
 1 

A Comprehensive Evaluation of the Genetic Architecture of Sudden Cardiac Arrest  

AUTHORS 

Foram N. Ashar, PhD1*; Rebecca N. Mitchell, MS1*; Christine M. Albert, MD2; Christopher 

Newton-Cheh, MD, MPH3; Jennifer A. Brody, BA4; Martina Muller-Nurasyid, PhD5; Anna 

Moes, MS1; Thomas Meitinger, PhD6; Angel Mak, MD, PhD7; Heikki Huikuri, MD8; M Juhani 

Junttila, MD8; Philippe Goyette, PhD9; Sara L. Pulit, PhD10; Raha Pazoki, MD, PhD11; Michael 

W. Tanck, PhD12; Marieke T. Blom, PhD13; XiaoQing Zhao, PhD14; Aki S. Havulinna, PhD15; 

Reza Jabbari, MD, PhD16; Charlotte Glinge, MD16; Vinicius Tragante, PhD17; Stefan A. Escher, 

PhD18; Aravinda Chakravarti, PhD1; Georg Ehret, MD1; Josef Coresh, MD, PhD19; Man Li, 

PhD19; Ronald J. Prineas, MB, BS, PhD20; Oscar H. Franco, MMed, PhD21; Pui-Yan Kwok,  

MD, PhD7; Thomas Lumley, PhD;22 Florence Dumas, MD, PhD23; Barbara McKnight, PhD4,24; 

Jerome I. Rotter, MD25; Rozenn N. Lemaitre, PhD4; Susan R. Heckbert, MD, PhD4,26; 

Christopher J. O’Donnell, MD, MPH27; Shih-Jen Hwang, PhD27; Jean-Claude Tardif, MD9; 

Martin VanDenburgh, BA2; Andre G Uitterlinden, MD, PhD21; Albert Hofman, MD, PhD21; 

Bruno H. C. Stricker, MD, PhD21; Paul I. W. de Bakker, PhD28,29; Paul W. Franks, PhD30; Jan-

Hakan Jansson, MD31; Folkert W. Asselbergs, MD, PhD17; Marc K. Halushka, MD, PhD32; 

Joseph J. Maleszewski, MD33; Jacob Tfelt-Hansen, MD34; Thomas Engstrom, MD,PhD16,35; 

Veikko Salomaa, MD, PhD15; Renu Virmani, MD14; Frank Kolodgie, PhD14; Arthur A. M. 

Wilde, MD, PhD13; Hanno L Tan, MD, PhD13; Connie R. Bezzina, PhD13; Mark Eijgelsheim, 

MD36; John D. Rioux, PhD9; Xavier Jouven, MD, PhD23; Stefan Kaab, MD, PhD5; Bruce M. 

Psaty, MD, PhD37; David S. Siscovick, MD, MPH38; Dan E. Arking, PhD1*; Nona Sotoodehnia, 

MD, MPH39*; for the SCD working group of the CHARGE Consortium.  

*Contributed equally to this article.  



 2 

 

AFFILIATIONS 

1Institute of Genetic Medicine, Johns Hopkins, Baltimore, USA; 2Divisions of Preventive 

Medicine and Cardiovascular Medicine, Department of Medicine, Brigham and Women's 

Hospital, Boston, USA; 3Center for Human Genetic Research & Cardiovascular Research Center, 

Massachusetts General Hospital, Boston, USA; 4Cardiovascular Health Research Unit, 

University of Washington, Seattle, USA; 5Department of Medicine I, Ludwig-Maximilians 

University, Munich, Germany; 6German Center for Cardiovascular Research, Partner Site 

Munich Heart Alliance, Munich, Germany; 7Cardiovascular Research Institute and Institute for 

Human Genetics, University of California, San Francisco, San Francisco, USA; 8Research Unit 

of Internal Medicine, University Hospital and University of Oulu, Oulu, Finland; 9Montreal 

Heart Institute, University of Montreal, Quebec, Canada; 10Department of Genetics, University 

Medical Centre Utrecht, Utrecht, The Netherlands; 11Department of Epidemiology and 

Biostatistics, Imperial College London, London, UK; 12Department of Clinical Epidemiology, 

Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands; 

13Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 

Amsterdam, The Netherlands; 14CVPath Institute, Gaithersburg, USA; 15National Institute for 

Health and Welfare, Helsinki, Finland; 16Department of Cardiology, University Hospital 

Copenhagen, Rigshospitalet, Denmark; 17Department of Cardiology, Division Heart & Lungs, 

University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; 18Genetic 

and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical 

Sciences, Lund University, Malmö, Sweden; 19Department of Epidemiology, Johns Hopkins 

University, Baltimore, USA; 20Public Health Sciences, Wake Forest University, Winston-Salem, 



 3 

USA; 21Department of Epidemiology, Erasmus MC, Erasmus, The Netherlands; 22Department of 

Statistics, University of Auckland, Auckland, NZ; 23Paris Sudden Death Expertise Center, 

University Paris Sorbonne cité, Paris, France; 24Department of Biostatistics, University of 

Washington, Seattle, USA; 25Institute for Translational Genomics and Population Sciences, Los 

Angeles Biomedical Research Institute, Departments of Pediatrics and Medicine, Harbor-UCLA 

Medical Center, Torrance, USA; 26Cardiovascular Health Research Unit, Department of 

Epidemiology, University of Washington; 27NHLBI Framingham Heart Study, Boston, USA; 

28Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 

Utrecht, The Netherlands; 29Department of Epidemiology, Julius Center for Health Sciences and 

Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; 30Department of 

Public Health and Clinical Medicine, Research Unit Skelleftea, Lund University, Malmo, 

Sweden; 31Department of Public Health and Clinical Medicine, Research Unit Skelleftea, Umea 

University, Umea, Sweden; 32Department of Pathology, Johns Hopkins University, Baltimore, 

USA; 33Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, USA; 

34Department of Cardiology, University Hospital Copenhagen, Rigshospitalet, Denmark and 

Department of Forensic Medicine, University of Copenhagen, Denmark; 35Department of 

Cardiology, University of Lund, Lund, Sweden; 36Department of Nephrology, University 

Medical Center Groningen, Groningen, The Netherlands; 37Cardiovascular Health Research Unit, 

Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, 

WA; 38New York Academy of Medicine, New York, USA; and 39Cardiovascular Health 

Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University 

of Washington 

 



 4 

Corresponding Authors: 

Dan E. Arking, PhD 

Johns Hopkins University School of Medicine 

733 N. Broadway 

Miller Research Building, Room 459 

Baltimore, MD 21205 

arking@jhmi.edu 

410-502-4867 (Phone) 

410-614-8600 (Fax) 

 

Nona Sotoodehnia, MD, MPH 

Laughlin Endowed Professor in Cardiology 

Co-Director, Cardiovascular Health Research Unit 

Harborview Medical Center 

University of Washington 

nsotoo@u.washington.edu 

 

 

 

 

 

 

mailto:arking@jhmi.edu
mailto:nsotoo@u.washington.edu


 5 

INTRODUCTION 

Sudden cardiac arrest (SCA) is a major cause of cardiac mortality, affecting over 300,000 

people in the US every year(1). Clinical and autopsy studies have demonstrated a predominant, 

common pathophysiology in Western populations:  the most common electrophysiologic 

mechanism for SCA is ventricular fibrillation (VF) and the most common pathologic substrate is 

coronary artery disease (CAD). Despite recent increases in SCA survival rates(2), survival 

remains low, and an important way to impact SCA mortality is through risk stratification and 

prevention.  Although observational studies have identified numerous clinical and subclinical 

risk factors for SCA, understanding which of these associations are causal will help target 

prevention strategies.   

Family history of SCA is a strong risk factor for SCA in the general population, 

suggesting that genetic variation may influence SCA risk.(3–5) While patients with inherited 

arrhythmias (e.g. Long QT Syndrome) are at increased SCA risk(6–8), the vast majority of SCA 

occurs outside of this high-risk population. Whether common variation in ion channel genes or 

other genomic regions influences SCA risk and identifies those at higher risk remains largely 

unknown.  

Examining the genomic architecture of SCA allows us not only to examine genomic risk 

markers for SCA, but also to assess causal relationships of clinical and subclinical risk factors 

with SCA.  Mendelian randomization methods exploit the fact that genetic variants are largely 

determined at conception and randomly distributed in populations, to determine whether an 

exposure may be causally associated with the outcome, and to estimate the effect size of that 

causal association(9–11). Here we use a multi-SNP genetic risk score association (GRSA) model 
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to compare genetic associations of known SCA risk factors to genetic associations with SCA as 

an effective way to understand the potential underlying causal pathways and processes that 

modulate SCA risk.   

To determine whether genetic variants are associated with SCA risk, we performed a 

GWAS for SCA. We additionally examined whether common variation in inherited arrhythmia 

genes was associated with SCA risk in the general population. We then evaluated the 

relationships between SCA and multi-SNP GRSAs for each risk factor.  

METHODS 

Study Populations and Phenotype Definition.  

The overall study design is summarized in Fig. S1. Briefly, nine studies of European-

descent individuals (3,939 cases and 25,989 non-cases) comprised a GWAS ‘discovery’ stage, 

and 12 studies with individuals of European, African and Asian descent (4,918 additional cases 

and 21,873 controls) comprised a ‘replication’ stage. Study descriptions, along with study-

specific SCA definitions and genotyping methods, are detailed in the Supplementary Appendix.  

All studies were approved by appropriate local institutional review boards.  

GWAS 

Genome-wide genotype data was imputed to the HapMap2-CEU reference panel, 

following study-level quality control checks (Table S1A). Each ‘discovery’ study performed 

regression analysis adjusted for age, sex, and study-specific covariates, and results were meta-

analyzed using inverse variance meta-analysis implemented in METAL(12). Meta-analysis was 

performed with results from 9 GWASs comprising a total of 3,939 European-ancestry cases and 
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25,989 controls (Table S1A), with additional genotyping of 26 SNPs in up to 4,918 cases and 

21,879 controls of European, African, and Asian descent (Table S1B). For SNP rs1554218, 

ARIC samples were not included in the discovery data leaving 3,815 cases and 17,107 controls 

for the discovery stage. These ARIC samples were used only in the replication data resulting in 

5,218 cases and 35,957 controls for the replication stage for analysis involving this SNP only. 

The top 26 SNPs were examined in a ‘replication’ population (Table S1B). Findings from 

‘discovery’ and ‘replication’ stages were then meta-analyzed (Table S2, Fig. S3A). Additionally, 

exploratory GWASs restricted to men; women; individuals under age 65; and cases with 

VF/shockable rhythm, were performed (Table S3, Fig. S3B-S3E). 

Candidate genes  

Using results from the GWAS meta-analysis, we examined variants in 54 inherited 

arrhythmia genes using the ‘logistic-minsnp-gene-perm’ function in FASTv1.8(13). This best 

single-SNP permutation based p-value is corrected for gene size by performing up to 1 million 

permutations per gene. Gene boundaries were defined by RefSeq gene coordinates on build 

GRCh37 with +/-10 kb flanking sequence.  

Mendelian Randomization Instrument 

Observational studies examine association of an exposure (e.g., body mass index, or 

BMI) with an outcome (e.g., SCA) but cannot assess causality.  Unobserved variables affecting 

both exposure and outcome may confound these associations and lead to biased estimates of 

association.  Mendelian randomization is based on the assumption that because genetic variants 

are determined at conception and are randomly distributed in large populations, they are 

unassociated with potential confounders.  Therefore, under certain assumptions such as the 
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absence of genetic pleiotropy, genetic variants used as instrumental variables can determine 

whether an exposure is potentially causally associated with the outcome, and estimate the size of 

that association (see Supplemental Appendix).  Here we use a multi-SNP genetic risk score 

association (GRSA) model to compare genetic associations with SCA with those of known SCA 

risk factors as an effective way to understand the underlying causal pathways and processes that 

influence SCA risk. 

Genetic Risk Score Association (GRSA) 

We estimated a separate GRSA for each of the following: (1) CAD and traditional CAD 

risk factors, including type 2 diabetes (T2D), fasting glucose adjusted for BMI (FGadjBMI), 

fasting insulin adjusted for BMI (FIadjBMI), diastolic blood pressure (DBP), systolic blood 

pressure (SBP), total cholesterol (TCH), and triglycerides (TG); (2) cardiac electrophysiologic 

factors, including atrial fibrillation (AF), heart rate (HR), QRS interval (QRS), and QT interval 

(QT); and (3) anthropometric traits, including BMI, waist circumference adjusted for BMI 

(WCadjBMI), waist to hip ratio adjusted for BMI (WHRadBMI), and height.  Table S4 details 

the 18 traits, and the source published GWAS used to construct the GRSA models for these traits.  

To estimate GRSAs for each putative SCA risk factor, we examined genome-wide SNPs 

associated with the risk trait following stringent LD-pruning (Supplementary Appendix). The 

associations of these SNPs with the risk factors and the SCA outcome are used to calculate an 

inverse-variance weighted multi-SNP GRSA as implemented in the R-package ‘gtx’(14).  This 

GRSA can be interpreted as an inverse-variance weighted, meta-analyzed (over SNPs) estimate 

of the causal log odds ratio for SCA associated with a one SD higher value of the risk factor 

from a Mendelian randomization analysis.(15) It is computationally equivalent to the slope 
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estimate from a zero-intercept linear regression with log odds ratio for the association of an 

additional variant allele in SNPs with SCA (SCA) as the dependent variable and the mean 

difference associated with one additional variant allele in SNPs on the risk factor trait (trait) as 

the independent variable, weighted by the standard error of the SCA squared (SESCA
2) (Fig. 1A) 

(more details in Supplementary Appendix). We evaluated the use of other MR methods, 

including MR-Egger, simple median, and median-weighted. However, we found while these 

produced similar GRSA estimates as the inverse-weighted (IVW) method, these other methods 

had lower power (Fig. S4 and Table S5). We therefore only report the results from the IVW 

method. We also used the intercept test from the MR-Egger method to evaluate the presence of 

pleiotropy in our analyses (Table S5). 

The validity of this analysis requires that SNPs included can only affect the outcome 

through their effects on the risk factor (i.e. no horizontal pleiotropy). If there is no pleiotropy, the 

SNPs contributing the GRSA estimate should all estimate the same magnitude causal association 

between risk factor and SCA. We use the HEIDI-outlier method from the ‘gsmr’ R package to 

detect and remove potentially pleiotropic SNPs.(16) Note that we report GRSA estimates from 

analyses only including SNPs that meet a stringent genome-wide significant (GWS) P-value cut-

off (P<5x10-8), GRSAGWS, as SNPs at this significance level likely are true positives and reliable 

instruments. However, the power for Mendelian randomization is dependent on the variance 

explained by the SNPs included in the GRSA, and for complex traits, the majority of the true 

signals may lie in SNPs that do not meet genome-wide significance. Therefore, we identified a 

somewhat arbitrary P-value cut-off based on visual inspection of the variance explained plots 

that largely maximizes variance explained while minimizing the number of SNPs (Fig. S5). We 

found that all the traits fell between 0.2-0.4 P-value cutoff, but the results within a trait were 
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robust to cutoffs chosen between 0.2 and 0.4. We use a GRSA constructed with this custom P-

value cut-off (GRSAmax) to assess only the significance of the GRSA (Pmax), as this model has 

the greatest power to assess the significance of an association. Pmax is determined by permutation 

due to inflated test statistics (Fig. S6 and Supplementary Appendix). At less stringent P-values, 

false-positive SNPs may be included resulting in a bias of the estimate toward the confounded 

association level.  Therefore, we do not use the GRSAmax to determine the magnitude of the 

GRSA association, only its direction and significance. We performed two analyses, one using 

GRSAGWS to evaluate significance and effect size, and secondarily using the GRSAmax to 

evaluate potential associations and directions of effect at maximal power (Pmax). We performed 

multiple-testing adjustment on all resulting P-values (PGWS and Pmax) using a false discovery rate 

(FDR) cutoff of FDR<0.05.  

We similarly computed risk factor GRSAs on the outcome of CAD. We use a 1-degree of 

freedom Wald test to test for difference in GRSAGWS magnitudes between SCA and CAD.  

Sex-specific analyses 

We performed sex-specific SCA GWAS analyses to construct trait GRSAs separately by 

sex. GRSAs were constructed from the same set of LD-pruned SNPs used for overall GRSAGWS 

analyses. P-values for difference in GRSAGWS between sexes were obtained from 1-degree of 

freedom Wald test. 

RESULTS 

GWAS  
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Meta-analysis was performed with results from 9 GWASs of 3,939 European-ancestry 

cases and 25,989 controls (Table S1A, Fig. S3A) with additional genotyping of 26 SNPs in up to 

4,918 cases and 21,879 controls of European, African, and Asian descent (Table S1B). No SNPs 

were associated with SCA (P<5x10-8) (Table S2) in the main analysis or in subgroup analyses 

limited to European-descent individuals, men, women, younger participants (≤65 years), or cases 

with documented VF/shockable rhythm (Tables S2 and S3, Fig. S3B-S3E).  

Candidate Gene and Candidate SNP Analyses 

Despite sufficient power to detect relative risks of 1.15 (80% power, allele frequency 

0.30, at alpha=0.05, after Bonferroni correction for multiple-testing; more details in the 

Supplementary Appendix) in a candidate gene analysis, we did not find common variants in 

inherited arrhythmia genes associated with SCA in the general population (Table S6). 

Examining SNPs previously associated with SCA in smaller studies, no SNP was found to be 

associated with SCA at the genome-wide significance threshold. Table S7).  

Genetic Risk Scores Associations (GRSAs) 

To explore whether clinical and subclinical risk factors are causally linked with SCA, we 

examined genetic risk score associations (GRSA) between SCA and: (1) CAD and traditional 

CAD risk factors; (2) cardiac electrophysiologic factors; and (3) anthropometric traits. While the 

results reported below were computed using the IVW method, we used the intercept test of the 

MR-Egger method to evaluate the possible presence of pleiotropy. While HDL was nominally 

significant (P=0.02), all other traits were not found to be significantly influenced by pleiotropy.  

CAD and CAD risk factors 
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Prevalent CAD is an important SCA risk factor with ~80% of male SCA survivors having 

underlying CAD(17). From GRSAGWS analysis we show that the difference in CAD status is 

causally associated with SCA (odds ratio in SCA risk per log odds difference in CAD, 1.36; 95% 

CI, 1.19-1.55; PGWS=9.29x10-5) (Fig. 2, Table S8).  While traditional CAD risk factors (blood 

pressure, lipids and diabetes) were not significantly associated with SCA at the more restrictive 

GRSAGWS threshold, using GRSAmax to maximize power, several additional associations were 

detected, including type 2 diabetes (Pmax<0.001), LDL (Pmax=0.005), total cholesterol 

(Pmax<0.001), triglycerides (Pmax<0.001), diastolic blood pressure (Pmax=0.0170), and systolic 

blood pressure (Pmax=0.0230) (Table S9).  In the GRSAmax analysis, variants associated with 

higher diabetes risk, higher cholesterol and triglyceride levels, and higher systolic and diastolic 

blood pressure were all associated with higher SCA risk. 

Cardiac electrophysiologic factors 

To explore the influence of cardiac electrophysiology on SCA, we examined genetics of 

electrophysiologic traits associated with SCA: (1) atrial fibrillation, (2) QT interval (ventricular 

repolarization), (3) QRS interval (ventricular conduction), and (4) heart rate. In the GRSAGWS 

analysis, we show that longer QT interval, a risk factor for SCA in the general population, is 

significantly associated with SCA (odds ratio in SCA risk per SD increase in QT, 1.44; 95% CI, 

1.13-1.83; PGWS=0.018) (Fig. 2, Table S8).(18)  Using GRSAmax, in addition to QT, we also 

identified a significant association of AF with SCA (Pmax<0.001 for both QT and AF) (Table S9). 

Variants associated with longer QT interval and higher AF risk were associated with higher SCA 

risk.  By contrast, no significant association was seen with QRS or heart rate, even at the more 

permissive and statistically powerful GRSAmax. 
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Anthropometric Measures 

The BMI GRSAGWS was significantly associated with SCA (odds ratio for SCA risk per 

SD higher BMI, 1.63; 95% CI, 1.23-2.15; PGWS=0.005) (Fig. 2, Table S8).  Using GRSAmax, we 

found a significant negative association between height and SCA (Pmax<0.001) (Table S9). 

Variants associated with greater height are associated with lower CAD risk(19), and we 

correspondingly observed a negative GRSA between SCA and height. No significant association 

was seen with GRSAs composed of variants associated with measures of central/abdominal 

adiposity, such as waist-to-hip ratio or waist circumference.   

Contrasting SCA and CAD GRSAs 

Given the strong association of CAD with SCA, we compared the magnitudes of risk 

factor GRSAGWS on the outcomes of SCA (Fig. 2) and CAD (Fig. S7) to identify traits where 

risk factors may be more strongly causally associated with SCA than CAD. While the GRSAGWS 

for traditional CAD risk factors (blood pressure and lipid traits) are larger for CAD risk than 

SCA risk, we find that GRSAGWS for electrophysiologic traits of QT interval (0.34 for SCA vs. 

0.096 for CAD, P for difference = 0.06) and AF (0.097 for SCA vs. -0.029 for CAD, P for 

difference=0.017), there was a suggestion of a larger association with SCA than CAD risk (Fig. 

3, Table S8).  

Sex differences 

Sex differences in SCA incidence, underlying SCA pathophysiology, and prevalence of 

certain risk factors have been well documented(20), yet little is known about whether the effect 

of risk factors on SCA differs by sex. Among GRSAsGWS where a main effect association was 

identified, we found a nominally significant difference in association between women and men 
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for diabetes (0.240 for women vs. 0.0205 for men, P for difference = 0.05) and HDL (-0.417 for 

women vs. 0.0256 for men, P for difference = 0.04) (Table S10). 

DISCUSSION 

Our SCA GWAS demonstrates that while SCA is a complex disease with multiple risk 

factors, a comprehensive genetic approach can shed light on causal versus correlational 

associations.  Using Mendelian randomization, we establish that differences in CAD, BMI, and 

QT interval are causally associated with SCA.  Secondary analyses further implicate type 2 

diabetes, additional traditional CAD risk factors such as lipids and blood pressure, as well as 

height and atrial fibrillation.     

Despite adequate power to identify relatively modest associations (OR > 1.3), our study 

did not find evidence that common variation in Mendelian arrhythmia genes is associated with 

SCA risk in the general population. Since underlying electrical instability is an important cause 

of SCA, prior smaller studies have examined inherited arrhythmia genes or variants associated 

with electrophysiological traits to identify genetic variants that influence SCA risk (21–23). 

While rare private mutations in ion-channel and other electrophysiology-related genes increase 

arrhythmia risk in high-risk families and may also increase SCA risk in the general 

population(24), our study suggests that common variants in these genes are not significant 

contributors to SCA in the general population. This may be due to differing underlying genetics 

between inherited arrhythmias versus SCA in the general population. By contrast, we do find that 

GRSA estimates of phenotypes associated with electrical instability (AF and QT) are causally 

associated with SCA risk, more so than they are causally associated with CAD. This confirms 
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our understanding of the pathophysiology of SCA─SCA is not simply fatal CAD, but rather, 

electrical instability also plays a prominent role in influencing SCA risk. 

Intriguingly, not all electrophysiologic phenotypes observationally linked to SCA are 

causally associated with SCA in our analyses. QRS interval and heart rate, two traits 

observationally associated with SCA(25,26), failed to show significant evidence of a shared 

genetic basis with SCA. This lack of association may be due to inadequate power to identify 

more modest correlations. Alternatively, it may be that the associations from observational 

studies are confounded by other factors, and not causative (Fig. 1B-C). For instance, underlying 

CAD can lead to both longer QRS interval and increased SCA risk; thus, while observational 

studies show an association between SCA and both traits (CAD and QRS interval), the 

association between SCA and QRS interval may not be causal. Similarly, the observational 

association of higher heart rate with SCA risk may be confounded by higher adrenergic state due 

to underlying heart disease and not itself be causal. Thus, the GRSA approach to examining 

observational risk factors assists in differentiating causative factors from confounded 

associations. 

CAD is the most common underlying pathologic substrate for SCA. It is reassuring, 

therefore, that we find significant estimated causal associations with SCA risk using GRSA 

models constructed from CAD and traditional CAD risk factors, including blood pressure, 

diabetes and cholesterol traits.   

Anthropometric measures appear to be causally associated with SCA. Shorter stature is 

associated with increased SCA risk in observational studies; our findings support the conclusion 

that this observational association is causal. Observational data on BMI and SCA risk have been 
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conflicting, perhaps due to confounding from smoking status and frailty. Previously(27), we 

have shown that increased BMI is associated with increased SCA risk in non-smokers, but not 

smokers. In this study, we find that differences in BMI, but not central/abdominal obesity, were 

causally associated with SCA risk. This finding is especially interesting in the context of recent 

data that imply different biological process underlying BMI and central obesity.(28,29)  

Finally, of the traits associated with SCA, we found that GRSAs for diabetes and HDL 

were nominally significantly different between men and women. While diabetes is a SCA risk 

factor among both sexes, previous observational studies have consistently suggested a stronger, 

albeit not statistically different, association among women than men(30,31).  These findings may 

reflect different underlying SCA pathophysiology between men and women. While these 

differences may be due to chance as they do not remain significant after multiple test correction, 

it is also likely that our study is underpowered to detect these differences. 

Several limitations deserve consideration. First, without detailed autopsy information, 

rhythm monitoring, and information on circumstances surrounding the cardiac arrest, the 

underlying etiology and mechanism of death may be heterogeneous and genetic associations are 

likely to be diluted. Nonetheless, clinical and autopsy studies have demonstrated a predominant, 

common pathophysiology of SCA in Western populations: VF in the setting of CAD.  Hence, it 

is reassuring that our genetic studies suggest an important role for both CAD and electrical 

instability in SCA.  Second, despite ours being the largest exploration of SCA genomics to date, 

the discovery sample size of only ~4,000 cases, in addition to the heterogeneity of the phenotype, 

limited our ability to find genetic associations with low frequency variants or variants of modest 

effect. Hence, while our data do not support screening individuals with a family history of SCA 

for common variation in inherited arrhythmia genes, much larger samples sizes are needed to 
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address whether rare variation of modest effect in these genes influence SCA risk. Third, the 

validity of the GRSA method as a Mendelian randomization instrument rests on the assumption 

that the variant causes differences in the outcome only by its effects on the risk factor of interest, 

and not directly or by influencing other risk factors. Although we did not explicitly exclude 

SNPs associated with multiple risk factors (genetic pleiotropy), we did utilize a goodness-of-fit 

approach to exclude putative “pleiotropic” effects from all GRSAs. Furthermore, we performed a 

sensitivity analysis using the MR-Egger method, which tests for the presence of pleiotropy. Only 

HDL was found to be significantly influenced by pleiotropy (P=0.02). Lastly, while genetic 

pleiotropy can bias our conclusions, important influence is less likely when using multiple SNPs 

aggregated in a genetic risk score(32). Finally, the lack of common variants exhibiting large 

effect sizes associated with SCA limits the potential clinical utility for risk prediction. 

In conclusion, while we were not able to identify any common genetic variants 

significantly associated with SCA risk through the GWAS, as well as any common variation in 

specific inherited arrhythmia genes associated with SCA risk, we have provided evidence for 

causal associations between some, but not all, observational risk factors for SCA. We show that 

differences in CAD status, BMI, and QT interval are causally associated with SCA risk. While 

SCA is a complex disease with multiple influencing factors, a comprehensive genetic approach 

can untangle risk factor relationships, enhancing our understanding of SCA pathophysiology. 

Ultimately, genetic studies will enhance efforts to prevent SCA in high-risk populations and the 

general community. 
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Figure Legends. 

Figure 1. Genetic Risk Score Association (GRSA) Estimation. The plot (A) illustrates the 

process by which the QT-SCA GRSA is calculated using SNPs associated with QT at P<5x10-8. 

The points represent the effect of each SNP on QT (in units of standard deviation of QT) on the 

x-axis, and the log odds effect on SCA risk (corresponding 95% confidence intervals in grey) on 

the y-axis. The estimate of the genetic risk score association is the slope of the zero-intercept 

weighted regression line (solid red line). For the GRSA used in our analyses, the model contains 

a genome-wide LD-pruned SNP set (details in Methods). The top directed acyclic graph (B) 

represents a scenario in which the trait of interest has a causal effect on the outcome. If the 

GRSA, comprised of trait-associated variants (e.g., QT), has a significant effect on the outcome 

(e.g., SCA), it supports a causal role for the trait on the outcome. The bottom directed acyl graph 

(C) presents the case where an association is observed between the trait and outcome, but the 

GRSA comprised of trait-associated variants is not significantly associated with the outcome, 

suggesting that the observational association is likely being mediated by a confounding variable 

and the trait does not have a causal impact on the outcome. 

Figure 2. Genetic Risk Scores Association (GRSA) Estimates for SCA. These data points 

represent the exponentiated GRSA estimates of 18 traits on sudden cardiac arrest (SCA) and 

corresponding 95% confidence interval values. The GRSA estimates in the top panel for the 

binary traits are in log odds units. Values in bottom panel are in SD units of the quantitative traits. 

GRSA estimates and significance are derived from SNPs associated with each trait at P<5x10-8. 
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The significance of the GRSAGWS estimates (FDR adjusted PGWS) are represented as “*” for 

P<0.05, “**” for P<0.01, and “***” for P<0.001. The significance of the secondary analysis 

using GRSAmax estimates (FDR adjusted permuted Pmax) are represented as “+” for P<0.05, “++” 

for P<0.01 and “+++” for P<0.001. For details on values of GRSA estimates and P-values, see 

Table S8-S9. CAD = coronary artery disease; T2D = type 2 diabetes; AF = atrial fibrillation; 

BMI = body mass index; WCadjBMI = waist circumference adjusted for BMI; WHRadBMI = 

waist to hip ratio adjusted for BMI; DBP = diastolic blood pressure; SBP = systolic blood 

pressure; FGadjBMI = fasting glucose adjusted for BMI; FIadjBMI = fasting insulin adjusted for 

BMI; HR = heart rate; QRS = QRS interval; QT = QT interval; HDL = high-density lipoproteins; 

LDL = low-density lipoproteins; TCH = total cholesterol; TG = triglycerides. 

Figure 3. Comparison of GRSA for SCA and CAD. These data represent exponentiated 

GRSAs of all 17 traits. GRSA estimates for SCA and CAD, are plotted in orange and teal 

respectively. Bars around the estimates represent the 95% confidence interval. The GRSA 

estimates in the top panel for the binary traits are in log odds units. Values in bottom panel are in 

SD units of the quantitative traits. The level of significance for 1 degree of freedom Wald test of 

difference in GRSAGWS estimates between SCA and CAD is represented “*” for P<0.05, “**” 

for P<0.01, and “***” for P<0.001.  T2D = type 2 diabetes; AF = atrial fibrillation; BMI = body 

mass index; WCadjBMI = waist circumference adjusted for BMI; WHRadBMI = waist to hip 

ratio adjusted for BMI; DBP = diastolic blood pressure; SBP = systolic blood pressure; 

FGadjBMI = fasting glucose adjusted for BMI; FIadjBMI = fasting insulin adjusted for BMI; HR 

= heart rate; QRS = QRS interval; QT = QT interval; HDL = high-density lipoproteins; LDL = 

low-density lipoproteins; TCH = total cholesterol; TG = triglycerides. 

 


