C_VERSION_.callcode(bytes4(

23 keccak256("constructorInjector()"))));

24 }

25 function setBalance(address customer, uint256 _n) public {

26 MSG_SENDER_ = msg.sender;

27 require (C_VERSION_.callcode(bytes4(

28 keccak256("setBalance(address,uint256)")),customer,_n));

29 }

30 function getBalance(address customer) public returns

(uint256) {

31 MSG_SENDER_ = msg.sender;

32 require (C_VERSION_.callcode(bytes4(

33 keccak256("getBalanceDelegate(address)")),customer));

34 return getBalance_var0 ;

35 }

4.3. Approach 134

36 }

Listing 4.8: Trampoline generated by PROTEUS.

1 contract C’ {

2 // #### META-VARIABLES START ####

3 address public C_VERSION_, C_OWNER_;

4 address public TRAMPOLINE_ADDRESS_, MSG_SENDER_;

5 uint256 getBalance_var0;

6 // #### META-VARIABLES END ####

7
8 mapping(address => uint256) balances;

9 function C() public {}

10
11 function constructorInjector(){

12 MSG_SENDER_ = msg.sender;

13 balances[msg.sender] = 200;

14 }

15
16 function setBalance(address customer, uint256 _n) public {

17 require(msg.sender == TRAMPOLINE_ADDRESS_);

18 balances[customer] = _n;

19 }

20 function getBalance(address customer) private view returns

(uint256) {

21 require(msg.sender == TRAMPOLINE_ADDRESS_);

22 return balances[customer];

23 }

24
25 function getBalanceDelegate(address customer) public returns

(uint256)

26 {

27 require(msg.sender == TRAMPOLINE_ADDRESS_);

28 getBalance_var0 = getBalance(customer);

29 }

30 }

Listing 4.9: Trampoline generated by PROTEUS.

4.3.5 Mutable Interface Mode

The next functionality that PROTEUS supports is the mutable Interface mode (Ta-

ble 4.10). With this mode, the developer can deploy a contract on the Blockchain

and still change its existing functions. In particular, PROTEUS supports the addition

4.3. Approach 135

Table 4.10: Table with mutability modes of PROTEUS. Mutable Interface.

Type Mutable Force Address Check

Implementation 0 0
Interfaces 1 0

Immutable
Vtable

Smart Contract Code

func1(){
 test()
}

func2(){
 test()
}
function(){
 //default
}

sig(func1) pointer

sig(func2) pointer

any other
function

pointer

Figure 4.6: EVM uses an intenal immutable virtual function table as a lookup table of
functions for resolving function calls in a dynamic/late binding manner.

and deletion of new functions in the contract, and the update of existing function

signatures (by extending or removing parameters from the parameter list). To provide

the desired functionalities, we introduce in the Trampoline a Virtual Function Table.

We also use the properties of the anonymous fallback function to delegate calls. This

mode is an extension of the Implementation mode as it contains most of the rewriting

rules that we previously mentioned combined with some new rules, as we describe

next.

Virtual Function Table Each smart contract internally has a virtual function table

(Figure 4.6) that is used to support dynamic dispatches. The virtual table is used at

runtime to invoke the appropriate function implementations that match the signature

of the method included in the transaction data (msg.data). This internal virtual table

is a hash table that stores as key the function signature and as a value a reference

to the executable function code. The function signature is calculated by hashing

the method signature using the keccak256() hash function and then keeping the

4.3. Approach 136

4 first bytes of the hash result. This internal virtual table is initialised once during

the contract creation and is immutable. This functionality is implemented inside

the EVM, it is not easy for the developer to have a clear understanding of how this

mechanism works. This lack of understanding is one of the reasons that developers

have introduced bugs when trying to do function dispatches in their contracts.

Fallback Function When a transaction is sent to the contract without transaction

data or if the signature of the method call is not in the internal contract’s virtual

function table, the fallback function (function()) is executed instead. Each smart

contract comes with a default fallback function, and users need to define it if they

want to extend its functionality. If the fallback function is not defined explicitly

in the code, an exception is thrown. If the contract is meant to receive Ether with

simple transfers, the fallback function should contain the payable instruction in its

definition. Even though the fallback function does not take parameters, it is possible

to access the parameters contained in the transaction from the special global variable

msg.data.

We combine the properties of the fallback function with delegate calls to provide

the mutable Interface mode of PROTEUS. More specifically, we introduce in the

Trampoline a custom dynamic virtual function table that stores all function signatures

of the contract and a boolean value which indicates if those functions are allowed to

be used or not. The vtable is a standard mutable hash table data structure that can

be changed through transactions. Practically, by using a vtable in the Trampoline,

we expose to the developer the internal mechanism that EVM uses for function

dispatches (Figure 4.7). Similarly to the mutable Implementation mode, only the

owner of the contract can interact with the vtable, and decide to add, remove or

change the any of the functions of the Trampoline.

The process of changing a method interface and delegating calls in other con-

tracts happens as follows. When a transaction is sent to the Trampoline, the EVM

checks if the internal virtual function table contains the function signature. Because

the Trampoline has no implementation of any functions, the method call will not

match with any signature in the internal virtual table. As a result, the fallback

4.3. Approach 137

Trampoline CodeImmutable
Vtable

any function pointer function(){
 //dynamic vtable

}

sig(func1) pointer

sig(func2) pointer

any other
function

pointer

Smart Contract Code

func1(){
 test()
}

func2(){
 test()
}

Figure 4.7: Dynamic virtual function mechanism used by the Trampoline. The logic of
how EVM dispatches functions internally is exposed to the developer through
the code contained in the Trampoline.

function will be triggered. Inside the fallback function, the method signature is

looked in the custom vtable, which has been previously populated by PROTEUS

with the default function signatures that are allowed to be executed. If the function

signature is in the vtable, the call is delegated to the C’ contract; otherwise an

exception is thrown. When the contract is delegated in the C’ contract, the internal

virtual function table of the C’ contract will be used to match the correct method for

execution.

4.3.5.1 Rewriting Rules for Mutable Interface

In this section, we present the rewriting rules that PROTEUS applies to generate

the Trampoline. In total, there are 4 new rewriting rules for the Trampoline.

For generating contract C’ the rules are similar to the rewriting rules used in the

Implementation mode. Thus, we do not repeat them in this section.

Default Function Signature Generation PROTEUS needs to add the existing

functions of the input contract C to the dynamic vtable of the Trampoline. Thus, it

uses the first rule to scan all existing public and external functions of contract C

and to generate the corresponding insert statements to the vtable.

Formally, let F be all the public and external functions of C. Then, ∀ f ∈ F,

f u n c t i o n f (~p) → v t a b l e [by te s4 (keccak256 (" f " ,~p)]= t rue ;

4.3. Approach 138

1 c o n t r a c t C {
2 B
3 } w�Dynamic Function Dispatch

1 c o n t r a c t Tc {
2 address v e r s i o n , owner ;
3 address t r a m p o l i n e , msg_sender ;
4
5 // add virtual function table for function dispatch
6 mapping (uint256 => bool) v t a b l e ;
7
8 // meta-variables for returns
9 Tr Cr frTr,∀r∈R(c)

10
11 m o d i f i e r check_owner () {
12 r e q u i r e (msg . sender == owner) ;
13 _ ;
14 }
15
16 f u n c t i o n u p d a t e (address v) check_owner {
17 v e r s i o n = v ;
18 }
19
20 f u n c t i o n a d d _ n e w _ f u n c t i o n (s t r i n g f u n _ d e f) only_owner {
21 by te s4 s i g n = by te s4 (keccak256 (f u n _ d e f)) ;
22 v t a b l e [s i g n] = t rue ;
23 }
24
25 f u n c t i o n d e l e t e _ f u n c t i o n (s t r i n g f u n _ d e f) only_owner {
26 by te s4 s i g n = by te s4 (keccak256 (f u n _ d e f)) ;
27 v t a b l e [s i g n] = f a l s e ;
28 }
29 }

Rule 4.11: Dynamic Function Dispatch Rule. PROTEUS injects a set of meta variables and
helper functions in the body of the Trampoline contract.

Next we describe the rewriting rules used by PROTEUS for the mutable interface

mode. In total there are 3 rewriting rules used for this mode, as we explain next.

Dynamic Function Dispatch (Rule 4.11) With this rule, PROTEUS constructs

the basic structure of the Trampoline contract. Similar to the Implementation

mode, PROTEUS first adds the necessary meta-variables and functions to cor-

rectly delegate calls. Additionaly, this rule introduces the vtable lookup ta-

4.3. Approach 139

1 c o n s t r u c t o r (~p) {
2 B
3 }
4 ’ | ’
5 f u n c t i o n C (~p) {
6 B
7 } w�Constructor Expansion

1 bool a l l o w E x e c u t i o n = t rue ;
2
3 c o n s t r u c t o r (~p) {
4 t r a m p o l i n e = address (t h i s) ;
5 owner = msg . sender ;
6 msg_sender = msg . sender ;
7
8 // generate a list of insert statements
9 // with the default functions of the contract

10 vtable[bytes4(keccak256(f ,~p))] = true,∀ f (~p)∈F(c)

11
12 I n j e c t e d C o n s t r u c t o r (~p) ;
13 }
14
15 f u n c t i o n I n j e c t e d C o n s t r u c t o r (~p) p r i v a t e {
16 r e q u i r e (a l l o w E x e c u t i o n == t rue) ;
17 a l l o w E x e c u t i o n = f a l s e ;
18 by te s4 s i g = by te s4 (keccak256 (" I n j e c t e d C o n s t r u c t o r (~p) ")) ;
19 r e q u i r e (! v e r s i o n . c a l l c o d e (s i g ,~p)) ;
20 }

Rule 4.12: Constructor Expansion rule. The vtable is populated with the default function
definitions of contract C.

ble (Rule 4.11, Line 5) and two functions (add_new_function(string) and

delete_function(string)) that allow the contract owner to modify the exist-

ing functions defined in contract C. The add_new_function(string) take as input

a string with the function definition that the user wants to add, calculates the function

signature and stores it in the pre-defined vtable.

Constructor Expansion (Rule 4.12) With this rule, PROTEUS extends the con-

structor of the Trampoline. The only difference with the Implementation mode is the

injection of insert statements of the default function definitions (Default Function

Signature Generation Rule) to the vtable (Rule 4.12, Line 10).

4.4. Implementation 140

1 f u n c t i o n () {
2 B
3 } w�Constructor Expansion

1
2 f u n c t i o n d e f a u l t _ f a l l o u t _ f u n c t i o n () {
3 v e r s i o n . c a l l c o d e (msg . data) ;
4 }
5
6 f u n c t i o n () {
7 s i g = by te s4 (sha3 (msg . data)) ;
8 i f (v t a b l e [s i g] == t rue) {
9 v e r s i o n . c a l l c o d e (msg . data) ;

10)
11 e l s e {
12 d e f a u l t _ f a l l o u t _ f u n c t i o n () ;
13 }
14 }

Rule 4.13: Constructor Expansion rule. The vtable is populated with the default function
definitions of contract C.

Fallout Function Expansion (Rule 4.13) With this rule, PROTEUS extends the

functionality of the default fallout function. Because all functions are removed from

the Trampoline, that means that all function calls will pass through the fallout

function. Before delegating any call to contract C’, PROTEUS checks that the

function that the user calls exists in the vtable. If it doesn’t exist, then it calls

the default_fallout_function() function, which is the re-written version of the

initial fallout function (function()) of C. The default_fallout_function()

function delegates calls to the default fallout function of contract C’

4.4 Implementation

Figure 4.8 illustrates the architecture of PROTEUS and its three main components: 1)

the MUTABILITY PREFERENCES TABLE, 2) the REWRITING RULES, and 3) the AST

REWRITER. PROTEUS takes as input the Solidity source code of a smart contract

C, an instance of the mutability preferences table and a list of rewriting rules and

generates two new contracts: the Trampoline and the upgradeable Contract C’.

4.4. Implementation 141

AST
Rewriter Contract C’

Rewriting
Rules

Contract
Trampoline

Input

Contract C

Mutability
Preferences

Output

Figure 4.8: System Architecture of Proteus.

Based on the mutability option given by the users, the AST REWRITER selects the

corresponding rewriting rules from the database. Next, the REWRITER traverses the

AST of each file of the user’s project and applies the transformation rules from the

database. Finally, both Trampoline and Contract C are deployed on the Blockchain.

To find the code snippets to be replaced, the EXTRACTOR builds an Abstract

Syntax Tree (AST) from its input source code. It then traverses the AST to discover

potential transformations as shown in Figure 4.8. The EXTRACTOR maintains a copy

of the AST, referred to as the REWRITER, where it applies transformations, without

changing the initial AST. When the AST transformation finishes, the REWRITER

produces the final source code which is saved as a new file.

We implemented our transformer using Antlr4 [211] and an EBNF version of

the Solidity grammar1. We used Antlr4, a popular tool that generates parsers from

the grammar of the language and allows developers to perform source-to-source

transformations efficiently. We chose to implement PROTEUS independently from

the Solidity compiler. We didn’t follow an approach where we directly change

the Solidity compiler, as potential newer versions of the compiler may break the

functionality of PROTEUS. Moreover, by operating directly on the Grammar of the

Solidity language, we can adapt easily our framework for potential new changes to

the language (i.e. deprecate functions).

1https://github.com/solidityj/solidity-antlr4

https://github.com/solidityj/solidity-antlr4

4.4. Implementation 142

4.4.1 Deployability

PROTEUS runs as a cloud service that can be used by developers easily. To use the

service, developers only need to provide the source code of the smart contract and

select one of the provided modes of upgradeability options. Note that in case that

multiple contracts being in the same source file (a common development practice

when writing smart contracts in Solidity), then the developer should provide the name

of the contract/s that PROTEUS should make upgradeable. The code transformation

runs on the background, on the cloud, without affecting developers’ local repository.

The results will be provided as source code along with a diff report with the changes

on the original input contract.

Usage: To use PROTEUS from the command line one issues:

1 ./proteus −mode m −input i −output o −user preference

where this command defaults to PROTEUS’s mode. The values of the parameters that

can be specified by the user are:

-mode [generate, deploy, update]

-input [src_file, address]

-output [src_file]

-user [variability_table]

We also allow users to annotate specific functions of their contracts that they

would like to be immutable. Users need to write before a function definition

//@mutable. The rewrites will automatically match this annotation and will

apply its rewriting rules only to those functions that have this annotation.

4.4.2 Deployment Process

The steps followed by the user to get an upgradeable smart contract and deploy it on

the Blockchain are as follows (see Figure 4.9): First, the user writes the contract as

he/she would normally do. When the contract is finished, the user gives it as input

to PROTEUS and as a result, the Trampoline contract is generated together with a

version of the modified contract C’. Next the child contract C’ is deployed on the

Blockchain, and its address is saved. In the final step, the Trampoline contract is

4.4. Implementation 143

T.sol

C1.sol

Proteus
(deploy)

tx1: c_addr =create(C1
)

tx2: create(T, c_addr)

Figure 4.9: Contract Deployment. The Trampoline contract and the initial user’s contract
is given as an input by the user. PROTEUS generates two transactions: a) The
first one publishes the Trampoline contract on the Blockchain b) the second one
updates the address that the Trampoline should forward the calls.

deployed, and the address of contract C’ is given as input. Last, the contract owner

shares the address of the Trampoline and that of contract C’ to users that would

like to interact with it.

4.4.3 Summary

In this chapter, we presented how can provide upgradeable smart contract on

Ethereum, by using the current semantics provided by Solidity and the EVM. We

showed how PROTEUS improves the state of the art process of publishing and up-

dating smart contracts on Ethereum and the security checks that it introduces. We

presented PROTEUS, a framework that automatically transforms a user’s contract

such that it is upgradeable. We also showed how PROTEUS can deploy those contracts

automatically on the Blockchain, allowing the user to focus only on the development

of the logic of the smart contract. Last, we presented the rewriting rules that PRO-

TEUS uses both for different modes and discussed the issues that may arise when

someone tries to write such rules manually.

Chapter 5

Conclusions and Future Work

In this chapter, we summarise the achievements and findings of this thesis and state

the general conclusions. We also discuss the potential future works that can be

followed by the research community, based on our findings.

5.1 Conclusions
In this thesis, we showed how we could use GI and other code transformation tech-

niques to improve the non-functional properties of real-world programs running on

top of complex managed runtimes such as the Java and Ethereum Virtual Machine.

More specifically, we showed that manual optimisation of non-functional properties

of large programs is impractical for programmers. We also showed that manual

introduction of advanced functionalities and features (such as upgradability in smart

contracts) when is error-prone and bugs are inevitable. Thus, we need frameworks

and tools that automatically optimise non-functional properties and rewrite appli-

cations such that they support advanced features, without the developer worrying

about those transformations. We introduced two such frameworks, ARTEMIS and

PROTEUS, and through rigorous statistical experimentation showed that it is possible

to improve non-functional properties of programs, cheaply and automatically.

We concluded that developers frequently use underperformed data structures and

forget to optimise them with respect to some critical non-functional properties once

the functionalities are fulfilled. We introduced ARTEMIS, a novel multi-objective

multi-language search-based framework that automatically selects and optimises

5.1. Conclusions 145

Darwinian data structures and their arguments in a given program. ARTEMIS is

language agnostic, meaning it can be easily adapted to any programming language;

extending ARTEMIS to support C++ took approximately 4 days. Given as input a

data structure store with Darwinian implementations, it can automatically detect and

optimise them along with any additional parameters to improve the non-functional

properties of the given program. In a large empirical study on 5 DaCapo benchmarks,

30 randomly sampled projects and 8 well-written popular Github projects, ARTEMIS

found improvement for all of them. Depending on the domain and the nature of

the application, some of those improvements can be considered substantial with

many clients benefiting from them. ARTEMIS achieved performance improvements

for every project in 5 Java projects from DaCapo benchmark, 8 popular projects

and 30 uniformly sampled projects from GitHub, and one C++ program. ARTEMIS

achieved 4.8%, 10.1%, 5.1% median improvement for runtime, memory and CPU

usage. ARTEMIS found such improvements making small changes in the source code;

the median number of lines ARTEMIS changes is 5. Thus, ARTEMIS is practical and

can be easily used on other projects. At last, we estimated the cost of optimising a

program in machine hours to be £1.25 on average per day. Therefore, we conclude

that ARTEMIS is a practical tool for optimising the data structures in large real-world

programs.

We also concluded that even though Ethereum Blockchain does not allow the

code of a contract to be upgraded after published on the Blockchain, it is possible to

update the code of a smart contract, if the developer uses the provided semantics of

the Ethereum Virtual Machine correctly. We showed that understanding the EVM

semantics and using them is quite a challenging task which has led to many buggy

contracts published on the Blockchain; even though experts wrote the code of the

contracts. By introducing PROTEUS, we showed that it is possible to automate the

challenging process of writing smart contracts that use advanced language properties

that may lead to more bugs, such as upgradeable contracts.. PROTEUS allows

developers to have better control over their smart contracts, by providing them with

different mutability modes. Also, PROTEUS improves the security of smart contract

5.2. Future Work 146

by forcing users to check the address of the contract carefully that they are calling,

avoiding accidental loss of funds that may occur by calling the wrong contract.

5.2 Future Work

In this section, we present potenital future research work that can be done based on

this work.

Darwinian Data Structure Selection We showed how ARTEMIS can be applied

to improve the performance of a variety of programs and libraries written in Java

and C++. In the future, we can apply ARTEMIS in a more significant number of

libraries, and evaluate both the performance improvement of the test suite that comes

with the library but also evaluate the performance of the programs that depend and

use the library. For instance, we showed in this thesis, how we could improve the

performance of the Google Guava library by evaluating its test suite, but in the future,

we can measure how the performance of programs that use Google Guava is affected.

Even though most programs that ARTEMIS optimised in this thesis come with

a test suite, some applications may have a limited test suite that does not represent

actual program behaviour. For future work, we could use random testing to gen-

erate test suites automatically and then apply ARTEMIS to improve the program’s

performance. In the preliminary experiments that we performed, ARTEMIS improved

the performance of the program, similarly to how it improved programs with given

test-suites. For future work, we can further extend random testing and present

a rigorous statistical evaluation. ARTEMIS used multi-objective search and more

specifically the NSGA-II algorithm to find optimal solutions. In the future, we can

apply other meta-heuristic search algorithms and evaluate and compare their ability

to find faster and better solutions. Last, we can extend ARTEMIS to be applied in

other programming languages such as CSharp or Scala and also for improving the

performance of code that targets mobile devices (e.g., Android).

Upgradeable smart contracts PROTEUS performs code transformations such that

the contract can be updated with optimised versions and for bug fixing. To achieve

this, as we described previously, PROTEUS introduces additional meta-variables and

5.2. Future Work 147

uses call indirections mechanisms. This, however, may increase the gas consumption

of the contract as more operations are performed. In the future, we should do a

full analysis of the gas overhead that each transformation introduces and the trade-

offs between optimised newer contract versions vs the introduced by PROTEUS

gas overhead. Also, PROTEUS was the first step to enable optimisations for smart

contracts on Ethereum, but this is only the first step necessary to apply GI on the

Blockchain. In future work, we should build a new framework that relies on the idea

introduced by the Darwinian Data Structure Selection and applies GI to automatically

improve non-functional properties (such as gas or energy consumption) or functional

properties (such as bug fixing through automatic test generation) of smart contracts.

Bibliography

[1] Michael A Lones. Genetic programming tutorial. http://

www.macs.hw.ac.uk/~ml355/common/thesis/c6.html, 2018. [On-

line; accessed 31-August-2018].

[2] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep

parameter optimisation. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, GECCO ’15, pages 1375–1382, New

York, NY, USA, 2015. ACM.

[3] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous

java performance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.

[4] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, and Huaimin Wang. Blockchain

challenges and opportunities: A survey. Work Pap, 2016.

[5] Takenobu T. Ethereum evm illustrated. https://takenobu-

hs.github.io/downloads/ethereum_evm_illustrated.pdf,

2018.

[6] Donald E. Knuth. Structured programming with go to statements. ACM

Comput. Surv., 6(4):261–301, December 1974.

[7] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary

Sevitsky. Go with the flow: profiling copies to find runtime bloat. ACM

Sigplan Notices, 44(6):419–430, 2009.

[8] Ronald J. Nowling. Gotchas with Scala Mutable Collections and Large Data

Sets. http://rnowling.github.io/software/engineering/

http://www.macs.hw.ac.uk/~ml355/common/thesis/c6.html
http://www.macs.hw.ac.uk/~ml355/common/thesis/c6.html
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html

Bibliography 149

2015/07/01/gotcha-scala-collections.html, 2015. [Online;

accessed 18-February-2017].

[9] Guoqing Xu and Atanas Rountev. Precise memory leak detection for java

software using container profiling. In Software Engineering, 2008. ICSE’08.

ACM/IEEE 30th International Conference On, pages 151–160. IEEE, 2008.

[10] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-optimized

smart contracts devour your money. In Software Analysis, Evolution and

Reengineering (SANER), 2017 IEEE 24th International Conference on, pages

442–446. IEEE, 2017.

[11] Brett Hardin. Companies with hacking cultures fail. https:

//blog.bretthard.in/companies-with-hacking-cultures-

fail-b8907a69e3d, 2016. [Online; accessed 25-February-2017].

[12] Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.

Automated software transplantation. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis, pages 257–269. ACM, 2015.

[13] Mark Harman. The current state and future of search based software engineer-

ing. In 2007 Future of Software Engineering, FOSE ’07, 2007.

[14] Yue Jia and Mark Harman. Higher order mutation testing. Information and

Software Technology, 51(10):1379–1393, 2009.

[15] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and

M. Roper. Testability transformation. IEEE Transactions on Software Engi-

neering, 30(1):3–16, Jan 2004.

[16] Giuliano Antoniol, Massimiliano Di Penta, and Mark Harman. Search-based

techniques applied to optimization of project planning for a massive mainte-

nance project. In Software Maintenance, 2005. ICSM’05. Proceedings of the

21st IEEE International Conference on, pages 240–249. IEEE, 2005.

http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d

Bibliography 150

[17] Mark Harman, Robert Hierons, and Mark Proctor. A new representation and

crossover operator for search-based optimization of software modularization.

In Proceedings of the 4th Annual Conference on Genetic and Evolutionary

Computation, pages 1351–1358. Morgan Kaufmann Publishers Inc., 2002.

[18] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep

parameter optimisation. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, pages 1375–1382. ACM, 2015.

[19] Mark Harman and Bryan F Jones. Search-based software engineering. Infor-

mation and Software Technology, 43(14):833 – 839, 2001.

[20] Mark Harman. The current state and future of search based software engineer-

ing. In 2007 Future of Software Engineering, pages 342–357. IEEE Computer

Society, 2007.

[21] Melanie Mitchell, John H Holland, and Stephanie Forrest. When will a

genetic algorithm outperform hill climbing. In Advances in neural information

processing systems, pages 51–58, 1994.

[22] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-

gusta H Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The journal of chemical physics, 21(6):1087–1092,

1953.

[23] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,

4(2):65–85, 1994.

[24] Mark Harman and Bryan F Jones. Search-based software engineering. Infor-

mation and software Technology, 43(14):833–839, 2001.

[25] Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang. Ro-

bust next release problem: handling uncertainty during optimization. In

Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 1247–1254. ACM, 2014.

Bibliography 151

[26] L. Li, M. Harman, F. Wu, and Y. Zhang. The value of exact analysis in require-

ments selection. IEEE Transactions on Software Engineering, 43(6):580–596,

June 2017.

[27] Lingbo Li. Exact analysis for requirements selection and optimisation. PhD

thesis, UCL (University College London), 2017.

[28] Peter A Whigham, Caitlin A Owen, and Stephen G Macdonell. A base-

line model for software effort estimation. ACM Transactions on Software

Engineering and Methodology (TOSEM), 24(3):20, 2015.

[29] F. Sarro, A. Petrozziello, and M. Harman. Multi-objective software effort

estimation. In 2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE), pages 619–630, May 2016.

[30] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes.

Using tabu search to configure support vector regression for effort estimation.

Empirical Software Engineering, 18(3):506–546, Jun 2013.

[31] Irene Manotas, Lori Pollock, and James Clause. Seeds: A software engineer’s

energy-optimization decision support framework. In Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, pages 503–

514, New York, NY, USA, 2014. ACM.

[32] Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang. Sbselector: Search

based component selection for budget hardware. In International Symposium

on Search Based Software Engineering, pages 289–294. Springer, 2015.

[33] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated

testing for android applications. In Proceedings of the 25th International

Symposium on Software Testing and Analysis, ISSTA 2016, pages 94–105,

New York, NY, USA, 2016. ACM.

Bibliography 152

[34] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based

software engineering: Trends, techniques and applications. ACM Comput.

Surv., 45(1):11:1–11:61, December 2012.

[35] Betty HC Cheng and Joanne M Atlee. Research directions in requirements

engineering. In 2007 Future of Software Engineering, pages 285–303. IEEE

Computer Society, 2007.

[36] Gerald Kotonya and Ian Sommerville. Requirements engineering: processes

and techniques. Wiley Publishing, 1998.

[37] Ian F Alexander and Ljerka Beus-Dukic. Discovering requirements: how to

specify products and services. John Wiley & Sons, 2009.

[38] Lionel C Briand and Isabella Wieczorek. Resource estimation in software

engineering. Encyclopedia of software engineering, 2002.

[39] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best

practices for effort estimation. IEEE Transactions on Software Engineering,

32(11):883–895, 2006.

[40] Steve McConnell. Software estimation: demystifying the black art. Microsoft

press, 2006.

[41] F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, and E. Mendes. Investigating

tabu search for web effort estimation. In 2010 36th EUROMICRO Conference

on Software Engineering and Advanced Applications, pages 350–357, Sept

2010.

[42] Filomena Ferrucci, Mark Harman, and Federica Sarro. Search-based software

project management. In Software Project Management in a Changing World,

pages 373–399. Springer, 2014.

[43] Magne Jørgensen. A review of studies on expert estimation of software

development effort. Journal of Systems and Software, 70(1-2):37–60, 2004.

Bibliography 153

[44] Colin Kirsopp, Martin Shepperd, and John Hart. Search heuristics, case-

based reasoning and software project effort prediction. In Proceedings of

the 4th Annual Conference on Genetic and Evolutionary Computation, pages

1367–1374. Morgan Kaufmann Publishers Inc., 2002.

[45] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang. Search

based software engineering for software product line engineering: A survey

and directions for future work. In Proceedings of the 18th International

Software Product Line Conference - Volume 1, SPLC ’14, pages 5–18, New

York, NY, USA, 2014. ACM.

[46] Mark Harman, Yue Jia, Jens Krinke, William B Langdon, Justyna Petke, and

Yuanyuan Zhang. Search based software engineering for software product

line engineering: a survey and directions for future work. In Proceedings of

the 18th International Software Product Line Conference-Volume 1, pages

5–18. ACM, 2014.

[47] W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky. Validation,

verification, and testing of computer software. ACM Comput. Surv., 14(2):159–

192, June 1982.

[48] Robert V. Binder. Testing object-oriented software: a survey. Software Testing,

Verification and Reliability, 6(3-4):125–252, 1996.

[49] G. Suganya and S. Neduncheliyan. A study of object oriented testing tech-

niques: Survey and challenges. In 2010 International Conference on Innova-

tive Computing Technologies (ICICT), pages 1–5, Feb 2010.

[50] P. McMinn. Search-based software testing: Past, present and future. In 2011

IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops, pages 153–163, March 2011.

[51] Phil McMinn. Search-based software test data generation: A survey. Software

Testing Verification and Reliability, 14(2):105–156, 2004.

Bibliography 154

[52] M. O’Keeffe and M. O. Cinneide. Search-based software maintenance. In

Conference on Software Maintenance and Reengineering (CSMR’06), pages

10 pp.–260, March 2006.

[53] Emelie Engström and Per Runeson. A Qualitative Survey of Regression Testing

Practices, pages 3–16. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[54] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo.

Search based software engineering: Techniques, taxonomy, tutorial. In Empir-

ical software engineering and verification, pages 1–59. Springer, 2012.

[55] Outi Räihä. A survey on search-based software design. Computer Science

Review, 4(4):203 – 249, 2010.

[56] William B Langdon and Mark Harman. Optimizing existing software with

genetic programming. IEEE Transactions on Evolutionary Computation,

19(1):118–135, 2015.

[57] Keith D Cooper, Philip J Schielke, and Devika Subramanian. Optimizing

for reduced code space using genetic algorithms. In ACM SIGPLAN Notices,

volume 34, pages 1–9. ACM, 1999.

[58] J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P. Coutinho. The human

competitiveness of search based software engineering. In 2nd International

Symposium on Search Based Software Engineering, pages 143–152, Sept

2010.

[59] Tanja EJ Vos, Arthur I Baars, Felix F Lindlar, Peter M Kruse, Andreas

Windisch, and Joachim Wegener. Industrial scaled automated structural

testing with the evolutionary testing tool. In Software Testing, Verification and

Validation (ICST), 2010 Third International Conference on, pages 175–184.

IEEE, 2010.

Bibliography 155

[60] Andrea Arcuri, Muhammad Zohaib Z Iqbal, Lionel C Briand, et al. Black-box

system testing of real-time embedded systems using random and search-based

testing. ICTSS, 10:95–110, 2010.

[61] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software

engineering, pages 416–419. ACM, 2011.

[62] Justyna Petke, Saemundur Haraldsson, Mark Harman, David White, John

Woodward, et al. Genetic improvement of software: a comprehensive survey.

IEEE Transactions on Evolutionary Computation, 2017.

[63] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[64] Paul Walsh and Conor Ryan. Automatic conversion of programs from serial

to parallel using genetic programming-the paragen system. In PARCO, pages

415–422. Citeseer, 1995.

[65] Mark Harman, William B. Langdon, Yue Jia, David R. White, Andrea Arcuri,

and John A. Clark. The gismoe challenge: Constructing the pareto program

surface using genetic programming to find better programs (keynote paper). In

Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2012, pages 1–14, New York, NY, USA, 2012.

ACM.

[66] Michael Orlov and Moshe Sipper. Genetic programming in the wild: Evolving

unrestricted bytecode. In Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, pages 1043–1050. ACM, 2009.

[67] Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason

Lawrence. Genetic programming for shader simplification. ACM Trans-

actions on Graphics (TOG), 30(6):152, 2011.

Bibliography 156

[68] Bobby R. Bruce, Justyna Petke, and Mark Harman. Reducing energy con-

sumption using genetic improvement. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, GECCO ’15, pages

1327–1334, New York, NY, USA, 2015. ACM.

[69] Justyna Petke, Mark Harman, William B Langdon, and Westley Weimer.

Using genetic improvement and code transplants to specialise a c++ program

to a problem class. In European Conference on Genetic Programming, pages

137–149. Springer, 2014.

[70] William B Langdon, Marc Modat, Justyna Petke, and Mark Harman. Improv-

ing 3d medical image registration cuda software with genetic programming.

In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 951–958. ACM, 2014.

[71] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A

field guide to genetic programming. Lulu. com, 2008.

[72] Andrea Arcuri. On the automation of fixing software bugs. In Companion of

the 30th International Conference on Software Engineering, ICSE Companion

’08, pages 1003–1006, New York, NY, USA, 2008. ACM.

[73] Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang. The value of

exact analysis in requirements selection. IEEE Transactions on Software

Engineering, PP (99), pages 1–1, 2016.

[74] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica

Sarro. The plastic surgery hypothesis. In Proceedings of the 22Nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering,

FSE 2014, pages 306–317, New York, NY, USA, 2014. ACM.

[75] Eric Schulte, Stephanie Forrest, and Westley Weimer. Automated program re-

pair through the evolution of assembly code. In Proceedings of the IEEE/ACM

international conference on Automated software engineering, pages 313–316.

ACM, 2010.

Bibliography 157

[76] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. Genprog: A

generic method for automatic software repair. Software Engineering, IEEE

Transactions on, 38(1):54–72, Jan 2012.

[77] Apple. A message to our customers about iphone batteries and per-

formance. https://www.apple.com/uk/iphone-battery-and-

performance/, 2017. [Online; accessed 31-August-2018].

[78] Independent. Apple admits to intentionally slowing down iphones as

they get older. https://www.independent.co.uk/life-style/

gadgets-and-tech/news/apple-iphones-slow-down-old-

models-smartphone-speed-ios-updates-a8121906.html,

2017. [Online; accessed 31-August-2018].

[79] Shuhaizar Daud, R Badlishah Ahmad, and Nukala S Murthy. The effects of

compiler optimisations on embedded system power consumption. Interna-

tional Journal of Information and Communication Technology, 2(1-2):73–82,

2009.

[80] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May

O’Reilly. Meta optimization: Improving compiler heuristics with machine

learning. SIGPLAN Not., 38(5):77–90, May 2003.

[81] M. Boussaa, O. Barais, B. Baudry, and G. Sunyï£Čï¿l’. Notice: A framework

for non-functional testing of compilers. In 2016 IEEE International Confer-

ence on Software Quality, Reliability and Security (QRS), pages 335–346,

Aug 2016.

[82] HK Lam, SH Ling, Frank HF Leung, and Peter Kwong-Shun Tam. Tuning

of the structure and parameters of neural network using an improved genetic

algorithm. In Industrial Electronics Society, 2001. IECON’01. The 27th

Annual Conference of the IEEE, volume 1, pages 25–30. IEEE, 2001.

https://www.apple.com/uk/iphone-battery-and-performance/
https://www.apple.com/uk/iphone-battery-and-performance/
https://www.independent.co.uk/life-style/gadgets-and-tech/news/apple-iphones-slow-down-old-models-smartphone-speed-ios-updates-a8121906.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/apple-iphones-slow-down-old-models-smartphone-speed-ios-updates-a8121906.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/apple-iphones-slow-down-old-models-smartphone-speed-ios-updates-a8121906.html

Bibliography 158

[83] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee.

Choosing multiple parameters for support vector machines. Machine learning,

46(1):131–159, 2002.

[84] Chih-Hung Wu, Gwo-Hshiung Tzeng, Yeong-Jia Goo, and Wen-Chang Fang.

A real-valued genetic algorithm to optimize the parameters of support vec-

tor machine for predicting bankruptcy. Expert systems with applications,

32(2):397–408, 2007.

[85] Carlos Eiras-Franco, Leslie Kanthan, Amparo Alonso-Betanzos, and David

Martınez-Rego. Scalable approximate k-nn graph construction based on

locality sensitive hashing.

[86] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi

Matsumoto. Automated parameter optimization of classification techniques

for defect prediction models. In Proceedings of the 38th International Con-

ference on Software Engineering, ICSE ’16, pages 321–332, New York, NY,

USA, 2016. ACM.

[87] Jinn-Tsong Tsai, Jyh-Horng Chou, and Tung-Kuan Liu. Tuning the structure

and parameters of a neural network by using hybrid taguchi-genetic algorithm.

IEEE Transactions on Neural Networks, 17(1):69–80, 2006.

[88] Ranjit K Roy. A primer on the Taguchi method. Society of Manufacturing

Engineers, 2010.

[89] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and West-

ley Weimer. Post-compiler software optimization for reducing energy. In

Proceedings of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’14, pages

639–652, New York, NY, USA, 2014. ACM.

[90] Irene Manotas, James Clause, and Lori Pollock. Exploring evolutionary

search strategies to improve applications’ energy efficiency. In Thelma Elita

Bibliography 159

Colanzi and Phil McMinn, editors, Search-Based Software Engineering, pages

278–292, Cham, 2018. Springer International Publishing.

[91] Bobby R Bruce. Energy optimisation via genetic improvement: A sbse tech-

nique for a new era in software development. In Proceedings of the Compan-

ion Publication of the 2015 Annual Conference on Genetic and Evolutionary

Computation, pages 819–820. ACM, 2015.

[92] Abram Hindle. Green software engineering: the curse of methodology. In

Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd

International Conference on, volume 5, pages 46–55. IEEE, 2016.

[93] Nevon Brake, James R. Cordy, Elizabeth Dan Y, Marin Litoiu, and Valentina

Popes U. Automating discovery of software tuning parameters. In Workshop

on Software Engineering for Adaptive and Self-managing Systems, SEAMS

’08, 2008.

[94] Frank Hutter, Domagoj Babic, Holger H. Hoos, and A.J. Hu. Boosting

verification by automatic tuning of decision procedures. In Formal Methods

in Computer Aided Design, 2007. FMCAD ’07, Nov 2007.

[95] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant

Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware com-

puting. In Architectural Support for Programming Languages and Operating

Systems, 2011.

[96] Allen Troy Acree Jr. On mutation. Technical report, GEORGIA INST

OF TECH ATLANTA SCHOOL OF INFORMATION AND COMPUTER

SCIENCE, 1980.

[97] Yue Jia, Mark Harman, William B Langdon, and Alexandru Marginean. Grow

and serve: Growing django citation services using sbse. In International

Symposium on Search Based Software Engineering, pages 269–275. Springer,

2015.

Bibliography 160

[98] William B Langdon. Genetic improvement of software for multiple objectives.

In International Symposium on Search Based Software Engineering, pages

12–28. Springer, 2015.

[99] Nathan Burles, Edward Bowles, Bobby R Bruce, and Komsan Srivisut. Spe-

cialising guavaï£ćï¿Ăï¿Źs cache to reduce energy consumption. In Interna-

tional Symposium on Search Based Software Engineering, pages 276–281.

Springer, 2015.

[100] Yue Jia, Fan Wu, Mark Harman, and Jens Krinke. Genetic improvement using

higher order mutation. In Proceedings of the Companion Publication of the

2015 Annual Conference on Genetic and Evolutionary Computation, pages

803–804. ACM, 2015.

[101] Saemundur O Haraldsson, John R Woodward, Alexander EI Brownlee, and

Kristin Siggeirsdottir. Fixing bugs in your sleep: how genetic improvement

became an overnight success. In Proceedings of the Genetic and Evolutionary

Computation Conference Companion, pages 1513–1520. ACM, 2017.

[102] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, Donald Lawrence,

and Earl Barr. Darwinian data structure selection. arXiv preprint

arXiv:1706.03232, 2017.

[103] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T Barr. Optimis-

ing darwinian data structures on google guava. In International Symposium

on Search Based Software Engineering, pages 161–167. Springer, 2017.

[104] David R White, Leonid Joffe, Edward Bowles, and Jerry Swan. Deep parame-

ter tuning of concurrent divide and conquer algorithms in akka. In European

Conference on the Applications of Evolutionary Computation, pages 35–48.

Springer, 2017.

[105] Vidroha Debroy and W Eric Wong. Using mutation to automatically suggest

fixes for faulty programs. In Software Testing, Verification and Validation

(ICST), 2010 Third International Conference on, pages 65–74. IEEE, 2010.

Bibliography 161

[106] Fan Wu, Mark Harman, Yue Jia, and Jens Krinke. Homi: Searching higher

order mutants for software improvement. In International Symposium on

Search Based Software Engineering, pages 18–33. Springer, 2016.

[107] Bobby R Bruce, Jonathan M Aitken, and Justyna Petke. Deep parameter

optimisation for face detection using the viola-jones algorithm in opencv.

In International Symposium on Search Based Software Engineering, pages

238–243. Springer, 2016.

[108] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender

Özcan, and John R Woodward. A classification of hyper-heuristic approaches.

In Handbook of metaheuristics, pages 449–468. Springer, 2010.

[109] W. B. Langdon and J. P. Nordin. Seeding Genetic Programming Populations,

pages 304–315. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[110] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping

Zhou, Bing Xie, and Hong Mei. Safe memory-leak fixing for c programs. In

Proceedings of the 37th International Conference on Software Engineering -

Volume 1, ICSE ’15, pages 459–470, Piscataway, NJ, USA, 2015. IEEE Press.

[111] David R. White, John Clark, Jeremy Jacob, and Simon M. Poulding. Searching

for resource-efficient programs: Low-power pseudorandom number genera-

tors. In Proceedings of the 10th Annual Conference on Genetic and Evolu-

tionary Computation, GECCO ’08, pages 1775–1782, New York, NY, USA,

2008. ACM.

[112] Andrea Arcuri, David Robert White, John Clark, and Xin Yao. Multi-objective

Improvement of Software Using Co-evolution and Smart Seeding, pages 61–70.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[113] D. R. White, A. Arcuri, and J. A. Clark. Evolutionary improvement of

programs. IEEE Transactions on Evolutionary Computation, 15(4):515–538,

Aug 2011.

Bibliography 162

[114] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving patches for

software repair. In Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’11, pages 1427–1434, New York,

NY, USA, 2011. ACM.

[115] W.B. Langdon and M. Harman. Optimizing existing software with genetic

programming. Evolutionary Computation, IEEE Transactions on, 19(1):118–

135, Feb 2015.

[116] Justyna Petke, Mark Harman, WilliamB. Langdon, and Westley Weimer. Us-

ing genetic improvement and code transplants to specialise a c++ program to

a problem class. In Miguel Nicolau, Krzysztof Krawiec, MalcolmI. Heywood,

Mauro Castelli, Pablo Garcia-Sanchez, JuanJ. Merelo, VictorM. Rivas Santos,

and Kevin Sim, editors, Genetic Programming, volume 8599 of Lecture Notes

in Computer Science, pages 137–149. Springer Berlin Heidelberg, 2014.

[117] Nick Mitchell and Gary Sevitsky. The causes of bloat, the limits of health. In

ACM SIGPLAN Notices, volume 42, pages 245–260. ACM, 2007.

[118] Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon: Adaptive selec-

tion of collections. In Proceedings of the 30th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’09, pages

408–418, New York, NY, USA, 2009. ACM.

[119] Oracle. Introduction to collections. https://docs.oracle.com/

javase/tutorial/collections/intro/index.html, 2016.

[Online; accessed 31-August-2018].

[120] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney.

Producing wrong data without doing anything obviously wrong! ACM Sigplan

Notices, 44(3):265–276, 2009.

[121] Stephen M Blackburn, Perry Cheng, and Kathryn S McKinley. Myths and

realities: The performance impact of garbage collection. ACM SIGMETRICS

Performance Evaluation Review, 32(1):25–36, 2004.

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/tutorial/collections/intro/index.html

Bibliography 163

[122] Dayong Gu, Clark Verbrugge, and Etienne M Gagnon. Relative factors in

performance analysis of java virtual machines. In Proceedings of the 2nd

international conference on Virtual execution environments, pages 111–121.

ACM, 2006.

[123] Matthias Hauswirth, Peter F Sweeney, Amer Diwan, and Michael Hind. Ver-

tical profiling: understanding the behavior of object-priented applications.

ACM Sigplan Notices, 39(10):251–269, 2004.

[124] Jonas Maebe, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere.

Javana: A system for building customized java program analysis tools. ACM

SIGPLAN Notices, 41(10):153–168, 2006.

[125] Peter F Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer

Diwan, David Grove, and Michael Hind. Using hardware performance mon-

itors to understand the behavior of java applications. In Virtual Machine

Research and Technology Symposium, pages 57–72, 2004.

[126] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,

Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel

Frampton, Samuel Z Guyer, et al. The dacapo benchmarks: Java benchmark-

ing development and analysis. In ACM Sigplan Notices, volume 41, pages

169–190. ACM, 2006.

[127] Lieven Eeckhout, Andy Georges, and Koen De Bosschere. How java pro-

grams interact with virtual machines at the microarchitectural level. In ACM

SIGPLAN Notices, volume 38, pages 169–186. ACM, 2003.

[128] Nick Mitchell, Gary Sevitsky, and Harini Srinivasan. Modeling runtime

behavior in framework-based applications. In European Conference on Object-

Oriented Programming, pages 429–451. Springer, 2006.

[129] Bruno Dufour, Barbara G Ryder, and Gary Sevitsky. A scalable technique for

characterizing the usage of temporaries in framework-intensive java applica-

Bibliography 164

tions. In Proceedings of the 16th ACM SIGSOFT International Symposium

on Foundations of software engineering, pages 59–70. ACM, 2008.

[130] Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: lightweight

dynamic analysis and removal of object churn. ACM Sigplan Notices,

43(10):127–142, 2008.

[131] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schon-

berg, and Gary Sevitsky. Finding low-utility data structures. ACM Sigplan

Notices, 45(6):174–186, 2010.

[132] Fabian Nagel, Gavin M Bierman, Aleksandar Dragojevic, and Stratis Viglas.

Self-managed collections: Off-heap memory management for scalable query-

dominated collections. In EDBT, pages 61–71, 2017.

[133] Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon: Adaptive

selection of collections. SIGPLAN Not., 44(6):408–418, June 2009.

[134] Mattias De Wael, Stefan Marr, Joeri De Koster, Jennifer B Sartor, and Wolf-

gang De Meuter. Just-in-time data structures. In 2015 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software (Onward!), pages 61–75. ACM, 2015.

[135] Diego Costa and Artur Andrzejak. Collectionswitch: a framework for efficient

and dynamic collection selection. In Proceedings of the 2018 International

Symposium on Code Generation and Optimization, pages 16–26. ACM, 2018.

[136] Changhee Jung, Silvius Rus, Brian P Railing, Nathan Clark, and Santosh

Pande. Brainy: effective selection of data structures. In ACM SIGPLAN

Notices, volume 46, pages 86–97. ACM, 2011.

[137] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Storage strategies

for collections in dynamically typed languages. In Proceedings of the 2013

ACM SIGPLAN International Conference on Object Oriented Programming

Bibliography 165

Systems Languages & Applications, OOPSLA ’13, pages 167–182, New

York, NY, USA, 2013. ACM.

[138] IBM. T.J. Watson Libraries for Analysis (WALA). http:

//wala.sourceforge.net/wiki/index.php/Main_Page, 2009.

[Online; accessed 18-February-2017].

[139] Andy Georges, Lieven Eeckhout, and Dries Buytaert. Java performance

evaluation through rigorous replay compilation. SIGPLAN Not., 43(10):367–

384, October 2008.

[140] Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable

time. In ACM SIGPLAN Notices, pages 63–74. ACM, 2013.

[141] Tomas Kalibera and Richard Jones. Quantifying performance changes with

effect size confidence intervals. Technical report, Technical Report 4-12,

University of Kent, 2012.

[142] Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction

Ledger. Homestead Revision, 2015.

[143] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[144] Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media,

Inc.", 2015.

[145] Marc Pilkington. Blockchain technology: principles and applications. Browser

Download This Paper, 2015.

[146] Melanie Swan. Connected car: quantified self becomes quantified car. Journal

of Sensor and Actuator Networks, 4(1):2–29, 2015.

[147] George Foroglou and Anna-Lali Tsilidou. Further applications of the

blockchain. In 12th Student Conference on Managerial Science and Technol-

ogy, 2015.

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

Bibliography 166

[148] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos

Papamanthou. Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts. In Security and Privacy (SP), 2016 IEEE Sympo-

sium on, pages 839–858. IEEE, 2016.

[149] Alex Zarifis, Leonidas Efthymiou, Xusen Cheng, and Salomi Demetriou.

Consumer trust in digital currency enabled transactions. In International

Conference on Business Information Systems, pages 241–254. Springer, 2014.

[150] Yu Zhang and Jiangtao Wen. An iot electric business model based on the

protocol of bitcoin. In Intelligence in Next Generation Networks (ICIN), 2015

18th International Conference on, pages 184–191. IEEE, 2015.

[151] Mike Sharples and John Domingue. The blockchain and kudos: A distributed

system for educational record, reputation and reward. In European Conference

on Technology Enhanced Learning, pages 490–496. Springer, 2016.

[152] Matthias Mettler. Blockchain technology in healthcare: The revolution starts

here. In e-Health Networking, Applications and Services (Healthcom), 2016

IEEE 18th International Conference on, pages 1–3. IEEE, 2016.

[153] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper, 151, 2014.

[154] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A trace-

ability analysis of monero’s blockchain. IACR Cryptology ePrint Archive,

2017:338, 2017.

[155] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:

Anonymous distributed e-cash from bitcoin. In Security and Privacy (SP),

2013 IEEE Symposium on, pages 397–411. IEEE, 2013.

[156] Val A Red. Practical comparison of distributed ledger technologies for iot. In

Disruptive Technologies in Sensors and Sensor Systems, volume 10206, page

102060G. International Society for Optics and Photonics, 2017.

Bibliography 167

[157] Christian Cachin. Architecture of the hyperledger blockchain fabric. In

Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[158] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:

An introduction. R3 CEV, August, 2016.

[159] Cynthia Dwork and Moni Naor. Pricing via processing or combatting

junk mail. In Annual International Cryptology Conference, pages 139–147.

Springer, 1992.

[160] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. self-published paper, August, 19, 2012.

[161] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In

OSDI, volume 99, pages 173–186, 1999.

[162] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,

2001.

[163] Building a private ethereum consortium. https://

www.microsoft.com/developerblog/2018/06/01/creating-

private-ethereum-consortium-kubernetes/. Accessed:

2018-08-16.

[164] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:

An introduction. R3 CEV, August, 2016.

[165] Vikram Dhillon, David Metcalf, and Max Hooper. Recent developments in

blockchain. In Blockchain Enabled Applications, pages 151–181. Springer,

2017.

[166] Lijun Wu, Kun Meng, Shuo Xu, Shuqin Li, Meng Ding, and Yanfeng Suo.

Democratic centralism: A hybrid blockchain architecture and its applications

in energy internet. In Energy Internet (ICEI), IEEE International Conference

on, pages 176–181. IEEE, 2017.

https://www.microsoft.com/developerblog/2018/06/01/creating-private-ethereum-consortium-kubernetes/
https://www.microsoft.com/developerblog/2018/06/01/creating-private-ethereum-consortium-kubernetes/
https://www.microsoft.com/developerblog/2018/06/01/creating-private-ethereum-consortium-kubernetes/

Bibliography 168

[167] Ian Grigg. Eos, an introduction. Whitepaper) iang. org/paper-

s/EOS_An_Introduction. pdf, 2017.

[168] Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Pono-

marev, An Binh Tran, and Shiping Chen. The blockchain as a software

connector. In 2016 13th Working IEEE/IFIP Conference on Software Archi-

tecture (WICSA), pages 182–191. IEEE, 2016.

[169] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:

Using blockchain for medical data access and permission management. In

Open and Big Data (OBD), International Conference on, pages 25–30. IEEE,

2016.

[170] Ariel Ekblaw, Asaph Azaria, John D Halamka, and Andrew Lippman. A case

study for blockchain in healthcare:âĂIJmedrecâĂİ prototype for electronic

health records and medical research data. In Proceedings of IEEE open & big

data conference, volume 13, page 13, 2016.

[171] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying

incentives in the consensus computer. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pages 706–

719. ACM, 2015.

[172] etherdice.com. Etherdice is down for maintenance. we are having troubles with

our smart contract and will probably need to invoke the fallback mechanism.

https://www.reddit.com/r/ethereum/duplicates/47f028/

etherdice_is_down_for_maintenance_we_are_having/,

2016. [Online; accessed 31-October-2017].

[173] stackoverflow. Difference between call, callcode and delegatecall.

https://ethereum.stackexchange.com/questions/3667/

difference-between-call-callcode-and-delegatecall,

2018. [Online; accessed 31-August-2018].

https://www.reddit.com/r/ethereum/duplicates/47f028/etherdice_is_down_for_maintenance_we_are_having/
https://www.reddit.com/r/ethereum/duplicates/47f028/etherdice_is_down_for_maintenance_we_are_having/
https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-delegatecall
https://ethereum.stackexchange.com/questions/3667/difference-between-call-callcode-and-delegatecall

Bibliography 169

[174] Coindesk. Understanding the dao hack. https://www.coindesk.com/

understanding-dao-hack-journalists/, 2016. [Online; ac-

cessed 31-October-2017].

[175] Phil Daian Lorenz Breidenbach Emin Gun Sirer, Ari Juels. An in-depth look

at the parity multisig bug, 2017.

[176] Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart contracts.

arXiv preprint arXiv:1702.05511, 2017.

[177] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine

Shi. Step by step towards creating a safe smart contract: Lessons and in-

sights from a cryptocurrency lab. In International Conference on Financial

Cryptography and Data Security, pages 79–94. Springer, 2016.

[178] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on

ethereum smart contracts (sok). In International Conference on Principles of

Security and Trust, pages 164–186. Springer, 2017.

[179] Thomas Cook, Alex Latham, and Jae Hyung Lee. Dappguard: Active moni-

toring and defense for solidity smart contracts.

[180] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 254–269.

ACM, 2016.

[181] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: Analyz-

ing safety of smart contracts. NDSS, 2018.

[182] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil

Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck: Static

analysis of ethereum smart contracts. 2018.

https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/

Bibliography 170

[183] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas

Hobor. Finding the greedy, prodigal, and suicidal contracts at scale. arXiv

preprint arXiv:1802.06038, 2018.

[184] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town

crier: An authenticated data feed for smart contracts. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, pages 270–282, New York, NY, USA, 2016. ACM.

[185] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart

contracts for the internet of things. IEEE Access, 4:2292–2303, 2016.

[186] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim,

Philippe Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya,

et al. Managing technical debt in software-reliant systems. In Proceedings of

the FSE SDP workshop on Future of software engineering research, pages

47–52. ACM, 2010.

[187] Nell Dale and Henry M Walker. Abstract data types: specifications, imple-

mentations, and applications. Jones & Bartlett Learning, 1996.

[188] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A

fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions

on evolutionary computation, 6(2):182–197, 2002.

[189] Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. Memory

mutation testing. Information & Software Technology, 81:97–111, 2017.

[190] Lingbo Li. Exact analysis for requirements selection and optimisation. PhD

thesis, UCL (University College London), 2017.

[191] Lingbo Li. Exact analysis for next release problem. In Requirements En-

gineering Conference (RE), 2016 IEEE 24th International, pages 438–443.

IEEE, 2016.

Bibliography 171

[192] Robert V Binder. Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley Professional, 2000.

[193] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design

patterns: Elements of reusable object-oriented software. Reading: Addison-

Wesley, 49(120):11, 1995.

[194] Matthew Arnold, Michael Hind, and Barbara G Ryder. Online feedback-

directed optimization of java. In ACM SIGPLAN Notices, volume 37, pages

111–129. ACM, 2002.

[195] Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang. Ro-

bust next release problem: handling uncertainty during optimization. In

Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 1247–1254. ACM, 2014.

[196] Michael P Fay and Michael A Proschan. Wilcoxon-mann-whitney or t-test?

on assumptions for hypothesis tests and multiple interpretations of decision

rules. Statistics surveys, 4:1, 2010.

[197] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.

Performance assessment of multiobjective optimizers: an analysis and review.

IEEE Transactions on Evolutionary Computation, 7(2):117–132, April 2003.

[198] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W

Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary

guidelines for empirical research in software engineering. IEEE Transactions

on software engineering, 28(8):721–734, 2002.

[199] Cryptocompare. The dao, the hack, the soft fork and the hard

fork. https://www.cryptocompare.com/coins/guides/the-

dao-the-hack-the-soft-fork-and-the-hard-fork/, 2017.

[Online; accessed 31-October-2017].

https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/
https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/

Bibliography 172

[200] ConsenSys. Smart contract best practices. https://github.com/

ConsenSys/smart-contract-best-practices, 2017. [Online;

accessed 31-August-2018].

[201] Ethereum Core Developers. Solidity programming language. http://

solidity.readthedocs.io/en/latest/, 2016. [Online; accessed

31-October-2017].

[202] www.ethnews.com. Meet the unknown, maverick white hat who

rescued additional accounts during this week’s attack. https:

//www.ethnews.com/meet-the-unknown-maverick-white-

hat-who-rescued-accounts-missed-by-the-whg-during-

this-weeks-attack, 2017. [Online; accessed 31-August-2018].

[203] www.vice.com. How coders hacked back to rescue 208 million dollars in

ethereum. https://motherboard.vice.com/en_us/article/

qvp5b3/how-ethereum-coders-hacked-back-to-rescue-

dollar208-million-in-ethereum, 2017. [Online; accessed

31-August-2018].

[204] ParityMultisigRecoveryReconciliation. Parity multisig vulnerability

- white hat group rescue reconciliation. https://github.com/

bokkypoobah/ParityMultisigRecoveryReconciliation,

2017. [Online; accessed 31-August-2018].

[205] Aragon Community. Advanced solidity code deployment tech-

niques. https://blog.aragon.org/advanced-solidity-code-

deployment-techniques-dc032665f434/, 2017. [Online; ac-

cessed 31-August-2018].

[206] cointelegraph.com. Coincheck to refund all customers affected by hack,

faced by community support. https://cointelegraph.com/

news/coincheck-to-refund-all-customers-affected-

https://github.com/ConsenSys/smart-contract-best-practices
https://github.com/ConsenSys/smart-contract-best-practices
http://solidity.readthedocs.io/en/latest/
http://solidity.readthedocs.io/en/latest/
https://www.ethnews.com/meet-the-unknown-maverick-white-hat-who-rescued-accounts-missed-by-the-whg-during-this-weeks-attack
https://www.ethnews.com/meet-the-unknown-maverick-white-hat-who-rescued-accounts-missed-by-the-whg-during-this-weeks-attack
https://www.ethnews.com/meet-the-unknown-maverick-white-hat-who-rescued-accounts-missed-by-the-whg-during-this-weeks-attack
https://www.ethnews.com/meet-the-unknown-maverick-white-hat-who-rescued-accounts-missed-by-the-whg-during-this-weeks-attack
https://motherboard.vice.com/en_us/article/qvp5b3/how-ethereum-coders-hacked-back-to-rescue-dollar208-million-in-ethereum
https://motherboard.vice.com/en_us/article/qvp5b3/how-ethereum-coders-hacked-back-to-rescue-dollar208-million-in-ethereum
https://motherboard.vice.com/en_us/article/qvp5b3/how-ethereum-coders-hacked-back-to-rescue-dollar208-million-in-ethereum
https://github.com/bokkypoobah/ParityMultisigRecoveryReconciliation
https://github.com/bokkypoobah/ParityMultisigRecoveryReconciliation
https://blog.aragon.org/advanced-solidity-code-deployment-techniques-dc032665f434/
https://blog.aragon.org/advanced-solidity-code-deployment-techniques-dc032665f434/
https://cointelegraph.com/news/coincheck-to-refund-all-customers-affected-by-hack-faced-by-community-support
https://cointelegraph.com/news/coincheck-to-refund-all-customers-affected-by-hack-faced-by-community-support

Bibliography 173

by-hack-faced-by-community-support, 2017. [Online; accessed

31-August-2018].

[207] Coindesk. 7 million dollars lost in coindash ico hack, 2017.

[208] Lawrence Abrams. Ethereum phishing attack nets criminals 15k in two

hours. https://www.bleepingcomputer.com/news/security/

ethereum-phishing-attack-nets-criminals-15k-in-

two-hours/, 2017. [Online; accessed 31-October-2017].

[209] Solidity documentation.

[210] Solidity assembly. http://solidity.readthedocs.io/en/

v0.4.24/assembly.html. Accessed: 2018-07-23.

[211] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

https://cointelegraph.com/news/coincheck-to-refund-all-customers-affected-by-hack-faced-by-community-support
https://cointelegraph.com/news/coincheck-to-refund-all-customers-affected-by-hack-faced-by-community-support
https://www.bleepingcomputer.com/news/security/ethereum-phishing-attack-nets-criminals-15k-in-two-hours/
https://www.bleepingcomputer.com/news/security/ethereum-phishing-attack-nets-criminals-15k-in-two-hours/
https://www.bleepingcomputer.com/news/security/ethereum-phishing-attack-nets-criminals-15k-in-two-hours/
http://solidity.readthedocs.io/en/v0.4.24/assembly.html
http://solidity.readthedocs.io/en/v0.4.24/assembly.html

	Introduction
	Objectives of the Research
	Contributions
	Organisation of the PhD Thesis

	Literature Review
	Search-Based Software Engineering (SBSE)
	Requirements Engineering
	Effort Estimation
	Software Product Line
	Software Testing
	Other Areas
	SBSE Industrial Applications

	Genetic Improvement
	Code Representation
	Search-Based Parameter Tuning
	Improvement using Genetic Programming
	Patch-Based Genetic Improvement

	Data Structure Selection and Tuning
	Java Virtual Machine
	Java Collection Framework
	Tradeoffs in Collection Implementations
	Empirical Rigorous Performance Evaluation
	Data Structure Optimisation and Bloat

	Blockchain
	Consensus Layer
	Types of Blockchain Systems
	Permissionless Blockchain
	Permissioned Blockchain
	Hybrid Blockchain

	Ethereum Blockchain
	Ethereum Account Types
	A Smart Contract Example.
	Ethereum Virtual Machine
	Contract State Transitions / Transactions
	Message calls
	Function Dispatch
	Types of Message Calls

	Security issues with Solidity smart contracts
	Research Findings on Ethereum Smart Contracts

	Darwinian Data Structure Selection
	Motivating example
	Darwinian Data Structure Selection and Tuning
	Artemis
	Darwinian Data Structure Store
	Discovering Darwinian Data Structures
	Code Transformations
	Search Based Parameter Tuning
	Deployability

	Evaluation
	Corpus
	Experimental Setup
	Research Questions and Results Analysis
	Optimising Google Guava library using ARTEMIS

	Threats to Validity
	Summary

	Upgradeable Ethereum Smart Contracts
	Immortal Bugs
	Motivating Example
	Approach
	Delegating Calls to Other Contracts
	Solidity Syntax
	Proteus Rewriting Rules
	Mutable Implementation Mode
	Trampoline Rewriting Rules
	Rewriting Rules for Contract [language=Solidity]C'
	Mutable Implementation Code Transformation Example

	Mutable Interface Mode
	Rewriting Rules for Mutable Interface

	Implementation
	Deployability
	Deployment Process
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Bibliography

