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Abstract

Ground-motion prediction equations (GMPEs), also called ground-motion models and

attenuation relations, are empirical models widely used in Probabilistic Seismic Hazard

Analysis (PSHA). They estimate the conditional distribution of ground shaking at a site given

an earthquake of a certain magnitude occurring at a nearby location. In the past decade,

the increasing interest in assessing earthquake risk and resilience of spatially distributed

portfolios of buildings and infrastructures has motivated the modeling of ground-motion

spatial correlation. This introduces further challenges for researchers to develop statistically

rigorous and computationally efficient algorithms to perform ground-motion model estimation

with spatial correlation. To this goal, we introduce a one-stage ground-motion estimation

algorithm, called the Scoring estimation approach, to fit ground-motion models with spatial

correlation. The Scoring estimation approach is introduced theoretically and numerically, and

it is proven to have desirable properties on convergence and computation. It is a statistically

robust method, producing consistent and statistically efficient estimators of inter- and intra-

event variances and parameters in spatial correlation functions. The performance of the

Scoring estimation approach is assessed through a comparison with the multi-stage algorithm

proposed by Jayaram and Baker (2010) in a simulation-based application. The results of the

simulation study show that the proposed Scoring estimation approach presents comparable

or higher accuracy in estimating ground-motion model parameters, especially when the

spatial correlation becomes smoother. The simulation study also shows that ground-motion

models with spatial correlation built via the Scoring estimation approach can be used for

reliable ground shaking intensity predictions and, ultimately, as an accurate input for the

earthquake risk assessment of spatially distributed systems. The performance of the Scoring

estimation approach is further discussed under the ignorance of spatial correlation and we find

that neglecting spatial correlation in ground-motion models may result in overestimation of

inter-event variance, underestimation of intra-event variance, and thus inaccurate predictions.
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Introduction

Ground-motion models, also known as ground-motion prediction equations (GMPEs) and

attenuation relationships, are empirical models widely used in probabilistic seismic hazard

analysis (PSHA), to predict ground-motion intensity measures (IMs) occurring at sites due to

a nearby earthquake of a certain magnitude. Ground-motion models require robust estimation

techniques. The accuracy of the estimated ground-motion models is important for assessing

earthquake risk and resilience of engineered systems.

Initial ground-motion models were formulated as fixed-effects models without considering

variations across different events. To further characterize the aleatory variability in ground

shaking intensities, the uncertainties are separated into the inter-event and the intra-event

components, where the inter-event components were introduced as random effects to the

ground-motion model (Brillinger and Preisler, 1984a). The modern ground-motion model is

thus constructed as a mixed-effects model in the following form,

Yij = f(Xij, b) + ηi + εij , i = 1, . . . , N, j = 1, . . . , ni , (1)

where Yij = log IMij is the logarithm of the IM of interest (e.g., peak ground acceleration

(PGA), peak ground velocity (PGV), spectral ordinates) at site j during earthquake i ;

f(Xij, b) is the ground-motion prediction function of b , a vector of unknown parameters,

and Xij , a vector of predictors (e.g., magnitude, source-to-site distance, soil type at site) for

site j during event i ; ηi and εij are the inter-event error and the intra-event error, respectively;

N is the total number of earthquakes and ni is the number of recording sites during the i-th

earthquake.

Traditionally, the ground-motion model in equation (1) is treated without spatial cor-

relation by assuming the intra-event errors are spatially independent of each other, and is

primarily estimated by algorithms proposed by Abrahamson and Youngs (1992) and Joyner

and Boore (1993). However, it is well known that the intra-event errors are spatially correlated

because of the common source and wave traveling paths, and similar site conditions (Goda
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and Hong, 2008; Jayaram and Baker, 2009). Hong et al. (2009) investigated the effects of

spatial correlation on ground-motion model estimation and observed that the estimates of

variances for inter-event and intra-event errors change significantly when spatial correlation

is considered. Jayaram and Baker (2010) confirmed the results and demonstrated that the

changes in variances of inter-event and intra-event errors have important implications for the

seismic risk assessment of spatially distributed systems. Hence, we argue that it is crucial to

develop an efficient and accurate estimation method for ground-motion models with spatial

correlation.

Indeed, the consideration of spatial correlation complicates the estimation of ground-

motion models. In particular, Hong et al. (2009) illustrated how to incorporate the spatial

correlation into a ground-motion model and performed estimation using the method under the

framework proposed by Joyner and Boore (1993). However, the estimation method proposed

by Hong et al. (2009) uses the linearization of the ground-motion prediction function, an

inefficient technique that can add bias because of model misspecifications and was subsequently

criticized by Draper and Smith (2014) for its slow convergence, wide oscillation and possibility

of divergence. Based on the framework of Abrahamson and Youngs (1992), Jayaram and Baker

(2010) introduced a multi-stage algorithm to account for the spatial correlation by adopting

the idea of the classical geostatistical analysis (Zimmerman and Stein, 2010). However, this

algorithm (reviewed in Section Jayaram and Baker’s Multi-stage Algorithm) may not be

statistically optimal and can result in inefficient parameter estimation and poor conclusions

on model structure and variable selection, which in turn affects predictions of spatially

distributed ground-motion intensities. This will ultimately affect the reliability of seismic risk

assessment and loss estimation for portfolios of spatially distributed buildings and lifelines.

In addition to the bespoke algorithms mentioned earlier, there is also a more generic

existing computer package, namely nlme in R, available to fit ground-motion models with

or without spatial correlation. However, this package is based on the method proposed

by Lindstrom and Bates (1990) for mixed-effects models with nonlinear random effects and
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thus introduces excessive computational expenses during its implementation. Besides, the

package may experience numerical instabilities when spatial correlation is considered even

though the estimation is performed on a small number of events. Jayaram and Baker (2010)

also reported the numerical instability of the package. We argue that the failure of the

package is due to the numerical issues that can arise when working with the Hessian matrices

during its implementation of the Newton-Raphson algorithm. Furthermore, the package only

considers limited types of spatial correlation structures (Pinheiro and Bates, 2000).

In this article, a one-stage estimation method based on the method of Scoring (Fisher,

1925) under the maximum likelihood estimation framework is developed as a specialized

alternative procedure for fitting ground-motion models with spatial correlation. Although the

method of Scoring applied to the maximum likelihood estimation is a well-developed statistical

technique, to the best of authors’ knowledge, this is the first attempt to use it in the ground-

motion model estimations, particularly when the spatial correlation is considered. This article

first illustrates in detail the specifications and assumptions of the considered ground-motion

model with spatial correlation. The multi-stage algorithm introduced by Jayaram and Baker

(2010) is then reviewed, and its limitations are highlighted. The new method, referred to

as the Scoring estimation approach, is then formally introduced. Numerical considerations

for the Scoring estimation approach are also discussed. A simulation study is followed to

measure the performances of the Scoring estimation approach by comparing against those

of the multi-stage algorithm. Finally, we discuss the performance of the Scoring estimation

approach when spatial correlation structure is neglected in the ground-motion model.

The Ground-Motion Model

The ground-motion model in this article is expressed as the vector form of equation (1):

Yi = f(Xi, b) + ηi + εi , i = 1, . . . , N , (2)

in which
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• Yi = log IMi = (log IMi1, . . . , log IMij, . . . , log IMini)
> is an ni × 1 vector of logarithmic

IMs of interest at all sites j ∈ {1, . . . , ni} during earthquake i ;

• f(Xi, b) = (f(Xi1, b), . . . , f(Xini , b))> is an ni × 1 vector of ground-motion prediction

functions f(Xij, b) at all sites j ∈ {1, . . . , ni} during earthquake i ;

• Xij represents a vector of predictors (e.g., magnitude, source-to-site distance, soil type at

site) for site j during earthquake i ;

• b ∈ Rp1 is a vector of unknown model parameters;

• ηi = ηi1ni for all i ∈ {1, . . . , N} and (ηi)i=1,...,N are independent and identically distributed

inter-event errors with E(ηi) = 0 and var(ηi) = τ 2 for all i ∈ {1, . . . , N} , in which 1ni is

an ni × 1 vector of ones;

• (εi)i=1,...,N are independent intra-event error vectors of size ni × 1 with E(εi) = 0 and

cov(εi) = σ2Ωi(ω) , in which Ωi(ω) is the correlation matrix corresponding to earthquake

i with ω , a vector of unknown parameters;

• (ηi)i=1,...,N and (εi)i=1,...,N are mutually independent.

To take the spatial correlation into account, the jj′-th entry Ωi,jj′(ω) of Ωi(ω) is specified

as

Ωi,jj′(ω) = k(sij, sij′) (3)

for all i ∈ {1, . . . , N} and j, j′ ∈ {1, . . . , ni} , in which k(sij, sij′) gives the correlation

ρ(εij, εij′) between εij and εij′ at locations sij and sij′ of sites j and j′ during earthquake i :

k(sij, sij′) = ρ(εij, εij′) . (4)

There are many choices for k(sij, sij′) (Rasmussen and Williams, 2006). For independent

intra-event errors (i.e., no spatial correlation is incorporated),

k(sij, sij′) = 0 (5)
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for all sites j 6= j′ during earthquake i . For stationary (i.e., invariant to translations)

and isotropic (i.e., invariant to rigid motions) process of intra-event errors, the correlation

ρ(εij, εij′) only depends on di,jj′ = ‖sij − sij′‖2 , the Euclidean distance between sites j and

j′ during earthquake i , such that

k(sij, sij′) = k(di,jj′) . (6)

Examples of this class of correlation functions k(·) include (see Rasmussen and Williams

(2006) or Zimmerman and Stein (2010)):

• Matérn:

k(d) =
21−ν

Γ(ν)

(√
2νd

h

)ν

Kν

(√
2νd

h

)
(7)

with positive parameters ν and h , in which Γ(·) is the gamma function and Kν(·) is the

modified Bessel function of the second kind. The Matérn correlation function can be

simplified to exponential and squared exponential correlation functions by setting ν = 1/2

and ν →∞, respectively;

• Exponential:

k(d) = exp

(
−d
h

)
(8)

with a positive range parameter h , which indicates the distance at which the correlation is

around 0.37. It is worth noting that the exponential correlation function (8) has a slightly

different form from the one used by Jayaram and Baker (2010), Esposito and Iervolino

(2011, 2012), and others. These studies defined the exponential correlation function with

the following form:

k(d) = exp

(
−3d

h

)
, (9)

where h now indicates the distance at which the correlation is approximately 0.05. In fact,

the exponential correlation function can be defined with a more general form

k(d) = exp

(
−cd
h

)
, (10)
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in which c is a given positive constant and h indicates the distance at which the correlation

is exp(−c) . One should note that the choice of c only affects the interpretation of h in

terms of the correlation at d = h but has no influences on the spatial information implied

by the ultimately estimated correlation structure;

• Squared Exponential:

k(d) = exp

(
− d2

2h2

)
(11)

with range parameter h defining the characteristic length-scale. This type of correlation

function is sometimes called Gaussian in references such as Jayaram and Baker (2009).

Examples of other types of correlation functions (including non-stationary or anisotropic

ones) are illustrated in Rasmussen and Williams (2006).

In the rest of this article, we denote α = (b>, θ>)> ∈ Rp as the complete vector of model

parameters, in which θ = (τ 2, σ2, ω>)> ∈ Rp2 with ω being a vector of the parameters (e.g.,

h in exponential and squared exponential correlation functions) contained in the correlation

function k(sij, sij′) .

Jayaram and Baker’s Multi-stage Algorithm

In this section, we review the multi-stage algorithm proposed by Jayaram and Baker

(2010) to estimate ground-motion models with spatial correlation. This algorithm will serve

as the current best benchmark procedure for our new proposed method, so it is important to

discuss its properties and compare its approach to our proposed Scoring estimation approach.

The algorithm consists of three stages (see Figure 1) and follows the framework of the classical

geostatistical method (Zimmerman and Stein, 2010). In the preliminary stage, the algorithm

provisionally estimates the model parameters ignoring the spatial correlation. In the second

stage, the residuals from the estimated provisional ground-motion prediction function are used

to estimate the parameters in the correlation function by fitting a parametric semivariogram

model to the empirical semivariogram. In the final stage, the preliminary estimates of model
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parameters from the first stage are updated given the spatial correlation structure fitted in

the second stage. We proceed to outline each stage in detail below.

[Figure 1 about here.]

The preliminary stage

The preliminary stage of the algorithm aims at estimating ground-motion models requiring

no knowledge about the spatial correlation. Because the spatial correlation is being ignored

at this stage, authors such as Goda and Hong (2008), Goda and Atkinson (2009, 2010),

and Sokolov et al. (2010) adopted estimation methods introduced by Abrahamson and

Youngs (1992) or Joyner and Boore (1993) to obtain the estimates of unknown model

parameters b, τ 2, and σ2. Other authors such as Wang and Takada (2005), Jayaram and

Baker (2009), and Esposito and Iervolino (2011, 2012) obtained the estimates of b, τ 2, and

σ2 by simply adopting existing ground-motion models developed without consideration of

spatial correlation.

The spatial correlation stage

The spatial correlation stage is designed to estimate ω , a vector of unknown parameters

in the correlation function, from the total residuals

e
(t)
ij = Yij − f(Xij, b̂) , (12)

in which b̂ is the estimate of b given by the preliminary stage. Because the total error term

ε
(t)
ij = εij + ηi (13)

consists of intra-event errors εij and inter-event errors ηi , the total residuals can be represented

by intra-event residuals ε̂ij and inter-event residuals η̂i :

e
(t)
ij = ε̂ij + η̂i . (14)

Then one defines a random process of the standardized intra-event errors

ε̃ =
ε

σ
(15)
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with ε = (ε>1 , . . . , ε
>
N)> and ε̃ = (ε̃>1 , . . . , ε̃

>
N)> . Assuming that the process of intra-event

errors is second-order stationary and isotropic, Jayaram and Baker (2009) constructed for

each earthquake i the empirical semivariogram γ̂i(d) , a moment-based estimator defined

by Cressie (1993), of ε̃i from the scaled intra-event residuals:

̂̃εij =
ε̂ij
σ̂
. (16)

The empirical semivariogram γ̂i(d) is calculated by

γ̂i(d) =
1

2|Ni,δ(d)|
∑
Ni,δ(d)

(̂̃εij − ̂̃εij′)2

=
1

2|Ni,δ(d)|
∑
Ni,δ(d)

(
e
(t)
ij − η̂i
σ̂

−
e
(t)
ij′ − η̂i
σ̂

)2

=
1

2|Ni,δ(d)|
∑
Ni,δ(d)

(
e
(t)
ij − e

(t)
ij′

σ̂

)2

, (17)

in which Ni,δ(d) is a δ-neighborhood set consisting of all site pairs (j, j′) such that

d− δ < ‖sij − sij′‖2 < d+ δ (18)

during earthquake i and |Ni,δ(d)| is the number of distinct pairs in Ni,δ(d) .

Each empirical seimivariogram γ̂i(d) is then fitted by a common parametric semivariogram

model γ(d) constructed from a stationary and isotropic correlation function k(d) according

to the relationship given by

γ(d) = 1− k(d) . (19)

Equation (19) holds because of the assumed second-order stationarity of the process of the

intra-event errors ε and the corresponding proof is available in the Proof of Equation (19) of

the Main Article section of the electronic supplement to this article. One can then obtain

the estimate ω̂i of ω for each earthquake i by fitting γ(d) to the sample estimator given by

γ̂i(d) via estimation methods such as least-squares and trial-and-error methods. Jayaram

and Baker (2009) then computed the estimates ω̂i=1,...,N for spectral accelerations at different

structural periods and built linear regression models to obtain the estimate of ω for a given

structural period.
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Unlike Jayaram and Baker (2009) who estimated ω by constructing empirical semivari-

ogram for each earthquake i, Esposito and Iervolino (2011, 2012) built a pooled empirical

semivariogram γ̂(d) given by

γ̂(d) =
1

2|Nδ(d)|
∑
Nδ(d)

(
e
(t)
ij − e

(t)
ij′

σ̂

)2

, (20)

in which Nδ(d) is a δ-neighborhood set consisting of all site pairs (j, j′) such that

d− δ < ‖sij − sij′‖2 < d+ δ (21)

across all earthquakes i ∈ {1, . . . , N} . The estimate of ω is then obtained by fitting a

parametric semivariogram model γ(d) to γ̂(d) via least-squares and trial-and-error methods.

Jayaram and Baker (2009) discussed the method of least squares and the trial-and-error

method (i.e., a manual fitting method focusing on fitting the empirical semivariogram at

short separation distances d) and suggested that the trial-and-error method is a better

choice because of its simplicity and better fit at separation “distances that are of practical

interest” (Jayaram and Baker, 2009).

The re-estimation stage

The objective of the re-estimation stage is to update the estimates b̂ , σ̂2 and τ̂ 2 obtained in

the preliminary stage by considering the spatial correlation structure established in the spatial

correlation stage. Algorithm 1 illustrates the re-estimation procedure proposed by Jayaram

and Baker (2010). However, Jayaram and Baker (2010) did not report any convergence

properties of the procedure. In the Alternative Construction of the Re-estimation Procedure

section of the electronic supplement to this article, we demonstrate that the re-estimation

procedure can be alternatively constructed based on the idea of the Expectation-Maximization

(EM) algorithm (Lahiri and Ware, 1982; Brillinger and Preisler, 1984b; Lahiri et al., 1987).

Therefore, the re-estimation procedure is a non-decreasing algorithm as long as the fixed-

effects regression algorithm (step 4 of the Algorithm 1) solves the following generalized least
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squares problem with respect to b :

b̂(k+1) = arg min
N∑
i=1

[Yi − f(Xi, b)− η̂i1ni ]>Ω−1i (ω̂)[Yi − f(Xi, b)− η̂i1ni ] . (22)

Algorithm 1 The re-estimation procedure (Jayaram and Baker, 2010)

Input: 1) Yi , Xij and sij for i ∈ {1, . . . , N} and j ∈ {1, . . . , ni};

2) Estimate ω̂ of ω obtained in the spatial correlation stage.

Output: Updated estimates of b, σ2 and τ 2.

1: Initialization:

1) obtain the initial estimate b̂(1) of b by a fixed-effects regression algorithm setting

ηi=1,...,N = 0 ;

2) obtain the initial estimates σ̂2
(1)

and τ̂ 2
(1)

by maximizing the log-likelihood function:

l
(
σ2, τ 2

∣∣∣b = b̂(1), ω = ω̂
)

= −
∑N

i=1 ni
2

ln(2π)− 1

2

N∑
i=1

ln
∣∣τ 21ni×ni + σ2Ωi(ω̂)

∣∣
− 1

2

N∑
i=1

[Yi − f(Xi, b̂(1))]>
(
τ 21ni×ni + σ2Ωi(ω̂)

)−1
[Yi − f(Xi, b̂(1))] ; (23)

2: repeat

3: Given b̂(k) , σ̂2
(k)

, τ̂ 2
(k)

and ω̂ , obtain η̂i=1,...,N from

η̂i =

1

σ̂2
(k) 1>ni Ω

−1
i (ω̂) [Yi − f(Xi, b̂(k))]

1

τ̂2
(k) + 1

σ̂2
(k) 1>ni Ω

−1
i (ω̂) 1ni

; (24)

4: Given η̂i=1,...,N , obtain b̂(k+1) , the estimate of b at iteration k+ 1 , using a fixed-effects

regression algorithm by setting ηi = η̂i for all i ∈ {1, . . . , N} ;

5: Given b̂(k+1) and ω̂ , obtain σ̂2
(k+1)

and τ̂ 2
(k+1)

by maximizing the log-likelihood function

l(σ2, τ 2|b = b̂(k+1), ω = ω̂) ;

6: until l(σ2, τ 2,b|ω = ω̂) is maximized and parameter estimates converge.

Bulletin of the Seismological Society of America 12



An Advanced Estimation Algorithm for Ground-Motion Models with Spatial Correlation

Problems of the multi-stage algorithm

Although the multi-stage algorithm is feasible in practice and may be numerically stable

by estimating the spatial correlation function in separate steps (i.e., the preliminary and

spatial correlation stages), it is not optimal in various aspects from a statistical estimation

perspective.

First, the least squares estimator of ω produced by the first two stages of the algorithm

is inconsistent (i.e., ω̂ does not converge in probability to the true value of ω). Lahiri et al.

(2002) and Kerby (2016) discussed the conditions for the consistency of the least squares

estimator of ω . To have a consistent least squares estimator of ω , we need the empirical

semivariogram γ̂(d) to be a consistent estimator of γ(d) . However, this consistency typically

requires very restrictive asymptotic conditions in which “not only the number of locations

increases but the distance between them decreases” (Kerby, 2016). Furthermore, Kerby

(2016) showed that observation locations must not be heavily clustered (which is the case

in reality where the recording sites are indeed clustered, especially at near-fault locations)

and the bandwidth δ need to be carefully chosen so that the consistency of the empirical

semivariogram γ̂(d) is ensured. In addition, the consistency of the empirical semivariogram

γ̂(d) requires the estimators of b and σ2 obtained from the preliminary stage to be consistent.

However, it can be shown mathematically that although the estimator of b obtained in the

preliminary stage is consistent, the estimator of σ2 is not. Consequently, the least squares

estimator of ω obtained at the spatial correlation stage is not consistent. Finally, the least

squares estimator of ω can be statistically inefficient (Lahiri et al., 2002), and naively using

the formula of asymptotic standard error estimate produced by software packages based on

ordinary least squares can cause incorrect confidence interval on ω .

With regard to the trial-and-error method, although it fits the parametric semivariogram

model to the empirical semivariograms better than the least squares at short separation

distances, Stein (1999) illustrated in a simulation study that this eyeball procedure leads to

substantial prediction errors, especially when the spatial correlation structure is misspecified.
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Besides, this manual fitting procedure makes it impossible to evaluate the asymptotic

properties of the estimator of ω . Therefore, such a heuristic procedure should not become

the standard.

Moreover, the first two stages are only capable of estimations of isotropic and stationary

correlation structures and inflexible in considering more advanced (e.g., non-stationary)

spatial correlation functions.

In addition, the re-estimation procedure maximizes the conditional log-likelihood function

l(σ2, τ 2,b|ω = ω̂) given the pre-computed estimate ω̂ . Because the least squares estimator

of ω is inconsistent, the resulting estimators of b (although consistent) are statistically

inefficient, and estimators of τ 2 and σ2 are both inconsistent and statistically inefficient.

Additionally, because the re-estimation procedure can be interpreted via the idea of the

EM algorithm, it suffers from the “hopelessly slow linear convergence” (Couvreur, 1997) and

is very sensitive to the initial parameter values (Gao and Wang, 2013).

Furthermore, unlike the Scoring estimation approach introduce in Section A One-Stage

Algorithm: Scoring Estimation Approach, the multi-stage algorithm does not produce

asymptotic standard error estimates of model parameters as by-products. As a consequence,

the multi-stage algorithm requires extra computations and complexities in its implementation

when asymptotic standard error estimates are desired. Finally, it is worth noting that the

equations provided by Jayaram and Baker (2010) for asymptotic standard error estimates

of τ 2 and σ2 are only valid when estimators of τ 2 and σ2 are asymptotically independent.

However, τ̂ 2 and σ̂2 are not asymptotically independent, thus, their asymptotic variance

estimates should be obtained by taking the first and the second diagonal entry of

2

 tr

{(
C(θ)−1 ∂C(θ)

∂(τ2)

)2}
tr
{

C(θ)−1 ∂C(θ)
∂(τ2)

C(θ)−1 ∂C(θ)
∂(σ2)

}
tr
{

C(θ)−1 ∂C(θ)
∂(σ2)

C(θ)−1 ∂C(θ)
∂(τ2)

}
tr

{(
C(θ)−1 ∂C(θ)

∂(σ2)

)2}

−1

θ=(τ̂2, σ̂2, ω̂>)>

, (25)
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in which

C(θ) =



τ 21n1×n1 + σ2Ω1(ω) 0 · · · 0

0 τ 21n2×n2 + σ2Ω2(ω) · · · 0

...
...

. . .
...

0 0 · · · τ 21nN×nN + σ2ΩN(ω)


. (26)

However, even matrix (25) may not give the correct asymptotic standard error estimates of

τ̂ 2 and σ̂2 because the least squares estimator of ω is inconsistent and asymptotic variances

of τ̂ 2 and σ̂2 depend on that of ω̂ .

To avoid the above complications and statistical deficiencies inherent in the Jayaram

and Baker (2010) multi-stage estimation procedure, we introduce the Scoring estimation

approach, a method based on maximum likelihood estimation framework. The proposed

Scoring estimation approach produces model parameter estimators consistently in a single

stage algorithm, which admits any parametric class of correlation functions and associated

spatial correlation properties, including anisotropic or non-stationary choices.

A One-Stage Algorithm: The Scoring Estimation Approach

The one-stage estimation approach we propose here aims at obtaining the maximum

likelihood estimate of α by maximizing the following log-likelihood function:

l(α) = lnL(α)

= −
∑N

i=1 ni
2

ln(2π)− 1

2
ln
∣∣C(θ)

∣∣− 1

2
[Y − f(X, b)]>C−1(θ)[Y − f(X, b)] , (27)

in which L(α|Y) is the likelihood function, f(X, b) =
(
f(X1, b)>, . . . , f(XN , b)>

)>
and

Y = (Y>1 , . . . ,Y
>
N)>.

The classic statistical method to maximize the log-likelihood function (27) is via the

Newton-Raphson algorithm. The Newton-Raphson algorithm finds the estimate of α that

maximizes the log-likelihood function (27) via the updating equation:

α̂(k+1) = α̂(k) −H−1(α̂(k))S(α̂(k)) , (28)
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in which α̂(k) denotes the estimate of α at iteration step k , and

S(α) =
∂l(α)

∂α
and H(α) =

∂2l(α)

∂α∂α>
(29)

represent the gradient and Hessian matrix of l(α), respectively. In general, however, the

Newton-Raphson algorithm may not be a robust maximization algorithm when applied

directly to applications such as the one in this study. There are numerous reasons for this.

First, even though the Hessian matrix is negative definite at the local maximum, the Hessian

matrix may not be negative definite at every iteration. Thus, the algorithm does not guarantee

an ascent direction of the log-likelihood function and may converge to a local minimum if

positive definite Hessian matrices are encountered during the updates. Second, the Hessian

matrix can sometimes have poor sparsity and thus can be computationally expensive to

evaluate at each iteration. Finally, the Hessian matrix can be indefinite or even singular

(Seber and Wild, 2003), causing numerical instabilities in the Newton-Raphson algorithm.

To overcome these issues, the Scoring estimation approach is proposed in this article to

obtain the maximum likelihood estimate of α . The Scoring estimation approach is based

on the method of Scoring introduced by Fisher (1925), which is a modified version of the

Newton-Raphson algorithm. The updating equation for the Scoring estimation approach

is obtained by replacing the negative Hessian matrix, −H(α) , by the expected (or Fisher)

information matrix, I(α) :

α̂(k+1) = α̂(k) + I−1(α̂(k))S(α̂(k)) (30)

with

I(α) = −E [H(α)] = −E
[
∂2l(α)

∂α∂α>

]
. (31)

Let α0 be the true parameter value of α and assume that L(α) and its first derivatives

with respect to α are continuous in the domains of α and Y . Then it can be shown

(Wooldridge, 2010) that

I(α0) = A(α0) (32)
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with

A(α) = E
[
∂l(α)

∂α

∂l(α)

∂α>

]
, (33)

which is positive-definite. This result states that the expected information matrix I(α0) is

always positive-definite, meaning that if we replace α0 in I(α0) by α̂(k) , then each iteration

of the approach will lead the log-likelihood function in an uphill direction. Therefore, the

Scoring estimation approach is more numerically stable than the Newton-Raphson algorithm.

Furthermore, equation (32) states that only the gradient of l(α) is required for the calculation

of the expected information matrix I(α) , implying that computation in each iteration of the

approach is usually quicker than that of Newton-Raphson.

Denote the gradient S(α) and expected information matrix I(α) of l(α) by the partitions

S(α) =

Sb(α)

Sθ(α)

 (34)

and

I(α) =

Ibb(α) Ibθ(α)

Iθb(α) Iθθ(α)

 . (35)

Then, the Scoring estimation approach obtains the maximum likelihood estimate of α by the

updating equations

b̂(k+1) = b̂(k) + I−1bb(α̂(k)) Sb(α̂(k)) , (36)

θ̂
(k+1)

= θ̂
(k)

+ I−1θθ (α̂(k)) Sθ(α̂
(k)) , (37)

in which

• the i-th element of Sb(α) is given by

[Sb(α)]i =

[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)] ; (38)

• the i-th element of Sθ(α) is given by

[Sθ(α)]i =− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − f(X, b)]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − f(X, b)] ; (39)
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• the ij-th element of Ibb(α) is given by

[Ibb(α)]ij =

[
∂f(X, b)

∂bi

]>
C−1(θ)

∂f(X, b)

∂bj
; (40)

• the ij-th element of Iθθ(α) is given by

[Iθθ(α)]ij =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
. (41)

The proof for equation (36) to (41) can be found in the Proof of Equations (36)- (41) of the

Main Article section of the electronic supplement to this article.

It can be seen from the updating equations (36) and (37) that the Scoring estimation

approach is able to update the estimates of b and θ by separate equations. This separation

has two advantages. For the Newton-Raphson update equation (28), it requires at each

iteration the complexity (i.e., a concept in computer sciences describing the amount of time

required for running an algorithm) of O(p3) dominated by the inversion of the Hessian matrix

H(α̂(k)) . However, thanks to the separation, the Scoring estimation approach only requires

at each iteration the complexity of O(p31 + p32) dominated by inversions of

Ibb(α̂(k)) ∈ Rp1×p1 and Iθθ(α̂
(k)) ∈ Rp2×p2 , (42)

in which p1 + p2 = p and p1 and p2 are dimensions of b and θ, respectively. Therefore,

the separate updating equations in the Scoring estimation approach reduce computational

expenses. In addition, equations (36) and (37) indicate that the Scoring estimation approach

only requires inversions of Ibb(α̂(k)) and Iθθ(α̂
(k)), each of which has a smaller size than the

Hessian matrix H(α̂(k)) in the Newton-Raphson algorithm. Pyzara et al. (2011) showed that

the size of a matrix is positively connected to its condition number, and the condition number

of an ill-conditioned matrix (e.g., a Hilbert matrix) can grow at a remarkably higher rate

than that of a well-conditioned matrix as its size increases. Thus, inversions of matrices of

smaller sizes in the Scoring estimation approach mitigate the risk of developing large condition

numbers, which reduces the effects of round-off error and thus improves the computational

stability.
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Asymptotic properties of the maximum likelihood estimator α̂

Applying the asymptotic results of M-estimator (Wooldridge, 2010; Demidenko, 2013),

we have that the maximum likelihood estimator α̂ is consistent, asymptotically normal,

and statistically efficient when N →∞ . The asymptotic standard error estimate ŝe(α̂) of

α̂ = (b̂>, θ̂
>

)> can be obtained by

ŝe(b̂) =

√
diag

[
I−1bb

(
α̂(K)

)]
(43)

and

ŝe(θ̂) =

√
diag

[
I−1θθ

(
α̂(K)

)]
, (44)

in which α̂(K) is the final estimate of α (i.e., the estimate of α given by the Scoring estimation

approach at iteration K where the convergence is reached).

Because I−1bb(α̂(k)) and I−1θθ (α̂(k)) are involved in the updating equations of the Scoring

estimation approach, the asymptotic standard error estimates are by-products of the approach

and can be obtained easily after the final iteration K .

Implementing the Scoring estimation approach

Algorithm 2 illustrates the implementation procedure of the Scoring estimation approach.

The convergence criterion can be defined either as absolute distance or relative distance

between estimate α̂(k+1) and α̂(k). According to Golub and Van Loan (2012), the absolute

convergence criterion in q-norm can be defined as

κabs = ‖α̂(k+1) − α̂(k)‖q . (45)

However, when magnitudes of model parameters in α differ widely, a sufficient low tolerance

level is required to achieve a satisfactory accuracy at the cost of speed. In such a case and if

α̂(k) 6= 0 , the relative convergence criterion in q-norm defined by

κrel =
‖α̂(k+1) − α̂(k)‖q
‖α̂(k)‖q

(46)
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is preferred. The choice of tolerance levels for κabs and κrel depends on problems under

consideration and trade-offs between accuracy and speed.

Algorithm 2 Scoring estimation approach

Input: Yi , Xij and sij for i ∈ {1, . . . , N} and j ∈ {1, . . . , ni}.

Output: Estimates of b and θ with corresponding asymptotic standard error estimates.

1: Initialization: choose values for b̂(1) and θ̂
(1)

;

2: repeat

3: Update the estimate of α = (b>, θ>)> by equations (36) and (37);

4: until the convergence criterion is met;

5: Obtain estimates of asymptotic standard errors of b̂ and θ̂ by equations (43) and (44).

Numerical considerations

Many ground-motion prediction functions contain both linear and nonlinear parameters

in b . When the dimension of b is large, it can be more computationally effective to separate

linear and nonlinear parameters and update their estimates separately to make the Scoring

estimation approach better-conditioned and faster to maximize the log-likelihood function.

This can be achieved in many families of ground-motion prediction functions, which contain

combinations of linear and nonlinear components in the parameters.

To carry out updates for the linear and nonlinear parameter estimates separately (i.e.,

dimension reduction) in the Scoring estimation approach, the ground-motion prediction

function f(Xi, b) is decomposed as

f(Xi, b) = g(Xi, γ)β , (47)

in which β ∈ Rp11 represents a vector of linear parameters in b with its design matrix g(Xi, γ)

and γ ∈ Rp12 is a vector of the nonlinear parameters in b . It then can be demonstrated

(see Appendix for details) that the Scoring estimation approach with dimension reduction

provides a faster and better conditioned estimation procedure than the ordinary Scoring

estimation approach represented by the updating equations (36) and (37).
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Although the Scoring estimation approach with dimension reduction is generally fast to

converge and numerically stable, it can be improved to further speed up the computation

and reduce the chances of numerical errors. For example, we can perform inexact line search

to promote the convergence by adding a step length ϕ(k) to the updating equation (30) of

the Scoring estimation approach:

α̂(k+1) = α̂(k) + ϕ(k)I−1(α̂(k))S(α̂(k)) (48)

and identify an appropriate value of ϕ(k) at each iteration k such that the log-likelihood

function value is increased adequately at minimum cost. Desirable values for step lengths

can be searched by algorithms that terminate upon certain conditions, such as the Wolfe

conditions (Wolfe, 1969, 1971). For details of the inexact line search, its implementation

algorithms as well as other optimization techniques that may be applied to improve the

numerical performances of the Scoring estimation approach, readers can refer to Gill et al.

(1981) and Nocedal and Wright (2006).

Simulation Study

The purpose of this section is to quantify and compare the performances of the multi-

stage algorithm and the Scoring estimation approach. The performance of an estimation

method can be measured by the accuracy of the obtained model parameter estimates and the

resulting predictions. However, this requires knowledge about the true underlying model that

is unknown in reality, causing the evaluation of an estimation method difficult in terms of its

true performance. To resolve this issue, simulation studies can be implemented. Simulation

studies are synthetic experiments conducted on computers under planned conditions, meaning

that the generator of the ground-motion data (i.e., the true underlying ground-motion model

and its parameter values) is chosen by experimenters and thus fully informative. As a result,

the performance of an estimation method can be tested. Simulation studies have been used

previously in earthquake modelling in work such as Chen and Tsai (2002), Arroyo and Ordaz
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(2010), and Worden et al. (2018).

Generator settings

The first step of the simulation study is to specify the underlying generator (i.e., the true

ground-motion model) of the considered IM. Specifically, in this simulation study, PGA is

used as the considered ground-motion IM. To eliminate the effects of model misspecification,

the true ground-motion model is chosen to have the same model representation as the

hypothetical ground-motion model specified in Section The Ground-Motion Model with the

ground-motion prediction function (proposed by Akkar and Bommer (2010)):

f(Xij, b) = b1 + b2Mi + b3M
2
i

+ (b4 + b5Mi) log10

√
R2
ij + b26 + b7 SS,ij + b8 SA,ij + b9 FN,i + b10 FR,i , (49)

in which

• Mi is the moment magnitude (MW ) of earthquake i ;

• Rij is the Joyner-Boore distance (RJB) (i.e., the closest distance to the surface projection

of the rupture plane) in kilometers of site j in earthquake i ;

• SS,ij and SA,ij are dummy variables determining the soil type at site j during earthquake i

according to

(SS,ij, SA,ij) =


(1, 0) , soft soil,

(0, 1) , stiff soil,

(0, 0) , rock;

(50)

• FN,i and FR,i are dummy variables indicating the faulting type of earthquake i according

to

(FN,i, FR,i) =


(1, 0) , normal fault,

(0, 1) , reverse fault,

(0, 0) , strike-slip fault.

(51)

Bulletin of the Seismological Society of America 22



An Advanced Estimation Algorithm for Ground-Motion Models with Spatial Correlation

Two correlation functions are selected for illustrative purposes:

k1(d) = exp

(
−d
h

)
(52)

and

k2(d) =

(
1 +

√
3d

h

)
exp

(
−
√

3d

h

)
, (53)

which are special cases of Matérn correlation function with ν = 0.5 and ν = 1.5, respectively.

The first correlation function (52) (i.e., exponential correlation function) represents a type

of spatial correlation structure that is commonly used in works such as Jayaram and Baker

(2009, 2010); Esposito and Iervolino (2011, 2012) and allows for an instructive comparison

between the two estimation methods. The second correlation function (53) is smoother

than the correlation function (52) and admits the comparison between the two estimation

approaches when the logarithmic PGA field is smooth.

The parameter values in the true ground-motion model are outlined in Table 1. The

values for b1, . . . , b10 , τ 2 and σ2 are chosen based on the regression results given by Akkar

and Bommer (2010) for the ground-motion model of PGA. The value of the range parameter

h in the correlation function (52) is set arbitrarily to 11.5 km. This value of h corresponds to

d = 34.45 km when ρ = 0.05 with the correlation function (52). To get the same ρ value at the

same distance d = 34.45 km, it is found that h = 12.58 km for the correlation function (53).

[Table 1 about here.]

Choice for covariates

Before synthetic PGA datasets can be generated, the information of covariates needs to

be known. The information of covariates includes the number of earthquakes N , the number

of recording sites ni during each event (i.e., earthquake) as well as their locations sij , and the

values of predictors

Xij = (Mi, Rij, SS,ij, SA,ij, FN,i, FR,i) . (54)

In this simulation study, the information of covariates is extracted from a historical

Bulletin of the Seismological Society of America 23



An Advanced Estimation Algorithm for Ground-Motion Models with Spatial Correlation

ground-motion database, the European Strong-Motion (ESM) database (see Section Data

and Resources), which ensures the generation of realistic scenarios for comparison of the

two estimation methods. In using this database, we apply to the database the selection

criteria detailed below so that the proposed simulation study can be independently verified

and reproduced:

• retain events occurred within Italy;

• retain events with moment magnitude MW ≥ 5 , removing events without MW information;

• remove events without information of fault types;

• retain recording sites with epicentral distance Repi ≤ 250 km;

• remove recording sites without information of VS30 , the average shear-wave velocity (in

m/s) in the upper 30 meters of the soil;

• remove recording sites that are not free-field;

• remove recording sites with redundant site information (e.g., co-located recording sites) in

a single event; and

• retain events with at least two recording sites.

After the implementation of the above selection criteria, the resulting catalog used in this

simulation study consists of 2150 entries of recording sites (in which the same recording site

may appear in different earthquakes) from 62 earthquakes of 5 ≤MW ≤ 6.9 in Italy from 1976

to 2016. The geographical distribution of the 62 earthquakes with their moment magnitudes,

and the distribution of inter-site distance in each earthquake are shown in Figure 2.

[Figure 2 about here.]

The RJB of each recording site in each earthquake is calculated based on the corresponding

fault geometry (e.g., strike angle, dip angle, rake angle, length, and width), if information of

the finite-fault model is available. Otherwise, RJB is estimated by the empirical relationship
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between Repi and RJB (Stucchi et al., 2011) if the corresponding earthquake is with MW > 5.5

and is set to be Repi if the corresponding earthquake is with MW ≤ 5.5. The obtained RJB

for each recording site of each earthquake in the resulting catalog for this simulation study is

less than 250 km. The site classification of each recording site in each earthquake is obtained

based on the information of VS30 from the ESM database. In ESM database, VS30 is either

obtained from in-situ experiments or inferred from the topographic slope according to Wald

and Allen (2007). It is preferable to use VS30 from the experimental measurements, and if

that is not available, the inferred VS30 is used instead. The soil type of each recording site of

each earthquake in the catalog for this simulation study is then classified (according to Akkar

and Bommer (2010)) as soft soil if VS30 < 360 m/s, stiff soil if 360 m/s ≤ VS30 ≤ 750 m/s,

and rock if VS30 > 750 m/s.

PGA data generation

Given the true ground-motion model and information of covariates, we can simulate

synthetic datasets of logarithmic PGAs through Algorithm 3.

Algorithm 3 Synthetic logarithmic PGA dataset generation

Input: Specified true ground-motion model and information of covariates.

Output: A synthetic dataset of logarithmic PGAs (denoted by y).

1: Compute the covariance matrix C(θ) where θ = (τ 2, σ2, h)> ;

2: Compute the Cholesky factor L such that LL> = C(θ) ;

3: Compute the value of f(X, b) ;

4: Generate independently G =
∑N

i=1 ni standard normal random numbers v =

(v1, . . . , vG)> ;

5: Return a synthetic dataset of logarithmic PGAs by y = f(X, b) + Lv .
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Evaluation of the estimation performance

In this section, estimation performances of the multi-stage algorithm and the Scoring

estimation approach are evaluated and compared. We first generate T = 1000 synthetic

datasets of logarithmic PGAs via Algorithm 3. Then for each of the synthetic dataset, the

multi-stage algorithm and the Scoring estimation approach are implemented. Let α̂t and

ŝe(α̂t) represent, respectively, the estimate and the asymptotic standard error estimate of

a model parameter α ∈ {b, τ 2, σ2, h} produced by one of the two estimation methods on

some synthetic dataset t ∈ {1, . . . , T } . The estimation performance of either method then

can be evaluated by computing the following criteria:

• root mean squared error (RMSE), computed by

RMSE =

√√√√ 1

T

T∑
t=1

(α̂t − α0)
2 , (55)

in which α0 is the true parameter value (given in Table 1) of α ;

• coverage rate (CR), defined by the percentage of T synthetic datasets in which the true

parameter value α0 falls into the 95% confidence interval constructed from α̂t and ŝe(α̂t) .

[Table 2 about here.]

Table 2 illustrates the estimation criteria of the parameter estimators produced by the

multi-stage algorithm and the Scoring estimation approach under the correlation functions (52)

and (53). It can be observed that the RMSEs of all parameter estimators from the Scoring

estimation approach are less than those from the multi-stage algorithm under both types of

correlation functions. Although the RMSEs of estimators of b1, . . . , b10 produced by the multi-

stage algorithm are not significantly higher than those produced by the Scoring estimation

approach, the RMSEs of τ̂ 2, σ̂2 and ĥ are noticeably different between the two methods.

For τ̂ 2 , the multi-stage algorithm produces 50% higher RMSE than the Scoring estimation

approach under the correlation function (52) and two times larger RMSE than the Scoring
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estimation approach under the correlation function (53). With regard to σ̂2 , the RMSE from

the multi-stage algorithm is around eight times larger than that from the Scoring estimation

approach under the correlation function (52) and more than 30 times larger than that from

the Scoring estimation approach under the correlation function (53). Similar observations

can be seen regarding the estimator of h , whose RMSE from the multi-stage algorithm

is 12 times higher than that from the Scoring estimation approach under the correlation

function (52) and about 26 times larger than that from the Scoring estimation approach

under the correlation function (53). These findings imply that the estimators, particularly

the estimators of τ 2, σ2, and h , given by the Scoring estimation approach are more robust.

Finally, it can be found that the CRs under the Scoring estimation approach are relatively

stable across different model parameters, the CRs for τ 2, σ2, and h under the multi-stage

algorithm are remarkably lower than the expected 95% confidence level, indicating that the

constructed confidence interval from the multi-stage algorithm is biased in a non-conservative

manner, that is, too narrow on average, and there exist risks of wrong decisions on hypothesis

tests relating to model structure for the resulting GMPE under such an estimation procedure.

The low CRs of τ 2 and σ2 are partly due to the non-optimal formulas of asymptotic standard

error estimates given by Jayaram and Baker (2010) and partly due to the separate estimation

of h and the inconsistency of ĥ . The low CR of h is because of the naive use of the asymptotic

standard error formula for ordinary least squares and the inconsistency of σ̂2 produced from

the preliminary stage.

To examine how the estimation performances of the multi-stage algorithm and the Scoring

estimation approach change, when the sample (i.e., event) size N varies, we extract two

sub-catalogs from the full catalog described in Section Choice for covariates. One sub-catalog

has the size of N = 46, which includes the events occurred by the end of the year 2010.

Another sub-catalog has the size of N = 29, which includes the events occurred by the end

of the year 2000. We then generate 1000 synthetic datasets of logarithmic PGAs for both

sub-catalogs and implement the multi-stage algorithm and the Scoring estimation approach,
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which provides 1000 sets of estimates for each sub-catalog under each estimation method.

Figure 3 and 4 present the sampling distributions of b̂1, . . . , b̂10 under correlation function (52)

and (53), respectively. As we expected in Section Problems of the multi-stage algorithm, both

the multi-stage algorithm and the Scoring estimation approach produce consistent estimators

of b1, . . . , b10 (i.e., the sampling distributions of b̂1, . . . , b̂10 converge to the true parameter

values as N increases).

[Figure 3 about here.]

[Figure 4 about here.]

We emphasize in Section Problems of the multi-stage algorithm that τ̂ 2, σ̂2, and ĥ produced

by the multi-stage algorithm are inconsistent, meaning that the sampling distribution of τ̂ 2,

σ̂2, and ĥ from the multi-stage algorithm will not converge to the true parameter values as

N grows. This statement is illustrated in Figure 5. Under both the correlation function (52)

and (53), the sampling distributions of τ̂ 2, σ̂2, and ĥ produced by the Scoring estimation

approach converge to the true parameter values as N increases. In contrast, the sampling

distributions of τ̂ 2, σ̂2, and ĥ produced by the multi-stage algorithm are biased. Moreover,

the sampling distributions of τ̂ 2 and σ̂2 produced by the multi-stage algorithm under the

correlation function (53) behave worse than those under the correlation function (52) because

increasing sampling variances and a larger number of outliers are observed.

[Figure 5 about here.]

Evaluation of the predictive performance

The estimated ground-motion models allow one to perform ground-motion predictions

at locations where recording sites are unavailable (e.g., generate a ground-motion shaking

intensity map). Therefore, it is vital to assess the predictive performances of the ground-

motion models estimated by the multi-stage algorithm and the Scoring estimation approach.

To this goal, we examine the prediction accuracy for a selected event with ID ‘IT-1997-0137’,
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which corresponds to the earthquake with MW = 5.6 occurred in the regions of Umbria and

Marche in 1997 and has ne = 15 recording sites. This particular event is selected because

it is included in both the full catalog (events by the end of the year 2016) and the two

sub-catalogs (events by the end of the year 2000 and 2010) described in Section Evaluation

of the estimation performance. This allows us to examine how the predictive performance

of an estimation method changes as the number of events used for estimation varies. The

prediction region of the event is set to be within a distance of 250 km from the epicenter (see

Figure 6). The ground-motion models used for predictions are those estimated from the full

catalog and the two sub-catalogs in Section Evaluation of the estimation performance.

[Figure 6 about here.]

We first discretize the prediction region of the event by fine square grids with mesh size

∆ = 5 km and treat the resulting K = 5228 grid points as prediction locations. Then, for

each estimation method and each catalog (i.e., the full catalog and the two sub-catalogs) we

proceed with the following steps:

1. For each synthetic dataset t, compute the predictions ẑt = (ẑ1,t, . . . , ẑK,t) on all grid points

k ∈ {1, . . . , K} by the plug-in predictor (Stein, 1999)

ẑt = f(W, b̂t) + Σ(θ̂t)c
−1(θ̂t)

(
yt − f(Xe, b̂t)

)
, (56)

in which

• b̂t and θ̂t = (τ̂ 2t, σ̂2
t, ĥt) are parameter estimates obtained from synthetic dataset t ;

• f(W, b̂t) = (f(W1, b̂t), . . . , f(WK , b̂t))
> is a K × 1 vector of mean logarithmic PGAs

with Wk being a vector of predictors at grid point k . The soil types at grid points are

obtained from the U.S. Geological Survey global VS30 database (see Section Data and

Resources);

• Σ(θ) = cov(Z, Y) and c(θ) = var(Y) with Z and Y representing vectors of logarithmic

PGAs at grid points and recording sites, respectively;
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• yt is an ne × 1 vector of logarithmic PGAs at recording sites and is obtained from the

the t-th synthetic dataset of logarithmic PGAs simulated in Section Evaluation of the

estimation performance;

• f(Xe, b̂t) = (f(Xe,1, b̂t), . . . , f(Xe,ne , b̂t))
> is an ne × 1 vector of mean PGAs with Xe,j

being a vector of predictors at the recording site j ∈ {1, . . . , ne} of the event.

In this step, a ground-motion shaking intensity map can be generated from the obtained

ẑt , which represent the logarithmic PGAs on grid points predicted by the estimated

ground-motion model given the synthetic observations yt ;

2. For each yt , generate a synthetic logarithmic PGA dataset zt = (z1,t, . . . , zK,t) on all grid

points k ∈ {1, . . . , K} from the multivariate normal distribution

N
(
f(W, b0) + Σ(θ0)c

−1(θ0) (yt − f(Xe, b0)) , Ψ(b0)−Σ(θ0)c
−1(θ0)Σ

>(θ0)
)
, (57)

in which Ψ(θ) = var(Z) , and b0 and θ0 are true parameter values chosen for b and θ in

Section Generator settings. To assess the quality of the ground-motion shaking intensity

map (i.e., the accuracy of the predictions ẑt) produced by the estimated ground-motion

model in the last step, this step generates the benchmark logarithmic PGAs (i.e., zt) on

grid points using the underlying true ground-motion model given the synthetic observations

yt ;

3. At each grind point k , compute the root mean squared error of predictions (RMSEP) by

RMSEPk =

√√√√ 1

T

T∑
t=1

(ẑk,t − zk,t)2 , (58)

which measures the predictive accuracy of the estimated ground-motion model at each

grid point k .

In Figure 7, we plot at each grid point the percentage increase in RMSEP from the

multi-stage algorithm relative to that from the Scoring estimation approach under three

sample sizes of N = 29, 46 and 62 (corresponding to events by the end of the year 2000, 2010
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and 2016) with correlation function (52) and (53). It can be seen that for both correlation

function (52) and (53), as N increases, the region where the RMSEP from the multi-stage

algorithm is greater than that from the Scoring estimation approach expands. When the

correlation function (52) is considered, we find that the RMSEP from the Scoring estimation

approach are smaller than those from the multi-stage algorithm, especially around the

recording sites (triangles in Figure 7). This is because the spatial correlation structure

in the ground-motion model is estimated with higher accuracy by the Scoring estimation

approach. Because recording sites are often concentrated in the near-fault regions, the

difference between the RMSEP from the Scoring estimation approach and that from the

multi-stage algorithm becomes more distinct within the near-field (the region bounded by

the dashed circle in Figure 7). This observation becomes remarkable when the correlation

function (53) is considered, in which the RMSEP from the multi-stage algorithm can exceed

that from the Scoring estimation approach by more than 10% near the recording sites.

Furthermore, Figure 7 also indicates that the Scoring estimation approach is less sensitive to

the overfitting problem than the multi-stage algorithm. As we can observe from (a) and (b)

in Figure 7, even the number of events is scare (i.e., N = 29), the predictive performance of

the Scoring estimation approach is still comparable or better than that of the multi-stage

algorithm over the region, especially when the underlying spatial correlation follows the

correlation function (53).

[Figure 7 about here.]

Performance of the Scoring Estimation Approach under the Igno-

rance of Spatial Correlation

We have demonstrated that the Scoring estimation approach outperforms the multi-stage

algorithm in terms of estimation and prediction. However, if the spatial correlation structure

is neglected from the ground-motion model while the spatial correlation is significant in
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the ground-motion data, the performance of Scoring estimation approach may be degraded.

Because most of the existing ground-motion models (e.g., Akkar and Bommer (2010); Abra-

hamson et al. (2014); Bindi et al. (2014); Boore et al. (2014); Campbell and Bozorgnia (2014);

Chiou and Youngs (2014); Idriss (2014)) are proposed without any form of spatial correlation

structure, we investigate in this section the performance of the Scoring estimation approach

when the ground-motion model ignores spatial correlation.

Estimation performance

To assess the estimation performance of the Scoring approach, when the spatial correlation

structure is ignored in the ground-motion model, 1000 synthetic datasets of logarithmic

PGAs, which form a training set, are generated using the correlation function (52) with

h = 11.50 km. The Scoring estimation approach is then applied to estimate, respectively,

the ground-motion model with well-specified spatial correlation structure (i.e., with the

correlation function (52)) and the ground-motion model without spatial correlation structure

(i.e., with the correlation function (5)). The sampling distributions for b̂1, . . . , b̂10 obtained

under the two ground-motion models are shown in Figure 8. It can be seen that although

the estimators of b1, . . . , b10 produced by the Scoring estimation approach are generally

unbiased for both models, estimators such as b̂5, . . . , b̂8 exhibit larger variances when the

spatial correlation structure is ignored in the ground-motion model. Comparisons between

the sampling distributions for τ̂ 2 and σ̂2 under the two models are presented in Figure 9.

We observe that when the training set is generated by the correlation function (52) with

h = 11.50 km, the estimates of the inter-event variance τ 2 from the ground-motion model

without spatial correlation structure are overestimated by the Scoring estimation approach,

but the estimates of the intra-event variance σ2 are underestimated. For the ground-motion

model with well-specified spatial correlation structure, however, the estimates of τ 2 and σ2

produced by the Scoring estimation approach essentially match their true values. To further

investigate the Scoring estimation approach’s overestimation on τ 2 and underestimation
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on σ2 when spatial correlation is ignored from the ground-motion model, we refit the two

ground-motion models to two additional training sets, each of which consists of 1000 synthetic

datasets of logarithmic PGAs, generated using the correlation function (52) with h = 30.00

and 60.00 km, respectively. From Figure 9, it can be seen that as the value of h increases (i.e.,

the spatial correlation implied by the training data becomes stronger), the overestimation on

τ 2 and underestimation on σ2 due to the ignorance of spatial correlation are amplified. On

the contrary, the estimates of τ 2 and σ2 from the ground-motion model with well-specified

spatial correlation structure are still concentrated around the true parameter values.

[Figure 8 about here.]

[Figure 9 about here.]

We repeated the above procedure using the training sets generated by the correlation

function (53). The sampling distributions for b̂1, . . . , b̂10 , τ̂ 2, and σ̂2 under the two completing

ground-motion models are visualized in Figure 10 and 11. Figure 10 indicates that the loss of

statistical efficiency on the estimator of b becomes more apparent when the ground-motion

model without spatial correlation structure is fitted to the training data with smoother spatial

correlation. From Figure 11, we find that fitting the ground-motion model without spatial

correlation structure to the training data with smoother spatial correlations will cause severer

overestimation on τ 2 and underestimation on σ2 . In contrast, the changed smoothness of the

spatial correlation in the training data does not influence the accuracy of estimating τ 2 and

σ2 in the ground-motion model with well-specified spatial correlation structure.

[Figure 10 about here.]

[Figure 11 about here.]

Predictive performance

In this section, we consider the predictive performance of the estimated (via the Scoring

estimation approach) ground-motion model without spatial correlation structure for the event
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selected in Section Evaluation of the predictive performance. To investigate the predictive

performance when observations are available in the far-field, 15 artificial recording sites are

added to the event (see Figure 12). The addition of the 15 artificial recording sites increases

the entries of recording sites in the catalog, which is described in Section Choice for covariates,

from 2150 to 2165. On the basis of the updated catalog, we then generate six training sets,

each of which includes 1000 synthetic datasets of logarithmic PGAs, using the generator

specified in Section Generator settings with h = 11.50, 30.00 and 60.00 km for the correlation

function (52) and with h = 12.58, 32.81 and 65.63 km for the correlation function (53). For

each training set, we estimate the ground-motion model with well-specified spatial correlation

structure (i.e., with the same correlation function as the underlying generator) and the ground-

motion model with no spatial correlation structure by the Scoring estimation approach. The

predictive performances of the estimated ground-motion models are subsequently assessed

by the RMSEP obtained via the procedure detailed in Section Evaluation of the predictive

performance. The RMSEPs produced by the estimated ground-motion models with and

without spatial correlation are plotted in Figure 13 and 14. These figures show that when

the spatial correlation structure is ignored from the ground-motion model, the resulting

predictions are poor across the study region regardless of the strength (i.e., the magnitude of

h) and the smoothness (i.e., the choice between the correlation function (52) and (53)) of the

spatial correlation implied by the training data. In addition, we find that whereas the RMSEP

around the recording sites are only weakly improved when the spatial correlation is ignored

from the ground-motion model, the RMSEP near the recording sites are significantly reduced

when the spatial correlation is well-specified in the ground-motion model. For example,

when the spatial correlation implied by the training data are characterized by the correlation

function (52) with h = 60 km, little reductions in RMSEP can be observed around the

recording sites if the data are fitted by the ground-motion model without spatial correlation

structure (see (f) in Figure 13). However, the improvement of predictions near the recording

sites is obvious when the spatial correlation structure is well-specified in the ground-motion
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model (see (e) in Figure 13). Furthermore, it is found that the reductions of RMSEP caused

by the availability of recording sites are consistent in near-field and far-field, when the

ground-motion model with well-specified spatial correlation structure is considered. However,

under the ground-motion model without spatial correlation structure, the improvement of

predictions caused by the proximity to the recording sites is clearer in the near-field than in

the far-field, which suffers high RMSEP in all considered scenarios.

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

Conclusions

In this article, a one-stage algorithm, namely the Scoring estimation approach, is in-

troduced under the maximum likelihood estimation framework. It is capable of estimating

all parameters in ground-motion models with spatial correlation simultaneously and can be

readily extended to accommodate a wide range of correlation functions (e.g., site-related

correlation functions). The estimators produced by the approach have good statistical proper-

ties such as consistency, statistical efficiency and asymptotic normality. In addition, to yield

consistent, statistically efficient and asymptotically normal estimators, the approach requires

only a large number of events (that can be assumed to be independent) even with a small

number of records per event, something that is historically relevant to earthquake records. The

simulation study demonstrates that the Scoring estimation approach generally outperforms

the multi-stage algorithm proposed by Jayaram and Baker (2010) in terms of estimation and

prediction. With regard to estimation, the Scoring estimation approach produces parameter

estimators in an accurate and stable manner under both smooth (e.g., correlation func-

tion (53)) and less smooth (e.g., correlation function (52)) correlation functions. Regarding

the predictive performance, the simulation study indicates that the ground-motion model with
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spatial correlation estimated via the Scoring estimation approach produces smaller prediction

errors than the multi-stage algorithm does, especially at locations around the recording sites

and when the spatial correlation is smooth. Because the estimation of ground-motion models

with spatial correlation is a key ingredient in developing GMPEs for use in PHSA, the Scoring

estimation approach provides a statistically robust way that increases the estimation accuracy

in ground-motion model construction and has the potential to reduce prediction errors in

ground-motion shaking intensity maps, which in turn can improve the earthquake-induced

loss assessment process.

The performance of the Scoring estimation approach is also assessed under the condition

that spatial correlation structure is ignored in ground-motion models. It is demonstrated

that neglecting spatial correlation structure in ground-motion models can cause the Scoring

estimation approach to produce inconsistent and statistically inefficient estimators, and

inaccurate predictions. This investigation provides two important implications for seismic

risk assessment. First, as any estimation technique, the Scoring estimation approach is only

as good as the proposed ground-motion model. Therefore, a rigorous assessment of spatial

correlation in the ground-motion data should be addressed during the GMPE construction

such that the resulting ground-motion model is a good representation of the underlying data.

In return, the Scoring estimation approach can serve as a competitive method for accurate

ground-motion model estimation and shaking intensity map generation. Second, we show

that ignoring spatial correlation in ground-motion models can result in overestimation of the

inter-event variance and underestimation of the intra-event variance, and such biases increase

when the spatial correlation implied by the underlying data becomes stronger and smoother.

These results generalize the findings of Jayaram and Baker (2010) and further emphasize the

importance to accurately estimate the inter-event and intra-event variances as their changes

“have implications for risk assessments of spatially-distributed systems” (Jayaram and Baker,

2010).

Finally, because the Scoring estimation approach provides a relatively accurate estimation
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of the spatial correlation parameters (e.g., h in the exponential correlation function), as a

by-product of the ground-motion model estimation, this approach could be applied to areas

that do not have well-recorded events, giving the opportunity to provide a first estimate of a

spatial correlation model.

Data and Resources

The Engineering Strong-Motion database was searched using http://esm.mi.ingv.it (last

accessed May 2018). The U.S. Geological Survey global VS30 database was obtained from

https://earthquake.usgs.gov/data/vs30/ (last accessed February 2018). The multi-stage

algorithm and the Scoring estimation approach are implemented in MATLAB R© version

R2018a and the code is available at https://github.com/mingdeyu/GMPE-estimation/ (last

accessed December 2018).

Acknowledgments

The authors thank John Douglas, Editor-in-Chief Thomas Pratt, and two anonymous

reviewers for their helpful reviews of this article. Thanks to Irmela Zentner and Zhiyi Wang

for helpful discussions about the method proposed by Jayaram and Baker (2010). Deyu

Ming and Chen Huang gratefully acknowledge the financial support of the China Scholarship

Council (Grant No. 201608170005 and 201608440273). This work is partly funded by the

UK Natural Environment Research Council (Grant Number NE/P01660X/1).

References

Abrahamson, N. A., W. J. Silva and R. Kamai (2014). Summary of the ASK14 ground motion

relation for active crustal regions, Earthq. Spectra 30, no. 3, 1025–1055.

Bulletin of the Seismological Society of America 37

http://esm.mi.ingv.it
https://earthquake.usgs.gov/data/vs30/
https://github.com/mingdeyu/GMPE-estimation/


An Advanced Estimation Algorithm for Ground-Motion Models with Spatial Correlation

Abrahamson, N. A. and R. R. Youngs (1992). A stable algorithm for regression analyses

using the random effects model, Bull. Seismol. Soc. Am. 82, no. 1, 505–510.

Akkar, S. and J. J. Bommer (2010). Empirical equations for the prediction of PGA, PGV, and

spectral accelerations in Europe, the Mediterranean region, and the Middle East, Seismol.

Res. Lett. 81, no. 2, 195–206.

Arroyo, D. and M. Ordaz (2010). Multivariate bayesian regression analysis applied to ground-

motion prediction equations, part 1: theory and synthetic example, Bull. Seismol. Soc. Am.

100, no. 4, 1551–1567.

Bindi, D., M. Massa, L. Luzi, G. Ameri, F. Pacor, R. Puglia, and P. Augliera (2014). Pan-

European ground-motion prediction equations for the average horizontal component of

PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE

dataset, Bull. Seismol. Soc. Am. 12, no. 1, 391–430.

Boore, D. M., J. P. Stewart, E. Seyhan and G. M. Atkinson (2014). NGA-West2 equations

for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes, Earthq.

Spectra 30, no. 3, 1057–1085.

Brillinger, D. R. and H. K. Preisler (1984). An exploratory analysis of the Joyner-Boore

attenuation data, Bull. Seismol. Soc. Am. 74, no. 4, 1441–1450.

Brillinger, D. R. and H. K. Preisler (1984). Further analysis of the Joyner-Boore attenuation

data, Bull. Seismol. Soc. Am. 75, no. 2, 611–614.

Campbell, K. W. and Y. Bozorgnia (2014). NGA-West2 ground motion model for the average

horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra,

Earthq. Spectra 30, no. 3, 1087–1115.

Chen, Y. H. and C. C. P. Tsai (2002). A new method for estimation of the attenuation

relationship with variance components, Bull. Seismol. Soc. Am. 92, no. 5, 1984–1991.

Bulletin of the Seismological Society of America 38



An Advanced Estimation Algorithm for Ground-Motion Models with Spatial Correlation

Chiou, B. S. J. and R. R. Youngs (2014). Update of the Chiou and Youngs NGA model for

the average horizontal component of peak ground motion and response spectra, Earthq.

Spectra 30, no. 3, 1117–1153.

Couvreur, C. (1997). The EM algorithm: a guided tour, in Computer Intensive Methods in

Control and Signal Processing, K. Warwick and M. Kárný (Editors), Birkhäuser, Boston,
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Table 1

Parameter values chosen for the assumed true

ground-motion model

Parameter Value Parameter Value

b1 1.0416 b8 0.0153

b2 0.9133 b9 -0.0419

b3 -0.0814 b10 0.0802

b4 -2.9273 τ 2 0.0099

b5 0.2812 σ2 0.0681

b6 7.8664 h (ν = 0.5)∗ 11.50 km

b7 0.0875 h (ν = 1.5)† 12.58 km

∗ The range parameter h in the correlation func-

tion (52) (i.e., Matérn type with ν = 0.5).

† The range parameter h in the correlation func-

tion (53) (i.e., Matérn type with ν = 1.5).
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Table 2

Comparison of the estimation performance between the multi-stage algorithm and the

Scoring estimation approach

Multi-Stage Algorithm∗ Scoring Estimation Approach

ν = 0.5† ν = 1.5‡ ν = 0.5 ν = 1.5

RMSE§ CR‖ RMSE CR RMSE CR RMSE CR

b1 2.5540 94.8 2.8160 95.7 2.5156 94.4 2.6551 92.8

b2 0.8875 94.0 0.9795 94.8 0.8749 94.0 0.9234 92.8

b3 0.0780 93.6 0.0862 94.0 0.0769 93.6 0.0811 92.3

b4 0.3184 98.3 0.3529 99.9 0.3013 94.4 0.3071 95.0

b5 0.0573 98.4 0.0634 99.8 0.0541 93.9 0.0551 94.7

b6 0.8631 96.6 0.9250 89.7 0.8438 95.9 0.8092 94.3

b7 0.0158 93.3 0.0055 80.3 0.0154 95.3 0.0054 94.5

b8 0.0087 91.6 0.0017 83.3 0.0085 94.3 0.0016 96.2

b9 0.0661 92.4 0.0723 92.9 0.0649 92.4 0.0651 92.8

b10 0.0712 91.2 0.0740 92.9 0.0701 91.0 0.0683 92.7

τ 2 0.0052 51.3 0.0076 26.5 0.0034 88.9 0.0035 89.2

σ2 0.0197 1.6 0.0790 0.0 0.0025 94.2 0.0026 94.9

h 8.6122 0.2 9.8763 0.0 0.7582 93.7 0.3773 94.3

∗ Jayaram and Baker (2010).

† Corresponding to the correlation function (52) (i.e., Matérn type with ν = 0.5) with

h = 11.50 km.

‡ Corresponding to the correlation function (53) (i.e., Matérn type with ν = 1.5) with

h = 12.58 km.

§ Root mean squared error of the corresponding parameter estimator.

‖ Coverage rate (in percentage and rounded to one decimal place) of the corresponding

parameter.
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List of Figure Captions

Figure 1. Flowchart of the multi-stage algorithm proposed by Jayaram and Baker (2010).

Figure 2. (a) The geographical distribution of 62 earthquakes of 5 ≤ MW ≤ 6.9 in Italy

from 1976 to 2016. The epicenter of each event is labeled by a filled circle (◦), whose size

is scaled by the moment magnitude (MW ) of the event. (b) The distribution of inter-site

distance in each earthquake (represented by its corresponding moment magnitude) on a log

scale. The color version of this figure is available only in the electronic edition.

Figure 3. Sampling distributions for estimators b̂1, . . . , b̂10 under the correlation function (52)

with h = 11.50 km. The left three boxplots (reading from left to right) in each panel correspond

to event sizes of N = 29 , 46, and 62 under the multi-stage algorithm, respectively; the

right three boxplots (reading from left to right) in each panel correspond to event sizes of

N = 29 , 46, and 62 under the Scoring estimation approach, respectively; the three event

sizes correspond to events by the end of the year 2000, 2010, and 2016, respectively. The

dashed line in each panel represents the true parameter value. The color version of this figure

is available only in the electronic edition.

Figure 4. Sampling distributions for estimators b̂1, . . . , b̂10 under the correlation function (53)

with h = 12.58 km. The left three boxplots (reading from left to right) in each panel correspond

to event sizes of N = 29 , 46, and 62 under the multi-stage algorithm, respectively; the

right three boxplots (reading from left to right) in each panel correspond to event sizes of

N = 29 , 46, and 62 under the Scoring estimation approach, respectively; the three event

sizes correspond to events by the end of the year 2000, 2010, and 2016, respectively. The

dashed line in each panel represents the true parameter value. The color version of this figure

is available only in the electronic edition.

Figure 5. Sampling distributions for estimators τ̂ 2 , σ̂2, and ĥ : (a), (c) and (e) correspond to
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the correlation function (52) with h = 11.50 km; (b), (d) and (f) correspond to the correlation

function (53) with h = 12.58 km. The left three boxplots (reading from left to right) in

each panel correspond to event sizes of N = 29 , 46, and 62 under the multi-stage algorithm,

respectively; the right three boxplots (reading from left to right) in each panel correspond

to event sizes of N = 29 , 46, and 62 under the Scoring estimation approach, respectively;

the three event sizes correspond to events by the end of the year 2000, 2010, and 2016,

respectively. The dashed line in each panel represents the true parameter value. The color

version of this figure is available only in the electronic edition.

Figure 6. The region (within a distance of 250 km from the epicenter) of the selected event

with ID ‘IT-1997-0137’. The epicenter of the event is labeled by a filled star (9); triangles

(4) represent the recording sites whose logarithmic peak ground acceleration (PGA) records

(generated in Section Evaluation of the estimation performance) are observed and used for

predictions. The color version of this figure is available only in the electronic edition.

Figure 7. Maps of percentage increases in root mean squared error of predictions (RMSEP)

from the multi-stage algorithm relative to those from the Scoring estimation approach at

grid points: (a), (c) and (e) correspond to the correlation function (52) with h = 11.50 km

when N = 29, 46, and 62, reading from top to bottom; (b), (d) and (f) correspond to the

correlation function (53) with h = 12.58 km when N = 29, 46, and 62, reading from top to

bottom. Triangles (4) are recording sites and the dashed circle defines the border of the

near-field (within 50 km from the epicenter). The color version of this figure is available only

in the electronic edition.

Figure 8. Sampling distributions for b̂1, . . . , b̂10 of ground-motion models with (S) and

without (NS) spatial correlation structure. The estimates are obtained from 1000 synthetic

datasets generated under the correlation function (52) with h = 11.50 km. The left boxplot

in each panel corresponds to the ground-motion model with spatial correlation structure;
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the right boxplot in each panel corresponds to the ground-motion model without spatial

correlation structure. The dashed line in each panel represents the true parameter value. The

color version of this figure is available only in the electronic edition.

Figure 9. Sampling distributions for τ̂ 2 and σ̂2 of ground-motion models with (S) and without

(NS) spatial correlation structure (specified by the correlation function (52)). The estimates

are obtained from 1000 synthetic datasets generated under the correlation function (52) with

h = 11.50, 30.00, and 60.00 km, respectively. (a), (c) and (e) correspond to the estimates

of τ 2 ; (b), (d) and (f) correspond to the estimates of σ2 . The color version of this figure is

available only in the electronic edition.

Figure 10. Sampling distributions for b̂1, . . . , b̂10 of ground-motion models with (S) and

without (NS) spatial correlation structure. The estimates are obtained from 1000 synthetic

datasets generated under the correlation function (53) with h = 12.58 km. The left boxplot

in each panel corresponds to the ground-motion model with spatial correlation structure;

the right boxplot in each panel corresponds to the ground-motion model without spatial

correlation structure. The dashed line in each panel represents the true parameter value. The

color version of this figure is available only in the electronic edition.

Figure 11. Sampling distributions for τ̂ 2 and σ̂2 of ground-motion models with (S) and

without (NS) spatial correlation structure (specified by the correlation function (53)). The

estimates are obtained from 1000 synthetic datasets generated under the correlation func-

tion (53) with h = 12.58, 32.81, and 65.63 km, respectively. (a), (c) and (e) correspond to

the estimates of τ 2 ; (b), (d) and (f) correspond to the estimates of σ2 . The color version of

this figure is available only in the electronic edition.

Figure 12. The region (within a distance of 250 km from the epicenter) of the selected event

with ID ‘IT-1997-0137’, to which artificial recording sites are added. The epicenter of the

event is labeled by a filled star (9); triangles (4) represent the historical recording sites of
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the selected event described in Section Evaluation of the predictive performance. Inverted

triangles (5) represent the artificial recording sites that are added to the selected event. The

observations at both historical and artificial recording sites are used for prediction. The color

version of this figure is available only in the electronic edition.

Figure 13. Maps of RMSEP from ground-motion models with and without spatial correlation

structure (specified by the correlation function (52)). Ground-motion models are fitted to

synthetic datasets generated under the correlation function (52) with h = 11.50, 30.00, and

60.00 km. (a), (c) and (e) correspond to the ground-motion model with spatial correlation

structure; (b), (d) and (f) correspond to the ground-motion model without spatial correlation

structure. Triangles (4) and inverted triangles (5) are historical and artificial recording

sites, respectively. The dashed circle defines the border of the near-field (within 50 km from

the epicenter). The color version of this figure is available only in the electronic edition.

Figure 14. Maps of RMSEP from ground-motion models with and without spatial correlation

structure (specified by the correlation function (53)). Ground-motion models are fitted to

synthetic datasets generated under the correlation function (53) with h = 12.58, 32.81, and

65.63 km. (a), (c) and (e) correspond to the ground-motion model with spatial correlation

structure; (b), (d) and (f) correspond to the ground-motion model without spatial correlation

structure. Triangles (4) and inverted triangles (5) are historical and artificial recording

sites, respectively. The dashed circle defines the border of the near-field (within 50 km from

the epicenter). The color version of this figure is available only in the electronic edition.
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Preliminary Stage:

• Obtain preliminary estimates of model parame-

ters by fitting the ground-motion model without

spatial correlation;

Spatial Correlation Stage:

• Compute the empirical semivariogram;

• Fit a parametric semivariogram model to the em-

pirical semivariogram;

Re-estimation Stage:

• Given the estimated spatial correlation structure,

update the preliminary estimates of model param-

eters.

Figure 1. Flowchart of the multi-stage algorithm proposed by Jayaram and Baker (2010).
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(b)

Figure 2. (a) The geographical distribution of 62 earthquakes of 5 ≤ MW ≤ 6.9 in Italy

from 1976 to 2016. The epicenter of each event is labeled by a filled circle (◦), whose size

is scaled by the moment magnitude (MW ) of the event. (b) The distribution of inter-site

distance in each earthquake (represented by its corresponding moment magnitude) on a log

scale. The color version of this figure is available only in the electronic edition.
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Figure 3. Sampling distributions for estimators b̂1, . . . , b̂10 under the correlation function (52)

with h = 11.50 km. The left three boxplots (reading from left to right) in each panel correspond

to event sizes of N = 29 , 46, and 62 under the multi-stage algorithm, respectively; the

right three boxplots (reading from left to right) in each panel correspond to event sizes of

N = 29 , 46, and 62 under the Scoring estimation approach, respectively; the three event

sizes correspond to events by the end of the year 2000, 2010, and 2016, respectively. The

dashed line in each panel represents the true parameter value. The color version of this figure

is available only in the electronic edition.
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Figure 4. Sampling distributions for estimators b̂1, . . . , b̂10 under the correlation function (53)

with h = 12.58 km. The left three boxplots (reading from left to right) in each panel correspond

to event sizes of N = 29 , 46, and 62 under the multi-stage algorithm, respectively; the

right three boxplots (reading from left to right) in each panel correspond to event sizes of

N = 29 , 46, and 62 under the Scoring estimation approach, respectively; the three event

sizes correspond to events by the end of the year 2000, 2010, and 2016, respectively. The

dashed line in each panel represents the true parameter value. The color version of this figure

is available only in the electronic edition.
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Figure 5. Sampling distributions for estimators τ̂ 2 , σ̂2, and ĥ : (a), (c) and (e) correspond

to the correlation function (52) with h = 11.50 km; (b), (d) and (f) correspond to the

correlation function (53) with h = 12.58 km. The left three boxplots (reading from left to

right) in each panel correspond to event sizes of N = 29 , 46, and 62 under the multi-stage

algorithm, respectively; the right three boxplots (reading from left to right) in each panel

correspond to event sizes of N = 29 , 46, and 62 under the Scoring estimation approach,

respectively; the three event sizes correspond to events by the end of the year 2000, 2010,

and 2016, respectively. The dashed line in each panel represents the true parameter value.

The color version of this figure is available only in the electronic edition.
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Figure 6. The region (within a distance of 250 km from the epicenter) of the selected event

with ID ‘IT-1997-0137’. The epicenter of the event is labeled by a filled star (9); triangles

(4) represent the recording sites whose logarithmic peak ground acceleration (PGA) records

(generated in Section Evaluation of the estimation performance) are observed and used for

predictions. The color version of this figure is available only in the electronic edition.
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Figure 7. Maps of percentage increases in root mean squared error of predictions (RMSEP)

from the multi-stage algorithm relative to those from the Scoring estimation approach at

grid points: (a), (c) and (e) correspond to the correlation function (52) with h = 11.50 km

when N = 29, 46, and 62, reading from top to bottom; (b), (d) and (f) correspond to the

correlation function (53) with h = 12.58 km when N = 29, 46, and 62, reading from top to

bottom. Triangles (4) are recording sites and the dashed circle defines the border of the

near-field (within 50 km from the epicenter). The color version of this figure is available only

in the electronic edition.
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Figure 8. Sampling distributions for b̂1, . . . , b̂10 of ground-motion models with (S) and

without (NS) spatial correlation structure. The estimates are obtained from 1000 synthetic

datasets generated under the correlation function (52) with h = 11.50 km. The left boxplot

in each panel corresponds to the ground-motion model with spatial correlation structure;

the right boxplot in each panel corresponds to the ground-motion model without spatial

correlation structure. The dashed line in each panel represents the true parameter value. The

color version of this figure is available only in the electronic edition.
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Figure 9. Sampling distributions for τ̂ 2 and σ̂2 of ground-motion models with (S) and without

(NS) spatial correlation structure (specified by the correlation function (52)). The estimates

are obtained from 1000 synthetic datasets generated under the correlation function (52) with

h = 11.50, 30.00, and 60.00 km, respectively. (a), (c) and (e) correspond to the estimates

of τ 2 ; (b), (d) and (f) correspond to the estimates of σ2 . The color version of this figure is

available only in the electronic edition.
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Figure 10. Sampling distributions for b̂1, . . . , b̂10 of ground-motion models with (S) and

without (NS) spatial correlation structure. The estimates are obtained from 1000 synthetic

datasets generated under the correlation function (53) with h = 12.58 km. The left boxplot

in each panel corresponds to the ground-motion model with spatial correlation structure;

the right boxplot in each panel corresponds to the ground-motion model without spatial

correlation structure. The dashed line in each panel represents the true parameter value. The

color version of this figure is available only in the electronic edition.
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Figure 11. Sampling distributions for τ̂ 2 and σ̂2 of ground-motion models with (S) and

without (NS) spatial correlation structure (specified by the correlation function (53)). The

estimates are obtained from 1000 synthetic datasets generated under the correlation func-

tion (53) with h = 12.58, 32.81, and 65.63 km, respectively. (a), (c) and (e) correspond to

the estimates of τ 2 ; (b), (d) and (f) correspond to the estimates of σ2 . The color version of

this figure is available only in the electronic edition.
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Figure 12. The region (within a distance of 250 km from the epicenter) of the selected event

with ID ‘IT-1997-0137’, to which artificial recording sites are added. The epicenter of the

event is labeled by a filled star (9); triangles (4) represent the historical recording sites of

the selected event described in Section Evaluation of the predictive performance. Inverted

triangles (5) represent the artificial recording sites that are added to the selected event. The

observations at both historical and artificial recording sites are used for prediction. The color

version of this figure is available only in the electronic edition.
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Figure 13. Maps of RMSEP from ground-motion models with and without spatial correlation

structure (specified by the correlation function (52)). Ground-motion models are fitted to

synthetic datasets generated under the correlation function (52) with h = 11.50, 30.00, and

60.00 km. (a), (c) and (e) correspond to the ground-motion model with spatial correlation

structure; (b), (d) and (f) correspond to the ground-motion model without spatial correlation

structure. Triangles (4) and inverted triangles (5) are historical and artificial recording

sites, respectively. The dashed circle defines the border of the near-field (within 50 km from

the epicenter). The color version of this figure is available only in the electronic edition.
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Figure 14. Maps of RMSEP from ground-motion models with and without spatial correlation

structure (specified by the correlation function (53)). Ground-motion models are fitted to

synthetic datasets generated under the correlation function (53) with h = 12.58, 32.81, and

65.63 km. (a), (c) and (e) correspond to the ground-motion model with spatial correlation

structure; (b), (d) and (f) correspond to the ground-motion model without spatial correlation

structure. Triangles (4) and inverted triangles (5) are historical and artificial recording

sites, respectively. The dashed circle defines the border of the near-field (within 50 km from

the epicenter). The color version of this figure is available only in the electronic edition.
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Appendix

This appendix details the dimension reduction in the Scoring estimation approach that is

emphasized in Section Numerical considerations.

Let α = (γ>, β>, θ>)> and denote the gradient S(α) and expected information matrix

I(α) of l(α) by the partitions

S(α) =


Sγ(α)

Sβ(α)

Sθ(α)

 (A.1)

and

I(α) =


Iγγ(α) Iγβ(α) Iγθ(α)

Iβγ(α) Iββ(α) Iβθ(α)

Iθγ(α) Iθβ(α) Iθθ(α)

 . (A.2)

Then, the maximum likelihood estimate of α can be obtained by the Scoring estimation

approach with dimension reduction using the following updating equations (the proof is

available in the Proof of Equations (A.3)–(A.11) of the Main Article section of the electronic

supplement to this article):

γ̂(k+1) = γ̂(k) +
(
Iγγ(α̂(k))− Iγβ(α̂(k)) I−1ββ(α̂(k)) Iβγ(α̂(k))

)−1
Sγ(α̂(k)) , (A.3)

θ̂
(k+1)

= θ̂
(k)

+ I−1θθ (α̂(k)) Sθ(α̂
(k)) , (A.4)

β̂
(k+1)

= I−1ββ(α̂(k))
[
g>(X, γ̂(k+1))C−1

(
θ̂
(k+1)

)
Y
]
, (A.5)

in which g(X, γ) =
(
g(X1, γ)>, . . . ,g(XN , γ)>

)>
and

• the i-th element of Sγ(α) is given by

[Sγ(α)]i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)[Y − g(X, γ)β] ; (A.6)
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• The i-th element of Sθ(α) is given by

[Sθ(α)]i =− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − g(X, γ)β]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − g(X, γ)β] ; (A.7)

• Iββ(α) is given by

Iββ(α) = g(X, γ)>C−1(θ)g(X, γ) ; (A.8)

• the ij-th element of Iγγ(α) is given by

[Iγγ(α)]ij =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)

∂g(X, γ)

∂γj
β ; (A.9)

• the ij-th element of Iθθ(α) is given by

[Iθθ(α)]ij =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
; (A.10)

• the i-th row of Iγβ(α)
(
or the i-th column of Iβγ(α)

)
is given by

[Iγβ(α)]i∗ = [Iβγ(α)]>∗i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)g(X, γ) . (A.11)

It can be seen from equation (A.3)-(A.5), that after separating the linear and nonlinear

parameters in ground-motion prediction functions via decomposition in equation (47), the

Scoring estimation approach amounts to three updating equations in each iteration. The

updating equation (A.5) for β has an analytical form given the estimates of γ and θ obtained

from updating equations (A.3) and (A.4). The further separation of the update scheme caused

by the isolation between linear and nonlinear parameters reduces the complexity of each

iteration from O(p31 + p32) (in the ordinary Scoring estimation approach) to O(p311 + p312 + p32 +

p211p12+p212p11) , in which p11+p12 = p1 and p11 and p12 are dimensions of β and γ, respectively.

Another advantage of the dimension reduction in the Scoring estimation approach is that

the conditioning of the algorithm is improved because of the further separation. Finally,

the Scoring estimation approach with dimension reduction only requires initial values of γ

and θ to be set because the initial value β̂
(1)

of β can be obtained by (A.5) using γ̂(1) and
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θ̂
(1)

. Consequently, the convergence criterion is only required for γ and θ , implying that the

convergence may be achieved with fewer iterations. Define

I−ββ(α) = Iγγ (α)− Iγβ (α) I−1ββ (α) Iβγ (α) (A.12)

and apply block matrix inversion on equation (43), the asymptotic standard error estimates

of γ̂ , β̂ and θ̂ are then given by

ŝe(γ̂) =

√
diag

[
I−1−ββ

(
α̂(K)

)]
, (A.13)

ŝe(β̂) =

√
diag

[
I−1ββ

(
α̂(K)

)
+ I−1ββ

(
α̂(K)

)
Iβγ

(
α̂(K)

)
I−1−ββ

(
α̂(K)

)
Iγβ

(
α̂(K)

)
I−1ββ

(
α̂(K)

)]
,

(A.14)

ŝe(θ̂) =

√
diag

[
I−1θθ

(
α̂(K)

)]
. (A.15)

The Algorithm A1 outlines the implementation procedure for the Scoring estimation

approach with dimension reduction.

Algorithm A1 Scoring estimation approach with dimension reduction

Input: Yi , Xij and sij for i ∈ {1, . . . , N} and j ∈ {1, . . . , ni}.

Output: Estimates of β , γ and θ with corresponding asymptotic standard error estimates.

1: Initialization:

1) choose values for γ̂(1) and θ̂
(1)

;

2) compute the value of β̂
(1)

by equation (A.5);

2: repeat

3: Update the estimates of α = (γ>, β>, θ>)> by equation (A.3) to (A.5);

4: until the convergence criterion is met;

5: Obtain the asymptotic standard error estimate of α̂ by equation (A.13) to (A.15).
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Electronic Supplement to An Advanced Estimation Algorithm for

Ground-Motion Models with Spatial Correlation

This electronic supplement presents the proofs associated with the statements in the

main article. These proofs are for the relation between the semivariogram and the correlation

function, the connection between the re-estimation procedure in Jayaram and Baker (2010)

and the expectation–maximization (EM) algorithm, the updating equations for the Scoring

estimation approach, and the updating equations for the Scoring estimation approach with

dimension reduction.

The proofs in the electronic supplement are presented in the following four sections:

(1) the proof of equation (19) of the main article, (2) an alternative interpretation of the

re-estimation procedure of Jayaram and Baker (2010) based on the EM algorithm of Jayaram

and Baker (2010) based on the EM algorithm, (3) the proof for equations (36)–(41) of the

main article, and (4) the proof of equations (A3)–(A11) of the main article.
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Proof of Equation (19)

In this section, we prove the equation (19):

γ(d) = 1− k(d) (S.1)

in the manuscript.

The semivariogram of ε̃ is defined by

γ(ε̃ij, ε̃ij′) =
1

2
var(ε̃ij − ε̃ij′) . (S.2)

Then, we have

γ(ε̃ij, ε̃ij′) =
1

2
E
[(εij

σ
− εij′

σ

)2]
=

1

2σ2
E
[
(εij − εij′)2

]
=

1

2σ2

(
E[ε2ij] + E[ε2ij′ ]− 2E[εijεij′ ]

)
=

1

2σ2
var(εij) +

1

2σ2
var(εij′)−

1

σ2
cov(εij, εij′)

=1− k(sij, sij′) . (S.3)

Since the correlation function is stationary and isotropic, we have

k(sij, sij′) = k(di,jj′) (S.4)

with di,jj′ = ‖sij − sij′‖2 . Thus, the semivariogram of ε̃ is a function of di,jj′ :

γ(ε̃ij, ε̃ij′) = γ(di,jj′)

= 1− k(di,jj′) . (S.5)

Then, for all site pairs (j, j′) such that di,jj′ = d we have

γ(d) = 1− k(d) . (S.6)
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Alternative Construction of the Re-Estimation Procedure

In this section, we show how to reconstruct the re-estimation procedure based on the

idea of the EM algorithm. This alternative construction of the re-estimation procedure

is useful because it allows us to demonstrate that the re-estimation procedure increases

l(σ2, τ 2,b|ω = ω̂) at each iteration and understand the properties of the re-estimation

procedure through the well-studied EM algorithm.

Treating the random effects ηi=1,...,N as unobservable, at iteration k + 1 we first increase

l(σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂) with respect to b via one Expectation-Maximization (EM) step,

which consists of an E-step and a M-step:

• E-step: find the expected log-likelihood function

Q(σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂) =

N∑
i=1

E
[
lFi (σ̂2

(k)
, τ̂ 2

(k)
, b|ω = ω̂)

]
, (S.7)

where the expectation is taken with respect to ηi=1,...,N conditional on Yi=1,...,N and

estimates σ̂2
(k)

, τ̂ 2
(k)

and b̂(k) ; and

lFi (σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂)

= ln f(Yi|ηi)f(ηi)|
σ2=σ̂2

(k)
, τ2=τ̂2

(k)
,ω=ω̂

∝− 1

2
ln τ̂ 2

(k)
− 1

2
ln |σ̂2

(k)
Ωi(ω̂)| − 1

2τ̂ 2
(k)
η2i

− 1

2σ̂2
(k)

[Yi − f(Xi, b)− ηi1ni
]>Ω−1i (ω̂)[Yi − f(Xi, b)− ηi1ni

] ; (S.8)

• M-step: obtain the estimate b̂(k+1) such that

Q(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) ≥ Q(σ̂2

(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂) . (S.9)
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Up to a constant, the expected log-likelihood function can be written as

Q(σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂)

∝− N

2
ln τ̂ 2

(k)
− 1

2

N∑
i=1

ln |σ̂2
(k)

Ωi(ω̂)|

− 1

2τ̂ 2
(k)

N∑
i=1

η̂2i −
1

2σ̂2
(k)

N∑
i=1

tr
{
Ω−1i (ω̂)Vi

}
− 1

2σ̂2
(k)

N∑
i=1

[Yi − f(Xi, b)− η̂i1ni
]>Ω−1i (ω̂)[Yi − f(Xi, b)− η̂i1ni

] , (S.10)

where

Vi = var(ηi|Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂)1ni×ni

, (S.11)

η̂2i = E[η2i |Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂] (S.12)

and

η̂i = E[ηi|Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂] . (S.13)

Note that

η̂i =E[ηi|Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂]

=τ̂ 2
(k)

1>ni

(
τ̂ 2

(k)
1ni×ni

+ σ̂2
(k)

Ωi(ω̂)
)−1

[Yi − f(Xi, b̂(k))] , (S.14)

where the second equality is given by the formula for the expectation of the conditional

multivariate normal distribution (Flury, 2013). Also note that(
τ̂ 2

(k)
1ni×ni

+ σ̂2
(k)

Ωi(ω̂)
)−1

=
(
σ̂2

(k)
Ωi(ω̂)

)−1
−
(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

(
1

τ̂ 2
(k)

+ 1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

)−1
1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1

=
(
σ̂2

(k)
Ωi(ω̂)

)−1
−

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1

τ̂2
(k) + 1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

, (S.15)
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where the first step uses the Woodbury identity (Petersen and Pedersen, 2012). Plugging

equation (S.15) into (S.14), we have

η̂i =
1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1

τ̂2
(k) + 1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

[Yi − f(Xi, b̂(k))]

=

1

σ̂2
(k) 1>ni

Ω−1i (ω̂) [Yi − f(Xi, b̂(k))]

1

τ̂2
(k) + 1

σ̂2
(k) 1>ni

Ω−1i (ω̂) 1ni

, (S.16)

which equals to equation (24) in step 3 of Algorithm 1 (re-estimation procedure) in the

manuscript.

In M-step (corresponding to step 4 in the Algorithm 1) we obtain the estimate b(k+1) by

solving the generalized least squares problem:

b̂(k+1) = arg min
N∑
i=1

[Yi − f(Xi, b)− η̂i1ni
]>Ω−1i (ω̂)[Yi − f(Xi, b)− η̂i1ni

] . (S.17)

Then we have

Q(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) ≥ Q(σ̂2

(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂) (S.18)

and subsequently, by monotonicity one obtains that

l(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) ≥ l(σ̂2

(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂) . (S.19)

Finally, we obtain estimates σ̂2
(k+1)

and τ̂ 2
(k+1)

by solving

(σ̂2
(k+1)

, τ̂ 2
(k+1)

) = arg max l
(
σ2, τ 2

∣∣∣b = b̂(k+1), ω = ω̂
)
, (S.20)

which is the step 5 in the Algorithm 1 and implies that

l(σ̂2
(k+1)

, τ̂ 2
(k+1)

, b̂(k+1)|ω = ω̂) ≥ l(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) , (S.21)

and by inequality (S.19)

l(σ̂2
(k+1)

, τ̂ 2
(k+1)

, b̂(k+1)|ω = ω̂) ≥ l(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂) . (S.22)
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Proof of Equation (36) - (41)

The elements of gradient S(α) and expected information matrix I(α) can be calculated

as follow:

• the i-th element of Sb(α) :

[Sb(α)]i =
∂l(α)

∂bi

=
1

2

{[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)] + [Y − f(X, b)]>C−1(θ)

[
∂f(X, b)

∂bi

]}

=

[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)] , (S.23)

where the last equality uses the fact that the transpose of a scalar is the same scalar;

• the i-th element of Sθ(α) :

[Sθ(α)]i =
∂l(α)

∂θi

=− 1

2

1∣∣C(θ)
∣∣ ∂
∣∣C(θ)

∣∣
∂θi

− 1

2
[Y − f(X, b)]>

∂C−1(θ)

∂θi
[Y − f(X, b)]

=− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
− 1

2
[Y − f(X, b)]>

∂C−1(θ)

∂θi
[Y − f(X, b)]

=− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − f(X, b)]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − f(X, b)] , (S.24)

where the third and last steps use the following two matrix derivative identities:

∂
∣∣C(θ)

∣∣
∂θi

=
∣∣C(θ)

∣∣tr{C−1(θ)
∂C(θ)

∂θi

}
(S.25)

and

∂C−1(θ)

∂θi
= −C−1(θ)

∂C(θ)

∂θi
C−1(θ) (S.26)

respectively from Petersen and Pedersen (2012);
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• the ij-th element of Ibb(α) :

[Ibb(α)]ij =E
[
∂l(α)

∂bi

∂l(α)

∂bj

]
=E

{[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)]

[
∂f(X, b)

∂bj

]>
C−1(θ)[Y − f(X, b)]

}

=E

{[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)][Y − f(X, b)]>C−1(θ)

[
∂f(X, b)

∂bj

]}

=

[
∂f(X, b)

∂bi

]>
C−1(θ)E

{
[Y − f(X, b)][Y − f(X, b)]>

}
C−1(θ)

[
∂f(X, b)

∂bj

]
=

[
∂f(X, b)

∂bi

]>
C−1(θ) C(θ) C−1(θ)

[
∂f(X, b)

∂bj

]
=

[
∂f(X, b)

∂bi

]>
C−1(θ)

∂f(X, b)

∂bj
; (S.27)

• the ij-th element of Iθθ(α) :

[Iθθ(α)]ij =E
[
∂l(α)

∂θi

∂l(α)

∂θj

]
=− E

[
∂2l(α)

∂θi∂θj

]
=

1

2
E
[
tr

{
∂C−1(θ)

∂θj

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}]
− 1

2
E
[
[Y − f(X, b)]>

∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
[Y − f(X, b)]

]
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
E
[
tr

{
[Y − f(X, b)]>

∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
[Y − f(X, b)]

}]
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
E
[
tr

{
∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
[Y − f(X, b)][Y − f(X, b)]>

}]
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
tr

{
∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
E
{

[Y − f(X, b)][Y − f(X, b)]>
}}

=
1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
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− 1

2
tr

{
∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
C(θ)

}
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

−C−1(θ)
∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
=

1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
; (S.28)

• the ij-th element of Ibθ(α) :

[Ibθ(α)]ij =E
[
∂l(α)

∂bi

∂l(α)

∂θj

]
=− E

[
∂2l(α)

∂bi∂θj

]
=− E

{[
∂f(X, b)

∂bi

]>
∂C−1(θ)

∂θj
[Y − f(X, b)]

}

=−
[
∂f(X, b)

∂bi

]>
∂C−1(θ)

∂θj
E [Y − f(X, b)]

=0 ; (S.29)

• Since Iθb(α) and Ibθ(α) are symmetric, we have

Iθb(α) = I>bθ(α) = 0 . (S.30)

Replacing Iθb(α̂(k)) and Ibθ(α̂
(k)) by 0 in equation (30) of the manuscript gives the

updating equations (36) and (37) in the manuscript.
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Proof of Equation (A.3) - (A.11)

Denote by the following vector the model parameters γ and θ , according to

a =

γ
θ

 . (S.31)

Then, we have l(α) = l(a, β) , and given fixed a the log-likelihood function l(a, β) is

maximized when

β =
[
g>(X, γ)C−1(θ)g(X, γ)

]−1 [
g>(X, γ)C−1(θ)Y

]
. (S.32)

This allows the profile log-likelihood function

M(a) = l(a, h(a)) , (S.33)

where

h(a)
def
=
[
g>(X, γ)C−1(θ)g(X, γ)

]−1 [
g>(X, γ)C−1(θ)Y

]
. (S.34)

Taking first order derivative with respect to a on both sides of (S.33), we have

∂M(a)

∂a
=
∂l(a, β)

∂a

∣∣∣∣
β=h(a)

+

(
∂h(a)

∂a>

)> [
∂l(a, β)

∂β

]
β=h(a)

=
∂l(a, β)

∂a

∣∣∣∣
β=h(a)

, (S.35)

where the last equality uses the fact that β = h(a) is the solution of

∂l(a, β)

∂β
= 0 . (S.36)

Now if we evaluate a at its estimate â(k) at iteration k, we have

β̂
(k)

= h
(
â(k)
)
. (S.37)

Then from equality (S.35), we obtain that

∂M(a)

∂a

∣∣∣∣
a=â(k)

=
∂l(a, β)

∂a

∣∣∣∣
a=â(k),β=β̂

(k)
. (S.38)
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Denote the Score function of M(a) by

SM(a) =
∂M(a)

∂a
. (S.39)

Then, we have from equality (S.38) that

SM(â(k)) = Sa(α̂(k)) . (S.40)

Since

∂l(a, β)

∂β

∣∣∣∣
β=h(a)

= 0 , (S.41)

taking derivative with respect to a gives

∂2l(a, β)

∂a∂β>

∣∣∣∣
β=h(a)

+

(
∂h(a)

∂a>

)> [
∂2l(a, β)

∂β ∂β>

]
β=h(a)

= 0 . (S.42)

Taking expectation on both sides of (S.42), we have

E

[
∂2l(a, β)

∂a∂β>

∣∣∣∣
β=h(a)

]
+

(
∂h(a)

∂a>

)>
E

[
∂2l(a, β)

∂β ∂β>

∣∣∣∣
β=h(a)

]
= 0 . (S.43)

Evaluating a at â(k) with

β̂
(k)

= h
(
â(k)
)
, (S.44)

we obtain

E
[
∂2l(a, β)

∂a∂β>

]
a=â(k),β=β̂

(k)
+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

E
[
∂2l(a, β)

∂β ∂β>

]
a=â(k),β=β̂

(k)
= 0 . (S.45)

Thus,

Iaβ

(
α̂(k)

)
+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

Iββ

(
α̂(k)

)
= 0 , (S.46)

which gives (
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

= −Iaβ

(
α̂(k)

) [
Iββ

(
α̂(k)

)]−1
(S.47)

Taking derivative with respect to a on both sides of (S.35), we have

∂2M(a)

∂a∂a>
=
∂2l(a, β)

∂a∂a>

∣∣∣∣
β=h(a)

+

(
∂h(a)

∂a>

)> [
∂2l(a, β)

∂β ∂a>

]
β=h(a)

(S.48)

Taking expectation on both sides of (S.48) and evaluating a at â(k) with

β̂
(k)

= h
(
â(k)
)
, (S.49)
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we obtain

E
[
∂2M(a)

∂a∂a>

]
a=â(k)

=E
[
∂2l(a, β)

∂a∂a>

]
a=â(k),β=β̂

(k)

+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

E
[
∂2l(a, β)

∂β ∂a>

]
a=â(k),β=β̂

(k)
. (S.50)

Denote the expected information matrix of M(a) by

IM(a) = −E
[
∂2M(a)

∂a∂a>

]
. (S.51)

Then, equation (S.50) gives

IM
(
â(k)
)

= Iaa

(
α̂(k)

)
+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

Iβa

(
α̂(k)

)
. (S.52)

Plugging (S.47) into (S.52), we have

IM
(
â(k)
)

= Iaa

(
α̂(k)

)
− Iaβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβa

(
α̂(k)

)
. (S.53)

The Scoring update scheme to find the estimate of a that maximizes M(a) is then given by

â(k+1) = â(k) + I−1M
(
â(k)
)
SM

(
â(k)
)

= â(k) +
[
Iaa

(
α̂(k)

)
− Iaβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβa

(
α̂(k)

)]−1
Sa(α̂(k)) , (S.54)

where

Iaa

(
α̂(k)

)
=

Iγγ

(
α̂(k)

)
Iγθ

(
α̂(k)

)
Iθγ

(
α̂(k)

)
Iθθ

(
α̂(k)

)
 , (S.55)

Iaβ

(
α̂(k)

)
=

Iγβ

(
α̂(k)

)
Iθβ

(
α̂(k)

)
 , (S.56)

Iβa

(
α̂(k)

)
= I>aβ

(
α̂(k)

)
(S.57)

and

Sa(α̂(k)) =

Sγ(α̂(k))

Sθ(α̂
(k))

 . (S.58)

By elementary calculations analogous to those used in the third section of this supplement,

we have that
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• the i-th element of Sγ(α) is given by

[Sγ(α)]i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)[Y − g(X, γ)β] ; (S.59)

• The i-th element of Sθ(α) is given by

[Sθ(α)]i =− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − g(X, γ)β]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − g(X, γ)β] ; (S.60)

• Sβ(α) is given by

Sβ(α) = g(X, γ)>C−1(θ)[Y − g(X, γ)β] ; (S.61)

• the ij-th element of Iγγ(α) is given by

[Iγγ(α)]ij =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)

∂g(X, γ)

∂γj
β ; (S.62)

• the ij-th element of Iθθ(α) is given by

[Iθθ(α)]ij =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
; (S.63)

• Iββ(α) is given by

Iββ(α) = g(X, γ)>C−1(θ)g(X, γ) ; (S.64)

• the i-th row of Iγβ(α)
(
or the i-th column of Iβγ(α)

)
is given by

[Iγβ(α)]i∗ = [Iβγ(α)]>∗i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)g(X, γ) ; (S.65)

• Iγθ(α) = I>θγ(α) = 0 ;

• Iθβ(α) = I>βθ(α) = 0 .
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Replacing Iγθ(α) , Iθγ(α) , Iθβ(α) and Iβθ(α) by 0 in (S.54), we obtainγ̂(k+1)

θ̂
(k+1)

 =

γ̂(k)

θ̂
(k)


+


[
Iγγ

(
α̂(k)

)
− Iγβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβγ

(
α̂(k)

)]−1
0

0 I−1θθ

(
α̂(k)

)

Sγ

(
α̂(k)

)
Sθ

(
α̂(k)

)
 ,

(S.66)

which yields

γ̂(k+1) = γ̂(k) +
[
Iγγ

(
α̂(k)

)
− Iγβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβγ

(
α̂(k)

)]−1
Sγ

(
α̂(k)

)
(S.67)

θ̂
(k+1)

= θ̂
(k)

+ I−1θθ

(
α̂(k)

)
Sθ

(
α̂(k)

)
. (S.68)

Plugging estimates γ̂(k+1) and θ̂
(k+1)

in (S.67) and (S.68) into (S.32), we obtain the updating

equation for the estimate of β , which concludes the proof.
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