UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Investigation into Information Capacity of Nonlinear Optical Fibre Communication Systems

Shevchenko, Mykyta; (2019) Investigation into Information Capacity of Nonlinear Optical Fibre Communication Systems. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of PhD_Thesis_M_Shevchenko_Final_Version.pdf]
Preview
Text
PhD_Thesis_M_Shevchenko_Final_Version.pdf - Accepted Version

Download (2MB) | Preview

Abstract

The optical fibre is a ubiquitous transmission medium since it is able to provide both high speed and low loss. Optical fibre transmission systems carry 99% of the world’s telecommunication traffic. The emergence of new services and Internet applications gives rise to the exponentially increasing demand for higher transmission data rates, motivating the search for new methods to enhance the capacity of optical fibre systems. However, due to the presence of power-dependent signal degradation effects (the optical Kerr effects) together with bandwidth limitations constrained by the low-loss region of the fibre, the current optical fibre communication infrastructure is unable to cope with the ever-growing demand for data rates. The capacity of an optical fibre channel remains unknown and is an open research question. The PhD research described in this thesis aimed to theoretically investigate the capacity of the nonlinear optical fibre channel using information-theoretic tools with the view to improving information data rates of optical fibre networks. The first part of the thesis is concerned with a comprehensive study of Kerr nonlinearity-compensated dispersion unmanaged ultra-wide bandwidth optical fibre communication systems. The bounds on information rate, based on the proposed model, which takes into account the fundamental limitations due to nonlinear interactions between optical signal and amplifier noise, were accurately estimated. The second part deals with the application of the so-called integrability property (the general ideas based around nonlinear Fourier transform (NFT)) of a lossless and noiseless nonlinear Schrödinger equation (NLSE). A new non-Gaussian channel model for soliton-based transmission, in which data is assumed to be embedded into the imaginary part of the nonlinear discrete spectrum was proposed for the first time. New asymptotic semi-analytic approximations for non-decaying capacity bounds have been derived. The theoretical results of this research can be considered as an important first step towards the ultimate capacity limits of nonlinear optical communication links.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Investigation into Information Capacity of Nonlinear Optical Fibre Communication Systems
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10070129
Downloads since deposit
446Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item