
Piecewise Regression Analysis through Information
Criteria using Mathematical Programming

Ioannis Gkioulekas, Lazaros G. Papageorgiou ∗

Centre for Process Systems Engineering, Department of Chemical Engineering, UCL

(University College London), Torrington Place, London WC1E 7JE, UK

∗Corresponding author. Tel: +44 20 7679 2563

E-mail addresses: ioannis.gkioulekas.16@ucl.ac.uk (I. Gkioulekas), l.papageorgiou@ucl.ac.uk (L.G.

Papageorgiou)



Abstract: Regression is a predictive analysis tool that examines the relationship be-

tween independent and dependent variables. The goal of this analysis is to fit a mathe-

matical function that describes how the value of the response changes when the values of

the predictors vary. The simplest form of regression is linear regression which in the case

multiple regression, tries to explain the data by simply fitting a hyperplane minimising

the absolute error of the fitting. Piecewise regression analysis partitions the data into

multiple regions and a regression function is fitted to each one. Such an approach is

the OPLRA (Optimal Piecewise Linear Regression Analysis) model (Yang et al., 2016)

which is a mathematical programming approach that optimally partitions the data into

multiple regions and fits a linear regression functions minimising the Mean Absolute

Error between prediction and truth. However, using many regions to describe the data

can lead to overfitting and bad results. In this work an extension of the OPLRA model

is proposed that deals with the problem of selecting the optimal number of regions as

well as overfitting. To achieve this result, information criteria such as the Akaike and

the Bayesian are used that reward predictive accuracy and penalise model complexity.

Keywords: Mathematical programming, Regression analysis, Optimisation, Informa-

tion criterion, Machine learning



1 Introduction

Regression analysis is a predictive modeling technique that estimates the relationship

between variables. Given a multivariate dataset, this modeling technique will try to

formulate the correlation between the set of dependent variables, called predictors, and

the independent variable, called response. The final goal of the analysis is to create a

mathematical model that describes that relationship.

There are various methods for regression available in the literature that approach the

topic in different ways. One of the most widely known methods is linear regression that

establishes a relationship between the response and the predictors by fitting a simple

straight line. Other more sophisticated approaches include Support Vector Machine

Regression (SVM) (Smola and Schölkopf, 2004), K-nearest neighbors (KNN) (Korho-

nen and Kangas, 1997), Multivariate Adaptive Regression Splines (MARS) (Friedman,

1991) and Random Forest (Breiman, 2001). In the field of mathematical program-

ming there is the Automated Learning of Algebraic Models for Optimisation (ALAMO)

(Cozad et al., 2014; Wilson and Sahinidis, 2017) and a segmented regression approach

called Optimal Piecewise Linear Regression Analysis (OPLRA) (Yang et al., 2016).

In machine learning, constructing an accurate predictive model involves fitting it to

a set of training data and then fine-tuning its parameters in such a way that this

model will be able to make reliable predictions on new untrained data. Tuning these

parameters and deciding on the complexity of the final model is essential in order to

avoid overfitting.

Overfitting is a common concern when constructing a predictive model. When fitting a

regression model to a set of data, it is possible to create such a complex structure that

the final model will also predict the noise of the data. That means the model is not able

to describe the overall population in the dataset and as a result has poor performance.

Figure 1 illustrates this problem.

Underfitting Overfitting

Good fitting

Figure 1: Visual representation of over- and under-fitting in regression

By describing the noise that exists in the data, the resulting model is very sensitive

and is affected by small fluctuations in the data (Hawkins, 2004). On the opposite

1



end there is underfitting, the process of constructing a very simple model that is not

capable of capturing the information that exists in the data, hence creating the tradeoff

between variance and bias. In machine learning, this problem is about trying to create

an algorithm that will have good predictive performance and it will be able to generalise

well. The term bias usually refers to underfitting because it can cause a model to miss

the relation between the data. Variance on the other hand, is associated with overfitting

and modeling the noise that exists in the data.
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Figure 2: Test and training error as a function of model complexity (Hastie et al., 2008)

Figure 2 illustrates the impact that model complexity has on performance. Low model

complexity leads to a model with high bias meaning that there is a large prediction

error in both training and testing. High model complexity leads to a model with high

variance resulting in a big performance gap between the training and testing phase.

Deciding on the final complexity of a model requires trial and error and fine-tuning,

until the final model has been chosen. During this process, every time a parameter

is changed, a new model is constructed. So in the end there exists a set of candidate

models to choose from and the objective is to determine which one best approximates

the data. Tackling this problem of model selection can be achieved using information

criteria. Information criteria are measures of the relative goodness of fit of a statistical

model. There are various information criteria in literature with two of the most popular

being the Akaike Information Criterion (AIC ) and the Bayesian information criterion

(BIC ) (Wagenmakers and Farrell, 2004).

1.1 Information Criteria

These two criteria have been established as two of the most frequently used in the

literature for model selection problems, with a wide variety of applications. A few

examples include the wine industry (Snipes and Taylor, 2014) where different models are
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compared in an attempt to explore the relationship between ratings and prices of wines,

cancer research where AIC was used to develop a prognostic model in patients with

germ cell tumors who experienced treatment failure with chemotherapy (International

Prognostic Factors Study Group, 2010)

These two criteria have also been used in a number of statistical and machine learning

methods such as outlier detection (Lehmann and Lösler, 2016) and feature selection.

Kimura and Waki (2018) proposed a branch-and-bound search algorithm formulated

as a mixed integer nonlinear programming problem, minimising the value of the AIC,

to perform feature selection. Sato et al. (2016) have also used both the AIC and BIC

as measures of the goodness-of-fit to perform feature selection for logistic regression

models.

The general formulation of the AIC and the BIC is as follows (Wagenmakers and

Farrell, 2004):

AIC = −2 · ln(L̂) + 2K

BIC = −2 · ln(L̂) +K · ln(n)

where:

ln is the natural logarithm

L̂ is the value of the log-likelihood function at its maximum point

K is the number of parameters in the model

n number of samples in the data

The AIC establishes a relationship between the Kullback-Leibler measure and maximum

likelihood estimation method (Fabozzi et al., 2014). It is an estimate of the relative

distance between the truth and the model that approximates it. The criterion is based

on the idea that no model exists that perfecly describes the truth so the best we can do

is approximate it. Given a set of candidate models the criterion can identify the model

that performs the best (Burnham and Anderson, 2003).

The BIC however arises from a Bayesian viewpoint and belongs to a class of criteria that

are ”dimension-consistent” which differ from those that are estimates of the Kullback-

Leibler measure. The formulation of the BIC is very similar to the AIC but the main

difference is that the BIC is derived to provide a consistent estimator of the dimension

of the data (Burnham and Anderson, 2003).

In regression analysis, if all the candidate models assume normally distributed errors

with a constant variance, then the criteria can be reformulated as (Burnham and An-

derson, 2003):

AIC = n · ln
(
RSS

n

)
+ 2K (1)

BIC = n · ln
(
RSS

n

)
+K · ln(n) (2)

where:

RSS is the residual sum of squares
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1.2 Contribution of this work

Piecewise regression methods using linear expressions have the advantage of simplicity

and model interpretability because of the linear expressions between the predictors and

the response, but identifying the position of the break points is not an easy task. The

break points are points at which the data will be split in order to define a new region.

In the end, the final regression model will consist of a number of regions and break

points with a linear expression fitted to each one. The segmented package, which is

part of the R (R Development Core Team, 2016) library, is able to perform piecewise

analysis (Muggeo, 2008, 2003). This package fits segmented regression expressions to

a set of data but the user has to specify the number of regions as well as estimates for

the position of the break points. The method then iterates until the final break points

have been identified.

The OPLRA method (Yang et al., 2016) is a mathematical programming-based regres-

sion method that performs piecewise linear regression. This method is formulated as a

Mixed Integer Linear Programming (MILP) problem that partitions a single variable

into segments and fits linear functions to them. A big advantage of this method is the

ability to simultaneously determine the position of each break point and calculate the

regression coefficients. So the user is not required to give estimates for the break points.

However, this method requires the number of regions for the partitioning of the data. A

heuristic approach was proposed that could identify that number by iteratively solving

multiple MILP models, increasing the number of regions every time.

In this work, an extension of the OPLRA model is proposed that includes information

criteria, such as the AIC and the BIC, to fully automate the entire regression process

and select the optimal number of regions. This novel approach requires a multivariate

dataset as input and then can simultaneously decide on the optimal number of regions,

the optimal position of the break points and can estimate the regression coefficients

while directly minimising the value of the information criteria. This has been achieved

by introducing new binary variables to the model that are able to ‘activate‘ regions so

that samples can be allocated to them.

By accommodating information criteria and reformulating the model to automatically

decide on the number of regions for partitioning the data, the algorithm has the advan-

tage of building piecewise linear models without demanding any user input. Also, by

using the AIC and BIC the approach handles the trade-off between bias and variance

and is able to choose the optimal number regions needed in order to build an accurate

but not very complex model.

2 Optimisation Approaches

In this work, two new methods are proposed that extend the OPLRA mathematical

programming model and include information criteria. The first approach is an iterative

method that solves multiple MILP models and uses the AIC and the BIC to identify the

optimal number of regions for piecewise regression. In the second approach, a single

level MILP model is constructed that is able to optimally decide on the number of
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regions and the optimal position of the break points while minimising the value of the

criterion.

The original ORPLA mathematical model is presented in appendix A. This section

contains the symbols for all the sets, parameters and variables that are necessary to

formulate equations 12-19. A brief explanation of all the equations is also provided in

that section to explain how each equation works and regression is performed.

2.1 Iterative approaches

In this section, the AIC and BIC are used to select the optimal number of regions. As

stated previously, the criteria can be used in regression to select the best model in a

set of candidate models. For this approach, the set of candidate models differ in the

number of regions selected. With each added region, more parameters are introduced

to the model since a mathematical function is fitted to each new region.

Using equations 1 and 2 and modifying them to fit the notation used in this work,

equation 3 and 4 are derived:

AIC = |S| · log

(∑
sD

2
s

|S|

)
+ 2(|M |+ 1)|R| (3)

BIC = |S| · log

(∑
sD

2
s

|S|

)
+ (|M |+ 1)|R| · ln(|S|) (4)

|S| is the total number of samples in the dataset. The term
∑

sD
2
s is the residual

sum of squares. Finally, the number of parameters is (|M | + 1)|R|, where |M | is the

total number of predictors in the dataset and |R| is the total number of regions. Each

model consists of |M | coefficients (one for each predictor) and one parameter for the

intercept of each region. It is obvious that the more regions we add to the model,

the more parameters we introduce resulting in a higher model complexity. In this

section, two iterative variants have been introduced that use the same optimisation

model but process the results with two different criteria. The two approaches are

the Piecewise Regression with Iterative Akaike information criterion (PRIA) and the

Piecewise Regression with Iterative Bayesian information criterion (PRIB). The two

models can be summarised as follows:

minimise objective function 19

subject to constraints 12 - 18

post-process the results of the optimisation with equation 3 (PRIA)

post-process the results of the optimisation with equation 4 (PRIB)

The proposed methods still use an iterative approach to select the optimal number of

regions. As a first step, the algorithm will try to identify a variable in order to partition

the data based on that variable and create regions. So we fix the number of regions to

R=2 and solve the OPLRA model multiple times, each time changing the partitioning

variable and minimising the absolute deviation. In the end, the variable that yields the

lowest error becomes the partitioning variable. It is worth noting that the information

criteria could be have been used in order to identify which predictor variable should
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be used to partition the data. But because the number of regions is constant, the only

parameter in equations 3 and 4 that changes is the absolute deviation. So, using the

information criteria for this part is not necessary.

The next step in the process is to identify the optimal number of regions. Since the

partitioning variable has been selected, we solve the PRIA/PRIB model iteratively,

adding an extra region with each iteration. At the end of each iteration we check

the values of the criteria (either AIC or BIC depending on which method the user

selected) and compare them with the values of the previous iteration. If there is an

improvement (AIC or BIC decreases), then another region is added and a new iteration

begins. Otherwise, the iterations are terminated and the final number of regions is the

number of the iteration that had the minimum AIC/BIC value.

Data Input

R=2, m*=1

Solve model and 
record error

m*=m*+1

m*<M
Select predictor 
with minimum 

error

AICR<AICR-1

or
BICR<BICR-1

R=R+1

Solve 
model

Final regression 
function 

R=R-1

End

Yes No

No

Yes

Figure 3: Flowchart for the proposed iterative approaches

The heuristic approach described in figure 3 is very similar to the one used in the

original OPLRA model (Yang et al., 2016). The major difference is the use of the AIC

and BIC in the final loop. By using them, the original stopping criteria is replaced.

The main reason for this change is to avoid over or under fitting. The criterion is now

solely responsible for the optimal number of regions.

Also, in the original work a heuristic approach was proposed for identifying the optimal

number of regions for piecewise regression. To achieve that goal the authors introduced

a user-specified parameter, called β, as a threshold to stop the iterations and converge to

a solution. The elimination of the user-specified β parameter is a another improvement

over the previous work. In order to assign a value to this parameter, Yang et al.

(2016) performed a sensitivity analysis based on some specific datasets. This action

might have an effect on overall performance and how well the method generalises, since

the model was tailored around these datasets. With this new change there are no
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user-specified variables and the model is independent of any data, hence allowing for

possibly improved predictive accuracy.

However, this new modification to the model still has the drawback of solving the

problem iteratively. This means that an MILP problem has to be solved for every new

region that is added to the model. And with each added region the model becomes

more complex and more computationally expensive to solve. To tackle this problem, a

new approach has to be developed that solves the problem of identifying the number

of regions and also fits a regression function simultaneously.

2.2 Single level MILP approaches

In this section, a single-level MILP model is constructed that is able to optimally

partition the data into multiple regions, decide on the position of the break points

and calculate the regression coefficients simultaneously. Instead of solving the model

multiple times to identify the number of optimal regions through a heuristic approach,

this time a single model is constructed and the information criteria are used as the

objective function of the optimisation model.

More specifically, a new binary variable is introduced to the model to determine the

number of selected regions. This variable is a decision variable that formulates whether

or not a region has been selected. If a region is selected then samples can be allocated

to that region according to equations 13 and 14. The objective function of this model

is the minimisation of either the AIC or BIC. To overcome the non-linear nature of the

criteria and formulate the problem as an MILP approach, some adjustments have to

be made. Those include new equations in order to approximate the logarithmic nature

of the criteria with linear expressions and the use of Mean Absolute Error values to

reward predictive accuracy instead of squared error values. The new additions to the

model are presented below:

Indices

i number of breaking points , i = 1, 2, ...N

Variables

AIC Akaike Information Criterion value

BIC Bayesian Information Criterion value

λi SOS2 variables that describe which discrete points will be used for the

linear approximation

G The final result of the approximation

Binary variables

Er 1 if region r is selected; 0 otherwise
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Parameters

γi The discrete points for the linearisation

βi The ‘output‘ of the discrete points

Constraints

The following constraint ensures that sample s belongs to region r only if that region

is selected. F r
s is a binary variable that has the value of 1 if sample s belongs to region

r. For more information we address the reader to appendix A:

F r
s ≤ Er ∀ r, s (5)

The following constraint ensures that if region r is not selected, then all of the following

regions will not be selected as well:

Er+1 ≤ Er ∀ r = 1, 2, ..., R− 1 (6)

The next set of equations are responsible for the linear approximation of the logarithm

in the AIC and BIC. We introduce λi variables which are a SOS2 set (special ordered

set of type 2). That means that at most two variables within this ordered set can

take on non-zero values. Those two values have to be for adjacent variables in that set.

Parameter γi is used to discretise the domain of the equation that needs to be linearised.

Since there is a mere numerical relation between the two, the following equation is not

part of the optimisation model.

βi = ln(γi) ∀i

The new equations that are introduced to the model are presented below. In these

equations another simplification is applied by using absolute error values instead of

RSS:∑
s

Ds =
∑
i

γi · λi (7)

G =
∑
i

βi · λi (8)∑
i

λi = 1 (9)

Equation 7 is known as the ‘reference row‘ and is used to describe the independent

variable. In this case, the independent variable that we want to approximate is the

sum of absolute errors
∑

sDs. Equation 8 is called the ‘function row‘ and is used to

calculate the value of the response that was described in equation 7. Equation 9 ensures

that the sum of all the λi variables will equal to one. So λ acts as a weight factor that

describes which two discrete points have been used for the approximation.

Finally, formulating the objective function depends on the criterion that is chosen in

order to perform model selection. For the AIC approach:

minAIC = |S| ·G− |S| ln(|S|) + 2(|M |+ 1) ·
∑
r

Er (10)
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Whereas for the BIC approach:

minBIC = |S| ·G− |S| ln(|S|) + ln |S| · (|M |+ 1) ·
∑
r

Er (11)

As stated in section (1), the difference between the two criteria is on the penalty im-

posed for the complexity of the model. In this approach, the partitioning feature is once

again identified by solving the original model proposed in the previous section for all of

the features while fixing the number of regions to two. The feature with the smallest

prediction error is selected for the partitioning. The next step is to select the maximum

number of regions R for the model. The binary variable Er that is introduced will decide

the optimal number of regions that will be selected and constraint (5) will ensure that all

of the samples belong to those regions. Overall, the proposed MILP model can be split

into two sub-models depending on the objective function. The first model is for Piece-

wise Regression with Optimised Akaike information criterion (PROA) and the second

is Piecewise Regression with Optimised Bayesian information criterion (PROB). The

two models can be summarised as follows:

minimise objective function 10 (PROA) or objective function 11 (PROB)

subject to constraints 12 - 18 and 5 - 9

The proposed extended approach solves a single MILP model instead of multiple MILP

models, to identify the optimal number of regions. With the new additions the method

now deals with overfitting by using two well known and established information criteria

as objective function.

Method Description Equations

OPLRA Original OPLRA model (Yang et al.,

2016)

min 19, s.t 12-18

PRIA OPLRA model with AIC post-

process

min 19, s.t 12-18, post 3

PRIB OPLRA model with BIC post-

process

min 19, s.t 12-18, post 4

PROA Single level MILP with AIC objec-

tive function

min 10, s.t. 12-18 and(5 - 9

PROB Single level MILP with BIC objec-

tive function

min 11, s.t. 12-18 and 5 - 9

Table 1: A summary of the of the otpimisation based approaches

Table 1 gives a brief summary of the optimisation based regression approaches. The

original model OPLRA is used from literature, whereas the rest are the new approaches

that are proposed in this work, all of which use information criteria. All of the equations

that are part of the models are reported as well. We can see that the OPLRA approach

has the same optimisation model with PRIA and PRIB, with the difference in the post

processing of the results, whereas PROA and PROB include new equations to formulate

the single MILP approach.
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3 Computational part

3.1 Illustrative example

An example from literature is used to demonstrate what the final regression functions

of the various methods would look like. This example is about the octane rating of fuel.

This specific dataset investigates the octane rating of petrol during a manufacturing

process in a refinery. The rating of the fuel is measured as a function of 3 raw materials,

named A1, A2 and A3, and a variable that is quantifies the manufacturing conditions

of the refinery, named Q (Wood, 1973).

By applying the PRIA method that was described in figure 3, we can extract the final

regression model. The first step of the process is to identify the partitioning feature

that yields the minimum fitting error. Once this feature is known, the method starts

to add more regions to the data, until the optimal number is found.

After identifying the correct partitioning feature, instead of applying an iterative ap-

proach we can also apply a single level MILP approach, such as PRIA, to directly

minimise an information criterion and identify the optimal number of regions as well

as the position of the break points simply by solving one optimisation model. Table 2

illustrates the difference in the final models from these two proposed approaches.

Prior to performing the analysis, we first apply feature scaling. Each dataset has a

number of predictor variables and an output. We perform feature scaling with the

following equation:
As,m −minsAs,m

maxsAs,m −minsAs,m

That means that the predictors of the datasets are now within the range of [0,1]. The

main advantage of scaling is not having predictors with great numeric ranges that can

potentially dominate those in smaller ranges. As a results, all of the break points that

will be determined by the model will also be within that same range.

Method Regression functions

PRIA Y =



−5.13 ·A1 + 0.11 ·A2 − 0.71 ·A3 + 1.95 ·Q + 95.71, 0 ≤ A3 ≤ 0.58

−7.57 ·A1 − 0.97 ·A2 − 3.70 ·A3 + 3.96 ·Q + 98.83, 0.58 < A3 ≤ 0.71

−8.13 ·A1 − 1.80 ·A2 − 1.82 ·A3 + 2.05 ·Q + 99.00, 0.71 < A3 ≤ 0.92

23 ·A1 + 2.95 ·A2 + 13.90 ·A3 + 6.48 ·Q + 59.15, 0.71 < A3 ≤ 1

PROA Y =


−5.13 ·A1 + 0.11 ·A2 − 0.71 ·A3 + 1.95 ·Q + 95.71, 0 ≤ A3 ≤ 0.58

−7.79 ·A1 − 1.19 ·A2 − 0.1.07 ·A3 + 3.11 ·Q + 97.71, 0.58 < A3 ≤ 1

Table 2: Final regression functions for some of the proposed methods
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As we can see, both methods were able to identify exactly the same linear function

for the first region. This linear expression is a function of all 4 variables with the

corresponding regression coefficients and an intercept. However, the iterative methods

identifies a total of 4 regions compared to just 2 of the single level MILP approach.

Even though both models use exactly the same criterion, in this case the AIC, we can

see that there are differences in the results. In order to determine which of the proposed

methods have good predictive performance more testing has to be done. In the next

section a number of examples are used to test and compare the proposed methods to

other regression methods.

To test the proposed methods a number of real world datasets have been used. The

datasets reported in table 3 are derived from different online sources. More specifically

the pharmacokinetics and earthquake data are available through the datasets package

in R, bodyfat and sensory data are available through StatLib (Vlachos, 2005), distil-

lation data from OpenMV.net and the rest from the UCI machine learning repository

(Dheeru and Karra Taniskidou, 2017).

Dataset No.samples No.variables Output variable

Pharmacokinetics 132 4 Drug concentrarion

Bodyfat 252 14 Bodyfat percentage

Distillation 253 26 Vapour pressure

Yacht Hydrodynamics 308 6 Residuary resistance

Sensory 576 11 Wine score

Cooling efficiency 768 8 Cooling load

Heating efficiency 768 8 Heating load

Earthquake 1000 4 Magnitude

Concrete 1030 8 Compressive strength

White wine quality 4898 11 Quality

Table 3: Regression datasets examined in this work

The datasets that are taken from the UCI repository are also used in the original work

(Yang et al., 2016). The yacht hydrodynamics set predicts the residuary resistance

of sailing yachts for evaluating the ships’ performance and for estimating the required

propulsive power. The energy efficiency dataset (Tsanas and Xifara, 2012) assesses

the heating and cooling load requirements of different buildings as a function of 8

parameters. The concrete dataset (Yeh, 1998) tries to predict the compressive strength

of concrete as a structural material. The wine dataset (Cortez et al., 2009) tries to

predict the quality of white wine according to some of it’s properties.

As mentioned in section (A), the original OPLRA model used a heuristic approach to

identify the number of regions and introduced a parameter as a stopping criterion. This

user specified parameter was set at 0.03 after a sensitivty analysis was performed with

the same UCI datasets. So in a way, the algorithm was tailored to those datasets. In

order to test the accuracy and robustness of the proposed extension, new datasets are

introduced in this work.
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The pharmacokinetics dataset contains data from a study of the kinetics of the anti-

asthmatic drug theophylline. Twelve subjects were given oral doses of the drug and

the aim is to predict the final theophylline concentration of each subject by measuring

parameters such as weight and time. The earthquake data gives the location of seismic

events that occurred near Fiji since 1964. The bodyfat dataset uses features such as

age, weight and height to measure the percentage of bodyfat in a subject. The sensory

dataset has data for the evaluation of wine quality by a total of 6 judges. The distillation

dataset is comprised of measurements from a distillation column with the final result,

vapour pressure, being the quality variable that was measured in the lab.

3.2 Validation of the methods

Having developed the algorithm for regression and having resolved the issue of region

selection by using two different information criteria, it is now vital to evaluate the

method and all of the constructed models. The simplest way to evaluate a model is

to split the original data into two subsets, one for training and one for testing. The

training set will be used to construct the regression model which will be evaluated by

using the testing set. The reason for doing so is to try and measure how well the model

generalises to new, previously unseen data (Müller and Guido, 2016).

Cross-validation is a statistical method of evaluating the performance of models that

is more thorough and reliable than simply splitting the data into two sets. The most

common form of cross-validation is k-folds where the data is split into k subsets of equal

size. Then the method uses one of these sets for testing and the rest for training. The

method stops when all of the k sets have been used as the testing set. Parameter k is

user-specified and is usually set to either 5 or 10 (Müller and Guido, 2016).

In this work, 5-fold cross-validation is selected to evaluate the performance of the pro-

posed model. 10 runs will be performed and the Mean Absolute Error (MAE) between

model prediction and the true data will be calculated for each fold. The final score is

the average of all the runs. All of the proposed mathematical programming models are

implemented in the General Algebraic Modeling System (GAMS) (GAMS Development

Corporation, 2016) and are solved using the CPLEX solver with optimality gap set at

0 and a time limit of 200s for the iterative approaches and 400s for the single-level

MILP approaches. The R programming language (R Development Core Team, 2016) is

used for the k folds cross-validation procedure. The caret package (Kuhn, 2008) that

is available in R, contains tools for data splitting, pre-processing, feature selection and

more. In this work, the package is used to create random partitions of the samples and

perform k folds to evaluate the predictive accuracy of the models.

A number of methods from literature are also implemented in this work for comparison

purposes on the same datasets. The methods include KNN regression (Korhonen and

Kangas, 1997), Random Forest regression, MARS (Friedman, 1991) and Support Vector

regression (SVR) (Smola and Schölkopf, 2004). All of those methods are implemented in

the R programming language using the FNN (Beygelzimer et al., 2013), randomForest

(Liaw and Wiener, 2002), earth (Milborrow, 2018) and e1071 (Meyer et al., 2017)

packages respectively. The same 10 runs of 5-fold cross-validation are performed to
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evaluate and compare with the proposed methods.

4 Results

Yacht Cooling Heating Concrete Wine

OPLRA 0.689 1.275 0.805 4.845 0.551

PRIA 0.680 1.337 0.820 4.840 0.553

PRIB 0.699 1.342 0.909 4.922 0.567

PROA 0.678 1.275 0.806 4.838 0.555

PROB 0.688 1.351 0.906 4.920 0.566

KNN 5.788 2.237 2.063 8.924 0.577

SVM 3.673 1.820 1.456 4.864 0.518

RandFor 2.454 1.326 0.861 4.029 0.439

MARS 1.079 1.340 0.826 4.932 0.569

Bodyfat Sensory Distil Pharma Earthquake

OPLRA 1.273 0.632 2.650 1.613 7.238

PRIA 0.785 0.633 1.110 1.352 7.426

PRIB 0.763 0.652 1.127 1.387 7.357

PROA 0.631 0.626 1.025 1.288 7.238

PROB 1.341 0.636 1.105 1.325 7.256

KNN 2.869 0.642 1.966 1.981 8.464

SVM 1.391 0.613 1.128 1.834 7.250

RandFor 1.532 0.562 1.153 1.677 7.978

MARS 0.389 0.616 1.147 1.420 7.389

Table 4: Cross-validation results using MAE

Table 4 contains the Mean Absolute Error results of all the runs of the 5-fold cross-

validation. For comparison purposes, we will first examine how the new methods per-

form against the previous work (Yang et al., 2016) and seek possible improvements.

Next, we will compare the new methods against established methods from literature.

For each examined dataset, the regression analysis that performs the best is marked

with bold. The PROA model consistently performs better than the OPLRA model.

More specifically this approach has the lowest average error on 7 out of the 10 examined

datasets. It is interesting to note that this approach achieved a better score in all of

the new datasets but also for 3 out of the 5 original datasets, even though OPLRA was

tailored around them.

The PRIA is also able to compete against OPLRA and manage to achieve a better

score for multiple datasets. However, when comparing the methods that use the BIC

the results are different. Those methods all have worse performance than the ones that

used the AIC. Burnham and Anderson (2003), performed a number of simulations and

both of the criteria were used to perform model selection. During those simulations

it was discovered that the BIC selected models suffered from underfitting and had
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poor performance. However, if the number of samples is very large then the AIC could

potentially lead to cases of overfitting. But it is not always clear when a dataset is large

since it depends on numerous aspects, the main of which is the process that created

the data. So deciding which criterion to use is up to the researcher. In this work, the

approaches that use the BIC have worse performance than the equivalent ones with

the AIC. So we can assume that the strict penalty that the BIC enforces, can indeed

lead to an underfitting model that is not able to properly capture the relationship that

exists in the data.

It is very important to test and compare the accuracy of the proposed methods with

established methods from literature. Table 4 also compares the proposed methods with

the ones from literature. Since the PROA model was the best performer amongst the

proposed methods, we seek this method to have good performance compared to the

established methods. We can see that overall, the proposed PROA method has the

lowest error in only 5 of the datasets. However, examining the results closer, it is

obvious that the method performs well since the error scores are always very close to

the ones that have the best overall performance.

Yacht Cooling Heating Concrete Wine

OPLRA 1.966 4.087 2.27 47.371 0.595

PRIA 1.743 4.103 2.45 47.297 0.6

PRIB 1.734 4.203 3.199 47.643 0.611

PROA 1.457 3.957 2.273 46.383 0.605

PROB 1.502 4.324 2.62 47.41 0.611

KNN 98.848 10.08 8.939 122.043 0.54

SMV 44.229 7.073 5.101 44.654 0.476

RndFor 15.979 3.405 2.86 30.104 0.366

MARS 3.209 3.215 3.025 39.189 0.524

Bodyfat Sensory Distil Pharma Earthquake

OPLRA 9.75 0.643 4.127 6.99 96.594

PRIA 8.325 0.649 3.22 3.099 116.407

PRIB 7.953 0.684 3.451 3.158 102.501

PROA 7.776 0.634 2.052 2.735 96.594

PROB 11.881 0.66 2.8 2.95 97.312

KNN 12.91 0.649 9.688 6.301 143.349

SMV 6.408 0.602 5.045 6.547 98.891

RndFor 5.071 0.492 3.175 4.25 119.577

MARS 2.001 0.59 3.305 3.158 99.081

Table 5: Cross-validation results using MSE

Table 5 contains the results of the 10 runs of cross validation but this time instead of

MAE the reported values are the Mean Squared Error values (MSE). Regression algo-

rithms such as Random Forests, MARS and KNN minimise the residual sum of squares.

Consequently, it might not be fair to compare MAE values for those methods. This is

obvious from the results of table 5 where there a noticeable difference in performance,
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with Random Forest and MARS providing scores that are more competitive.

To demonstrate this we are going to develop a graph comparing the overall performance

of each dataset. In this graph, the method that performed the best gets awarded 10

points, while the one that performed the worst gets 1 point. Everything else is within

this range. The final performance score is the average across all of the available datasets.
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Figure 4: Visualisation of the performance of the methods. The left side is a comparison of

MAE values. The right side is a comparison of MSE values.

Looking at figure 4 it is easier to compare the overall performance of the methods. We

can see that the PROA model has by far the best overall score. This means that the

method is consistent when it comes to predictive accuracy and outperforming other

methods most of the time. The OPLRA and PRIA are almost tied while the methods

that use the BIC have clearly worse performance that the other proposed methods. In

fact, the PRIB method is not performing well compared to other established methods

such as SVM, Random Forest and MARS. Furthermore, there is a clear difference when

using MAE and MSE values. When using MSE as a comparison metric, Random Forest

and MARS have very competitive performance scores and are in better than almost all

of the proposed methods, except for PROA.

To perform statistical analysis we will use the Welch’s t-test. This is a two-sample

test which is used to test the hypothesis that two populations have equal means and is

reliable when the samples have unequal variances (Welch, 1947). For more information

we refer the reader to appendix B. If we have evidence to reject this hypothesis using

that test, then we can conclude that the difference between the two means is significance.

In this work, the PROA method will be compared to the methods from literature.

According to tables 4 and 5 and figure 4, the PROA method has better overall predictive

performance out of all the mathematical programming based methods.
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For each dataset, the two different populations that will be compared are the values

of the 10 cross validation runs between the PROA method and one of the established

ones. If by performing the Welch’s t-test we have evidence to reject the hypothesis that

the means of the two samples are the same, we will be able to conclude that there is a

statistical significance between the two sample means, and the best method is the one

that has the minimum average error.

Table 6 contains the variance of the 10 runs of cross validation for the PROA method

and the literature methods. These are necessary to perform the Welch’s t-test for

unequal variances.

Yacht Cooling Heating Concrete Wine

PROA 6.76E-04 9.61E-04 1.69E-04 3.36E-03 4.90E-05

KNN 8.84E-03 4.84E-04 6.40E-05 1.44E-03 1.00E-06

SVM 2.92E-03 9.00E-04 1.96E-04 1.68E-03 4.00E-06

RandFor 2.92E-03 3.60E-05 2.25E-04 4.36E-03 4.00E-06

MARS 6.76E-04 1.00E-04 2.25E-04 5.76E-04 1.00E-06

Bodyfat Sensory Distil Pharma Earthquake

PROA 6.35E-02 1.44E-04 1.04E-01 5.93E-03 1.88E-02

KNN 1.16E-03 9.00E-06 5.76E-04 1.02E-03 3.14E-03

SVM 9.00E-04 4.90E-05 7.84E-04 1.44E-03 3.84E-03

RandFor 1.44E-03 2.50E-05 7.29E-04 1.52E-03 4.36E-03

MARS 1.02E-03 2.50E-05 1.52E-03 1.30E-02 6.08E-03

Table 6: The variances of the 10 runs of cross validation

So by calculating the variances of the cross validation runs and the mean values we can

calculate the p-values from a t distribution. For this purpose, the embedded function

t.test() of R programming language was used. The parameters were set for a two

tailed t-test with unequal variances (Welch’s test).

Table 7 contains the p-values for comparing the PROA methods to the rest of the

established methods.

Yacht Cooling Heating Concrete Wine

PROA KNN 4.34E-19 1.63E-22 8.99E-29 1.99E-27 3.04E-06

PROA RndFor 9.75E-20 5.09E-04 7.69E-08 2.09E-16 7.93E-14

PROA SVM 1.12E-22 5.14E-19 1.28E-26 2.64E-01 1.04E-08

PROA MARS 6.79E-18 6.11E-05 5.22E-03 4.84E-04 1.24E-04

Bodyfat Sensory Distil Pharma Earthquake

PROA KNN 2.70E-10 1.41E-03 6.45E-06 5.47E-12 6.59E-12

PROA RndFor 9.63E-07 2.45E-09 2.41E-01 1.88E-09 1.05E-09

PROA SVM 4.65E-06 1.01E-02 3.39E-01 2.71E-11 8.05E-01

PROA MARS 1.41E-02 3.15E-02 8.72E-01 7.99E-03 8.85E-03

Table 7: P -values associated with the Welch’s t-test
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By setting a significance level of α = 0.01 and comparing that value with the results

of table 7, we can identify the examples for which the difference in the mean between

PROA and the other methods is significant. The condition that needs to be satisfied

is p< α. To decide which method has better performance, we will examine the MAE

values of those methods but only for those datasets that there is a significance between

the means.

When comparing PROA and KNN, we can see that there is a significant statistical

difference in mean for all the examined examples, with PROA being the best performer

every time. On the other hand, when comparing to random forest there is one example,

the distillation dataset, where the difference between the two means is not significant.

However, for the rest 9 examples that is not the case with PROA being able to outper-

form random forest in 6 out of those 9 datasets in terms of absolute error.

The performance of SVM and PROA seems to be similar in terms of MAE because

according to the results of table 7 there is a significant difference only in 6 out of 10

examples. But, overall SVM failed to perform better in terms of MAE for 5 out of those

6 examples. Finally, PROA and MARS have a difference in MAE for 7 datasets with

PROA being the better performer in all of them.

5 Concluding Remarks

In this work, new extensions of the OPLRA mathematical programming model are

proposed which address the topic of regression analysis and overfitting. In previous work

a piecewise linear regression method was proposed (Yang et al., 2016) that partitioned

the dataset into multiple regions on the predictor variable that would yield the minimum

absolute error and a linear function would be fitted to each one. The resulting model is

an MILP formulation that uses a heuristic iterative approach to converge to a solution

and select the optimal number of regions. For this iterative approach a user specified

parameter, called β, is introduced and used as a stopping criterion.

In an attempt to eliminate this parameter, two different approaches are proposed. These

two approaches use the Akaike and Bayesian Information Criteria in an attempt to avoid

cases of overfitting that might be caused by the previous heuristic approach. More

specifically, the criteria are used as a metric to choose the optimal number of regions

for the partitioning of the dataset. This way a balance between a ‘good‘ model fit

and model complexity is achieved, improving predictive accuracy. The two approaches

tackle the problem of segmented regression in a different way. The first method solves

the regression problem iteratively, minimising the absolute error. The AIC and BIC

are the stopping criteria that decide when the algorithm has converged. However,

the second approach is a single-level MILP formulation that simultaneously solves the

problem of regression and partitioning, while directly minimising the values of the

criteria.

To test the accuracy of the new approaches and the potential improvements over the

original model, a total of 10 real-world datasets have been used. Evaluation of the

model is achieved by applying 10 runs of 5-fold cross-validation on all the datasets.
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The validation results are also compared to other regression methods from literature.

According to the results in table 4 the single-level AIC MILP approach, called PROA,

is clearly the best performer since it is outperforming other regression methods for

half of the examined datasets and achieving a very competitive score for the remaining

datasets. This statement is also evident during the Welch’s statistical t-test. During

this test, it was proven that for most datasets the difference in MAE scores between

PROA and the other established methods is statistically significant. The BIC methods

did not perform as well not only compared to the OPLRA model but also compared to

other regression methods. The strict penalty that the BIC imposes compared to AIC

leads to a small number of selected regions resulting in potential underfitting of the

data.

Another key difference between the proposed approaches is the non iterative nature

of the formulation. Since the approach can optimally select the number of regions by

directly minimising the value of the criteria, it is expected that this approach will have

better overall performance than the iterative ones. The difference in computational

time is also important since there is only one model that needs to solved instead of

solving a model for each region.

Appendix A Mathematical Formulation of OPLRA

In this section, the OPLRA mathematical programming model is described as formu-

lated by Yang et al. (2016) in the literature. The model takes a multivariate dataset as

input, splits it into multiple segments and fits a linear function to each segment while

minimising the mean absolute error of the fitting. All of the indices, parameters and

variables that are used in the formulation are explained as follows:

Indices

s sample, s = 1, 2, ..., S

m feature/independent input variable

r region, r = 1, 2, ..., R

m∗ the feature where sample partitioning takes place

Parameters

Am
s numeric value of sample s on feature m

Ys output value of sample s

U1, U2 suitably large positive numbers

ε very small number

Positive variables

Xr
m∗ break-point r on partitioning feature m∗

Ds training error between predicted output and real output for sample s

18



Variables

W r
m regression coefficient for feature m in region r

Br intercept of regression function in region r

Prrs predicted output for sample s in region r

Binary variables

F r
s 1 if sample s falls into region r; 0 otherwise

Equations and Constraints

Arranging the breaking points in an ordered way:

Xr−1
m ≤ Xr

m ∀ m = m∗, r = 2, 3, ..., R− 1 (12)

For a breaking point Xr
m to exist, at least two regions must be selected. The number

of breaking points will always be one less than the number of regions.

In order to assign samples into the correct regions, binary variables are introduced to

the model.

Xr−1
m − U1 · (1− F r

s ) + ε ≤ Am
s ∀ s, r = 2, 3, ..., R, m = m∗ (13)

Am
s ≤ Xr

m + U1 · (1− F r
s )− ε ∀ s, r = 1, 2, ..., R− 1, m = m∗ (14)

Parameter ε is added to the model to make sure that no values of the dataset will equal

any of the breaking points.

Each sample of the dataset can be assigned to only one region.∑
r

F r
s = 1 ∀ s (15)

Variable Prrs is the predicted response of the model.

Prrs =
∑
m

Am
s ·W r

m +Br ∀ s, r (16)

The following two equations are used to formulate the absolute deviation between the

real output and the predicted output of the model.

Ds ≥ Ys − Prrs − U2 · (1− F r
s ) ∀s, r (17)

Ds ≥ Prrs − Ys − U2 · (1− F r
s ) ∀s, r (18)

The objective function of the model is the minimisation of the absolute deviation error:

min
∑
s

Ds (19)

The resulting model is formulated as an MILP problem that can be solved to global

optimality.
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In this literature work, Yang et al. (2016) proposed a heuristic procedure in order to

identify the partitioning predictor variable and find the optimal number of regions.

This was achieved by using an iterative approach and introducing a new parameter β,

which was used as a threshold to the reduction percentage of the absolute error. If the

reduction percentage of the error was above that parameter, then a new region was

added and the model would solve again. The entire the process stops once convergence

has been achieved.

Appendix B Welch’s t-test

The t-test is formulated as (Ruxton, 2006):

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

(20)

where

X̄1, X̄2 the mean of the 1st and 2nd sample respectively

s21, s
2
2 the variance of the 1st and 2nd sample respectively

N1, N2 the size of the 1st and 2nd sample respectively

The degrees of freedom associated with this variance estimate is approximated as (Rux-

ton, 2006):

ν ≈

(
s21
N1

+
s22
N2

)2

s41
N2

1 · ν1
+

s42
N2

2 · ν2

(21)

where

v1 = N1 − 1 the degrees of freedom associated with the 1st variance

v2 = N2 − 1 the degrees of freedom associated with the 2nd variance

Once the t-statistic and the degrees of freedom have been computed, the t distibution

can be used to test the null hypothesis using a two-tailed test.
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