Grau‑Bové, J;
Mazzei, L;
Strlic, M;
Cassar, M;
(2019)
Fluid simulations in heritage science.
[Review].
Heritage Science
, 7
, Article 16. 10.1186/s40494-019-0259-9.
Preview |
Text
Article.pdf - Published Version Download (1MB) | Preview |
Abstract
This review addresses the use of computational fluid dynamics for the interpretation and preservation of heritage. Fluid dynamic simulations in the heritage field focus mostly on slow air movement in indoor spaces and they usually involve temperature and humidity. Simulations have different roles: they may be exploratory, they may be used to support preventive conservation and occasionally they aid historical or archaeological interpretation. The research questions rarely involve testing or development of new mathematical formulations; instead, existing computational models are used as a means to help solve practical issues. Computationally, the simulations are typically steady-state and they always use a turbulence model. Experimental validations against measured data are uncommon and there is a need for the production of benchmarking cases and the publication of experimental data. Further research is needed in order to explore suitable approximations to the simulation of change in the time-scale of months or years, low turbulence flows for which current mainstream turbulence models are ill-suited, and new mathematical formulations for near-wall transport phenomena.
Type: | Article |
---|---|
Title: | Fluid simulations in heritage science |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s40494-019-0259-9 |
Publisher version: | https://doi.org/10.1186/s40494-019-0259-9 |
Language: | English |
Additional information: | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > Bartlett School Env, Energy and Resources |
URI: | https://discovery.ucl.ac.uk/id/eprint/10070311 |
Archive Staff Only
View Item |