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Abstract 5 

This analysis presents the results of a systematic review for health state utilities in 6 

multiple myeloma, as well as analysis of over 9000 observations taken from registry and 7 

trial data. The 27 values identified from 13 papers are then synthesized in a frequentist 8 

non-parametric bootstrap model, and a Bayesian meta-regression. Results were similar 9 

between the frequentist and Bayesian models with low utility on disease diagnosis 10 

(approximately 0.55), raising to approximately 0.65 on first line treatment, and declining 11 

slightly with each subsequent line. Stem Cell Transplant was also found to be a 12 

significant predictor of health related quality of life in both individual patient data and 13 

meta-regression, with an increased utility of approximately 0.06 across different models. 14 

The work presented demonstrates the feasibility of Bayesian methods for utility meta-15 

regression, whilst also presenting an internally consistent set of data from the analysis 16 

of registry data. To facilitate easy updating of the data and model, data extraction tables 17 

and model code are provided as supplementary materials. The main limitations of the 18 

model relate to the low number of studies available, particularly in highly pre-treated 19 

patients. 20 

 21 

  22 
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1 Introduction 23 

Multiple myeloma (MM) is a haematological malignancy characterised by clonal 24 

proliferation of immunoglobulin-secreting plasma cells. This can lead to reduced 25 

haemopoiesis, renal failure and bone lesions. While the disease is incurable with 26 

conventional therapy, there have been dramatic improvements in treatments over the 27 

past 20 years, with multiple classes of therapy becoming available. These include 28 

proteasome inhibitors (PIs, such as bortezomib and carfilzomib) and immunomodulatory 29 

agents (IMIDs, such as lenalidomide and pomalidomide), as well as novel agents. 30 

Patients are treated with sequential lines of therapy, which can include stem cell 31 

transplant (SCT). 32 

In the UK, the majority of MM treatments have been reviewed by the National Institute 33 

for Health and Care Excellence (NICE), including bortezomib, lenalidomide and newer 34 

treatments such as pomalidomide or panobinostat (NICE, 2009, 2014, 2017). As a part 35 

of the economic modelling in each appraisal, health state utilities were taken from the 36 

trials for each treatment. In each appraisal, utilities from the relevant clinical trial(s) were 37 

used, and utility values from previous trial(s) were then used in sensitivity analyses 38 

without any form of synthesis. Thus far, no attempts have been made to reconcile 39 

differences in estimated values between studies, or to incorporate consolidated data 40 

from sources other than the trial of the specific treatment being evaluated. 41 

In health technology evaluations, using utility values taken from individual sources 42 

contrasts with the conventional approach to evaluation of efficacy and safety data. For 43 

efficacy and safety data, the conventional approach is to include all relevant data 44 

through appropriate use of meta-analysis (Dias, Welton, Sutton, & Ades, 2011). Meta-45 

analysis is a broad term encompassing various methodologies – in utility data meta-46 

regression has most often been applied, with examples  in human immunodeficiency 47 

virus (HIV), stroke and renal disease. Recent discussion in the literature has considered 48 

whether this approach is appropriate, given the differences between valuation measures 49 

(for example, between the EQ-5D and SF-36), and acknowledged the need for further 50 

research in the area (Liem, Bosch, Arends, Heijenbrok-Kal, & Hunink, 2007; Peasgood 51 

& Brazier, 2015; Tengs & Lin, 2002, 2003). 52 
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The objective of this study was to use registry data to provide an internally consistent 53 

set of utility estimates i.e. a set of data across the entire pathway that has been drawn 54 

from the same source data and patients, and then synthesize all available data 55 

(including registry data) to provide utilities that can be used in health economic 56 

modelling. This was achieved by conducting a systematic review, augmented with 57 

analysis of primary data from the EMMOS registry and APEX clinical study, followed by 58 

meta-regression. 59 

 60 

2 Methods 61 

2.1 Definition of classes of therapy 62 

Due to the number of different interventions received by patients in the literature, as well 63 

as varying definitions of therapy lines (for example, whether re-treatment is classed as a 64 

new line of new therapy), patient classification was simplified. Trials were recategorized 65 

based on the number of treatment classes a patient had previously received, from the 66 

categories of PI, IMID, chemotherapy and novel agents (those licensed within the past 5 67 

years, even if technically members of other classes). 68 

As treatment dosing varies between treatments (for example, bortezomib is given for a 69 

fixed period, while lenalidomide is dosed continuously), for simplicity utilities were not 70 

considered separately for whether a patient was on or off treatment. 71 

2.2 Registry and trial data analysis 72 

Individual level data were made available by Janssen from the EMMOS registry and the 73 

APEX clinical study (Mohty et al., 2015; Richardson et al., 2005). The EMMOS registry 74 

contains data from 2,521 patients in 22 countries in Europe and Africa, across all 75 

classes of MM treatment. The APEX clinical study enrolled 669 patients with relapsed 76 

MM who were randomised to either bortezomib or placebo. This constitutes a large 77 

dataset of previously published data which can be used as an input to the meta-78 

regression as data is available throughout the treatment pathway. 79 
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The EQ-5D-3L results from each dataset were valued using the UK tariff (Kind, Dolan, 80 

Gudex, & Williams, 1998). The utility values were used as the dependent variable in a 81 

regression model with explanatory variables of classes of MM treatment previously 82 

received and rate of SCT(Kind et al., 1998). Generalised estimating equation regression 83 

was used to account for each patient having multiple correlated observations, whilst 84 

also producing estimates applicable at the population level (Hanley, Negassa, Forrester, 85 

& others, 2003). The specification of these models is described in the below equations. 86 

The variables are labeled similarly in both models. . 87 

APEX trial: 88 

𝑈𝑖𝑡
𝐴𝑃𝐸𝑋 = 𝛽2𝐶1𝑖𝑡 + 𝛽3𝐶2𝑖𝑡 + 𝛽6𝑆𝐶𝑇𝑖𝑡 + 𝜀𝑖𝑡  89 

EMMOS Registry: 90 

𝑈𝑖𝑡
𝐸𝑀𝑀𝑂𝑆 = 𝛾1𝑁𝐸𝑊𝑖𝑡 + 𝛾2𝐶1𝑖𝑡 + 𝛾3𝐶2𝑖𝑡 + 𝛾4𝐶3𝑖𝑡 + 𝛾5𝐶4𝑖𝑡 + 𝛾6𝑆𝐶𝑇𝑖𝑡 + 𝜖𝑖𝑡 91 

Where 𝑈𝑖𝑡 represents the utility observation for individual 𝑖 at time t, 𝛽 and γ the 92 

coefficients of the regressions,𝑁𝐸𝑊 and 𝐶𝑋 dummy variables to represent the patient 93 

being newly diagnosed or having received 𝑋 prior classes, 𝑆𝐶𝑇 a dummy variable of 94 

whether a patient had received SCT at the time the observation was taken, and 𝜀𝑖 & 𝜖 95 

the error term. An unstructured correlation matrix was used.  96 

The APEX trial only enrolled patients with 1 prior treatment who were treated until 97 

progression on bortezomib, and therefore a less expansive regression was specified. 98 

This analysis of the APEX data was performed using a variety of patient characteristics 99 

(such as age, gender, and country), none of which improved model fit or proved 100 

predictive of patient utility. This finding is consistent with the literature and clinical 101 

practice where disease characteristics appear most important predictors of quality of 102 

life. Including SCT and progressive disease as predictors produced the lowest mean 103 

absolute error, and root mean squared error to 2 decimal places. 104 

The results of the analysis of the EMMOS dataset were similar, with patient 105 

characteristics not predictive of health related quality of life and limitations in data 106 

preventing analysis by individual treatment as many treatments were given in 107 
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combination, on differing regimens. The model with the lowest mean absolute error and 108 

root mean squared error was again the use of the number of classes of therapy a 109 

patient had received, and whether a patient had received stem cell transplant. A test for 110 

interaction between the line of therapy and stem cell transplant was non-significant 111 

indicating that the effect of SCT on utility did not vary by line. 112 

The results of the APEX and EMMOS analyses are then included in Table 1, where 113 

they act as inputs to the meta-regressionTable 1. 114 

2.3 Literature review 115 

To identify utilities in MM, a systematic review was conducted in MEDLINE, Embase, 116 

the Cochrane Library, MEDLINE In-Process and EconLit on 27 January 2016. All 117 

papers with a title or abstract indicating that the paper included preference-based utility 118 

values (from the EORTC, EORTC-8D, EQ-5D, SF-6D, SF-36, or HUI3) were included. 119 

Values derived from clinician opinion, vignette studies or custom scales were excluded. 120 

2.4 Synthesis using meta-regression 121 

To perform the synthesis of utility values, two distinct approaches were used: a 122 

frequentist meta-regression and a Bayesian statistical model with different specifications 123 

of each model giving a total of five model. Each model was then run twice: the first time 124 

using all available values (including utilities generated using other generic tools, and 125 

non-UK values), and the second time including only EQ-5D values meeting the NICE 126 

reference case (EQ-5D values, scored using the UK tariff) (NICE, 2008). A fifth model 127 

was then run using the Bayesian model with preferred data but with vague priors to see 128 

the impact this had on results. 129 

2.5 Frequentist meta-regression 130 

The treatment-associated utility was likely to be influenced by the proportion of patients 131 

in each study to have received an SCT, which would be expected to increase with the 132 

number of pre-treatments received – failing to account for this would likely generate 133 

biased predictions. Therefore, a meta-regression was specified with dummy variables 134 

for the number of previous treatment classes received, and the proportion of patients in 135 

each study to have received an SCT was included as a covariate. The reference 136 
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category was an unknown number of previous treatment lines, or multiple lines. In the 137 

instances of unreported SCT proportions (and no further information available), the 138 

mean SCT percentage for that number of previous treatment classes was assumed – 139 

this was based on clinical opinion, and assessment of the available evidence (presented 140 

in tabular format). 141 

Information on the number of observations and the variance of the utilities estimated 142 

within each study were used as inputs to mixed-effects model using maximum-likelihood 143 

estimation – implemented using the metafor package within R (R Core Team, 2017; 144 

Viechtbauer & others, 2010). The results of the regression model were then 145 

nonparametrically bootstrapped to account for non-normality in distributions of 146 

coefficients. This step was performed using the boot package within R (Canty & Ripley, 147 

2016; Davison & Hinkley, 1997). At each iteration, the nonparametric bootstrapping 148 

process randomly extracted a sub-sample of the full dataset and attempted to estimate 149 

the regression model described in the below equation. Failed regression attempts, that 150 

is sub-samples which did not have at least one observation for each previous treatment 151 

class, and consequently could not be estimated, were discarded, and the parameters 152 

from successfully estimated regression predictions for line-associated utilities were 153 

collected. Thus: 154 

𝑈𝑗 = 𝛽1𝐺𝐸𝑁𝐸𝑅𝐴𝐿 + 𝛽2𝑁𝐸𝑊𝑗 + 𝛽3𝐶1𝑗 + 𝛽4𝐶2𝑗 + 𝛽5𝐶3𝑗 + 𝛽6𝐶4𝑗 + 𝛽7𝑆𝐶𝑇%𝑗 + 𝜆𝑗 + 𝜀𝑗 155 

Where the model is moderated by the proportion of patients in each observation have 156 

had an SCT, 𝑈𝑗 is reported utility in study 𝑗, and 𝜆𝑗 represents the between study 157 

heterogeneity. 158 

The model was fitted using the Paule-Mandel estimator due to the small number of 159 

observations, and the fitted values were then graphically presented to demonstrate the 160 

uncertainty surrounding the health state utility estimates. From the estimated regression 161 

model, utility could be predicted using the coefficient of the appropriate number of 162 

treatment classes and the percentage of patients with SCT in the study. The resulting 163 

models are Model 1 including all methodologically sound utility data, and Model 2 which 164 

includes only EQ-5D utilities. 165 
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2.6 Bayesian statistical model 166 

The Bayesian statistical model that was used to estimate utility using the number of 167 

treatment classes received and rate of SCT – as with the frequentist model. The main 168 

difference however being that the ‘general disease’ utilities were used as priors for one 169 

previous class of treatment (which otherwise would not be included in the analysis). 170 

This judgement was made based on the description of the patients in the paper rather 171 

than estimated as a separate health state in the model thus using the data to inform the 172 

health states. Thus: 173 

𝑈𝑗𝛽1𝑁𝐸𝑊𝑗 + 𝛽2𝐶1𝑗 + 𝛽3𝐶2𝑗 + 𝛽4𝐶3𝑗 + 𝛽5𝐶4𝑗 + 𝛽6𝑆𝐶𝑇%𝑗 + 𝜀𝑗 174 

Where 𝐶1 to 𝐶4 represent the number of prior lines a patient has received The Bayesian 175 

model was also specified without an intercept, as number of previous classes of 176 

treatment is mutually exclusive, with a proportion of patients also having experienced 177 

SCT. In this case comparing utility decrements as opposed to utility estimates, 178 

particularly for later in the pathway, would not have been intuitive.  179 

Other than the prior for 𝛽2 (which used the general disease utilities), all other priors 180 

were set to be informative with an upper bound of the 95% confidence interval of the 181 

data set to the mean utility of observations taken from patients with fewer classes of 182 

treatment, and a lower bound of 0.4 to represent the lowest plausible utility value. This 183 

resulted in priors of Normal(mean 0.6, standard deviation 0.12) for newly diagnosed 184 

patients, Normal(0.51, 0.06) for patients who had received two classes of treatment, 185 

Normal(0.52, 0.06) for patients who had received three classes, and of Normal(0.50, 186 

0.05) for patients who had received four classes. Where multiple values were available 187 

to use as priors, these were combined through random effects inverse variance meta-188 

analysis before use in the model. A random effects model was selected to allow for the 189 

effect to vary between studies. As with the frequentist analysis where the rate of SCT 190 

was not known for a study, this was assumed to be the mean of data from other studies 191 

for that stage of treatment for which the rate was known. To ensure the model 192 

successfully reached convergence to the underlying posterior distribution 300,000 193 
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simulations were used, with 50,000 as a warm up per chain (which were discarded), for 194 

a total of 500,000 simulations analysed. 195 

The model was run with all utility data (Model 3), and then restricted to only UK EQ-5D 196 

utility data (Model 4). A final analysis was then conducted to assess the sensitivity of the 197 

Bayesian model to the priors used (Model 5). In this analysis, vague priors were used 198 

for all values of Normal(0.5,0.25), which practically bounds utilities between 0 and 1, 199 

and a prior for SCT used of Normal(0.06, 0.06) which practically bounds the impact of 200 

SCT to between -0.06 and 0.18 and indicates a likely positive impact with a reasonable 201 

degree of uncertainty. 202 

The model was implemented in R for data processing and post-processing, and Stan to 203 

perform the Monte Carlo analysis. Stan allows fast computation of complex simulations 204 

using principles derived from physics. In addition to its speed, it presents a user-friendly 205 

interface, and can be called from within R using the package rstan (Stan Development 206 

Team, 2016). 207 

 208 

3 Results 209 

3.1 Literature review 210 

Figure 1 shows a Preferred Reporting Items for Systematic Reviews and Meta-211 

Analyses (PRISMA) diagram for the systematic review, with 26 papers matching the 212 

inclusion criteria and 13 reporting methodologically appropriate utility values (10 of 213 

which were based on the EQ-5D in UK patients). When data were extracted from the 214 

published papers, 27 health state utilities were obtained (Table 1). 215 

The results of the literature search show that utility appears to be poor on diagnosis, but 216 

increases as patients begin treatment, increasing again as patients move to a second 217 

class of treatment, before dipping slightly at three classes of previous treatment, and 218 

falling as patients have received all classes of treatment, including novel treatments. As 219 

would be expected, the proportion of patients who have received an SCT increases as 220 

patients become more heavily pre-treated (Table 1). 221 
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3.2 Analysis of registry and trial data 222 

The EMMOS registry contains 9,080 completed EQ-5Ds from 2,445 patients. Data was 223 

very complete, with very low rates of missing data for variables used in our analysis 224 

(<3%) – records with missing data were therefore omitted from analysis. Analysis by the 225 

number of treatments received gave estimates for newly diagnosed patients of 0.459, 226 

increasing to approximately 0.6 while patients were receiving one to three classes of 227 

treatment, before decreasing to approximately 0.403 in patients who had received all 228 

classes of therapy (Table 1).  229 

Similar results were seen in the APEX study (which only included patients with one and 230 

two previous classes of treatment). In the APEX study, data were available for 669 231 

patients, who completed 1,568 EQ-5Ds pre-progression, and 944 post-progression. 232 

Analysis of the results of the completed EQ-5Ds showed that patients had a utility of 233 

0.65 after one prior treatment, and on progression (assumed to be two prior classes as 234 

bortezomib had then been trialled) this decreased to 0.61 (Table 1). Being a regulatory 235 

study the data was highly complete (<2% missing data). 236 

The analysis of patient data from both the EMMOS and APEX trials confirmed the role 237 

of SCT as an important predictor of patient health related quality of life - failure to 238 

include the rate of SCT in the regression led to counterintuitive results with utility 239 

appearing to increase throughout the disease pathway. This was as the increase in 240 

utility from SCT (which more patients have received in later lines) outweighed the 241 

increasing disutility associated with more previous classes of treatment. In the 242 

regressions the coefficient for SCT was 0.129 (standard deviation: 0.418) in the 243 

EMMOS study, and 0.056 (standard deviation: 0.010) in the APEX study. A test for 244 

interaction was performed in the EMMOS study to understand whether the effect varied 245 

by number of previous treatments, but the difference was not significant (p>0.10); 246 

supporting the assumption that the effect of SCT is independent of prior treatments.  247 

3.3 EQ-5D vs all utilities analyses 248 

The results of the literature search identified 13 papers with methodologically 249 

appropriate utilities, 10 of which used the EQ-5D in the UK population (as did the 250 
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EMMOS and APEX trials). Results estimated with all observations, and a sample limited 251 

to UK EQ-5D utilities are provided – the effect of including non-EQ-5D studies was to 252 

reduce the drop in utility as patients move through the disease pathway due to 253 

additional (higher) utilities coming from the additional 3 studies. However, with so few 254 

observations, it is not possible to conclude whether this is a true difference or due to a 255 

small sample. 256 

3.4 Frequentist meta-regression 257 

The results of the frequentist approach are presented in Figure 2. Models 1 and 2 both 258 

suggest that utility in newly diagnosed patients is low (0.529) and increases once 259 

patients are on treatment (0.659). Subsequent therapies are associated with 260 

sequentially lower levels of utility when adjusting for rate of SCT, decreasing to 261 

approximately 0.6 after patients have received three classes of treatment. Model 2, 262 

using EQ-5D values only (which we would expect to be more comparable), provides 263 

evidence to suggest that there is then a larger fall to 0.494 once patients have received 264 

all classes of treatment (Table 2). The limited number of studies in some areas, and the 265 

approach of omitting a study in each sample (through bootstrapping), lead to bimodal 266 

distributions (Figure 2); this is due to limited numbers of observations at later lines of 267 

therapy. 268 

The non-zero SCT estimate in both Model 1 and Model 2 (mean 0.066, 95% interval: 269 

0.056–0.17) suggests that trials with a higher proportion of SCT within their respective 270 

study samples have systematically higher utility values, even after adjusting for number 271 

of prior classes of therapy received. Consequently, the results of the bootstrapped 272 

meta-regressions indicate that SCT is associated with an improved level of utility – 273 

inkeeping with the results of the APEX and EMMOS studies. 274 

3.5 Bayesian statistical model 275 

Meta-analysing the ‘general disease’ and SCT utilities led to priors of 276 

Normal(0.689,0.427) for one previous treatment class and Normal(0.562, 0.039) for 277 

SCT based on the 4 and 3 studies respectively that gave relevant values. The resulting 278 

model coefficients, presented as Model 3 (using all utility estimates from generic 279 
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preference-based measures) and Model 4 (using only UK EQ-5D data) in Table 2 were 280 

similar to the frequentist analysis. These showed a large increase in utility for patients 281 

going from newly diagnosed to on treatment (0.530 to 0.661), before falling with each 282 

treatment class to reach 0.577 after three treatment classes, and then showing a 283 

precipitous drop to 0.471 (albeit with substantial uncertainty) once patients have 284 

received all treatment classes (Table 2). In the model, SCT was associated with 285 

increased utility, with a mean increase of 0.056 (95% credible interval 0.037 to 0.075), 286 

and none of the 500,000 simulations indicated that SCT would have a negative impact 287 

(Figure 3). There were no indications of problems with model convergence. 288 

The results of the Bayesian model were similar in both Model 3 and Model 4. In Model 289 

5, vague priors were used for all values using only the UK EQ-5D utilities (as in Model 290 

4). The effect of this in the earlier disease stages was small changes at the second and 291 

third decimal place for the point estimates and credible intervals. However, where data 292 

were scarcer at later disease stages, the lack of informative priors lead to an increase in 293 

uncertainty resulting large credible intervals. For example, in patients who had received 294 

all classes of treatment, the 95% credible interval was 0.020–0.919, reflecting the 295 

uncertainty in the underlying data and that the model was unable to narrow the range of 296 

the prior. 297 

 298 

4 Discussion 299 

The results of the literature review, the analysis of registry data, and the meta-300 

regressions all indicate that the utility of patients is low at diagnosis, and increases 301 

when patients are on treatment (likely due to symptom control). Subsequently, utility 302 

falls slightly as patients progress through the treatment classes, before falling further 303 

when patients have exhausted all existing treatment classes. Interestingly, the most 304 

uncertainty around utility values is for the one previous treatment class, and the three 305 

and four previous treatment classes – the causes of this uncertainty which we believe to 306 

be different. Based on the literature, it seems patients receiving their first treatment 307 

class are a highly heterogeneous group. Whilst there are a greater number of studies on 308 
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this group, and subsequently more observations in this study, these patients receive a 309 

wide variety of treatments. This is likely due to diversity in respective patient populations 310 

(as evidenced by the SCT rate ranging from 18.3% to 68.9%), with reported utility 311 

showing substantial variability (Acaster, Gaugris, Velikova, Yong, & Lloyd, 2013; Mohty 312 

et al., 2015). Conversely, patients receiving their second treatment class appear to 313 

exhibit less variability in reported health related quality of life. By the third and fourth 314 

treatment classes received (likely after having the disease for several years, having had 315 

re-treatment with some classes) there are relatively few values and small sample sizes, 316 

leading to uncertainty in health state utility estimates. 317 

4.1 Role of SCT 318 

Apparent in the data is the role of SCT, which is clearly linked to improved utility 319 

independent of the number of previous treatments. Taking the mean utilities from the 320 

systematic review, patients who failed their first treatment class and moved to a second 321 

treatment class were found to have higher utility. However, after taking into account the 322 

rise in SCT rate, the results were in line with what would have been expected: that utility 323 

decreases through the treatment pathway. The magnitude of the difference is also 324 

noteworthy – it was approximately 0.06 in both frequentist and Bayesian synthesis, 325 

approximately the level of a minimally important difference for the EQ-5D at the 326 

individual patient level (Pickard, Neary, & Cella, 2007). 327 

The exact mechanism by which SCT increases utility is unknown. Nevertheless, we 328 

suggest two possible explanations. Firstly, only patients healthy enough to tolerate the 329 

intensive chemotherapy are eligible for SCT. Therefore, the higher utility among SCT 330 

patients may be the result of selection bias, where the fittest patients have undergone 331 

SCT. Secondly, it may be that SCT leads to a more benign disease form even when it 332 

fails to control the disease indefinitely (with patients going on to receive further 333 

treatments), and thus improve health related quality of life despite in patients 334 

subsequently receiving further treatment. 335 
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4.2 Choice of data source for economic modelling 336 

Each dataset identified in our literature review includes values on only two levels of 337 

treatment which would be insufficient to populate a model, except those of end-stage 338 

myeloma, and is associated with substantial uncertainty around estimates. Only the 339 

EMMOS dataset is able to estimate utilities throughout the disease course (from newly 340 

diagnosed patients to those heavily pre-treated) from a single source, albeit still with 341 

uncertainty around point estimates. In the instance where use of data from differing 342 

sources is objected to by payers or decision makers, we suggest that the EMMOS 343 

dataset provides the most complete set of utility data in MM to date. 344 

While the EMMOS registry provides an extraordinary volume of data (over 9,000 345 

completed EQ-5Ds), the advantage of meta-regression is the synthesis of all available 346 

data to provide a coherent set of health state utilities, which are as robust and as 347 

generalisable as possible. Consequently, we recommend that the meta-regression 348 

values should be preferred to values from individual studies in future economic 349 

evaluations, or at a minimum incorporated into sensitivity analyses. Although there may 350 

be concern regarding the synthesis of values from different sources, by using only 351 

papers with methodologically appropriate values we believe this concern should be 352 

ameliorated. Further restricting sources to only papers that meet the NICE reference 353 

case of EQ-5D values using the UK tariff (Model 2 and Model 4) strengthens this 354 

approach.(NICE, 2008, 2013) 355 

As new values are made available (with the completion of ongoing trials), this analysis 356 

can also be updated. To this end, we have made the results of our data extraction and 357 

source code available as online appendices to this paper. The code has been written to 358 

automatically accommodate the addition of more values, provided they are added to the 359 

data extraction table in the same format. We suggest that such openness is required for 360 

transparency and the development of best practice. This updating is particularly 361 

important as there are few values in the later stages of disease (and thus high 362 

uncertainty). Whilst not the objective of this paper, a model combining the individual and 363 

aggregate level data may also be possible to construct.  364 
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4.3 Frequentist vs Bayesian analysis 365 

In our analyses the frequentist and Bayesian models gave similar results for the 366 

synthesis of values. Investigating further, the similar results are due to relatively weak 367 

priors being used in the Bayesian analysis, thus letting the data drive the results of the 368 

analysis. Arbitrarily removing studies / adding hypothetical studies and experimenting 369 

with different priors (data not shown), differences are seen between the approaches 370 

where data is conflicting, or where there is a large variation in results between studies – 371 

in these cases, the information encoded in the priors may be used to reconcile the 372 

estimates. 373 

Despite the similarity in this instance, our preference is the Bayesian model, particularly 374 

Model 4 (EQ-5D data only) where the inputs are more homogenous (with not much data 375 

lost as a cost). There are two reasons for the choice of preferred model. Firstly, the 376 

Bayesian models sample from the distributions of the studies and consequently have 377 

face validity in that smooth distributions are simulated and presented (Figure 3). This 378 

contrasts with the nonparametric bootstrapping used in the frequentist analysis, which 379 

resulted in the presentation of multimodal distributions (Figure 2). The second 380 

advantage of the Bayesian analysis is that it can use priors to incorporate all data and 381 

prior beliefs. In the model we have constructed, this allows us to use ‘general disease’ 382 

utilities identified in the systematic review as priors for the one and two previous 383 

treatment class groups – the likely disease stage of patients in the studies even if the 384 

exact percentage breakdowns are not given. Equally, where priors are not available, 385 

these can (and have) be left vague. The effect of the priors can be seen in the 386 

difference between Model 4 and Model 5. Model 5 is based on the same data but with 387 

uninformative priors, leading to an increase in uncertainty beyond that which is plausible 388 

based on our prior knowledge of the structure of utility data. Model 5 therefore 389 

demonstrates that the priors in our analysis have acted as intended by constraining 390 

values to reasonable bounds, yet letting data determine the conclusions of the analysis. 391 

The typical disadvantages of Bayesian analysis include difficulty of implementation, and 392 

increased computational burden associated with estimation. Whilst these critiques can 393 

be true, Stan allows for easy processing. Our model consists of approximately 30 lines 394 
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of code (available in the online Appendix), compared approximately 100 of lines 395 

included in the frequentist approach code due to the requirement for non-parametric 396 

bootstrapping. Similarly, the runtime (on a standard laptop) for the Bayesian analysis is 397 

under a minute, compared to approximately 30 minutes for the frequentist analysis 398 

(again due to bootstrapping). This difference is driven by the requirement for 399 

bootstrapping in the frequentist approach, versus the highly efficient Stan code – indeed 400 

it is likely the relatively simple model had converged before the 500,000 simulations 401 

used, and thus the analysis could have been performed faster to the same degree of 402 

accuracy. Although the appropriate solution to any particular analysis is likely to depend 403 

on the nature of the data and form/availability of prior information, based on our inputs 404 

and results, a Bayesian approach should be considered as an option. We believe that it 405 

is the first time this approach has been taken, with the proof of concept demonstrated 406 

alongside the equivalent frequentist analysis, showing better performance on all metrics 407 

– speed, flexibility, face validity and interpretability. 408 

4.4 Other considerations 409 

Whilst many of the areas discussed apply across many areas of economic evaluation 410 

(for example the techniques highlighted could be used with systematic reviews of 411 

efficacy values), there are some areas which are specific to utility values. 412 

The first of these is that utilities are bounded by 1 (and potentially by zero). Whilst not 413 

an issue in our example (no studies had a reasonable chance of sampling over 1, 414 

should this be an issue, other distributions could be considered – notably a beta 415 

distribution (which in inherently capped at 1). Utility data from individuals is also 416 

notoriously multimodal, with EQ-5D data showing many patients with a utility of 1, with 417 

then, whilst such data is possible to model, it should not prove to be an issue for meta-418 

regression, as only the mean values are used. 419 

A further issue to consider is the number of studies available, and number of 420 

explanatory variables used (in our case, health states). Whilst no studies exist in utilities 421 

per se, a simulation study of linear regression in general found a minimum of 2 subjects 422 

per variable (which would be studies in the case of utility meta-regression) to be 423 

desirable (Austin & Steyerberg, 2015).  424 
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4.5 Limitations 425 

The main limitation of the work presented is that it relies on the underlying data. As the 426 

treatment of MM has evolved when new treatments have become available, the 427 

definition of ‘lines of treatment’ and what constitutes relapse/progression has become 428 

somewhat complex and varied. Although the definition of lines has now been 429 

standardised, this will only apply for papers published in the future and, as a result our 430 

analysis, could only consider the treatment classes patients had received (Rajkumar, 431 

Richardson, & San Miguel, 2015). Similarly, due to the limited number of studies 432 

identified, it was not possible to estimate the differences in utility of each treatment 433 

available – either between classes of treatment or within classes of treatment – these 434 

may be a driver of economic models in certain circumstances. The limited volume of 435 

data available is also apparent in the multimodal distributions from the frequentist 436 

bootstrapped regressions resulted in jagged distributions - particularly in later classes 437 

where few studies have been reported. 438 

By analysing data from the EMMOS and APEX studies we are able to ensure that the 439 

results of the synthesis are consistent with the individual level data, which is not always 440 

the case (Lambert, Sutton, Abrams, & Jones, 2002). With further access to individual 441 

level data however more comprehensive analysis may be possible, including estimation 442 

of utility differences between treatments, or a more complex model that incorporate both 443 

aggregate and individual patient level data. 444 

Conclusion 445 

The work conducted in this paper highlights the advantages of synthesis of utility data in 446 

being able to produce a consistent set of values for use in economic modelling through 447 

a disease pathway. In the area of MM, we demonstrate the importance of factoring in 448 

the rate of SCT as an explanatory variable for differences in estimated utility as patients 449 

progress through different treatment classes.  450 

The main areas of uncertainty highlighted in the analysis are the exact mechanism by 451 

which SCT increases utility, as well as the need for further data in the later stages of 452 

disease. Further research is also needed on the methodology for meta-analysis of utility 453 
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values, where we believe Bayesian models can add to the tools presently available to 454 

analysts. 455 

 456 
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Figures & Tables 566 

Figure 1: PRISMA diagram of included papers 567 

 568 

Key: PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 569 

 570 

 571 

Figure 2: Nonparametric bootstrapped meta-regression of treatment line and 572 
utility in MM patients, accounting for moderation via SCT (Model 2)  573 

 574 

Key: MM, multiple myeloma; SCT, stem cell transplant. 575 

 576 

 577 

Figure 3: Density plot of Bayesian statistical model (Model 4)  578 

 579 

 580 

Table 1: Utility values identified in the systematic review and included after 581 
methodological review 582 

 583 

 584 

Table 2: Meta-analysis model parameters and 95% intervals 585 

 586 

  587 
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Table 1: 588 

Author Year Line EQ-5D UK value 
set 

Utility SD SCT 
Percent  

Delea et al., 2012 2011 Newly 
diagnosed 

Yes Yes 0.485 0.375 Not 
reported 

Delea et al., 2012 2011 First line Yes Yes 0.55 0.3 Not 
reported 

Delea et al., 2012 2011 First line  Yes Yes 0.55 0.3 Not 
reported 

(Delea et al., 2012 2011 First line  Yes Yes 0.66 0.26 Not 
reported 

Delea et al., 2012 2011 First line  Yes Yes 0.67 0.27 Not 
reported 

Crott, Versteegh, 
& Uyl-de-Groot, 
2013 

2013 General 
disease 

Yes Yes 0.69 0.26 Not 
reported 

Uyl-de Groot et 
al., 2005 

2005 Newly 
diagnosed 

Not 
reported 

Not 
reported 

0.6 0.33 0 

Uyl-de Groot et 
al., 2005 

2005 SCT Not 
reported 

Not 
reported 

0.17 0.13 100 

Uyl-de Groot et 
al., 2005 

2005 First line  Not 
reported 

Not 
reported 

0.79 0.18 46.2 

Kharroubi et al., 
2015 

2015 General 
disease 

Yes Yes 1 0.52 Not 
reported 

Not 
reported 

Acaster et al., 
2013 

2013 First line  Yes Yes 0.63 0.26 8.3 

Acaster et al., 
2013 

2013 First line  Yes Yes 0.72 0.26 69.7 

Acaster et al., 
2013 

2013 Second line Yes Yes 0.67 0.25 5.1 

Acaster et al., 
2013 

2013 Third line Yes Yes 0.63 0.29 15.6 

Quinn, Hirji, 
Shingler, & Davis, 
2015 

2015 Second line  Yes Yes 0.603 0.03 Not 
reported 

Quinn et al., 2015 2015 Second line  Yes Yes 0.649 0.016 Not 
reported 

Proskorovsky et 
al., 2014 

2014 General 
disease 

Yes Yes 0.7 0.3 11.7 

Naik et al., 2014 2014 General 
disease 

Yes No 0.71 0.14 Not 
reported 

Delforge et al., 
2015 

2015 Newly 
diagnosed 

Yes Yes 0.53 0.01 Not 
reported 

Delforge et al., 
2015 

2015 Second line  Yes Yes 0.59 0.015 Not 
reported 

Ashaye, Zhang, 
Bender, Altincatal, 
& Panjabi, 2015 

2015 Second line  Yes Yes 0.59 0.27 Not 
reported 

Ashaye, Zhang, et 
al., 2015 

2015 Second line  Yes Yes 0.71 0.2 Not 
reported 

Ashaye, Altincatal, 
Bender, Zhang, & 
Panjabi, 2015 

2015 Second line  No Yes 0.785 0.129 Not 
reported 
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Palumbo & 
Cerrato, 2013 

2013 Third line Yes Yes 0.61 0.31 Not 
reported 

Palumbo & 
Cerrato, 2013 

2013 Fourth line Yes Yes 0.57 0.3 Not 
reported 

Palumbo & 
Cerrato, 2013 

2013 Third line  No Yes 0.57 0.3 Not 
reported 

Palumbo & 
Cerrato, 2013 

2013 Fourth line  No Yes 0.69 0.14 Not 
reported 

Richardson et al., 
2005 

- Second line  Yes Yes 0.654 0.29 68.3 

Richardson et al., 
2005 

- Third line  Yes Yes 0.619 0.312 90.4 

Richardson et al., 
2005 

- SCT Yes Yes 0.056 0.01 100 

EMMOS (Mohty et 
al., 2015) 

- Newly 
diagnosed 

Yes Yes 0.459 0.396 0 

EMMOS (Mohty et 
al., 2015) 

- First line  Yes Yes 0.606 0.308 15.7 

EMMOS (Mohty et 
al., 2015) 

- Second line  Yes Yes 0.619 0.298 31 

EMMOS (Mohty et 
al., 2015) 

- Third line  Yes Yes 0.561 0.325 38.3 

EMMOS (Mohty et 
al., 2015) 

- Fourth line  Yes Yes 0.403 0.355 55.6 

EMMOS (Mohty et 
al., 2015) 

- SCT Yes Yes 0.129 0.418 100 

Mean general 
disease utility 

    0.655  11.7 

Mean newly 
diagnosed utility 

    0.491  0 

Mean first-line 
utility 

    0.627   24.6 

Mean second-line 
utility 

    0.636  48 

Mean third-line 
utility 

    0.610  67.6 

Mean fourth-line 
utility 

    0.486  55.6 

Mean SCT utility         0.093   100 

Key: SCT, stem cell transplant; SD, standard deviation. 
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Table 2: 590 

Number of 
treatment classes 
received 

Model 1: 
Meta-regression (all 

values) 

Model 2: 
Meta-regression 

(EQ-5D only) 

Model 3: 
Bayesian model (all 

values) 

Model 4: 
Bayesian model 

(EQ-5D only) 
[preferred 
approach] 

Model 5: 
Bayesian model 

(EQ-5D only) with 
weak priors 

Newly diagnosed 0.529 
(0.459–0.600) 

0.529 
(0.459–0.600) 

0.530 
(0.510–0.550) 

0.530 
(0.510–0.550) 

0.530 
(0.510–0.550) 

One 0.659 
(0.597–0.736) 

0.659 
(0.591–0.734) 

0.646 
(0.496–0.796) 

0.620 
(0.456–0.786) 

0.626 
(0.424–0.829) 

Two 0.626 
(0.591–0.707) 

0.620 
(0.590–0.650) 

0.591 
(0.569–0.613) 

0.590 
(0.568–0.612) 

0.613 
(0.523–0.704) 

Three 0.599 
(0.568–0.625) 

0.606 
(0.561–0.630) 

0.568 
(0.299–0.837) 

0.578 
(0.275–0.880) 

0.603 
(0.286–0.920) 

Four (all) 0.599 
(0.403–0.690) 

0.494 
(0.403–0.570) 

0.607 
(0.373–0.842) 

0.469 
(0.021–0.918) 

0.497 
(0.034–0.958) 

Stem cell transplant 0.066 
(0.056–0.170) 

0.066 
(0.056–0.170) 

0.057 
(0.037–0.076) 

0.056 
(0.037–0.076) 

0.007 
(-0.178–0.191) 

Key: Values in parentheses are 95% confidence intervals for Models 1 and 2, and 95% credible intervals for Models 3-5 
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