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Abstract	

Psychologists	often	use	peripheral	physiological	measures	to	infer	a	psychological	
variable.	It	is	desirable	to	make	this	inverse	inference	in	the	most	precise	way,	ideally	

standardized	across	research	laboratories.	In	recent	years,	psychophysiological	

modeling	has	emerged	as	a	method	that	rests	on	statistical	techniques	to	invert	

mathematically	formulated	forward	models	(psychophysiological	models,	PsPMs).	

These	PsPMs	are	based	on	psychophysiological	knowledge	and	optimized	with	respect	

to	the	precision	of	the	inference.	Building	on	established	experimental	manipulations,	

known	to	create	different	values	of	a	psychological	variable,	they	can	be	benchmarked	in	

terms	of	their	sensitivity	(e.g.,	effect	size)	to	recover	these	values	we	have	termed	this	

predictive	validity.	In	this	review,	we	introduce	the	problem	of	inverse	inference	and	

psychophysiological	modelling	as	a	solution.	We	present	background	and	application	for	

all	peripheral	measures	for	which	PsPMs	have	been	developed:	skin	conductance,	heart	

period,	respiratory	measures,	pupil	size,	and	startle	eye	blink.	Many	of	these	PsPMs	are	

task	invariant,	implemented	in	open-source	software,	and	can	be	used	off	the	shelf	for	a	
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wide	range	of	experiments.	Psychophysiological	modeling	thus	appears	as	a	potentially	

powerful	method	to	infer	psychological	variables.		
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1	Introduction	

Peripheral	physiological	measurements	are	often	used	to	infer	psychological	variables.	

For	example,	to	test	a	psychological	intervention	that	reduces	fear	memory,	a	researcher	

may	be	interested	in	quantifying	the	strength	of	fear	memory	from	skin	conductance	

responses	(SCR).	This	psychological	perspective	is	the	opposite	of	a	basic	

psychophysiological	perspective,	in	which	researchers	aim	to	describe	how	
psychological	variables	impact	on	the	peripheral	measure.	To	enable	inference	on	a	

psychological	variable,	the	psychophysiological	mapping	from	this	variable	to	the	

measured	signal	(the	"forward	model"	in	statistical	terminology)	needs	to	be	known	

with	some	certainty,	and	it	needs	to	be	exploited	in	the	best	possible	way	(the	model	

needs	to	be	"inverted"),	to	arrive	at	the	most	precise	estimate	of	the	psychological	

variable.	This	is	the	psychophysiological	inverse	problem	(Figure	1a).	

Psychophysiological	modeling	is	a	statistical	framework	to	solve	this	problem	in	a	

principled	manner	(Bach	&	Friston,	2013).	It	can	provide	experiment-invariant,	off-the-

shelf	applications	that	improve	on	current	methods	for	inverse	inference	and	thereby	

suggest	meaningful	methodological	standards	to	enhance	reproducibility.		
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Indeed,	psychophysiological	modeling	approaches	have	been	applied	to	analyze	a	wide	

variety	of	experiments:	to	infer	attentional	variables	from	pupil	responses	(e.g.,	de	Gee	

et	al.,	2017;	de	Gee,	Knapen,	&	Donner,	2014),	to	infer	fear	learning	from	SCR	(e.g.,	Bach,	

Weiskopf,	&	Dolan,	2011;	Bulganin,	Bach,	&	Wittmann,	2014;	Tzovara,	Korn,	&	Bach,	

2018)	and	startle	eyeblink	(Bach,	Tzovara,	&	Vunder,	2017),	and	to	quantify	autonomic	

arousal	during	perception	(e.g.,	Bach,	Seifritz,	&	Dolan,	2015;	Hayes	et	al.,	2013;	Koban,	

Kusko,	&	Wager,	2018;	Koban	&	Wager,	2016;	Sulzer	et	al.,	2013),	decision-making	(e.g.,	

Alvarez,	et	al.,	2015;	Bach,	2015a;	de	Berker	et	al.,	2016;	Nicolle,	Fleming,	Bach,	Driver,	&	

Dolan,	2011;	Talmi,	Dayan,	Kiebel,	Frith,	&	Dolan,	2009),	and	rest	(Fan	et	al.,	2012).		

	
This	review	is	structured	in	the	following	way.	First,	we	discuss	how	to	compare	

methods	for	inverse	inference	on	psychological	variables	and	introduce	the	concept	of	

predictive	validity.	We	then	present	psychophysiological	modeling	as	a	novel	approach,	

including	a	specific	implementation	created	by	the	authors	together	with	related	

methods.	In	the	major	part	of	the	review,	we	give	a	tutorial-style	overview	of	the	various	

forward	models	and	inversion	methods	developed	over	the	past	decade,	for	different	

physiological	measures.	The	field	is	moving	rapidly.	While	nine	methodological	articles	

	
	
Figure	1.	A:	The	psychophysiological	inverse	problem.	Top:	psychophysiological	perspective	(forward	inference,	
e.g.,	Does	aversive	memory	influence	SCR?).	Bottom:	psychological	perspective	(inverse	inference,	e.g.,	Does	my	
procedure	establish	aversive	memory,	as	indexed	by	SCR?)	B:	Benchmarking	an	inverse	inference	method	by	
assessing	predictive	validity:	What	is	the	sensitivity	for	inferring	the	effect	of	a	known	experimental	
manipulation.	
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on	the	topic	were	published	between	1993	-	2013,	11	such	papers	came	out	in	the	5	

years	since	the	last	review	on	the	topic	(Bach	&	Friston,	2013).	This	last	review	

contained	a	historical	perspective	on	the	development	of	models	for	SCR	in	the	1990s	

and	2000s	(Alexander	et	al.,	2005;	Bach,	Flandin,	Friston,	&	Dolan,	2009;	Barry,	

Feldmann,	Gordon,	Cocker,	&	Rennie,	1993;	Lim	et	al.,	1997)	and	on	the	emergent	

critique	of	operationalism	(Green,	1992);	here,	we	approach	the	problem	in	a	

systematic,	nonhistorical	manner.	

	

	
2	Predictive	validity	

All	analysis	methods	for	psychophysiological	signals	are	based	on	some	knowledge	

about	the	forward	mapping	from	psychology	to	physiology.	A	plethora	of	

psychophysiological	literature	has	addressed	such	forward	mappings.	However,	even	

with	a	perfect	forward	model	there	are	different	ways	of	making	inverse	inference.	For	

example,	one	can	define	different	possible	time	windows	to	detect	an	SCR	peak	after	an	

experimental	event.	Extending	the	peak	window	may	increase	the	sensitivity	of	the	

method	to	detect	a	true	event-related	response,	but	decrease	its	specificity	because	

experiment-unspecific	peaks	may	be	mistaken	for	event-related	ones.	Crucially,	the	

optimal	balance	is	difficult	to	intuit	as	is,	for	example,	evident	from	the	coexistence	of	

different	peak	detection	windows	in	analysis	recommendations	(Boucsein	et	al.,	2012),	

and	sometimes	even	within	the	same	laboratories.	Hence,	it	would	be	desirable	to	

quantitatively	evaluate	an	inverse	inference	method.		

	
To	assess	the	quality	of	inverse	inference,	one	would	ideally	compare	the	inferred	with	

the	actual	value	of	the	psychological	variable	(i.e.,	with	"ground	truth").	Of	course,	

ground	truth	is	never	known	for	psychological	variables.1	To	solve	this	conundrum,	we	

have	pragmatically	proposed	to	use	an	experimental	manipulation	that	can	be	assumed	

to	influence	the	psychological	variable	in	a	certain	way	and	is	known	to	impact	on	the	

peripheral	measure.	One	can	then	evaluate	methods	by	their	sensitivity	to	detect	the	

impact	of	this	experimental	manipulation	(Figure	1b).	We	have	introduced	the	term	

predictive	validity	for	this	measure	(Bach,	Daunizeau,	Friston,	&	Dolan,	2010),	since	it	

																																																								
1	This	is	true	for	many	areas	of	science	and	technology.	
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evaluates	how	well	the	psychological	variable	can	be	predicted.2	Predictive	validity	

analysis	has	often	been	performed	on	a	categorical	experimental	manipulation	(e.g.,	

anticipating	threat	or	safety	in	fear	conditioning).	Although	it	may	thus	appear	on	the	

surface	that	predictive	validity	boils	down	to	classification	performance,	one	usually	

aspires	to	infer	psychological	variables	on	a	continuous	scale,	so	that	the	method	

extends	to	situations	in	which	the	psychological	variable	varies	parametrically	across	

more	than	two	levels.	Crucially,	since	most	psychophysiological	measures	are	relatively	

unspecific,	validation	experiments	require	that	the	experimental	conditions	differ	on	

only	one	dimension,	the	psychological	variable	of	interest.	This	is	true	for	any	inverse	

inference	method.	Once	a	method	with	high	predictive	validity	is	identified,	one	can	

apply	this	method	to	other	(methodologically	similar)	experiments	to	infer	the	same	

psychological	variable.		

	
Thus,	in	a	validation	experiment,	a	good	inference	method	provides	an	estimator	of	the	

(known)	psychological	variable	that	has	smaller	variance	than	any	other	method.	For	a	

categorical	validation	experiment	with	two	levels,	this	simply	means	-	because	the	scale	

of	the	psychological	variable	is	arbitrary	-	that	the	standardized	difference	in	the	

estimated	psychological	variable	between	these	two	levels	should	be	large.	This	can	be	

evaluated	by	regarding	the	effect	size,	or	test	statistic,	or	the	residual	sums	of	squares	in	

a	predictive	model,	or	the	model	evidence	of	that	predictive	model.	All	of	these	

quantities	are	monotonically	related.	Using	model	evidence	additionally	allows	us	to	

make	statements	whether	two	methods	are	decisively	different	(Bach	&	Friston,	2013;	

see	Appendix	Equation	1).	At	the	same	time,	the	difference	in	the	estimated	

psychological	variable	between	two	random	partitions	of	the	same	experimental	

condition	should	be	zero	on	average.	

	

Predictive	validity	can	be	harnessed	to	validate	any	inverse	inference	method,	including	
operational	analysis.	For	the	psychophysiological	modeling	approach,	some	additional	

considerations	are	warranted.	Here,	psychological	variables	are	estimated	by	optimizing	

the	goodness-of-fit	of	the	forward	model.	Yet,	for	comparison	of	different	methods,	the	

goodness-of-fit	of	the	forward	model	is	not	a	suitable	criterion.	The	goal	of	the	forward	

																																																								
2	Because	the	psychological	variable	is	known	a	priori,	one	could	also	call	it	“retrodictive	
validity”.	
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model	is	to	predict	the	signal,	and	the	goal	of	inference	is	to	find	the	most	precise	

estimate	of	the	psychological	variable.	These	two	goals	can	align	with,	be	orthogonal	to,	

or	even	oppose	each	other.	Intuitively,	one	could	assume	that,	if	the	forward	model	is	

known	with	certainty	and	formulated	in	mathematical	terms,	one	should	easily	be	able	

to	invert	the	mapping.	However,	there	are	several	statistical	reasons	why	this	intuition	

is	incorrect	in	the	general	case	(although	it	may	be	correct	under	specific	

circumstances).	First,	the	forward	model	may	use	parameters	that	one	is	not	interested	

in	inferring.	For	example,	the	best	known	forward	model	for	SCR	assumes	that	the	

strength	or	amplitude	of	psychological	input	into	the	system	is	different	on	each	trial	

(Gerster,	Namer,	Elam,	&	Bach,	2017).	However,	many	researchers	are	not	interested	in	

psychological	variables	on	a	trial-by-trial	basis	but	only	in	the	average	psychological	

variable	within	an	experimental	condition.	The	standard	general	linear	model	(GLM)	

inversion	approach	for	SCR	(Bach	et	al.	2009;	Bach,	Friston,	&	Dolan,	2013)	will	
normally	yield	the	same	conditionwise	estimates,	regardless	of	whether	estimation	was	

done	on	a	trial-by-trial	basis	followed	by	averaging,	or	on	a	condition-by-condition	basis.	

In	this	case,	the	simpler	model	yields	the	same	inference	on	the	psychological	state,	

although	empirically	it	cannot	predict	SCR	data	so	well,	because	it	would	assume	the	

same	(average)	SCR	amplitude	for	each	trial	(Bach	et	al.,	2013).	Hence,	precision	of	the	

forward	model	and	of	the	inference	are	unrelated.	An	example	where	they	are	opposed	

is	given	by	individual	response	functions	for	SCR.	All	evidence	suggests	that	the	mapping	

from	sudomotor	nerve	activity	to	skin	conductance	depends	on	subject-specific	

anatomical	properties,	and	is	variable	between	persons	(Bach,	Flandin,	Friston,	&	Dolan,	

2010;	Gerster	et	al.,	,	2017).	Hence,	a	forward	model	taking	this	heterogeneity	into	

account	will	have	a	better	goodness-of-fit	than	a	model	assuming	a	canonical	response	

function	across	subjects,	as	we	have	also	shown	empirically	(Bach	et	al.,	,	2013).	At	the	

same	time,	it	can	be	difficult	to	estimate	the	shape	of	an	individual's	true	response	

function	from	a	limited	number	of	trials	with	short	inter	trial	intervals,	and	ensuing	
"overfitting"	can	make	inference	on	the	psychological	variable	worse,	reducing	

predictive	validity	(Bach,	Friston,	&	Dolan,	2013).		

	

To	summarize,	predictive	validity	allows	a	statement	on	the	quality	of	inverse	inference,	

regardless	of	the	method	under	study.	It	can	be	used	to	benchmark	psychophysiological	

models,	operational	methods,	or	even	machine-learning	methods	that	try	to	find	

statistical	regularities	without	any	knowledge	of	the	psychological	or	biophysical	
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relationships	(Greco	et	al.,	2017;	Greco,	Lanata,	Valenza,	Di	Francesco,	&	Scilingo,	2016;	

Greco,	Valenza,	&	Scilingo,	2016).	As	a	statistical	framework,	it	has	a	potential	to	

improve	inverse	inference,	to	standardize	methods	across	laboratories	(by	selecting	the	

best	one),	and	to	provide	an	objective	means	for	quality	control	within	and	between	

laboratories.	We	will	return	to	these	latter	points	in	the	discussion.	

	

	
3	Psychophysiological	Modeling	

The	goal	of	inverse	inference	is	to	find	the	best	possible	estimator	of	a	psychological	
variable,	from	a	measured	data	time	series.	This	includes	so-called	operational	methods,	

which	"operationalize"	(i.e.,	equate	a	noisy	version	of)	the	psychological	variable	with	a	

single	physiological	data	feature,	for	example,	a	peak-to-trough	measure.	Because	

operational	methods	use	one	or	a	very	small	number	of	data	features,	rather	than	the	

entire	time	series,	they	may	suffer	from	information	loss.	Psychophysiological	modeling	

is	a	way	of	using	an	entire	data	time	series	for	inference	(Figure	2).	In	a	nutshell,	a	

psychophysiological	model	(PsPM)	is	a	formal,	quantitative	model	that	maps	a	

psychological	variable	onto	an	observed	data	time	series.	PsPMs	are	specified	in	

mathematical	form.	The	earliest	PsPMs	were	developed	for	SCR	and	explicitly	
constituted	a	sequence	of	two	models	(Figure	3a):	a	neural	model	that	specifies	the	

mapping	of	the	psychological	variable	onto	sudomotor	nerve	activity	(SNA),	and	a	

peripheral	(effector	organ)	model	that	specifies	how	SNA	maps	onto	measured	SCR	

(Alexander	et	al.,	2005;	Bach	et	al.,	2009;	Lim	et	al.,	1997).	For	SCR,	this	split	is	useful	

	
	
	

Figure	2.	Operational	analysis	(top)	assumes	that	selected	data	features	are	"equivalent"	to	a	psychological	
variable,	where	the	selection	of	data	features	is	often	based	on	informal	models.	Psychophysiological	modelling	
(bottom)	estimates	the	most	likely	psychological	variable,	given	the	entire	data	time	series	and	a	standard	
(experiment-invariant)	response	model.	
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because	the	peripheral	model	can	be	evaluated	on	its	own	by	intraneural	stimulation	

and	recordings	from	well	accessible	peripheral	nerves	(Gerster	et	al.,	2017).	For	some	

other	measures,	the	peripheral	model	can	be	approximated	by	specific	stimuli,	for	

example,	one	can	use	luminance	changes	to	elucidate	pupil	mechanics.	However,	for	

most	PsPMs	that	have	been	created	to	date,	neural	and	peripheral	processes	are	more	

difficult	to	separate	experimentally	as	the	efferent	nerves	are	less	accessible	(at	least	in	

humans),	and	in	current	models	they	are	either	collapsed,	or	the	distinction	is	only	used	

for	mathematical	convenience.		

	

3.1	Hybrid	approaches	

The	empirical	distinction	between	neural	and	peripheral	models	for	SCR	has	early	on	

motivated	a	hybrid	approach	(Alexander	et	al.,	2005),	engendered,	for	example,	in	the	

	
	
Figure	3.	A:	Basic	formalism	of	most	psychophysiological	models.	B:	Related	hybrid	approaches	(e.g.	Ledalab,	
cvxEDA)	use	a	standard	response	model	to	infer	a	(noisy)	time	series	of	neural	inputs,	and	select	data	features	of	
that	time	series	as	"equivalent"	to	the	psychological	variable.	C:	Linear	time	invariant	(LTI)	systems	lie	at	the	core	
of	all	existing	psychophysiological	modelling	and	hybrid	approaches.	A	neural	input	is	convolved	with	a	canonical	
(experiment-invariant)	response	function,	to	yield	a	prediction	for	the	measured	signal.		
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softwares	Ledalab	(Benedek	&	Kaernbach,	2010a,	2010b)	or	cvxEDA	(Greco,	Valenza,	

Lanata,	Scilingo,	&	Citi,	2015).	In	this	approach,	a	deterministic	peripheral	model	is	

inverted	to	compute	a	noisy	SNA	time	series	from	the	time	series	of	measured	SCR	data.	

To	make	inference	on	psychological	variables,	some	data	features	(peak-to-trough	

measures)	of	the	SNA	time	series	are	extracted,	in	line	with	more	traditional	operational	

analysis	(Figure	3b).	This	second	mapping	is	heuristically	motivated,	not	quantitatively	

specified	or	evaluated.	Two	different	study	groups	have	compared	Ledalab	with	peak-

to-trough	methods	on	the	one	hand	and	a	full	PsPM-based	approach	on	the	other,	in	

paradigms	with	relatively	short	intertrial	intervals.	On	average,	the	hybrid	Ledalab	

approach	was	found	to	yield	similar	predictive	validity	as	directly	using	peak-to-trough	

measures	of	the	SCR	data,	and	its	predictive	validity	was	surpassed	by	inversion	of	full	

PsPMs	(Bach,	2014;	Green,	Kragel,	Fecteau,	&	LaBar,	2014).	Systematic	evaluation	of	

cvxEDA	has	not	yet	been	conducted.	Notably,	these	approaches	differ	from	the	PsPM	
approach	also	in	their	peripheral	forward	models	and	statistical	methods	for	model	

inversion.	They	could	possibly	be	extended	to	directly	estimate	psychological	variables,	

but	retaining	their	specific	forward	models	and	inversion	methods.		

	

3.2	Linear	time	invariant	systems	

All	PsPMs	and	hybrid	models	that	have	been	proposed	up	to	today	contain	at	their	heart	

a	linear	time	invariant	(LTI)	system	(Figure	3c).	A	LTI	system	is	a	system	the	output	of	

which	does	not	explicitly	depend	on	time	(time	invariance),	and	the	output	to	the	sum	of	

two	inputs	is	just	the	sum	of	the	outputs	of	the	individual	inputs	(linearity).	The	first	

principle	implies	that	different	response	shapes	are	explained	by	different	inputs.	

According	to	the	linearity	principle,	the	magnitude	of	a	response	does	not	depend	on	the	

baseline.	LTI	systems	are	unambiguously	described	by	the	mathematical	operation	of	

convolution	(overlap	integral)	of	an	input	time	series	with	a	response	function	(RF),	

which	corresponds	in	signal	processing	terms	to	a	linear	filter	(see	Appendix	Equation	
2).	LTI	systems	constitute	a	mathematical	simplification	of	real	biophysical	systems,	

which	contain	many	parameters	that	cannot	be	usefully	constrained	from	measured	

data.	We	will	report	for	each	measure	how	can	it	be	described	by	a	LTI	system.	

	

3.3	Model	inversion	

Many	PsPMs	assume	that	experimental	events	rapidly	engage	a	psychological	process,	

which	then	feeds	into	the	physiological	system	with	constant	latency	and	shape.	Under	
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these	assumptions,	the	amplitude	of	the	psychological	input	can	be	estimated	in	a	

general	linear	(convolution)	model	(Bach	et	al.,	2009),	similar	to	standard	approaches	

for	analysis	of	fMRIs	(Friston,	Jezzard,	&	Turner,	1994).	In	a	nutshell,	the	RF	is	convolved	

with	a	time	series	of	impulses	(delta	functions)	centered	on	experimental	events	for	

each	condition,	and	the	ensuing	time	series	form	columns	in	the	design	matrix	of	a	

multiple	regression	model.	The	estimated	coefficient	of	an	individual	event	column	

constitutes	the	amplitude	estimate	for	that	condition	(see	Appendix	Equation	3-5).	

Loosely	speaking,	the	RF	is	regressed	onto	the	observed	response,	and	the	regression	

coefficient	is	the	estimate	of	the	input	amplitude.	If	latency	and/or	shape	of	the	

psychological	input	cannot	be	assumed	to	be	constant,	then	they	need	to	be	estimated	as	

well,	and	the	inversion	model	becomes	nonlinear,	for	example,	in	SCR	models	for	fear	

conditioning	(Bach,	Daunizeau	et	al.,	2010)	or	startle	eye	blink	response	(SEBR)	models	

(Khemka,	Tzovara,	Gerster,	Quednow,	&	Bach,	2017).		
	

	
4	Psychophysiological	models	for	different	measurements	

Table	1	gives	an	overview	of	the	different	psychophysiological	models	proposed	until	

today.	
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Table	1:	Psychophysiological	models	developed	until	today.	PSR:	pupil	size	responses.	SCR:	skin	conductance	responses.	HPR:	Heart	period	responses.	RPR:	respiration	period	responses.	 1	
RAR:	respiration	amplitude	responses.	RFRR:	respiratory	flow	rate	responses.	SEBR:	startle	eye	blink	responses.	 2	
Measure

ment	

Psychological	

variable	

Neural	model	 Peripheral	model	 Model	

inversion	

Software	

implementation	

Published	in	

SCR	 Generic	phasic	arousal	 Instantaneous	impulse	 LTI	system	with	parameters	

from	empirical	data	

GLM	 PsPM	 Bach,	2014;	Bach,	Flandin,	Friston,	&	

Dolan,	2009;	Bach,	Flandin,	Friston,	&	

Dolan,	2010;	Bach,	Friston,	&	Dolan,	2013	

	 Generic	phasic	arousal	

(validated	for	fear	

conditioning)	

Constrained	Gaussian	

impulse	

LTI	system	with	parameters	

from	empirical	data	

Variational	

Bayes	

PsPM	 Bach,	Daunizeau,	Friston,	&	Dolan,	2010;	

Staib,	Castegnetti,	&	Bach,	2015	

	 Generic	tonic	arousal	

(validated	for	anxiety	

and	cognitive	load)	

Gaussian	impulses	

with	constant	shape	

and	unconstrained	

onset	

LTI	system	with	parameters	

from	empirical	data	

Variational	

Bayes	

PsPM	 Bach,	Daunizeau,	Kuelzow,	Friston,	&	

Dolan,	2011;	Bach,	Friston,	&	Dolan,	2010	

	 Generic	 Not	specified	 LTI	system	with	parameters	

from	theoretical	considerations	

Deterministic	

inverse	filter		

Ledalab	 Benedek	&	Kaernbach,	2010a;	Benedek	&	

Kaernbach,	2010b	

	 Generic	 Discrete	impulses	with	

unconstrained	onset	

LTI	system	with	parameters	

from	theoretical	considerations	

Convex	

optimisation	

cvxEDA	 Greco,	Valenza,	Lanata,	Scilingo,	&	Citi,	

2015	

PSR	 Luminance	adaptation	 Instantaneous	impulse	 Combination	of	2	LTIs	with	

parameters	from	empirical	data	

GLM	 PsPM	 Korn	&	Bach,	2016	

	 Attention		 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

OLS	estimation	

in	frequency	

domain	

Pupil	 Hoeks	&	Levelt,	1993	

	 Fear	conditioning	 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

GLM	 PsPM	 Korn,	Staib,	Tzovara,	Castegnetti,	&	Bach,	

2017	

HPR	 Not	yet	specified	 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

GLM	 PsPM	 Paulus,	Castegnetti,	&	Bach,	2016	

	 Fear	conditioning	 Instantaneous	impulse	 LTI	with	parameters	from	 GLM	 PsPM	 Castegnetti,	et	al.,	2016	



	

	 12	

empirical	data	

RPR	 Not	yet	specified	 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

GLM	 PsPM	 Bach,	Gerster,	Tzovara,	&	Castegnetti,	2016	

RFRR	 Not	yet	specified	 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

GLM	 PsPM	 Bach,	Gerster,	Tzovara,	&	Castegnetti,	2016	

RAR	 Not	yet	specified	 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

GLM	 PsPM	 Bach,	Gerster,	Tzovara,	&	Castegnetti,	2016	

	 Fear	conditioning	 Instantaneous	impulse	 LTI	with	parameters	from	

empirical	data	

GLM	 PsPM	 Castegnetti,	Tzovara,	Staib,	Gerster,	&	

Bach,	2017	

SEBR	 Generic	startle	reflex	 Instantaneous	impulse	

with	variable	latency	

LTI	with	parameters	from	

empirical	data	

Template	

matching/GLM	

PsPM	 Khemka,	Tzovara,	Gerster,	Quednow,	&	

Bach,	2017	
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4.1	Skin	conductance	 3	

4.1.1	Forward	model	 4	

Skin	conductance	is	often	used	to	infer	phasic	or	tonic	sympathetic	arousal	generated	by	 5	

a	wide	range	of	psychological	stimuli	and	tasks	(Boucsein,	2012).	Opening	of	sweat	 6	

glands,	elicited	via	the	sympathetic	nervous	system	with	negligible	parasympathetic	 7	

transmission,	causes	phasic	increases	of	skin	conductance	that	are	termed	SCR	(see	 8	

Boucsein,	2012,	for	the	physiology	of	SCR).	Slow	C	fibers	carrying	impulses	to	the	sweat	 9	

glands	are	termed	sudomotor	(SN),	and	their	activity	can	be	measured	by	intraneural	 10	

recordings.	From	their	end	terminal,	the	neurotransmitter	acetylcholine	diffuses	 11	

through	the	skin	to	reach	sweat	glands,	a	process	on	the	time	scale	of	up	to	a	second.	In	 12	

the	history	of	psychophysiological	modeling,	it	was	recognized	early	on	that	 13	

nonoverlapping	SCR	can	be	well	described	by	a	simple	response	function,	and	 14	

overlapping	SCR	can	be	seen	as	being	generated	by	a	LTI	system	(Alexander	et	al.,	2005;	 15	

Bach	et	al,	2009).	All	published	SCR	models	have	therefore	assumed	that	the	mapping	 16	

from	SNA	to	SCR	(but	not	necessarily	from	psychological	variable	to	SNA)	is	well	 17	

described	by	a	LTI	system.		 18	

	 19	

Two	types	of	response	functions	have	been	proposed:	one	based	on	a	biophysical	model	 20	

of	the	sweat	gland,	with	parameters	set	from	theoretical	considerations	(Alexander	et	 21	

al.,	2005;	Benedek	&	Kaernbach,	2010a,	2010b;	Greco	et	al.,	2015),	and	a	purely	 22	

phenomenological	function	with	parameters	fitted	to	a	database	of	1,278	SCRs	from	64	 23	

individuals	in	six	different	experimental	conditions	(Bach,	Daunizeau	et	al.,	2010;	Bach	 24	

et	al.,	2009;	Bach,	Flandin	et	al.,,	2010).	While	the	former	approach	appears	theoretically	 25	

more	rigorous,	many	of	the	biophysical	parameters	were	not	known	from	physiological	 26	

research	and	had	to	be	guessed.	The	ensuing	forward	model	has	not	been	systematically	 27	

evaluated,	and	it	is	unclear	how	well	this	response	function	fits	actual	SCR.	In	contrast,	 28	

the	latter	model	is	defined	by	its	fit	to	empirical	data.	This	phenomenological	response	 29	

function	is	mathematically	described	by	a	Gaussian-smoothed	exponential	(Bach,	 30	

Flandin	et	al.,	2010)	or	a	third-order	(linear,	constant-coefficient)	ordinary	differential	 31	

equation	;	see	Appendix-	Equation	6,	7).		 32	

	 33	

There	are	good	empirical	arguments	to	motivate	the	use	of	LTI	systems	to	model	the	 34	

SNA/SCR	relationship,	provided	that	SCR	data	are	high-pass	filtered.	Three	kinds	of	tests	 35	

have	been	exploited	to	evaluate	the	forward	model.	Indirect	tests	made	the	auxiliary	 36	
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assumption	that	SN	bursts	follow	external	stimulation	with	constant	shape	and	latency	 37	

(this	assumption	is	not	part	of	the	LTI	system).	These	tests	showed,	that	for	short	events	 38	

(<	1	s	duration)	that	are	separated	by	at	least	30	s,	more	than	60%	of	the	variance	in	 39	

(high	-	pass	filtered)	SCR	can	be	explained	under	a	LTI	model	(Bach,	Flandin	et	al.,	 40	

2010),	supporting	the	plausibility	of	the	time	invariance	approximation.	In	the	absence	 41	

of	stimulation,	baseline	variance	exceeded	the	residual	variance	under	stimulation,	 42	

implying	that	the	residual	variance	is	due	to	noise	rather	than	LTI	violations	(Bach,	 43	

Flandin	et	al.,	2010).	SCR	to	pairs	of	stimuli	separated	by	different	intervals	(2	-	9	s)	do	 44	

not	depend	on	the	interval,	in	line	with	the	linearity	principle	(Bach,	Flandin	et	al.,	 45	

2010).	A	more	direct	test	of	the	time	invariance	principle	is	furnished	by	intraneural	 46	

recordings,	which	show	that	60%	-	75%	of	SCR	variance	is	explained	by	a	LTI	model	that	 47	

takes	SN	activity	as	input,	although	this	is	still	suffering	from	interfering	non-SN	(e.g.,	 48	

vasomotor	nerve)	activity	(Gerster	et	al.,	2017).	A	third	approach	relies	on	intraneural	 49	

stimulation	while	blocking	interfering	nerve	traffic	by	regional	anesthesia.	Here,	SN	is	 50	

stimulated	at	different	repetition	frequencies,	thus	simultaneously	addressing	the	 51	

linearity	and	time	invariance	principle.	In	this	case,	93%	-	99%	of	SCR	variance	is	 52	

explained	under	a	LTI	model	when	stimulation	frequency	is	below	0.6	Hz.	Above	this	 53	

stimulation	frequency,	the	LTI	model	cannot	be	usefully	applied	due	to	strong	 54	

nonlinearities	(Gerster	et	al.,	2017);	however,	this	limitation	should	be	largely	irrelevant	 55	

for	most	psychological	experiments	with	slower	stimulation	rates.	To	summarize,	it	 56	

appears	that	under	suitable	conditions,	a	LTI	model	is	not	just	an	approximation	but	 57	

rather	an	accurate	description	of	biophysical	reality	in	the	SNA/SCR	system.	Notably,	 58	

tonic	skin	conductance	components,	which	are	filtered	out	in	all	modeling	approaches,	 59	

do	not	appear	to	be	modeled	by	a	finite	LTI	system.	 60	

	 61	

The	LTI	model	does	not	make	the	assumption	that	SCR	shape	is	constant	between	 62	

individuals.	On	the	contrary,	all	evidence	suggests	that	this	is	not	the	case.	Nevertheless,	 63	

inference	based	on	a	canonical	response	function	already	provides	better	inference	than	 64	

operational	methods.	We	have	shown	that	this	inference	can	be	further	improved	by	 65	

allowing	some	variability	between	individuals,	but	only	if	the	possible	individual	 66	

response	functions	are	very	strongly	constrained	to	avoid	overfitting	(Bach	et	al.,	2013;	 67	

Staib,	Castegnetti,	&	Bach,	2015).		 68	

	 69	
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For	the	mapping	from	psychological	variable	to	SNA,	three	different	forward	models	 70	

have	been	developed	and	evaluated.	First,	short	stimuli	elicit	rapid	SNA	with	constant	 71	

Q6	latency	(Bach	et	al.,	2009).	It	appears	that	the	mapping	from	psychological	variable	 72	

to	SCR	is	largely	invariant	to	the	type	of	experiment	stimulus	(aversive	white	noise	 73	

bursts,	aversive	electric	stimulation,	aversive	pictures,	auditory	oddballs,	and	a	visual	 74	

detection	task;	Bach,	Flandin	et	al.,,	2010),	which	motivates	the	use	of	this	model	for	 75	

phasic	arousal	independent	of	the	eliciting	stimulus	or	experiment.	For	longer	stimuli	or	 76	

anticipation	of	stimuli,	a	model	with	variable	SNA	latency	and	shape	can	be	used,	and	 77	

these	two	parameters	are	estimated	from	the	experimental	data	(Bach,	Daunizeau	et	al.,	 78	

2010).	This	model	was	motivated	specifically	to	analyze	fear	condition	experiments	in	 79	

which	participants	are	exposed	to	conditioned	stimuli	(CS),	one	of	which	(CS+)	predicts	 80	

an	aversive	event	(US).	Typically,	there	is	a	time	delay	between	CS+	and	US,	and	so	 81	

participants	will	anticipate	the	US	during	CS+	and	(	to	a	diminishing	extent)	during	CS-	 82	

presentation	and	express	SCR	at	some	(unknown	and	possibly	variable)	time	point	 83	

during	this	interval.	Notably	(and	different	from	models	discussed	later),	responses	to	 84	

CS+	and	CS-	are	thought	to	be	governed	by	the	same	psychological	process,	but	to	be	 85	

quantitatively	dissimilar.	Hence,	in	this	application	of	the	model,	a	conditioned	 86	

sudomotor	nerve	response	to	each	CS	is	estimated,	and	the	difference	in	their	amplitude	 87	

between	CS+	and	CS-	constitutes	the	inference	on	fear	memory.	Finally,	to	account	for	 88	

spontaneous	SCR	fluctuations,	a	model	is	proposed	in	which	constant-shape	SN	bursts	 89	

occur	with	variable	onset	and	amplitude,	which	are	estimated	from	the	data	(Bach,	 90	

Daunizeau	et	al.,,	2011).		 91	

	 92	

4.1.2	Inference	on	psychological	variables	 93	

The	constant-latency	forward	model	is	inverted	in	a	GLM	approach	(Bach	et	al.,,	2009)	 94	

and	has	been	evaluated	on	independent	data	sets	(Bach,	2014;	Bach	et	al.,	2013)	in	 95	

comparison	to	different	peak-scoring	measures	(Boucsein	et	al.,	2012)	and	to	measures	 96	

from	the	hybrid	Ledalab	approach	(Benedek	&	Kaernbach,	2010a,,	2010b).	Predictive	 97	

validity	was	assessed	for	the	comparison	of	negative	arousing	versus	neutral	picture	 98	

presentation,	positive	arousing	versus	neutral	pictures,	picture	presentation	versus	no	 99	

stimulus,	and	fearful	versus	angry	face	presentation.	Predictive	validity	was	decisively	 100	

higher	for	the	GLM-based	approach	on	the	majority	of	comparisons,	and	it	was	never	 101	

decisively	surpassed	by	another	method	in	the	remaining	comparisons	(Bach,	2014).	In	 102	

an	evaluation	study	from	an	independent	laboratory,	a	GLM	approach	had	higher	 103	
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predictive	validity	than	peak-scoring	or	Ledalab	for	distinguishing	CS+	and	CS-	in	 104	

aversive	learning	(Green	et	al.,	,	2014).	For	distinguishing	five	different	phases	of	a	fear	 105	

generalization	experiment,	peak	scoring	appeared	to	have	higher	predictive	validity	 106	

(Green	et	al.,	2014).	However,	note	that	the	predictive	validity	evaluation	assumes	that	 107	

distinguishable	different	psychological	states	are	created	by	the	experiment,	which	is	 108	

less	well	established	for	the	latter	manipulation.	This	study	did	not	allow	for	assessing	 109	

whether	any	method	was	decisively	better	or	worse	than	another.3		 110	

	 111	

The	flexible-latency	forward	model	is	inverted	in	a	variational	Bayes	approach	(Bach,	 112	

Daunizeau	et	al.,	2010)	and	was	evaluated	on	independent	fear	conditioning	data	sets	 113	

(Staib	et	al,	2015)	in	comparison	to	different	peak-scoring	measures	(Boucsein	et	al.,	 114	

2012)	and	to	measures	from	the	hybrid	Ledalab	approach	(Benedek	&	Kaernbach,	 115	

2010a,	2010b).	Predictive	validity	was	assessed	for	the	comparison	of	CS+	versus	CS-,	 116	

and	was	found	to	be	decisively	higher	for	the	model-based	approach	than	for	peak- 117	

scoring	or	Ledalab	measures	(Staib	et	al.,	2015).		 118	

	 119	

Finally,	the	flexible-onset	model	is	inverted	with	the	same	variational	Bayes	approach	 120	

(Bach,	Daunizeau	et	al.,	2011)	and	can	be	used	to	infer	tonic	arousal,	which	is	often	 121	

operationalized	as	the	number	of	spontaneous	skin	conductance	fluctuations	(Boucsein	 122	

et	al.,	2012).	This	method	was	evaluated	with	respect	to	distinguishing	public	speaking	 123	

anxiety	from	rest	or	nonpublic	speaking	anxiety,	and	mental	load	from	rest.	Predictive	 124	

validity	of	the	model-based	approach	and	of	an	automated	peak-count	measure	was	 125	

comparable	(Bach	&	Staib,	2015).	Furthermore,	under	the	peripheral	LTI	model,	the	 126	

area	under	the	curve	of	a	time	series	equals	the	number	of	spontaneous	fluctuations	 127	

times	their	amplitude.	While	this	relation	has	been	empirically	validated,	the	same	study	 128	

also	showed	that	the	number	of	spontaneous	fluctuations	alone	allows	better	inference	 129	

on	tonic	arousal	than	the	area	under	the	curve	(Bach,	Friston,	&	Dolan,	2010).	 130	

	 131	

4.1.3	Future	directions	 132	

																																																								
3	Bayes	factors	are	reported	in	this	study	as	well,	but	they	are	not	comparable	between	
the	models	evaluated.	Comparison	of	model	evidence	is	only	possible	if	the	dependent	
variable	in	the	model	is	the	same	(Burnham	&	Anderson,	2004)	but	Green	et	al.	(2014)	
use	estimates	of	psychological	state	as	dependent	variable,	which	are	obviously	different	
between	methods.		
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The	constant-latency	GLM	approach	appears	fairly	mature.	It	has	been	optimized	with	 133	

respect	to	model	complexity	and	data	preprocessing	(Bach	et	al.,,	2013)	and	evaluated	 134	

by	two	different	laboratories	(Bach,	2014;	Green	et	al.,	2014).	Current	research	focuses	 135	

on	incremental	improvements,	such	as	data	preprocessing	and	modeling	of	 136	

nonlinearities	under	specific	conditions	such	as	rapid	event	succession,	or	when	the	 137	

sweat	ducts	qualitatively	change	their	response	behavior	(Tronstad,	Kalvoy,	Grimnes,	&	 138	

Martinsen,	2013).	 139	

	 140	

The	flexible-latency	model	is	also	in	a	mature	stage	and	has	been	optimized	(Staib	et	al.,	 141	

2015),	but	a	formal	evaluation	by	different	research	laboratories	is	lacking.	In	terms	of	 142	

the	forward	model,	a	question	remains	as	to	under	what	conditions	additional	 143	

complexity	afforded	by	estimating	response	latency	improves	inference	on	the	 144	

psychological	variable	(i.e.,	What	is	the	level	of	variability	in	response	latency	that	 145	

should	motivate	preferring	this	method	to	the	constant-latency	GLM	approach?).	This	 146	

question	is	awaiting	empirical	investigation.	A	weakness	of	the	flexible-latency	model	is	 147	

its	complexity,	such	that	it	is	impossible	to	estimate	all	parameters	at	the	same	time	on	 148	

standard	PCs	and	cluster	cores.	Parameters	are	therefore	estimated	in	a	trial-by-trial	 149	

fashion	such	that	estimation	errors	that	occur	in	one	trial	will	propagate	into	the	next	 150	

one.	While	some	technical	tricks	reduce	a	detrimental	impact	of	this	sequential	 151	

estimation,	it	may	be	possible	to	improve	on	parameter	estimation	with	a	global	 152	

optimization	method	that	evaluates	the	entire	parameter	space	at	the	same	time.		 153	

	 154	

Finally,	the	flexible-onset	model	is	the	least	mature	and	has	been	evaluated	on	only	a	 155	

small	number	of	questions	and	data	sets;	there	is	room	for	optimization	of	this	method.	 156	

	 157	

Beyond	SCR,	other	measures	also	allow	inference	on	SNA	and,	thus,	on	the	same	 158	

psychological	variables.	It	remains	to	be	determined	whether	measures	such	as	skin	 159	

potential	and	skin	susceptance	(Tronstad	et	al.,	2013)	or	the	memristor	properties	of	the	 160	

skin	(Pabst,	Tronstad,	&	Martinsen,	2017)	yield	additional	information	or	can	help	 161	

reduce	noise	in	the	inverse	inference.		 162	

	 163	

4.2	Pupil	size	 164	

4.2.1	Forward	model	 165	
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A	wide	range	of	psychological	variables	impacts	on	pupil	size	(e.g.,	de	Gee	et	al.,	2014;	 166	

Joshi,	Li,	Kalwani,	&	Gold,	2016).	Pupil	size	is	controlled	by	two	antagonist	muscles:	the	 167	

radial	M.	dilatator	pupillae,	which	receives	sympathetic	innervation	via	preganglionic	 168	

neurons	from	the	spinal	cord	and	postganglionic	neurons	from	the	superior	cervical	 169	

ganglion,	and	the	circular	M.	sphincter	pupillae,	which	receive	parasympathetic	input	 170	

from	preganglionic	neurons	in	 171	

the	Edinger–Westphal	nucleus	within	the	midbrain	and	postganglionic	neurons	in	the	 172	

ciliary	ganglion	(McDougal	&	Gamlin,	2008).	The	Edinger–Westphal	nucleus	receives	 173	

both	luminance-mediated	inputs	from	the	retina	and	appears	to	relay	inputs	that	are	not	 174	

related	to	luminance	(e.g.,	from	the	locus	coeruleus;	Joshi	et	al.,	2016;	Liu,	Rodenkirch,	 175	

Moskowitz,	Schriver,	&	Wang,	2017).	This	innervation	motivates	using	luminance	 176	

changes	to	probe	the	biophysics	of	phasic	pupil	responses.	The	fact	that	the	pupil	is	 177	

controlled	separately	by	both	branches	of	the	autonomic	nervous	system,	and	by	 178	

antagonistic	muscles	with	different	mechanical	properties,	already	suggests	that	pupil	 179	

responses	may	best	be	modeled	by	two	parallel	LTI	systems.	As	a	parsimonious	 180	

description,	a	model	is	proposed	that	does	not	split	the	system	into	contributions	of	the	 181	

two	muscles	but	rather	separates	a	slower	dilation/constriction	response	from	a	faster	 182	

component	that	only	occurs	for	constrictions	(see	Appendix	Equation	9,	10	and	 183	

parameters	for	PSR_dil	and	PSR_con;	Korn	&	Bach,	2016).	Interestingly,	the	former	 184	

component	directly	(exponentially)	relates	to	luminance,	while	the	contribution	of	the	 185	

latter	component	appears	independent	from	the	amount	of	luminance	change	(Korn	&	 186	

Bach,	2016).	Because	of	the	different	time	constants	of	the	two	systems,	the	model	 187	

makes	an	interesting	counterintuitive	prediction:	light	flashes	should	lead	to	pupil	 188	

constriction,	but	brief	darkness	periods	should	also	lead	to	constriction,	when	the	faster	 189	

response	induced	by	the	return	to	light	precedes	the	slower	response	induced	by	the	 190	

darkness	period.	Indeed,	this	prediction	was	confirmed	by	experimental	observation	in	 191	

our	own	laboratory	(Korn	&	Bach,	2016)	and	by	others	(Barbur,	Harlow,	&	Sahraie,	 192	

1992).	This	forward	model	explained	around	60%	of	signal	variance,	speaking	to	the	 193	

validity	of	LTI	approximation	(Korn	&	Bach,	2016).	Furthermore,	it	was	used	to	infer	the	 194	

neural	input	into	the	pupil	system	for	different	psychological	tasks	(visual	detection,	 195	

auditory	oddball	detection,	listening	to	emotional	words).	The	inferred	input	latency	 196	

meaningfully	related	to	known	underlying	psychological	processes	(Korn	&	Bach,	2016).	 197	

This	also	suggests	that	the	fast	time	course	of	pupil	responses	implies	a	necessity	to	 198	

build	neural	forward	models	that	are	to	some	extent	specific	to	the	psychological	 199	
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process	studied	-	different,	for	example,	from	the	unspecific	SCR	models	-	because	the	 200	

time	constants	of	the	psychological	processes	differ.	One	such	model	was	developed	for	 201	

fear	conditioning	(Korn,	Staib,	Tzovara,	Castegnetti,	&	Bach,	2017).	Here,	we	found	that	 202	

CS-	responses	are	different	between	experiments,	depending	on	the	perceptual	modality	 203	

and	physical	properties	of	the	CS.	However,	the	added	impact	of	the	CS+	was	rather	 204	

constant	across	experiments	and	could	be	modeled	with	a	constant-latency	CS-evoked	 205	

neural	input	that	peaks	between	CS	and	US	(Korn	et	al.,	2017).	This	neural	input	 206	

appeared	to	be	time-locked	to	the	CS,	for	different	intervals	between	CS	and	US.	 207	

Different	from	SCR	models,	this	means	that	there	is	no	common	CS	response	that	differs	 208	

only	in	amplitude	between	conditions.	Instead,	the	model	seeks	to	estimate	to	what	 209	

extent	a	specific	CS+	component	is	expressed	on	each	(CS+	and	CS-)	trial.	Since	this	CS+	 210	

component	may	not	be	orthogonal	to	the	experiment-specific	CS	response,	this	means	 211	

that	all	estimates	(CS+	and	CS-)	are	only	interpretable	up	to	a	constant:	it	is	possible	to	 212	

interpret	differences	between	trial	sets,	or	temporal	changes	in	the	estimated	CS	 213	

response,	but	not	the	magnitude	of	response	estimates	for	individual	trials	or	 214	

conditions.	For	mathematical	convenience,	neural	and	peripheral	model	are	collapsed	 215	

into	one	response	function,	which	makes	GLM	inversion	possible	(Korn	et	al.,	2017;	see	 216	

Appendix	Equation	9	and	parameters	for	PSR_FC).	Another	psychological	model	with	 217	

similar	structure	but	a	different	response	function	was	proposed	to	capture	the	impact	 218	

of	attention	on	pupil	size	(Hoeks	&	Levelt,	1993).	 219	

		 220	

4.2.2	Inference	on	psychological	variables	 221	

Pupil	PsPMs	have	been	used	for	two	purposes.	The	first	is	direct	inference	on	a	 222	

psychological	variable.	Inference	on	CS+	memory	in	fear	conditioning	is	implemented	in	 223	

a	GLM	inversion	approach,	and	yields	predictive	validity	superior	to	peak	scoring	or	 224	

area-under-the-curve	measures	(Korn	et	al.,	2017).	Given	the	short	latency	and	signal- 225	

to-noise	levels	similar	or	better	than	SCR,	inference	can	be	performed	on	a	single-trial	 226	

level.	Similarly,	inference	on	attention	has	been	used	in	numerous	studies	(e.g.,	de	Gee	et	 227	

al.,	2014,2017;	Knapen	et	al.,	2016),	although	to	our	knowledge	this	method	has	not	 228	

been	systematically	investigated	and	validated	beyond	the	initial	development	data	set	 229	

(Hoeks	&	Ellenbroek,	1993;	Hoeks	&	Levelt,	1993).	Another	application,	distinct	from	all	 230	

other	models	presented	in	this	article,	is	to	infer	the	time	course	of	a	psychological	 231	

process.	This	is	possible	because	luminance-related	responses	are	mediated	by	near- 232	

instantaneous	neural	activity	and	thereby	allow	characterizing	pupil	biomechanics.	 233	
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Comparing	a	measured	pupil	time	course	with	the	time	course	of	a	luminance-related	 234	

response	therefore	affords	estimating	the	neural	input	into	the	pupillary	system,	and	 235	

thus	makes	inference	on	the	dynamics	of	the	underlying	psychological	process	(Korn	&	 236	

Bach,	2016).	 237	

	 238	

4.2.3	Future	directions.	 239	

Pupil-size	modeling	is	a	relatively	new	approach	and	requires	further	study.	 240	

Importantly,	an	independent	validation	of	psychological	inference	is	yet	lacking.	PsPMs	 241	

exist	for	luminance-conditioned,	fear-conditioned,	and	attention-related	responses,	and	 242	

appear	to	crucially	depend	on	the	timing	of	the	psychological	process	under	study.	 243	

Potentially,	pupil-size	modeling	thus	offers	a	more	precise	window	into	the	temporal	 244	

dynamics	of	cognitive	processes	than	many	other	psychophysiological	variables.	Finally,	 245	

a	lot	of	research	is	currently	being	done	on	pupil	size	and	its	relation	to	cognitive	 246	

processes,	in	humans	and	other	species	(e.g.,	Eldar,	Cohen,	&	Niv,	2013;	Joshi	et	al.,	 247	

2016).	It	is	likely	that	new	models	and	methods	will	emanate	from	this	basic	research.	 248	

	 249	

4.3	Heart	period	 250	

4.3.1	Forward	model		 251	

Heart	rate	or	heart	period	are	often	used	to	infer	emotional	arousal,	for	example,	while	 252	

watching	pictures	or	during	fear	conditioning	(Berntson,	Quigley,	&	Lozano,	2007;	 253	

Bradley,	Codispoti,	Cuthbert,	&	Lang,	2001)	and	can	be	measured	with	 254	

electrocardiogram	or	pulse	oxymeters.	Cardiac	rhythm	is	generated	locally	in	the	heart,	 255	

but	modulated	under	slower	sympathetic	and	faster	parasympathetic	influence	 256	

(Akselrod	et	al.,	1981).	Sympathetic	stimulation	frequency	appears	to	linearly	scale	with	 257	

heart	period	changes,	not	heart	rate	(Berntson,	Cacioppo,	&	Quigley,	1995).	Therefore	 258	

current	PsPMs	for	phasic	cardiac	responses	model	heart	period,	which	is	mapped	onto	 259	

the	following	R	spike	and	linearly	interpolated.	It	appears	that	various	short	stimuli	 260	

induce	phasic	heart	period	responses	(HPR),	and	six	response	components	could	be	 261	

identified	in	a	systematic	investigation	see	Appendix	Equation	8	and	parameters	for	 262	

HPR_E1-E6).	However,	neither	this	study	nor	previous	research	based	on	operational	 263	

methods	allow	a	definite	conclusion	as	to	which	psychological	variables	influence	each	 264	

of	the	components	and	relatedly,	whether	these	components	are	independently	 265	

controlled.	In	contrast,	a	well-replicated	phenomenon	is	fear-conditioned	bradycardia	 266	
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(Castegnetti	et	al.,	2016).	This	bradycardia	response	appears	to	be	added	to	a	stimulus- 267	

specific	HPR	that	occurs	for	both	CS+	and	CS-	in	fear	conditioning,	similar	to	what	is	 268	

observed	for	pupil	size	and	with	the	same	limitations	for	interpretation	of	response	 269	

estimates.	However,	different	from	pupil	responses,	it	appears	to	be	time-locked	to	the	 270	

US	when	the	CS-US	interval	is	varied	(Castegnetti,	Tzovara,	Staib,	Gerster,	&	Bach,	2017;	 271	

Castegnetti	et	al.,	2016).	Furthermore,	relating	the	bradycardia	response	to	the	first	 272	

response	component	elicited	by	short	stimuli	revealed	a	putative	neural	input	that	 273	

peaks	at	the	US	(Castegnetti	et	al.,	2016).	Pragmatically,	the	PsPM	for	fear-conditioned	 274	

HPR	collapses	a	neural	and	peripheral	system	into	one	response	function,	allowing	GLM	 275	

inversion	(see	Appendix	Equation	9	and	parameters	for	HPR_FC).	 276	

	 277	

4.3.2	Inference	on	psychological	variables	 278	

The	range	of	psychological	variables	that	can	be	inferred	from	phasic	HPR	to	short	 279	

stimuli	appears	unclear	at	present.	Fear-conditioned	bradycardia	is	a	notable,	well- 280	

studied	exception.	Using	the	GLM	approach,	fear	memory	could	be	inferred	with	higher	 281	

predictive	validity	than	with	peak-scoring	methods	(Castegnetti	et	al.,	2016).	Unlike	for	 282	

SCR	and	PSR,	attempts	to	perform	single-trial	analyses	in	our	own	laboratory	have	not	 283	

succeeded,	probably	because	heart-period	time	series	are	dominated	by	respiratory	 284	

arrhythmia,	and	many	trials	are	required	to	reduce	the	impact	of	this	noise	component.	 285	

	 286	

4.3.3	Future	directions	 287	

Elucidating	the	forward	model	for	HPR	appears	an	important	task	both	in	the	context	of	 288	

PsPMs	and	operational	approaches.	The	fidelity	of	inference	on	fear	memory	has	been	 289	

demonstrated	in	several	data	sets	but	requires	independent	confirmation	from	different	 290	

laboratories.	Castegnetti	et	al.	(2017)	have	suggested	that	fear-conditioned	bradycardia	 291	

could	potentially	be	-	at	least	partly	-	induced	by	increased	thorax	pressure	induced	via	 292	

respiration	amplitude	responses;	this	may	be	another	interesting	avenue	of	research.		 293	

	 294	

4.4	Respiration	measures	 295	

4.4.1	Forward	model	 296	

	Most	respiratory	psychophysiology	research	has	focused	on	how	psychological	states	 297	

on	a	time	scale	of	10-	20	s	up	to	minutes	influence	respiration	parameters	(Boiten,	 298	

Frijda,	&	Wientjes,	1994;	Grassmann,	Vlemincx,	von	Leupoldt,	&	Van	den	Bergh,	2015;	 299	

Ritz	et	al.,	2010;	Vlemincx,	Van	Diest,	&	Van	den	Bergh,	2015;	Wuyts,	Vlemincx,	Bogaerts,	 300	
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Van	Diest,	&	Van	den	Bergh,	2011),	but	relatively	little	is	known	about	phasic	 301	

respiratory	responses.	PsPMs	have	been	developed	for	respiratory	period,	respiratory	 302	

amplitude,	and	respiratory	flow	rate	responses	to	brief	external	events,	all	measured	 303	

with	a	simple	single-chest	belt	system	as	standardly	employed	in	fMRI	laboratories	(see	 304	

Appendix	Equation	8	and	parameters	for	RPR,	RAR_E,	and	RFRR).	External	events	cause	 305	

responses	in	these	three	measures	that	are	captured	with	LTI	systems,	but	as	yet	it	is	 306	

not	clear	which	psychological	states	could	be	inferred	from	these	responses	(Bach,	 307	

Gerster,	Tzovara,	&	Castegnetti,	2016).	In	contrast,	we	have	shown	in	several	 308	

experiments	that	a	CS+	in	fear	conditioning	elicits	a	biphasic	respiratory	amplitude	 309	

response	that	can	be	modeled	in	a	LTI	system,	thus	allowing	GLM	inversion	(Castegnetti	 310	

et	al.,	2017)	(see	Appendix	Equation	9	and	parameters	for	RAR_FC).	The	approach	and	 311	

its	interpretation	are	similar	to	that	for	pupil	size	and	heart	period.		 312	

	 313	

4.4.2	Inference	on	psychological	variables	 314	

It	appears	that	fear	memory	can	be	inferred	from	respiration	amplitude	responses,	and	 315	

predictive	validity	of	this	inference	is	higher	for	a	GLM	inversion	than	peak	scoring	 316	

(Castegnetti	et	al.,	2017);	however,	it	is	lower	than	for	many	other	psychophysiological	 317	

measures.	A	distinct	advantage	of	the	respiratory	PsPM	could	be	that	it	only	requires	 318	

single-chest	belt	data,	which	is	standardly	available	in	many	MRI	scanners.	 319	

	 320	

4.4.3	Future	directions	 321	

More	research	is	required	to	elucidate	the	range	of	psychological	variables	that	can	be	 322	

inferred	from	respiratory	measures.	Modeling	more	sophisticated	respiratory	measures	 323	

could	be	an	interesting	possibility.		 324	

	 325	

4.5	Startle	eyeblink	electromyogram	 326	

4.5.1	Forward	model	 327	

Different	from	the	previously	discussed	measures,	which	are	under	the	direct	influence	 328	

of	a	psychological	variable,	the	impact	of	psychological	variables	on	startle	eyeblink	is	 329	

only	modulatory	and	requires	elicitation	of	a	startle	response	to	reveal	it.	This	startle	 330	

eyeblink	response	(SEBR)	itself	has	rather	stereotypical	dynamics,	while	its	amplitude	is	 331	

modulated	by	different	psychological	variables	(Yeomans,	Li,	Scott,	&	Frankland,	2002).	 332	

This	modulation	has	been	suggested	to	balance	the	protective	utility	of	the	startle	 333	

response	with	its	metabolic	and	opportunity	cost	(Bach,	2015b).	Importantly,	SEBR	 334	
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dissociates	CS+	and	CS-	in	fear	conditioning,	a	phenomenon	termed	fear-potentiated	 335	

startle	(Brown,	Kalish,	&	Faber,	1951).	A	PsPM	was	developed	to	model	the	immediate,	 336	

brief	SEBR	to	startle	probes	in	the	absence	of	any	psychological	manipulation	(Khemka	 337	

et	al.,	2017).	This	model	explained	about	60%	of	signal	variance	under	LTI	assumptions.	 338	

For	inference,	the	neural	input	was	allowed	a	flexible	latency,	to	better	capture	slight	 339	

latency	variation	between	individuals	and	trials	(Khemka	et	al.,	2017).	As	common	in	the	 340	

literature,	the	model	assumes	that	the	shape	of	SEBR	is	independent	of	the	psychological	 341	

or	cognitive	state,	which	only	impacts	on	its	amplitude.		 342	

	 343	

4.5.2	Inference	on	psychological	variables	 344	

This	PsPM	was	employed	to	infer	fear	memory,	both	during	acquisition	and	memory	 345	

recall	under	extinction	(Khemka	et	al.,	2017).	Predictive	validity	of	the	inference	was	 346	

compared	to	four	peak-scoring	methods	with	different	preprocessing	steps.	For	each	of	 347	

three	experiments,	a	different	peak-scoring	method	performed	best,	but	across	all	 348	

experiments,	the	PsPM	approach	yielded	highest	predictive	validity	(Khemka	et	al.,	 349	

2017).		 350	

	 351	

4.5.3	Future	directions	 352	

The	impact	of	different	preprocessing	methods	on	SEBR	analysis	appears	not	well	 353	

understood.	This	leads	to	a	heterogeneous	picture	when	comparing	PsPM	with	different	 354	

peak-scoring	methods,	and	should	be	a	focus	of	future	research.	Startle-independent	 355	

eyeblinks	are	a	typical	source	of	noise	in	SEBR	research,	and	modeling	these	eyeblinks	 356	

could	be	an	important	topic	for	further	investigation.		 357	

	 358	

4.6	Combining	psychophysiological	models	 359	

In	psychophysiological	research,	different	measurement	methods	are	often	used	 360	

simultaneously	(in	the	spirit	of	convergent	operationalization),	but	not	commonly	 361	

combined	for	statistical	inference	on	a	psychological	variable.	In	a	PsPM	approach,	this	 362	

may	be	a	possibility	and	could	improve	inference	under	circumstances	where	several	 363	

measures	are	indicative	of	the	same	psychological	variable.	In	order	to	enable	such	 364	

combination,	it	would	be	desirable	to	clarify	qualitatively	that	two	measures	are	 365	

impacted	by	the	same	psychological	variable,	and	to	investigate	quantitatively	the	 366	

dimensional	structure	of	these	measures	across	different	individuals.	 367	

	 368	
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	 369	
5	Discussion		 370	

Psychological	investigation	relies	on	solving	the	inverse	problem:	making	inference	on	 371	

essentially	unobservable	psychological	variables.	Psychophysiology	benefits	from	many	 372	

decades	of	research	on	the	forward	mapping	from	psychological	variables	onto	 373	

physiological	measures.	This	has	allowed	the	building	of	precise	and	explicit	forward	 374	

models,	which	can	be	specified	in	mathematical	form	and	inverted	to	yield	inference	on	 375	

the	psychological	variable:	psychophysiological	modeling.	Building	on	simple	 376	

experimental	manipulations	that	yield	a	known	psychological	state,	methods	can	be	 377	

evaluated	in	terms	of	their	predictive	validity	(i.e.,	the	fidelity	with	which	they	recover	 378	

the	known	state).	This	allows	comparison	of	operational	as	well	as	model-based	 379	

methods	and	has	revealed	that	in	many	cases	PsPMs	allow	more	precise	inference	than	 380	

traditional	operational	methods,	for	example	peak	scoring.		 381	

	 382	

As	a	limitation,	this	conclusion	is	based	on	a	limited	number	of	studies	and	data	sets,	 383	

most	of	which	-	with	one	exception	(Green	et	al.,	2014)	-	come	from	our	laboratory	and	 384	

are	thus	based	on	the	same	recording	equipment	and	rather	comparable	experimental	 385	

procedures.	It	is	possible	that	the	PsPMs	and	inversion	methods	developed	in	this	 386	

context	overfit	these	experimental	circumstances	and	do	not	generalize	well	to	data	 387	

acquired	in	different	contexts,	for	example,	using	different	experimental	timings	or	 388	

involving	other	types	of	artifacts.	Notably,	the	same	limitation	applies	to	the	variety	of	 389	

operational	methods	that	have	often	been	developed	in	and	for	specific	laboratories	 390	

such	that	a	multitude	of	operational	analysis	methods	coexists	in	the	literature.	We	have	 391	

provided	examples	for	application	of	the	PsPMs	in	different	laboratories,	which	provides	 392	

circumstantial	evidence	that	overfitting	is	not	a	major	issue	for	the	approach	presented	 393	

here.	However,	to	entirely	rule	out	such	possibility,	it	would	be	desirable	to	compare	the	 394	

PsPMs	with	different	operational	analyses	methods	in	many	experimental	situations.	 395	

	 396	

Research	on	psychophysiological	modeling	underlines	the	necessity	for	precise	 397	

specification	of	forward	model,	and	thus	for	the	detailed	and	meticulous	work	of	basic	 398	

psychophysiology.	The	application	of	PsPMs	remains	restricted	to	situations	in	which	 399	

this	mapping	is	well	known.	Indeed,	PsPMs	exist	only	for	a	small	number	of	 400	

experimental	scenarios.	However,	these	include	standard	experiments	such	as	fear	 401	

conditioning	and	picture	viewing,	and	may	well	comprise	a	large	proportion	of	applied	 402	
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psychophysiology	research.	For	these,	PsPMs	offer	improved	inference	compared	to	 403	

currently	used	methods.	For	exploratory	research,	operational	methods	with	their	 404	

flexibility	may	be	more	appropriate.	However,	as	an	advantage	of	model-based	methods	 405	

theirprecise	specification	implementation	reduces	researcher	degrees	of	freedom.	 406	

Analysis	flexibility	is	a	problem	recognized	across	the	entire	field	of	psychology	 407	

(Simmons,	Nelson,	&	Simonsohn,	2011)	and	possibly	more	prevalent	with	flexible	 408	

operational	methods.	While	standardization	of	methods	is	an	ongoing	effort	(Boucsein	 409	

et	al.,	2012;	Lonsdorf	et	al.,	2017),	PsPM	offers	rational	criteria	beyond	community	 410	

consensus	for	choosing	the	standards,	namely,	the	quality	of	the	inference.	Notably,	all	 411	

methods	discussed	in	this	review	are	available	in	open-source	toolboxes,	most	of	them	 412	

in	the	Matlab-based	PsPM	toolbox	(pspm.sourceforge.net).	 413	

	 414	

As	a	framework	for	evaluating	methods,	we	have	proposed	to	benchmark	their	 415	

predictive	validity,	that	is,	their	ability	to	recover	known	psychological	states	(Bach	&	 416	

Friston,	2013).	We	note	that	this	framework	has	potentially	many	more	applications	 417	

than	evaluating	PsPMs	or	comparing	them	to	operational	methods.	For	example,	it	 418	

allows	power	analyses.	If	the	fidelity	of	a	method	is	known	in	a	standard	experiment,	it	 419	

is	often	possible	to	derive	best-case	additional	assumptions	that	define	minimum	 420	

sample	sizes	required	to	achieve	a	desired	power	level.	We	have	provided	an	 421	

experimental	example	for	this	in	the	context	of	an	intervention	to	reduce	synaptic	 422	

plasticity	during	fear	conditioning,	as	measured	with	SEBR	(Bach	et	al.,	2017).	As	an	 423	

important	insight,	power	analysis	based	on	predictive	validity	research	has	revealed	 424	

that	the	required	sample	sizes	-	especially	when	using	traditional	operational	methods	-	 425	

can	be	much	higher	than	what	is	the	standard	in	the	field.	Consequently,	studies	not	 426	

basing	their	sample	size	on	this	or	other	formal	analyses	may	be	underpowered.	 427	

Another	potential	application	is	quality	control.	Labs	can	compare	their	measurement	 428	

methods	between	each	other,	assure	measurement	fidelity	over	time,	or	benchmark	 429	

research	trainees,	using	predictive	validity	of	standard	measures.	Finally,	a	potentially	 430	

powerful	use	of	this	framework	is	the	optimization	of	experimental	design.	If	the	effect	 431	

of	a	standard	experiment	on	a	psychological	variable	is	known	a	priori,	then	one	can	 432	

choose	an	experimental	design	that	best	allows	detecting	this	effect.	As	an	example,	this	 433	

approach	can	help	to	find	the	optimal	balance	of	retention	trials	to	measure	fear	 434	

memory	recall,	for	which	we	have	provided	an	empirical	example	(Khemka	et	al.,	2017).	 435	

	 436	
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To	summarize,	the	field	of	psychophysiological	modeling	is	moving	rapidly	and	has	in	 437	

parts	already	matured.	With	these	developments,	we	hope	to	have	provided	task- 438	

unspecific	tools	that	free	researchers'	resources	from	having	to	develop	data	analysis	 439	

procedures	for	every	study,	and	instead	focus	on	the	psychological	or	cognitive	 440	

questions	they	want	to	answer.		 441	

	 442	
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Appendix	 646	

	 647	

Model	evidence	 648	

To	quantify	model	evidence,	PsPM	uses	the	following	identity	to	compute	Akaike	 649	

Information	Criterion	(AIC):	 650	

where	n	is	the	number	of	data	points	in	the	predictive	model,	L	is	the	maximum	of	the	 651	

likelihood	function,	and	k	the	number	of	parameters	in	the	predictive	model.	k	is	 652	

constant	for	all	methods	that	are	evaluated	in	a	methods	comparison.	The	predictive	 653	

model	uses	the	a	priori	defined	psychological	variable	as	dependent	variable	(this	 654	

ensures	it	is	the	same	across	all	methods),	and	the	design	matrix	contains	the	estimated	 655	

psychological	variable	and	(possibly	subject-specific)	intercept	terms.		 656	

	 657	

LTI	systems	 658	

Linear	time	invariant	systems	are	defined	by	the	following	convolution	operation:	 659	

where	u(t)	is	the	input	into	the	system	at	time	t,	h	is	the	impulse	response	function	(RF),	 660	

and	τ	is	a	dummy	variable	over	which	integration	is	performed.	Note	that	since	we	are	 661	

dealing	with	a	causal	system	(i.e,.	in	time),	we	have	explicitly	set	the	lower	limit	of	the	 662	

!"# = −2 ln ! + 2! = ! ln !""
! + 2!	 (1)	

! ! = !×ℎ = ! ! − ! ℎ ! d!
!

!
	 (2)	
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integral	to	zero,	such	that	an	input	that	occurs	after	t	can	have	no	impact	upon	the	 663	

output	at	time	t.		 664	

		 665	

GLM	 666	

A	GLM	can	be	written	as	 667	

where	Y	is	the	vector	of	observations,	β	is	a	vector	of	input	amplitude	parameters,	and	ϵ	 668	

is	the	error.	X	is	the	design	matrix	in	which	each	column	is	obtained	by	convolving	 669	

impulse	functions	at	known	time	points	with	each	component	of	the	RF.	Each	column	 670	

takes	the	form:	 671	

where	!!(!)	is	the	neural	input	with	unit	amplitude	for	condition	i,	and	j	is	the	index	of	 672	

the	RF	component.	Finally,	X	also	contains	a	column	for	the	intercept.	The	maximum- 673	

likelihood	amplitude	estimates	!	can	be	computed	using	the	Moore-Penrose	 674	

pseudoinverse	!!,	for	example	implemented	in	the	Matlab	function	pinv.m:	 675	

	 676	

Skin	conductance	forward	model	 677	

(a)	Phenomenological	RF	described	as	a	Gaussian-smoothed	exponential:	 678	

with	estimated	parameters:	!! = 3.0745 !	for	peak	latency;	! = 0.7013	for	definition	of	 679	

the	rise	time;	!! = 0.3176 and	!! = 0.0708	to	define	the	two	decay	components.		 680	

(b)	Phenomenological	RF	described	as	third-order	(linear,	constant-coefficient)	ordinary	 681	

differential	equation:	 682	

with	!! = 1.342052,!! = 1.411425,!! = 0.122505,!! = 1.533879	 683	

	 684	

! = !" + !	 (3)	

! = !!(!)×ℎ!(!)	 (4)	

! = !!!	 (5)	

ℎ ! ∝ ! ! − !
!

!
!! ! + !! ! !", 

! ≥ 0, 

! ! = 1
2!" !

! !!!! !
!!! , 

!! ! = !!!!	

(6)	

! = !!! + !!! + !!! − ! ! − !! = 0	 (7)	
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Models	with	Gaussian	response	functions	 685	

Gaussian	function:		 686	

Parameters	see	table	(HPR_E1-6:	constant-latency	heart	period	responses;	RPR:	 687	

respiration	period	responses;	RAR_E:	constant-latency	respiration	amplitude	responses;	 688	

RFRR:	respiratory	flow	rate	responses).	 689	

Response	function	(RF)	 Parameters	of	Gaussian	Function	

	 !	(mean)	 !	(standard	deviation)	
HPR_E	1	 1.0	 1.9	

HPR_E	2	 5.2	 1.9	

HPR_E	3	 7.2	 1.5	

HPR_E	4	 7.2	 4.0	

HPR_E	5	 12.6	 2.0	

HPR_E	6	 18.85	 1.8	

RPR	 4.20	 1.65	

RAR_E	 8.07	 3.74	

RFRR	 6.00	 3.23	

	 690	

Models	with	gamma	response	functions	 691	

Gamma	function:	 692	

Parameters	see	table	(HPR_RC:	fear-conditioned	heart	period	responses;	PSR_dil:	 693	

luminance-evoked	pupil	dilation;	PSR_con:	luminance-evoked	pupil	constriction;	PSR_FC:	 694	

fear-conditioned	pupil	size	responses;	RAR_FC	:fear-conditioned	respiration	amplitude	 695	

responses;	SEBR:	startle	eyeblink	responses).	Note	that	the	amplitude	parameter	is	left	free	 696	

for	all	models	other	than	the	luminance	models	in	which	it	has	a	physical	interpretation.	 697	

	 698	

Response	function	(RF)	 	 Parameters	of	gamma	Function	

	 !	(shape)	 !	(scale)	 !!	(onset)	 !	
(amplitude)	

! = 1
! 2! !

! !!! !
!!! 	 (8)	

! = ! − !! !!!!!
!!!!
!

!!Γ ! 	 (9)	
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HPR_FC	 48.5	 0.182	 -3.86	 -	

PSR_dil	 2.40	 2.40	 0.2	 0.77	

PSR_con	 3.24	 0.18	 0.2	 0.43	

PSR_FC	 5.94	 0.75	 0.002	 -	

RAR_FC	(early)	 2.570×10!	 3.124×10!!	 −8.024×10!	 -	

RAR_FC	(late)	 3.413	 1.107	 7.583	 -	

SEBR	 3.5114	 0.0108	 	 -	

	 699	

Model	for	steady-state	pupil	size	 700	

	 701	
where	!	is	the	z	scored	steady-state	pupil	diameter	and	!!	is the respective illuminance 702	
level in (in [!"] ). The parameter values are: 703	
! = 49.79;! = −0.50 !

!" ;! = −1.05. 704	
	 705	
	 706	

! !! = ! + !!!!! 	 (10)	


