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Abstract 

Children begin to develop mathematical knowledge from a young age in varying 

degrees. For this reason, it is important to identify which cognitive skills are 

foundations to later mathematical knowledge and which are the most important for 

numerical development. This thesis focuses on some of the earliest cognitive processes 

involved in arithmetic (addition and subtraction) abilities in typically developing 

children between the ages of 4 and 8. Arithmetic abilities are an important outcome 

for children of this age and is predictive of later, more advanced arithmetic and 

mathematical skills. Therefore, identifying foundational factors is important for 

educational practices and for theories of typical and atypical arithmetic development.  

Three studies focused on three cognitive factors: sensori-motor skills including finger 

awareness, pattern understanding and symbolic number knowledge. The first two 

predictors were examined whilst controlling for important predictors of arithmetic 

including age, number knowledge, executive function and spatial skills. We showed 

firstly that sensori-motor skills are less important predictors of arithmetic than number 

knowledge and counting. Next, the potential causal relationship between number 

knowledge and arithmetic was examined via a training study. Our findings suggest 

that training in number knowledge can improve numerical and arithmetic outcomes, 

although we failed to reach significance due to a lack of power. Finally, we examined 

pattern understanding using a large patterning battery and are the first study to show 

that different pattern tasks (numbers, letters, shapes and objects) load onto one factor. 

Moreover, this factor is a unique and significant predictor of arithmetic. Together, 

these studies help to outline the shape of arithmetic development in typically 

developing children.  
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Impact statement  

The studies presented within this thesis have provided an outline for some of the 

cognitive factors which may be implicated in arithmetic development in children. This 

is important for academic theories of typical and atypical numerical development, as 

well as being important for educational practices.  

Throughout the studies presented, the research techniques and tasks show good 

reliability and are methodologically sound. One study has been published in the 

Journal of Experimental Child Psychology. The study was deemed appropriate for 

publication due to importance of a new and reliable finger gnosis task which highlights 

the importance of including reliable tasks in research. Moreover, the task was used in 

collaboration with academics in Australia investigating arithmetic development and 

culminated in a second paper, under review. The impact of this study is that 

researchers have a greater understanding of how finger awareness may (or may not) 

be important in numerical development.  

In educational research it is important to identify factors which can be examined and 

trained in school-aged children. In one study, pattern understanding was identified as 

an important factor for arithmetic development. This is a skill that is already taught in 

schools despite a need for more scientific evidence to support the relationship with 

arithmetic. Therefore, the evidence we report can provide some support for the 

potential usefulness of teaching pattern skills at schools. Importantly, the study 

identified all types of pattern tasks across a range of stimuli (numbers, letters, shapes 

and objects) as important predictors of arithmetic. Therefore, teachers can teach 

pattern understanding with a range of different tasks which may increase attention and 

interest; an important consideration for educators and cognitive researchers alike.  

Overall, the studies presented in this thesis have important implications for both 

academic research and educational practices. The findings have been presented at 

conferences and to teachers at schools (via posters and oral presentations). This shows 

how research can make an impact in the wider society and may lead to changes or 

improvements in educational practices.  
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Chapter 1. Thesis overview  

We use numbers every day and in all aspects of life, and a basic understanding of 

symbols and quantities is required to complete simple tasks such as telling the time, 

paying for groceries, getting on the right bus and counting change. For this reason, 

numerical understanding of Arabic digits and associated quantities is a critical part of 

development, and a focus of early education. These foundational numerical skills are 

crucial for mastering arithmetic (addition, subtraction, multiplication and division) 

which, in turn are a critical educational outcome (Duncan et al., 2007).  

This thesis presents three studies which examine arithmetic development in children. 

Each study aims to identify which cognitive skills may be important factors in 

arithmetic development for children between four and eight years old. The three 

studies are described in full in Chapters 3, 4 and 5 and an overview of these studies is 

provided later in this chapter.  

1.1 Early arithmetic  

Early arithmetic is considered to include addition, subtraction, multiplication and 

division. Children will follow a basic learning trajectory of simple addition (which is 

akin to counting) and simple subtraction, first orally and then with symbols. Only after 

several years of formal education will children tackle multiplication and division. As 

the research presented for this thesis lies in early numerical development, addition and 

subtraction skills will be examined. The outline of how these skills develop will now 

be presented.  

1.1.1 Counting 

Early addition skills are essentially an extension of counting. For example, in the sum 

2+1 children simply need to count on from 2 to reach the answer. Therefore, 

understanding how counting develops is an important part of understanding early 

arithmetic.  

Children will typically learn the counting sequence once they have acquired some 

language and will quickly become proficient, at least to the number ten. In a series of 

studies examining how children develop counting skills, Gelman and Gallistel (1986) 

suggest that learning progresses through “how to count” principles. Initially, children 
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may simply recite the count sequence, before understanding that effective counting 

relies upon the following principles: one-to-one principle (count each item only once), 

stable ordering (count words appear in the same order, “one, two, three…”), 

cardinality principle (the last number counted is equal to the total number in the set), 

order irrelevance (count items in any order) and item-kind irrelevance (all objects can 

be a count entity).  

Knowledge of the counting principles is demonstrated in a range of studies which use 

counting violation methods. For example, in Gelman, Meck and Merkin (1986) 

children from 3- to 5- years of age watched a puppet counting a number of objects 

correctly or incorrectly. Even younger children were reported to identify the correct 

and incorrect trials, showing high sensitivity to counting errors and knowledge of the 

one-to-one and cardinality principles. In a further study, the same children exhibited 

knowledge of the order irrelevance principle in a “Doesn’t Matter” task, in which they 

were able to correctly count items in an unconventional order, such as by starting from 

the middle of a row rather than the edge. Evidence such as this has led some theorists 

to conclude that children have an inherent understanding of the basic counting 

principles (Gelman and Gallistel, 1986; Gelman & Meck, 1983; 1986). 

Inherent knowledge has been disputed by some because of evidence showing that 

children need to first learn to count before mastering the counting principles. For 

example, Wynn (1990) used three different counting tasks to examine the cardinality 

principle in 2-3 year old children. Although able to count objects well, some younger 

children failed to demonstrate the same knowledge when counting actions and sounds. 

Moreover, the same children failed to provide a puppet with the correct number of 

toys in a later “give-N” task with younger children simply grabbing a seemingly 

random number of objects. In all tasks, only children over 3.5 years of age were able 

to show consistent counting knowledge for larger digits (up to six items). Evidence 

such as this has led Rittle-Johnson and Siegler (1998) to propose that counting 

principles develop through practice, and thus argue that procedural knowledge (the 

ability to solve problems) is required before conceptual knowledge (understanding 

principles that govern the counting domain) can develop.  

Regardless of the way that children learn the counting principles, these skills are 

essential as a foundation for the development of basic addition and subtraction (see 
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Koponen et al., 2013; 2016). After all, simple addition is essentially an extension of 

counting skills, particularly in the early developmental stages when children will use 

count objects to summate different amounts.  

1.1.2 Basic addition  

Children may begin to perform simple addition sums as soon as they learn the count 

sequence (Bisanz, Sherman, Rasmussen, & Ho, 2005). Initially, basic sums may be 

demonstrated verbally and with the assistance of objects, such as toys or bricks. Once 

a child enters formal education there is a focus on progressing from a verbal number 

system to one which includes symbolic knowledge. Learning to associate number 

names with the associated Arabic digit appears to be relatively straightforward, 

although studies examining this are fewer than those examining the verbal number 

system (Fayol & Seron, 2005).  

Children are required to learn to associate the sound a number makes with the written 

code, known as the Arabic digit (e.g. 4). During this learning process, the child must 

also learn to associate the magnitude that these figures represent. Simply learning the 

way that numbers are written appears to be relatively straight forward for most 

children at school. However, learning the associated magnitudes appears to take a bit 

longer and is a more complex and potentially more critical aspect of number 

knowledge. Learning symbolic number skills is a crucial component in learning 

arithmetic because most educators will require children to read and write basic sums 

within the first few years of formal schooling. The following chapter (Chapter 2) is 

dedicated to describing the process of symbolic number learning and evaluating 

evidence which examines how this skill may be implicated in numerical and arithmetic 

development. 

When computing verbal or written sums, children appear to use a variety of different 

methods, all of which rely on children understanding the counting principles (Siegler 

& Jenkins, 2014). Let us take an example of the sum: 2 + 3. Younger children may 

use the simplest, sum or count-all method which involves counting all the objects and 

applying the cardinality principle (last object counted is total number in sequence). A 

more mature approach would be to use a count-on principle which would involve 

counting on from two (count-from-first approach), or more effective, counting on from 

three (min approach). The min approach is the most effective method because it 
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involves the least counting, and Siegler and Jenkins (1989) report that it is used by 

around nine percent of 4-5 year-olds. The authors report that most children of this age 

(34%) will use the simple sum approach (e.g. count two, then count three and then add 

together). Other approaches include retrieval (22%), finger recognition (11%) and 

guessing (2%). Retrieval is possible once children have practised addition and 

subtraction sums such that they are able to store these sums in memory and therefore 

retrieve rather than compute the answer.  

Overall, what appears to be important in arithmetic development is that children are 

able to recite the count sequence and learn how to count objects. Children can then 

learn basic addition and subtraction before committing basic sums to memory through 

practice. The exact way that a child computes a sum will vary and will become more 

efficient with increased practice and age. Memory is implicated in basic computation 

both via the long-term store (once children have sufficient experience) and the short-

term store during the time of computation (see Section 2.3.1 for a fuller discussion of 

memory).  

1.1.3 Mathematics disorder  

Mathematics disorder, also known as developmental dyscalculia, are terms used to 

describe those who fail to learn arithmetic and numerical skills as expected. The 

Diagnostic and Statistical Manual of Mental Disorders (4th addition) and the World 

Health Organisation define mathematics disorder as a failure to grasp numerical 

concepts and in particular arithmetic despite adequate schooling and intelligence. It 

appears in around 3-6% of the population, although this number differs depending on 

the research and definition used.  

Alongside a difficulty in learning basic arithmetic, children with mathematics disorder 

will typically use immature strategies to complete calculations and will be slower than 

peers to commit sums to memory. This may manifest in low arithmetic fluency scores 

due to an inability to rapidly solve calculations, or a failure to learn the sums correctly. 

Importantly, it appears that numerical difficulties persist despite adequate intelligence, 

and therefore this cannot be the only cause of mathematics disorder, although 

intelligence is implicated in numerical learning (see Butterworth, 2009 for a review). 

Knowledge of mathematics disorder is in its infancy in comparison to other 

developmental disorders such as dyslexia, and considerably more work needs to be 
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done with both typical and atypical populations to better understand the nature and 

causes of this disorder. 

1.2 Overview of the three studies  

Understanding how children develop basic arithmetic abilities is critical for 

researchers because it is an important milestone in early education.  Although research 

into numerical learning continues to progress, there are still many unanswered 

questions.  

One of the challenges for researchers examining arithmetic development is that there 

are multiple ways in which children are able to compute a basic sum. Take for instance 

the sum 3+4. To reach the answer 7 children can use one of many methods including 

(but not restricted to): counting all individually, counting on from 3, counting on from 

4, using memory/learning by rote. Alongside this is the challenge of understanding 

which skills are most critical and the time at which these are most prevalent. For 

example, we know that children are required to have a basic understanding of the count 

sequence to compute basic addition and subtraction, and an understanding of Arabic 

digits for written sums, but how important are these skills compared to more general 

abilities including attention, memory and spatial skills? More complex still is 

understanding how children will go on to develop more advanced arithmetic abilities 

such as multiplication and division and understanding how early number skills relate 

to these later abilities, and more advanced skills such as geometry and algebra.  

The studies presented in this thesis aim to examine which of these skills may be most 

important in the development of arithmetic.  

1.2.1 Study 1: Sensori-motor skills 

The first correlational study (discussed in full in Chapter 3) examines how some 

sensori-motor abilities are related to arithmetic. Sensori-motor skills relate to how well 

children can combine sensory and motor information and some researchers have 

examined the potential relationship between some sensori-motor skills and arithmetic 

in young children (e.g. Fayol, Barrouillet, & Marinthe, 1998; Noël, 2005).   

One sensori-motor measure that is common across these studies is finger gnosis, the 

ability (or inability) to identify which finger is pressed without visual assistance. One 
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potential reason for a relationship with finger gnosis (and other sensori-motor skills) 

and arithmetic is that fingers are used functionally in learning to count (a functional 

account – see Butterworth, 1999). Another potential explanation for a relationship is 

the localizationist account (see Noël, 2005) which proposes that some sensori-motor 

abilities, including finger gnosis, are associated with similar neural regions as 

arithmetic and other numerical abilities.  

A primary focus for the first study was to create a methodologically sound research 

design, largely because of limitations in previous evidence. To do this, previous 

measures were adapted to increase reliability and reduce numerical confounds. 

Moreover, a range of additional numerical tasks were included in the test battery to 

act as control measures (an important part of correlational designs and something 

rarely addressed in previous research). In the study, children underwent tests on a 

range of sensori-motor skills, including finger gnosis, alongside a range of numerical-

based outcome measures including an arithmetic fluency task, a dot counting task and 

measures of magnitude comparison. Previous studies have generally failed to control 

for such a wide range of skills. Our results clearly showed, in contrast to some previous 

evidence, that the sensori-motor skills were less well correlated with arithmetic than 

numerical abilities. It is likely that the stronger relationship reported in previous 

evidence is due, in part, to the failure to control for other predictors of arithmetic.  

The most important factors in predicting variation in arithmetic were shown to be 

numerical measures, specifically counting and symbolic magnitude comparison which 

remained as unique and significant predictors after controlling for age. Our timed 

counting task required children to count dots and write the associated Arabic digit, and 

the finding that counting and arithmetic were strongly linked was not surprising given 

that early arithmetic is essentially an extension of the counting principles (however, 

see a discussion of potential limitations of the dot counting task in Section 6.2).   

Our symbolic number comparison task required children to identify which of two 

Arabic digits (numbers 1-9) is larger. Performance on this task correlated well with 

arithmetic, in line with previous evidence (see Section 2.2.1). This finding was the 

basis to investigate symbolic number skills further, and the potential causal 

relationship with arithmetic.  
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1.2.2 Study 2: Training in symbolic number knowledge 

A training study was run to examine whether training in symbolic number skills can 

transfer to arithmetic. The study is described in full in Chapter 4.  

In the training sessions, children played a computerised game (played on a tablet). The 

game was invented by researchers in the Department of Language and Cognition at 

University College London (Newton, Bruce & Donlan, 2016). Based on observation 

of the common challenges encountered in number sequences tasks in adults with 

aphasia (De Luccia & Ortiz, 2014) and children with Developmental language 

Disorders (Donlan, Cowan, Newton & Lloyd, 2007), the software was developed to 

address these issues in both populations. The game was funded by ‘seedcorn’ and 

organised by UCL and a useable prototype was developed in conjunction with the 

gaming software company SoftV.  

Players in the game create numerical and/or alphabetical sequences. The numerical 

sequences game involves number knowledge learning (number identification and 

ordering) and therefore was deemed an appropriate training design to examine 

potential transfer to arithmetic. Other children in the study either played the letter 

sequences game (experimental control) or were a business-as-usual group (no 

training). Groups were based on randomised stratified sampling of pre- training 

arithmetic score. Having three groups was beneficial as it allows us to understand 

better the value of the game itself rather than a) effects found due to attention from an 

experimenter or b) general learning within the study period. One limitation of having 

three conditions is that this limits the sample sizes for each group which reduces 

power.  

To evaluate the effectiveness of the training game, we compared performance of the 

number game condition to the baseline condition across all post-training scores 

(controlling for pre-training scores). Similarly, we measured the difference between 

the letter training game and baseline control. The results showed that those in the 

number training condition scored more highly than the baseline condition on 

numerical scores post-training. Conversely, those in the letter training group showed 

no difference in numerical post-training scores compared to those in the baseline 

condition. These results allude to a specific effect of the number game on numerical 

and arithmetic outcomes. However, no improvements were at significant levels, which 
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is likely due to a lack of power as the sample size was relatively small and the training 

time relatively short. A full discussion of the limitations of power, including the 

reasons why we chose the training time and sample size are presented in Section 4.4.   

Alongside the issue of power, there were some practical limitations to the study. The 

primary concern was that children did not enjoy playing the game. This is likely 

because the first two levels of the game were very challenging; it had been developed 

such that the player is required to have a good grasp of number knowledge in order to 

complete the opening level and therefore those children of lower ability struggled to 

the play the game and found it demotivating. Other children reported finding the game 

repetitive and boring, even when capable of playing it. Moreover, the letter game was 

not, as originally thought, of equivalent difficulty to the number game. This is because 

children of this age are not taught number and letter names at equivalent time points 

(see Section 4.3). These limitations (discussed in full in Section 4.4) led to a decision 

that the design of the game and the pre- and post- tests were not appropriate for 

children of this age group and therefore adaptations would need to be made before any 

additional data were collected.  

Due to limited time and finances, it was not possible to adapt the game within the 

timeframe of my PhD and therefore this study was deemed to be a pilot and another 

avenue was explored for a final study. The training design is currently being prepared 

for roll-out out on a larger scale with changes to the game in development to make it 

more appropriate for children of this age. The study was instrumental in my 

understanding of some of the practical elements that are found when conducting 

training studies and when testing young children.  

1.2.3 Study 3: Pattern understanding  

For the final study (presented in full in Chapter 5) we considered other ways that 

symbolic number knowledge is involved in studies examining arithmetic 

development. Typically, this is via a range of overt symbolic number knowledge tasks 

such as number reading, number identification or symbolic comparison (as we had 

used in my first two studies). However, it also appeared in the literature in a more 

surprising way, through patterning.  
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Pattern tests commonly require children to identify the missing number at the end of 

a sequence using either repeating (1,2,1,2__) or increasing (1,3,5,7__) patterns. 

Researchers have shown that combined scores on these two types of pattern test 

correlate with arithmetic (e.g. Lee et al., 2012; Schmerold, 2015). However, the vast 

majority of these studies do not control for number knowledge despite number 

knowledge being implicated in understanding number patterns. It is arguable that 

repeating number patterns do not rely on number knowledge as children may use 

perceptual skills to identify the correct response. However, increasing patterns do 

require number knowledge. For example, to identify what comes next in the following 

pattern 3,6,9,12 children must be able to identify the number that they are reading and 

know the number sequence. This is symbolic number knowledge but measured with 

the addition of pattern understanding and therefore leading to the question: is it 

symbolic number knowledge that is predicting arithmetic here, or is it patterning 

skills? A failure to control for number knowledge in previous literature means this 

question has been largely unanswered.  

To examine whether patterning is important in predicting arithmetic, rather than 

symbolic number knowledge, we designed a pattern understanding battery which 

included a range of stimuli (numbers, letters, objects and shapes) and different pattern 

types (increasing, repeating and rotating). The pattern battery was large enough (120 

items in total) to allow for analyses across the different stimuli. Importantly, symbolic 

number knowledge and other numerical skills were controlled to assess whether a 

potential relationship was driven by number skills or pattern abilities. Moreover, other 

control measures were included in the design such as spatial skills and executive 

function. These are domain-general skills associated with both patterning and 

arithmetic (see Section 2.3). In keeping with the first correlational study, a range of 

important factors were controlled to create a methodologically sound design and to 

allow conclusions to be drawn about the specific relationship between patterning and 

arithmetic. 

The results showed that pattern tasks remained significantly correlated with arithmetic 

after controlling for a range of skills including number knowledge. To investigate how 

the patterning stimuli were related to each other, an exploratory factor analysis was 

conducted which showed that across the different stimuli, pattern tasks could be 
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identified as a single factor. This factor remained a significant predictor of arithmetic 

after controlling for a range of numerical and other predictors including executive 

function and spatial skills. This finding suggests something specific about the 

relationship between patterning and arithmetic, although the reasons for this 

relationship are not clear. It is possible that patterning is a domain-general skill which 

relates to arithmetic and other developmental milestones, including reading. 

Alternatively, patterning may be specifically related to arithmetic because arithmetic 

may, in part, require an understanding of patterns: e.g. 2+3 is the same as 3+2. These 

potential reasons are discussed in detail in Section 5.4.3. 

Across all three studies, we investigated a range of numerical predictors of arithmetic 

and, in the pattern study, some domain-general predictors of arithmetic. Symbolic 

number knowledge was measured across all three studies and was consistently well 

correlated with arithmetic. Number knowledge remained as a unique predictor of 

arithmetic in Study 1 and was the focus of the training in Study 2.  

1.3 Use of number tasks across the studies 

Across all three studies a range of arithmetic and number tasks were chosen. These 

were chosen predominantly because they were tasks used in previous similar studies 

or because they are considered relevant skills in theories of arithmetic development 

(see Section 1.4). 

1.3.1 Arithmetic  

Fluency (timed) addition and subtraction tasks were used to measure arithmetic across 

all three studies. Timed tasks measure the fluency of arithmetic and reduce the chances 

of ceiling scores. This is particularly important for the first and third studies when 

children (aged 5-7) made few errors. In the second study (where children were in the 

first year of formal schooling and aged 4-5) the length of time given for the addition 

task was greater, and subtraction was not measured. This difference reflects the 

importance of designing measures which are appropriate for the ages of the children 

in the study.  
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1.3.2 Counting  

Counting was measured in all three studies. In the second study, counting was 

measured via a rote counting task in which children were required to count up from 

one and stopped when they made a mistake (maximum count to 50). A more complex 

dot counting task was used in the first and third study as the children were older. In 

these studies, children were required to count the total number of dots presented and 

write or verbalise the response within a given time-frame. One of the reasons for using 

a fluency task is that children of this age (5-7) are generally very good at counting and 

therefore timed tasks will reduce ceiling scores.  

1.3.3 Symbolic number knowledge 

Number knowledge is considered a critical part of numerical development (Merkley 

& Ansari, 2016) and therefore was measured in each of the studies conducted. In the 

first study, number knowledge was measured via a symbolic magnitude comparison 

task: compare two digits and identify the larger. This requires an understanding of 

number identification (knowing the associated sound for an Arabic digit) alongside an 

understanding of the magnitude or order in which digits appear. One reason for using 

this task in the first study was an interest in examining whether approximate (dots) or 

symbolic (digits) comparison tasks are more highly correlated with arithmetic.  

In the second and third studies, symbolic number skills were measured via number 

identification and number reading tasks. The former required children to identify a 

number (from an option of four potential responses) and in the latter to read a digit 

shown to them. Numbers used in these tests were 1-1000. One benefit of measuring 

symbolic number knowledge this way is that it uses a wider range of numbers than a 

symbolic comparison task which relies only on the digits 1-9. The identification and 

reading tasks do not require as much of an understanding of magnitude as a symbolic 

comparison task likely does, although some understanding of place value is required 

to read and identify larger numbers which reflects, in turn, some understanding of 

number ordering and magnitude.  

1.4 Theories of numerical development 

Early arithmetic skills require children to understand the verbal count sequence, the 

order in which numbers appear and the related quantities, or magnitudes of the 
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associated digits. Alongside this is the need to understand the Arabic digit in written 

form and associate this with the verbal code. These skills are conveyed in Dehaene’s 

‘Triple Code Model of Numerical Processing’ (e.g. Dehaene, 2001) which is one of 

the more prominent theories of numerical processing.  

In Dehaene’s model, numbers are processed according to three mental representations 

of a number: Visual Number Form, Verbal Number Form and Analogue Number 

Form. The way that these three processes interact is depicted in Figure 1.1. 

 

Figure 1.1 A simplified version of Dehaene’s Triple Code Model Processing (Dehaene & 

Cohen, 1995).  

Dehaene’s core number model argues that the verbal form is linked to language 

abilities and the visual form linked to visuospatial skills. These two processes are 

linked to the third component, analogue magnitude. All three processes are related to 

one another and therefore may be examined via similar tasks which assess all 

components, but which may draw more strongly on one. For example, approximate 

comparison tasks are a good measure of the analogue magnitude, counting tasks can 

be for the verbal form and written arithmetic measure the visual form. The analogue 

magnitude is considered the most important component because without having a 

developed concept of the magnitude (quantity meaning) of a number, processing of 

digits, including arithmetic, is not possible.  

This simplistic model is used for both adults and children although some argue these 

processes must be different. One prominent development theory by Carey (2009) 



28 

 

suggests that number skills are learnt in qualitative stages in which the child will 

develop the conceptual understanding of number over time (see also Sarnecka, 2015). 

In this view, the innate analogue representation of number is linked to the exact 

number system via counting and culturally specific learning (e.g. the Arabic digit 

system and English language) which results over time in a full mental representation 

of number. What is evident (from different research studies and in contrasting theories) 

is that children improve the ability to understand, represent and manipulate numbers 

with age. Therefore, age is an important consideration in the studies presented in this 

thesis.    

So far, the position assumed is that children are required to understand numbers (i.e. 

conceptual knowledge) in order to solve basic sums. This view does not consider 

learning arithmetic by rote, which may be one ways that addition and subtraction sums 

are computed. Integrated theory (Siegler & Braithwaite, 2017) argues that arithmetic 

facts and procedures are learnt best when children have a complete understanding of 

number, and that this understanding of number will then, in turn, lead to a better 

understanding of later numerical skills such as fractions and algebra. This perception 

is critical for the studies presented in this thesis which, as with the other theories, 

assume that children need an understanding of digits and magnitude in order to 

calculate sums. Evidence that this is important comes from studies which examine 

arithmetic errors. For instance, Siegler and Braithwaite (2017) show that children are 

more likely to calculate an incorrect answer which is close in size to the correct 

answer. Also, they show that children are quicker to identify an answer shown as 

incorrect when the answer is further from the correct answer (e.g. 5+3=15 is quicker 

to respond “incorrect” than 5+3=9). This thesis takes the view that a full understanding 

of number is critical and aims to further investigate the skills which are most important 

for this learning.   

It is also important to discuss the role of other factors in learning arithmetic, such as 

environment and domain-general skills, in the early years. These may act as important 

factors in predicting how well children learn to associate numbers with magnitudes, 

and thus show number knowledge (e.g. Merkley & Ansari, 2016). Many studies and 

indeed theories of numerical development fail to include the importance of domain-

general predictors and the relative contribution of general skills is not well known. 



29 

 

This is something that is specifically looked at in the final study undertaken and 

discussed in more detail in Section 2.3.  

1.5 Summary  

This introductory chapter firstly outlined the typical trajectory of arithmetic 

development which includes learning the basic count sequence and developing basic 

addition and subtraction skills. To learn more complex addition and subtraction 

(arithmetic) children must develop an understanding of number knowledge which is 

the identification, order and magnitude of a number. Some theorists suggest that 

number knowledge and counting are innate skills, with others suggesting practice and 

exposure is important for development. Either way, it appears that these skills are 

critical for the development of arithmetic. The next chapter evaluates previous 

evidence investigating a link between magnitude knowledge, number skills and 

arithmetic.   
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Chapter 2. Predictors of arithmetic  

This chapter evaluates evidence examining the role of some potentially important 

predictors of arithmetic, including numerical (domain-specific) predictors and non-

numerical (domain-general) predictors. Numerical predictors include preverbal and 

approximate number skills, as well as symbolic number knowledge. The domain-

general predictors discussed are memory, executive function and spatial skills.  All of 

the factors that are discussed in this chapter will feature across the three studies that 

were conducted for the purposes of this thesis. 

2.1 Preverbal numerical skills 

Children appear to possess some numerical skills before being able to speak and one 

suggestion is that preverbal numerical skills are the foundation to later numerical 

abilities, and thus children with poor basic number perception will go on to develop 

poor arithmetic (e.g. Dehaene, 2010). As basic number perception abilities do not rely 

on exact counting skills, this system is commonly referred to as an approximate 

number system, and a common way to measure it is through nonsymbolic magnitude 

comparison tasks.  

Evidence for an innate approximate number system comes from infant and animal 

studies which support the existence of some basic numerical processing abilities, 

including the ability to discriminate between different quantities and show sensitivity 

to numerical manipulations (see Dehaene, 1997 for a review). Animal research has 

demonstrated this through both observational evidence (animals instinctively pick the 

larger of two selections of food, Kilian, Yaman, von Feren & Gunturkun, 2003; West 

& Young, 2002) and examples from animals who have been trained on basic numerical 

tasks. For instance, Church and Meck (1984) trained rats to press specific levers 

depending on the number of flashes from a light. Furthering this, chimpanzees have 

been shown to possess more advanced numerical discrimination abilities, comparable 

to addition. Rumbaugh, Savage-Rumbaugh and Hegel (1987) gave two chimpanzees 

the choice of taking chocolates from two trays containing two piles of chocolate. 

Rather than using basic perceptual skills, the chimpanzees had to sum the number of 

chocolates in each pile, and on each tray, to identify which tray contained the most 

chocolate. As both chimps reliably chose the tray with the most (total) chocolates, the 
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authors suggest these animals possess some basic calculation abilities. This ability has 

been reported in other studies in which chimps have been trained in basic counting 

and addition (see Boysen & Berntson, 1989). Such clear demonstrations of numerical 

aptitude make sense from an evolutionary perspective and has led some to suggest that 

some basic numerical abilities, particularly numerical discrimination, are a primitive 

skill (e.g. Butterworth, 1999; Dehaene, 1997).   

Infant studies provide evidence that parallel the findings from animal studies, with 

particularly robust evidence of early approximate number discrimination abilities. For 

example, Xu & Spelke (2000) demonstrated numerical discrimination in 6-month-old 

infants (N = 16) whereby infants would habituate (become bored) after repeated 

exposure to 8 dots, but then dishabituated (showed interest) when 16 dots were 

presented. Similar findings are reported for discrimination between 16 and 32 dots 

(Xu, Spelke, & Goddard, 2005) and, importantly, both tests controlled for surface area 

differences, suggesting the discriminations are numerical in nature. However, infants 

do not appear able to distinguish between 8 and 12 dots suggesting a numerical 

discrimination ability for a 2:1, but not 3:1, ratio (Xu & Spelke, 2000). Similar findings 

have been reported from studies using cross-modal discrimination and numerical 

change detection (Izard, Sann, Spelke, & Streri, 2009; Starr, Libertus, & Brannon, 

2013a). 

Going one step further, Wynn (1992) suggests that infants possess some basic 

arithmetic abilities for dealing with small numbers of items. In the study, 5-month-old 

infants (N = 32) were shown basic (1+1 or 2-1) addition and subtraction sums played 

out with small toy objects. Infants sat in front of a small theatre set-up and observed 

one toy placed on the “stage”. Then, a screen was added, and a second toy was placed 

behind the screen. In the impossible events, the screen was removed and only one toy 

remained. In possible events, the screen was removed, and two objects remained as 

expected. Wynn found that infants looked longer at the impossible events rather than 

possible events and surmised that these longer looking times, indicating surprise, 

suggest that infants as young as five months have some understanding of number 

quantity which is greater than simply discrimination, and perhaps evidence of a basic 

exact numerical system (Wynn, 1992).  
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Evidence of these basic numerical skills in young infants supports the claim that 

infants are born with an innate number system (Dehaene, 1997). What is less clear is 

if these early numerical abilities are important predictors of the development of later 

numerical and arithmetic skills. Typically, evidence for this comes from approximate 

number discrimination tasks which do not require exact understanding of numerosity. 

In approximate magnitude comparison tasks, the participant is required to determine 

which of two nonsymbolic (e.g. dot) sets has the larger numerosity. As this does not 

require verbal information, and does not rely on any counting abilities, it is considered 

to assess early approximate number skills. Conversely, symbolic magnitude tasks 

(choose the larger of two Arabic digits) are a comparable measure used to assess 

magnitude abilities relying on knowledge of the symbolic (and exact) number system. 

2.1.1 Approximate comparison tasks  

In a typical approximate number discrimination task, a participant is presented with 

two dot sets on the left and right side of a screen and is required to identify which dot 

set contains the larger number of dots. It is important that the dots are not counted, but 

rather that the discrimination is determined using an approximate judgement (quick 

reaction times can provide support of this). The difficulty of the task is manipulated 

in two main ways. Firstly, if the overall quantity of dots in each array is increased, the 

task is more challenging. For example, choosing the larger of 10 or 20 dots is more 

difficult than choosing the larger of 5 or 10 dots. Secondly, the ratio difference 

between the dot arrays can be manipulated, with more challenging discrimination 

involving larger ratios. For example, a 12 to 9 dot ratio is 0.75 which is harder than a 

6 versus 12 dot task which has a smaller ratio of 0.5.  

It is also important to control for surface area which should be matched across the two 

arrays. Clearly, a larger dot array with a larger surface area is easier to discriminate 

than two dot arrays with equal area but different numerosity. Although most studies 

have attempted to control for this, there is debate about how possible it is to measure 

dot discrimination without including confounds such as dot size, density and area. For 

example, Gebuis and Reynvoet (2011) showed that number of items in a set cannot be 

extracted without the use of visual cues and suggest that approximate number 

processing is a challenge to measure. Despite this, approximate number tasks have 
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remained a common way of assessing numerical discrimination within the literature, 

although controlling for potential confounds is clearly an important consideration.  

The dot discrimination score is typically based on overall accuracy, for example gain 

one point for each correct discrimination. A reaction time may be included as evidence 

that the task was completed without counting (counting will take longer than an 

approximate discrimination). Other researchers have used a Weber fraction (w) ratio 

to determine the difficulty of the discrimination task. This is the ratio between the two 

digits (with a ratio of 1:2 digits being easier to discriminate than 13:14, for example). 

The Weber fraction can be applied to many stimuli (e.g. sound, light intensity) and has 

been argued to provide a precise representation of approximate number acuity. At 

some point, an individual will reach a ratio at which they can no longer discriminate 

between the two digits and importantly, w appears to increase over time as children 

become more accurate and better able to distinguish between greater ratios and smaller 

numerical distance (Halberda, Mazzocco, & Feigenson, 2008). This finding has 

implications for the approximate number sense theory as it shows that this system can 

change, develop and improve with age which may be linked to developing later 

arithmetic. 

2.1.2 Symbolic comparison tasks 

Symbolic comparison tasks are much the same as approximate tasks except that 

participants are required to identify the larger of two Arabic digits. Typically, numbers 

used will be between 1 and 9 (inclusive) and the numbers will be presented in the same 

size. As with approximate number tasks, the ratio and number discrimination will 

affect the difficulty of the task, and performance is related to the level of difficulty in 

children and adults. One limitation of these tasks is that they cannot be presented to 

young or preverbal children as this task requires the child to have some understanding 

of Arabic digits and their associated magnitudes.  

2.1.3 A relationship with arithmetic? 

There is evidence to suggest that both approximate and symbolic comparison tasks 

correlate with arithmetic, although for some time, the relationship between 

approximate comparison tasks and arithmetic dominated the literature. Many 

researchers found evidence that early approximate comparison abilities (between the 
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ages of 2-5) relate to later arithmetic, with some suggesting it acts as a foundation for 

later numerical abilities (e.g. Feigenson, Libertus, & Halberda, 2013; Gilmore, 

McCarthy, & Spelke, 2010; Halberda et al., 2008; Libertus, Feigenson, & Halberda, 

2011; 2013; Lyons & Beilock, 2011; Marle, Chu, Li, & Geary, 2014; Mazzocco, 

Feigenson, & Halberda, 2011; Piazza et al., 2010).  

In one longitudinal design, Mazzocco, Feigenson and Halberda (2011) found that an 

approximate comparison score at 3-years-old predicted standardised maths scores 

(Test of Early Mathematics Ability; TEMA; Ginsburg & Baroody, 2003) three years 

later (N = 17). Starr, Libertus and Brannon (2013b) reported that numerical 

discrimination ability at 6-months of age (N = 48) correlated with math score (TEMA) 

three years later (r = 0.28, p < .03) predicting a small but unique proportion of the 

variance in arithmetic (β = .31, p = 0.02). Similarly, Ceulemans et al. (2015) found 

that approximate number abilities at 18 months (N = 31) correlated with arithmetic 

and counting at 24 months (r = .31, r = .38, respectively), although infant number 

discrimination at 8-months and arithmetic at 48-months were not correlated. 

Although these findings appear to show a relationship between early approximate 

number abilities and later arithmetic, the strength of this relationship is not clear. For 

example, when Starr, Libertus, & Brannon (2013b) controlled for IQ, the strength of 

the relationship was weakened. Approximate number abilities and IQ accounted for 

only a small variation in arithmetic (R2 = 28%) and IQ was the stronger unique 

predictor of later numerical abilities (β = .45, p = .001) (although see a critical review 

of this study by Cragg & Inglis, 2013). Ceulemans et al. (2015) report no unique linear 

relationship between infant number discrimination and later exact number abilities, 

when IQ was controlled. A meta-analysis by Chen and Li (2014) reports that in cross-

sectional studies (36 samples) approximate skills and arithmetic show a weak 

correlation (r = .20) and longitudinal studies (6 samples) revealed a similarly small 

prospective relationship (r =.24). Moreover, much of the positive literature supporting 

a relationship suffers from small sample sizes and a failure to include important 

numerical and cognitive predictors of arithmetic, such as symbolic number 

knowledge.  

A recent meta-analysis by Schneider and colleagues (2016) reports that of 45 articles 

(284 effect sizes and 17,201 participants) approximate comparison tasks were 
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correlated with arithmetic, but effect sizes were lower for approximate (r = .24, 95% 

CI [.20, .28]) than symbolic (r = .30, 95% CI [.24, .36]) tasks. Furthermore, when 

symbolic number skills are controlled, both the correlational and longitudinal 

relationship between approximate number tasks and arithmetic is weakened 

(Castronovo & Göbel, 2012; Clarke & Shinn, 2004; Fuhs & McNeil, 2013; Göbel, 

Watson, Lervåg, & Hulme, 2014; Holloway & Ansari, 2009; Long et al., 2016; Lyons, 

Price, Vaessen, Blomert, & Ansari, 2014; Sasanguie, De Smedt, Defever, & Reynvoet, 

2012; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013; Xenidou-Dervoua et al., 

2017).  

Göbel et al. (2014) examined the predictive power of the approximate number system 

(measured by an approximate comparison task) in 173 children in the first year of 

school. The results showed that although approximate comparison correlated with 

arithmetic, it was not a unique and significant predictor of arithmetic 11 months later 

when other factors such as symbolic number knowledge (e.g. number identification) 

were controlled. Similarly, Lyons et al. (2014) examined the role of number 

knowledge and approximate comparison in predicting arithmetic in 1,391 children in 

the first six years of school. Although correlated, approximate comparison was not a 

unique or significant predictor of arithmetic across any of the year groups when other 

symbolic number skills were considered. Furthermore, Xenidou-Dervoua et al. (2017) 

found in a large sample of kindergarten children (N = 326) that approximate 

comparison was a weaker longitudinal predictor of later maths achievement (including 

arithmetic) than symbolic comparison over three years. Importantly, these studies have 

large sample sizes and control for other important predictors of arithmetic (e.g. 

working memory and IQ) which is commonly lacking for studies supporting a role of 

approximate number abilities in predicting arithmetic.  

If approximate number sense is the foundation to later arithmetic, it is arguable that 

training in discrimination abilities should improve later arithmetic. There is some 

evidence for this claim with one training study finding evidence that training children 

in approximate tasks can improve exact number skills and arithmetic (Hyde, Khanum, 

& Spelke, 2014) and another reports improvements in adult participants (Park & 

Brannon, 2014). However, a recent study trained children in both approximate number 

skills and exact number skills and found that only those children trained in exact 
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symbolic number skills, or exact and dot but not dot alone improved significantly on 

arithmetic outcomes (Honoré & Noël, 2016). This is discussed in more detail in 

Chapter 4.   

Taken together, it seems that although correlated with arithmetic, approximate number 

skills appear to play a less important role than some other predictors of arithmetic.  

2.2 Symbolic number knowledge  

Symbolic magnitude comparison tasks rely on children’s ability to identify two 

numbers and know which of these numbers is larger. These skills are part of number 

knowledge defined by Merkley and Ansari (2016) as a combination of understanding 

the identity (symbol 4 is verbal code “four”), the cardinality (4 represents four objects) 

and the ordinality (4 comes before 5 and after 3) of a number (see Figure 2.1). 

 

Figure 2.1 Components of number knowledge taken from Merkley & Ansari (2016).  

The authors argue that symbolic number knowledge is not fully acquired until children 

have mastered cardinality which is considered the ability to associate the magnitude 

of a number with its verbal code. This is mirrored in the counting development 

literature which suggests that more advanced counting skills, relying on an 

understanding of cardinality, are more important for predicting later number abilities 

than basic rote counting (e.g. knowing the count sequence) (e.g. Nguyen et al., 2016).  

Symbolic number knowledge is typically measured via tasks which require the child 

to identify Arabic digits, and/or the cardinality of a digit. Symbolic magnitude 

comparison tasks, akin to approximate comparison tasks, are perhaps the most 



37 

 

common method used to assess number knowledge. Symbolic comparison tasks rely 

on children understanding the identity and order or magnitude of a number, typically 

for Arabic digits 1-9. Larger numbers can be tested via number identification tasks in 

which children identify which number matches that read aloud by an experimenter. 

The options will typically be similar to the target number (e.g. 71 or 171 for target 17). 

This relies on advanced number identification including the understanding of place 

value. Finally, ordinality can be measured via number sequences tasks. For example, 

identify if numerical sequences are presented in the correct order or fill in the missing 

number from a sequence.  

2.2.1 The relationship between symbolic skills and arithmetic 

Symbolic number measures (however tested) appear to be stronger predictors of 

arithmetic than approximate number abilities (e.g. Göbel et al., 2014; Lyons et al., 

2014; Schneider et al., 2016; Xenidou-Dervoua et al., 2017). Additionally, these skills 

remain robust predictors of arithmetic after controlling for other cognitive factors 

implicated in arithmetic such as general cognitive skills including executive function 

and reading abilities (Durand, Hulme, Larkin, & Snowling, 2005; Lyons et al., 2014; 

Vanbinst, Ansari, Ghesquière, & De Smedt, 2016).  

Vanbinst et al. (2016) tested 74 children at the start of third grade and again one year 

later. Symbolic skills (measured via a symbolic comparison task) uniquely predicted 

16% of the variation in arithmetic (β = .41, p < .001), considerably more than either 

reading (β = -.22, p - .05, unique R2 = 4%) or non-verbal IQ (β = -.19, p = .07, unique 

R2 = 3%). Interestingly, the predictive power of symbolic comparison in arithmetic 

was similar to that of phonological awareness in reading (unique R2 =16%) suggesting 

that the ability to identify digits and associate with a magnitude should be a focus of 

educational practices and interventions, as phonological awareness has been for 

reading development (see Hulme & Snowling, 2009).  

Merkley and Ansari (2016) propose that early exact number skills are the foundation 

to later arithmetic, and it is this system which should be the focus of numerical 

development literature. Some convincing evidence for this proposal comes from 

studies examining early number and general cognitive skills, which support a critical 

role for these early symbolic number skills in predicting later arithmetic. Duncan et al. 

(2007) used six longitudinal data sets to examine the predictive nature of school entry 
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level abilities including numerical knowledge, reading, attention and domain-general 

cognitive abilities (e.g. social skills). Across all six studies, children’s numerical 

abilities at the start of school were shown to significantly predict later arithmetic, and 

a meta-analysis of these findings showed this was the single most important predictor 

of later achievement (followed by reading and then attention).  

Similarly, Nguyen et al. (2016) examined performance in number skills at preschool 

(N = 1,375) and compared to mathematical performance (including arithmetic) in the 

fifth grade. Number knowledge tasks (measured via tasks assessing knowledge of 

counting and cardinality principles) were the best longitudinal predictors of later 

mathematical achievement (β = .42, SE = .04, p < .001) after controlling for other 

numerical skills (patterning tasks and geometry measures) and domain-general 

measures (e.g. socio-economic status; SES). Entry level exact numerical skills, 

measured by tasks assessing knowledge of the counting and cardinality principles, 

appear to be the most important foundation to later numerical skills (Koponen, Aunola, 

Ahonen, & Nurmi, 2007; Merkley & Ansari, 2016; Nguyen et al., 2016; Torbeyns, 

Gilmore, & Verschaffel, 2015) and, importantly, play a more critical role than other 

cognitive abilities (including literacy and attention) and general predictors of academic 

achievement (e.g. SES and home environment). Moreover, as the relationship between 

early counting abilities and later arithmetic appears to be mediated via symbolic 

number knowledge (Purpura, Baroody & Lonigan, 2013) it is proposed that this ability 

should be the focus of developmental research.  

One outstanding question is why there is variation in the development of symbolic 

number knowledge. One possible suggestion is that the innate number system includes 

exact, as well as approximate, number skills and that it is this system which leads 

directly to the development of later exact number skills (e.g. Wynn, 1998). Evidence 

for this comes from studies suggesting that, with exception of the digit 0, children 

appear to learn to associate Arabic digits and magnitude relatively easily (Hughes, 

1986; Wellman & Miller, 1986). Learning to represent ‘zero’ as a quantity appears to 

be problematic, even for adults who show longer reading times for this digit 

(Brysbaert, 1995). Wynn (1998) suggests that children learn symbolic and magnitude 

associations via the innate core number system which does not encompass the number 

zero, as this represents ‘nothing’ and thus is not represented in the system.  
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An alternative suggestion is that children may learn to associate numbers and 

quantities through practice with physical objects (Hughes, 1986). As zero cannot be 

represented by a physical quantity, children may struggle to learn what this number 

represents. This is perhaps a more convincing argument, considering the lack of 

evidence for a direct relationship between preverbal exact skills and later arithmetic. 

Moreover, children’s knowledge of numbers in pre-school is largely related to parental 

income and socio-economic status (Cirino, 2011; Chu, van Marle, & Geary, 2016; 

Duncan et al., 2006; Fuchs, Geary, Fuchs, Compton, & Hamlett 2016; Levine, 

Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010; Welsh, Nix, Blair, Bierman, 

& Nelson, 2010) suggesting that understanding symbolic number is based upon a 

combination of general cognitive skills, home environment and teaching.  

Whether symbolic number knowledge is learned through an innate number system, or 

via practice and exposure, it is clear from the literature that early knowledge of 

symbols appears to be a strong predictor of arithmetic, and relatively more important 

than other cognitive skills (such as reading or intelligence).   

2.3 Domain-general predictors of arithmetic  

So far, the cognitive predictors that have been discussed in relation to the development 

of arithmetic have been domain-specific predictors. These skills (for example 

magnitude comparison and number knowledge) are considered domain-specific 

because performance may affect numerical abilities but might not affect performance 

in other academic skills. On the other hand, researchers have investigated the role of 

domain-general predictors and number development (e.g. Duncan et al., 2007). 

Domain-general skills such as intelligence and memory are considered to affect more 

than one academic attainment skill, for instance numerical and literacy skills. Memory, 

executive function and spatial awareness are domain-general skills commonly 

associated with arithmetic development. These skills will be first described, then the 

way to measure these variables will be explained before finally discussing the 

relationship these have with arithmetic.   

2.3.1 Memory  

Memory is very important for both computing and storing calculations. Older children 

will typically commit arithmetic sums (including addition, subtraction and 
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multiplication) to long-term memory through practice and exposure. For arithmetic 

problems which have not been learned and stored in long-term memory, children must 

use working memory to compute an answer (Adams & Hitch, 1997).  

Baddeley (1992) defines working memory as a temporary storage system responsible 

for performance of cognitive tasks. Working memory is further divided into three 

interacting subsystems of a central executive (a central processing system) which is 

further separated into two “slave systems”, an articulatory or phonological loop 

(responsible for storing phonological information) and visuo-spatial scratch-pad (for 

visual/spatial information). An important characteristic of working memory is that the 

system is limited in capacity and information stored only temporarily.  

Working memory is thought to be required for the performance of many cognitive 

skills including reading, problem solving and general learning. Importantly, it is 

closely linked to arithmetic. Take, for example, the sum 5 + 4. For young children who 

have not yet learned the answer to this, they must place these numbers in short-term 

memory and then process the answer. It is the coupling of short-term storage and 

simultaneous processing which is a critical component of the working memory system. 

Solving the sum may involve phonological information if the numbers are presented 

orally and/or visual information if the numbers are presented in written or symbolic 

form. According to Baddeley’s model, the related subsystems will deal with the 

relevant information (e.g. articulatory loop for a verbal sum) and interact with the 

central executive to solve the problem.  

Others have commented that the visuo-spatial sketch-pad, which may deal with spatial 

awareness, could be involved if children are using spatial skills to solve the calculation 

(see Section 2.4). Working memory is also considered an important part of executive 

function, a general term for different processes involved in attention, inhibition and 

control (see Section 2.3.2).  
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Figure 2.2 A simplified representation of the working memory model taken from 

Baddeley (1992). 

Working memory capacity can be measured using tasks that require children to store 

and actively manipulate information. For example, repeating a set of digits or words 

backwards and increasing the number of items in the sequence to increase difficulty. 

Skills such as this are strongly linked to arithmetic ability (e.g. Gathercole, Pickering, 

Knight, & Stegmann, 2004; Mazzocco & Kover, 2007; Van der Ven, Kroesbergen, 

Boom, & Leseman, 2012) even when controlling for IQ (Alloway & Alloway, 2010). 

This skill is regularly included in arithmetic research and is an important construct to 

consider when examining which cognitive skills are most important in the 

development of arithmetic.  

2.3.2 Executive Function 

Executive Function is a term given to cognitive skills relating to the conscious control 

of thoughts and actions including basic processes of memory (particularly working 

memory), inhibitory control, attention and planning (see Figure 2.3). Researchers have 

suggested that important executive function skills form part of a central executive 

component of working memory (see Baddeley, 1992) and evidence has supported a 
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relationship between these various working memory measures and arithmetic 

development (Blair & Razza, 2007; Bull, Espy & Wiebe, 2008; Bull & Lee, 2014; Chu 

et al., 2016). Bull and Lee (2014) suggest that executive function may be related to 

high academic achievement because children with good executive function may show 

good school-related behaviours including good attention in class, high focus on 

working activities and ability to refrain from disruptive behaviour in a classroom.  

Despite a growth of interest in executive function in recent years, it is still an ill-

defined construct and there continues to be discrepancies in the way that executive 

function is defined and measured (Zelazo & Müller, 2002). Moreover, there exists 

some debate within the literature about the true nature of executive function, with 

some researchers arguing that these skills are in fact separate constructs rather than a 

unitary factor (e.g. van der Sluis, de Jong, & van der Leij, 2007).  

In numerical development literature, executive function is commonly (although not 

consistently) defined as a measure encompassing three main skills: inhibition 

(overriding a dominant response), shifting (switching flexibly between tasks and rules) 

and updating (monitoring the contents from working memory). Other skills also 

examined can include selective attention, planning, goal setting and self-regulation.  

Working memory is an active part of the memory system, responsible for temporarily 

storing information and mentally working on and processing the information. It has 

been implicated in executive function since the earliest definitions and remains a 

common measure in more recent executive function tasks. Working memory and 

updating are clearly linked to arithmetic because in order to compute a calculation, an 

individual needs to consider the sum (phonologically or orthographically) and actively 

hold the digits in memory whilst retrieving results. Inhibition may be important for 

ensuring the correct use of a calculation method. For example, a child may be 

experienced in addition and thus have to inhibit this response for a less well practiced 

subtraction question. For more advanced number skills, inhibition of irrelevant 

information may be important, for example selecting appropriate information from a 

word problem.  

Shifting skills are useful in a range of numerical processing tasks including computing 

different types of arithmetic sum (e.g. moving quickly from addition to subtraction) 

and moving between different forms of notation (verbal and orthographic).  
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Figure 2.3 Simplified model adapted from (Diamond, 2013). Executive function and 

related terms. 

The tasks used to measure these constructs in children vary across different studies, 

although there are a number of key tasks that are commonly used in the literature. 

Updating is often measured using a working memory task, for instance a backward 

digit or word span task (e.g. Wechsler Adult Intelligence Scale; WAIS-III; Wechsler, 

1997). A simple forward digit or word span task is a good measure of a child’s short-

term memory (simply repeat the words you hear in increasing number of words within 

an item). However, as working memory and updating is assessing the ability to process 

information stored in a short-term (limited capacity) store, a backward span task 

(repeat the words/digits heard backwards) requires the use of processing upon the 

information held. Note that the use of a backward digit task may confound results for 
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numerical development, and therefore a backward word span is a preferred working 

memory task within this literature.  

Inhibition is commonly measured via a Stroop test (Stroop, 1935) or Head Toes Knees 

and Shoulders Task (HTKS; e.g. Burrage et al., 2008). Both of these assess the child’s 

ability to inhibit an automatic (or dominant response). The HTKS task is suitable for 

young children and it requires them to control the dominant reaction when asked to 

“touch your head” by doing the opposite and touching their toes (or similarly for knees 

and shoulders). A common measure for a shifting task is the Wisconsin Card Sorting 

Task (e.g. Struss et al., 2000) whereby children learn to associate a rule with a set of 

cards but then this rule is switched, and the participant must deduce what the new rule 

is. For younger children, similar but simpler card sorting tasks have been used to 

measure the ability of a child to switch between different perspectives (e.g. shifting 

task; Dick, 2014).  

Developmental studies have examined if these separate measures relate to a unitary 

underlying construct, using factor analysis. There is evidence to support this, and 

moreover to show that this factor correlates with general learning attainment including 

arithmetic (Bull et al., 2011; Bull & Scerif, 2001; Hughes, Ensor, Wilson, & Graham, 

2009). However, some studies have suggested that these skills may be tapping into 

slightly different constructs, with a possible-two factor model; inhibition and shifting 

as one factor and working memory as a second (Lee et al., 2011; Van der Ven et al., 

2012). For example, Miyake et al. (2000) showed through exploratory factor analysis 

that although correlated, three executive function tasks measuring shifting, updating 

and inhibition are clearly separable to one another. This finding suggests that it is 

important to consider the unity and diversity of executive functions. One potential 

reason for the different findings within the literature may be partly due to the measures 

used to examine executive function and the ages of the children within the study. In 

general, researchers examining numerical development assess executive function as 

one main factor although it is not completely clear if this is consistently the case (Fuhs, 

Hornburg, & McNeil, 2016).  

2.3.3 Relationship with arithmetic  

There is mounting evidence that some, or all of these executive function measures 

relate strongly with arithmetic and numerical development. Moreover, children with 



45 

 

mathematical learning disorder have weaker executive function abilities (see Geary, 

2004). In typically developing populations, a number of studies have reported 

concurrent and longitudinal correlations between executive function abilities and 

arithmetic (Blair & Razza, 2007; Bull, Espy, & Wiebe, 2008; Bull & Lee, 2014; Brock, 

Rimm-Kaufman, Nathanson, & Grimm, 2009; Chu et al., 2016; Fuhs et al., 2016; 

Mazzocco & Kover, 2007; Moll et al., 2015; Nesbitt, Farran, & Fuhs, 2015; Welsh et 

al., 2010).  

For example, Chu et al. (2016) measured performance on executive function (card 

sorting task; Conflict Executive Function scale; Beck et al., 2011) and intelligence 

(Weschler Test of Intelligence) alongside domain-specific skills (various tests 

assessing number knowledge, counting and calculation) in 100 children in preschool 

(mean age = 3 years 10 months) then again 18 months later. Performance in executive 

function at time 1 and time 2 correlated significantly with mathematics achievement 

(WIAT Numerical Operations) (r = .26 and r = .35, respectively) and predicted growth 

in the domain-specific skills, which in turn were predictive of later mathematical 

abilities. Similarly, Moll et al. (2015) provided evidence for a strong relationship 

between executive function (measured by inhibition and selective attention tasks) and 

preschool verbal number skills, which in turn were predictive of later arithmetic 

abilities (N = 93). Executive function skills at time 1 (when children were 3 years 9 

months) correlated significantly with arithmetic score at time 3, two years later 

(addition: r =.28, subtraction r = .32) and this relationship was mediated via preschool 

number skills which was a significant and unique predictor of arithmetic.  

A meta-analysis by Friso-van den Bos, van der Ven, Kroesbergen and van Luit (2013) 

reports that executive function measures involving working memory, updating, 

inhibition and shifting, are associated with mathematical performance across 111 

studies (16,921 participants between 4 and 12 years of age). Working memory 

components were best associated with arithmetic, with significant correlations 

remaining for all measures including inhibition and shifting (r = .27 for 131 

correlations, 29 studies; r = .28 for 94 correlations, 18 studies) and the greatest overall 

relationship between updating and arithmetic (via weighted mean correlation 

coefficients). However, there appears to be no good evidence that training in working 
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memory improves arithmetic, as reported in a meta-analysis of 30 randomised control 

trials with 30 group comparisons (Melby-Lervåg & Hulme, 2013). 

In summary, there appears to be sufficient evidence to support a role of executive 

function in arithmetic development, although more work is required to support the 

relationship between different executive skills. We used executive function tasks 

(updating, shifting and inhibition) as control measures in a study examining the 

relationship between patterning and arithmetic (reported in Chapter 4) due to the 

evidence that these skills play a role in the development of arithmetic. 

2.4 Spatial abilities  

Spatial abilities are cognitive skills involving the ability to mentally manipulate spatial 

information and use visual imagery (Uttal et al., 2013). From a young age, children 

will play with blocks and other physical objects that involve spatial skills (Rittle-

Johnson et al., 2018). These skills will improve over time and can be improved through 

increased play with toys, shapes and objects (Jirout & Newcombe, 2015; Levine, 

Huttenlocher, Taylor, & Langrock, 1999).  

Children are typically assessed on a range of spatial skills involving spatial 

visualization (imaging and transforming mental information), form perception 

(copying and distinguishing different shapes or symbols) and visual-spatial working 

memory (holding locations in working memory). As with executive function, there are 

different tasks used to measure these spatial skills. Spatial visualisation involves 

manipulating objects within space and is commonly assessed using tasks such as a 

mental rotation task (e.g. which of these images is a rotation of the first) or the block 

design task which uses physical items (e.g. WISC-IV: Wechsler, 2008). Form 

perception is the ability to recognise and distinguish different shapes from one another 

and can be measured with tasks requiring a child to separate a shape into different 

components (e.g. hidden shapes task; Smith & Lord, 2002). Visuospatial working 

memory tasks may involve holding shapes in memory, for instance copying a figure 

or line drawing (e.g. Beery & Beery, 2010) or remembering where an item last 

appeared on a screen (e.g. Kaufman & Kaufman, 1983).  

An important area of investigation, as with executive function tasks, is how different 

types of spatial skills are related and whether they form one factor or several separate 
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factors. Hambrick, Kane and Engle (2005) argue that spatial abilities reflect separate 

components involving executive control, verbal and visual abilities. On the other hand 

researchers have examined a range of spatial skills and found that these can form one 

unitary factor, suggesting any difference with previous evidence may be related to the 

ages of children measured or types of tasks used (e.g. Mix et al., 2016). As with 

executive function, there is mixed evidence regarding the nature and relationship 

between different spatial skills, with debate surrounding the extent to which these 

skills can be called one factor.    

2.4.1 Spatial skills and arithmetic  

Spatial skills have been linked with mathematical abilities in a range of studies 

examining children and adults (see Mix & Cheng, 2012 for a review). Additionally, 

children with mathematics disorder perform significantly worse on visual-perceptual 

skills (Geary, 1993). Verdine, Irwin, Golinkoff, & Hirsh-Pasek (2014) show that 

spatial skills remain a unique and significant longitudinal predictor of mathematical 

abilities (R2 = .15, p < .001) after controlling for executive function and verbal abilities 

(N = 44). Gunderson, Ramirez, Beilock, & Levine (2012) provide evidence that spatial 

skills in Grade 1 predict number line estimations and approximate calculations one 

year later. This suggests that the ability to spatially represent digits may help in the 

development of later numerical abilities.  

This finding has also been reported for exact calculation skills (Mix & Cheng, 2012). 

Other studies examining this relationship have reported strong and unique correlations 

between arithmetic and various spatial abilities, including visuomotor skills, mental 

rotation and figure copying (Ansari et al., 2003; Gunderson et al., 2012; Rittle-Johnson 

et al., 2018). Additionally, there is evidence for transfer to arithmetic after training in 

spatial skills (Cheng & Mix, 2014; Hawes, Moss, Caswell, & Poliszczuk, 2015; 

Lowrie, Logan, & Ramful, 2017). 

Spatial skills are linked to arithmetic and numerical abilities for a number of potential 

reasons. A dominant theoretical perspective is that numerical and mathematical 

thinking is governed by spatial representations, for example storing information via a 

mental number line or holding information about locations and quantities in space (e.g. 

Lakoff & Núñez, 2000). Children and adults appear to represent smaller numbers on 

the left side and larger numbers on the right with robust evidence from studies 
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examining the SNARC effect; people are quicker to identify a smaller number with 

their left hand and larger number with their right (Berch, Foley, Hill, & Ryan, 1999).  

In development, a child who is able to associate numbers to a mental number line in 

this way may develop stronger associations between numbers and their associated 

magnitudes; a critical component of numerical development (Mix & Cheng, 2012). 

Additionally, studies have shown that manipulating the spatial configuration of a 

calculation (e.g. distance between the Arabic digits in 3+4 x 2) can affect the way 

people will complete the sum (Fisher, Borchert, & Bassok, 2011; Landy & Goldstone, 

2007). Evidence examining the use of a mental abacus has shown that children who 

employ this technique are able to perform complicated calculations more rapidly than 

children who have no formal training (Uttal, 2000). This suggests that providing a 

mental model for the calculation is beneficial for strong maths performance. A second 

theoretical (although not mutually exclusive) proposal is that spatial skills activate the 

same neural regions as numerical abilities, with a particular focus on the parietal cortex 

with evidence supporting brain activation in these regions in functional imaging 

studies (see Hubbard, Piazza, Pinel, & Dehaene, 2005) 

Overall, there appears to be strong evidence for a relationship between spatial skills 

and numerical development, and it is worth considering these within studies 

examining arithmetic outcomes. We included spatial abilities as a control measure in 

our study examining patterning skills (presented in Chapter 5). This was a particularly 

important control measure for this study as our pattern stimuli include some spatial 

information within the rotating items.  

2.5 Summary 

This chapter has outlined some important numerical and domain-general skills which 

may be important in arithmetic development. Each of these skills are presented in 

some way in the three studies that were conducted for the purpose of this thesis to 

examine arithmetic development in children. Each study is now presented in turn 

including a detailed introduction which evaluates evidence related to the study in 

question. After the method and results section a discussion outlines these findings in 

relation to previous evidence with a general discussion presented in the final chapter 

(Chapter 6). 
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Chapter 3. Study 1: Finger gnosis and other sensori-motor 

skills as predictors of arithmetic development  

This chapter reports a study conducted for this thesis which investigates the relative 

contribution of finger gnosis, and other sensori-motor abilities, as predictors of 

arithmetic ability. Parts of this chapter are published in Long et al. (2016).  

3.1 Gerstmann’s syndrome 

Gerstmann’s syndrome was first described in the 1900s by Josef Gerstmann who 

stated that patients with acquired brain disorders were exhibiting a cluster of 

symptoms. The damage was to the inferior parietal lobe and involved the co-

occurrence of four deficits: acalculia (problems with numerical information, including 

calculation), finger gnosia (difficulty distinguishing and naming fingers), left-right 

disorientation (inability to label left and right on own and others’ bodies) and 

handwriting difficulties (Gerstmann, 1940). For many years the nature and 

interpretation of the syndrome has been debated with some researchers claiming there 

is evidence for such a syndrome in both adults and children, particularly from imaging 

data (e.g. Benson & Geschwind, 1970; Geschwind, 1974; Mayer et al., 1999; Mazzoni, 

Pardossi, Cantini, Giorgetti, & Arena, 1990), and others continuing to debate the 

nature and interpretation of the syndrome (e.g. Benton, 1961, 1977; Miller & Hynd, 

2004; Poeck & Orgass, 1966).  

Despite the mixed evidence for Gerstmann (and Developmental Gerstmann) 

syndrome, the possible co-occurrence of these symptoms has implications for 

numerical and arithmetic, development. Some researchers have examined the potential 

link between fingers and arithmetic by testing finger awareness; the ability to identify 

which fingers are pressed without visual assistance. A typical way to measure this is 

to have children place their hands in a box such that their fingers are out of their sight, 

and an experimenter press one or two fingers on one hand and the child use the index 

finger of the other hand to identify the finger(s) pressed. This is similar to the way that 

Gerstmann would have tested finger gnosia in his patients.  

Two main theories have been proposed to suggest why a relationship between fingers 

and arithmetic exists. The first, originally proposed by Gerstmann, is a localizationist 

account, which suggests that calculation and sensori-motor abilities (e.g. left-right 
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orientation, finger and body-part awareness) may coincide due to the proximity of 

brain regions involved in these tasks (see Pinel, Dehaene, Riviere, & LeBihan, 2001). 

The second is a functional account which proposes that fingers are linked to arithmetic 

via the functional use of fingers in learning to count (e.g. Butterworth, 1999). The 

localization account could explain both acquired and developmental Gerstmann’s 

Syndrome, both of which could be characterised by loss of, or lack of development of, 

a brain region (Dehaene, Piazza, Pinel, & Cohen, 2003). Gerstmann later extended this 

theory to postulate a functional role of the fingers in learning to count and arithmetic 

(see Lebrun, 2005). The relationship between fingers and counting has been well 

documented (Butterworth, 1999) and this has prompted a number of studies with 

children examining the possible role of finger gnosis in the development of arithmetic, 

and other number skills.  

3.1.1 Functional account 

One of the methods that children use to complete simple addition and subtraction 

sums, particularly in early development is finger counting (e.g. Siegler & Jenkins, 

1989). Fingers are particularly useful in counting because both use a base-ten 

principle, helping children to develop an understanding of the numerical system. 

Children will begin to use fingers in learning to count from a young age, and before 

formal instruction of arithmetic has begun (Butterworth, 1999). Moreover, children 

with mathematical learning difficulties will often show immature finger counting 

strategies and use fingers to assist in counting for longer than their typical peers 

(Butterworth, Varma & Laurillard, 2011). Not only are fingers important in early 

number skills, but most adults will continue to use fingers for a range of tasks such as 

counting the days of the week or ticking off tasks in a check-list. The combination of 

this with other evidence has led Butterworth (1999) to argue that fingers are more than 

just a practical tool in numerical development and proposes that the functional use of 

fingers mediates the relationship between counting and arithmetic. Evidence 

supporting a relationship between finger gnosis and arithmetic may suggest that there 

is some functional link between using the fingers and learning to compute sums.   

3.1.2 Localizationist account  

Finger awareness is a skill which relies in part on sensori-motor information (the 

ability to associate sensory and motor functions). For example, to accurately identify 
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a finger pressed, children must associate the sensation of the physical contact and the 

motor information relating to the finger and hand. This ability, along with other 

sensori-motor skills have been associated with the parietal lobe, a brain region 

commonly associated with numerical and arithmetic tasks (e.g. Dehaene et al., 2003). 

As the brain regions associated with finger awareness, and other sensori-motor skills, 

have been implicated in numerical development, it is possible that some damage to 

this region (either in adulthood or developmentally) may provide a reason for the 

connection between these skills.  

3.2 Sensori-motor abilities and arithmetic – the evidence  

A handful of studies have attempted to examine the relationship between finger 

awareness (and other Gerstmann symptoms or sensori-motor skills) and arithmetic. In 

one such study, Noël (2005) assessed if finger awareness, and other Gerstmann 

symptoms measured in 45 children in the first year of school (mean age = 6 years 10 

months) predicted numerical skills including arithmetic 15 months later (N = 41). 

Children were assessed on the Gerstmann symptoms finger gnosis and left-right 

orientation at time 1, and handwriting and constructional apraxia (an inability to build, 

draw or assemble objects) at time 2. Constructional apraxia, measured via a block 

design task, was included due to previous links with potential cases of developmental 

Gerstmann syndrome (Benton, 1977). In the finger gnosis task, children were required 

to identify, without visual assistance, which of their finger(s) were pressed by an 

examiner, and then point to the finger(s) that had been touched. Left-right orientation 

measured the child’s ability to identify left and right on both their own, and the 

experimenter’s body.  

Numerical tests at time 2 were symbolic and approximate magnitude comparison, 

number writing, subitizing, counting and an addition fluency task. Noël (2005) reports 

that the four Gerstmann symptoms were moderately or strongly correlated with 

numerical error score at time 2: finger gnosis and left-right orientation at time 1 (r = 

.48 and r = .34, respectively), and handwriting and block design at time 2 (r = .43 and 

r = .44, respectively). Conversely, word reading, and processing speed did not 

correlate with Gerstmann’s symptoms nor numerical scores. Regression analysis 
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showed that 46% of the variation in numerical error score at time 2 was explained by 

finger gnosis at time 1, handwriting and block design.  

These results suggest that symptoms of Gerstmann’s syndrome may be implicated in 

the development of numerical, and arithmetic skills. As both finger gnosis and left-

right orientation appear to play similar roles in predicting numerical abilities, it is not 

possible to identify if a localizationist, or functional account may explain such a 

relationship. However, before considering why the relationship exists, there are 

important limitations to consider. Firstly, the reliability of the finger gnosis task is 

questioned (exact reliability scores are not given) because at time 1 children were 

performing at ceiling on half of the trials in the finger gnosis task. Another potential 

problem is the small sample size (N = 41). In addition, the regression model does not 

account for the possible effects of age (children in this study ranged from 5 to 7 years). 

Finally, a “numerical skills” factor was created from the numerical tasks which does 

not represent typical or conventional measures of children’s arithmetic ability. Rather, 

the measure includes a range of numerical abilities from approximate numerical skills 

(e.g. subitizing and approximate comparison) to exact number abilities (counting and 

symbolic comparison) and number writing. Therefore, the exact relationship between 

Gerstmann symptoms and arithmetic is not known.  

Interestingly, a later study by Penner-Wilger and colleagues (2007) used the same 

finger gnosis task on a larger group of children (N = 146) and found only a weak 

correlation (r = .16) between finger gnosis and arithmetic whilst reporting no 

longitudinal relationship between finger gnosis and calculation in a follow-up study 

(Penner-Wilger et al., 2009). Together, these results call into question the conclusions 

of Noël (2005) and cannot provide direct support for a functional account, which 

would predict a strong relationship between finger gnosis and arithmetic (which is 

either not supported or not shown). Furthermore, a training design by Gracia-Bafalluy 

and Noël (2008) examined a causal link by training children in finger gnosis but failed 

to find any difference in post-training addition scores compared to the control group. 

As this study suffered from a small sample size (N = 47) and failed to account for 

baseline differences between the groups (see Fischer, 2010) and therefore provides no 

convincing evidence for a causal role of finger gnosis in arithmetic. In summary, there 
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is at best limited evidence for a functional relationship between finger awareness and 

arithmetic from a variety of concurrent, longitudinal and training designs.  

An alternative explanation for the clustering of Gerstmann symptoms, is a localization 

account which would argue that the symptoms rely on similar brain regions. One 

potential way to assess this is to consider Gerstmann symptoms alongside other 

cognitive abilities which may rely on similar brain regions. Fayol, Barrouillet, and 

Marinthe (1998) examined a range of tasks considered to rely on adjacent parts of the 

parietal lobe (a brain area implicated in Gerstmann’s syndrome and numerical 

abilities). Alongside calculation, four “neuropsychological” or sensori-motor tasks, 

were assessed. These were finger gnosis (identify fingers pressed), simultagnosia 

(identify body-parts pressed) and graphisthesia (identify shapes traced on back of 

hand) all of which rely on the integration of sensory information from the body. The 

authors assessed these measures, alongside numerical skills, in 189 children in the first 

year of school (mean age 5 years 9 months) and then again eight months later (N = 

177). The sensori-motor skills (measured as a combined score) were reported to 

correlate well with numerical abilities at time 1 (r = .50, partial R2 = .39) and time 2 

(r = .47, partial R 2 = .36). However, at time 2, general intelligence correlated almost 

equivalently with the sensori-motor tasks (r = .44) and better explained numerical 

abilities than the sensori-motor tasks. Moreover, the numerical abilities construct 

comprised five numerical tasks (number writing, number sequencing, counting, 

calculation, and word problems).  

As with Noël (2005) this is not a standard arithmetic measure but involved 

considerably more numerical knowledge than a basic calculation task. Indeed, the 

unique relationship between calculation and sensori-motor skills was far weaker (r = 

.23) than that of the combined numerical score. Finally, it is worth considering that 

the neuropsychological score (the combined performance on all sensori-motor tasks) 

which was associated with numerical abilities contained numerical processing. For 

example, the graphisthesia measure was the ability to identify shapes drawn on the 

back of the hand. These shapes included Arabic digits and numerical signs (e.g. +, 4) 

and in the finger gnosis test, children were asked to state which finger was pressed 

using an assigned number 1-5. Although minimal, it is possible that children with 
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mathematical learning difficulties may have performed poorly on these tasks due to 

demands on number knowledge.  

So far, the papers reviewed that have claimed to find evidence for a relationship 

between finger gnosis (and other sensori-motor skills) and arithmetic show important 

limitations (e.g. Fayol, Barrouillet, and Marinthe, 1998; Noël, 2005). Moreover, the 

findings have not been supported by other studies with similar aims (e.g. Penner-

Wilger et al. 2007; 2009). One study that overcame some common limitations (e.g. 

small sample sizes and a failure to control for predictors of arithmetic) by Wasner, 

Nuerk, Martignon, Roesch and Moeller (2016) reports lower correlations between 

finger gnosis and arithmetic than previous findings. Participants were 321 German 

children in the first year of school (mean age = 6 years 6 months) examined on finger 

gnosis, arithmetic (addition and subtraction sums) numerical skills (symbolic-

nonsymbolic mapping, magnitude comparison and number ordering) and general 

cognitive abilities (intelligence, short-term memory, spatial skills). Finger gnosis 

correlated significantly with both addition and subtraction (r = .23 and r = .24, 

respectively). However, a hierarchical regression showed that finger gnosis, alongside 

unique predictors of arithmetic (age, numerical abilities and memory) predicted only 

1-2% of the unique variance in arithmetic which arguably is of no clinical significance. 

However, the finger gnosis task used shows low reliability (Cronbach’s alpha = .55) 

which will limit the ability of this task to correlate with other measures.  

Despite, this potential limitation, another recent study found no predictive relationship 

of finger awareness in arithmetic in 76 children (mean age = 8.67 years) after 

controlling for age and working memory (Newman, 2016). These studies support our 

view that with the inclusion of established predictors of arithmetic, finger gnosis will 

play, at best, a minor role in arithmetic development. As neither of these more recent 

studies included other sensori-motor skills, more evidence is needed to assess the 

relationship between these skills and arithmetic.  

Overall, there is at best weak evidence that sensori-motor skills and finger gnosis are 

related to the development of arithmetic skills. Studies reporting such a relationship 

show limitations such as small sample sizes and a failure to account for other 

predictors of arithmetic including counting and magnitude comparison. One study 

which reports a very small unique relationship between finger gnosis and arithmetic 
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(Wasner et al., 2016) overcomes some of these limitations by using a large sample size 

(N = 321) and controlling for known predictors of arithmetic. However, the finger 

gnosis task they used had low reliability (Cronbach’s alpha = .55) and this study did 

not include other sensori-motor skills, which have previously been linked to numerical 

abilities.  

We conducted a study to overcome such limitations, including using a large sample 

size (N = 204) and controlling for important skills such as age counting and magnitude 

comparison. Additionally, we included a finger gnosis task with good reliability to 

increase the potential correlation with other measures, alongside a graphisthesia 

measure, like that in Fayol et al. (1998) but without any numerical processing, and the 

left-right orientation measure as used in Noël (2005) to investigate the relationship 

between different sensori-motor skills and arithmetic.  

3.3 Method  

3.3.1 Participants    

A total of 204 children (103 boys, 101 girls) unselected for ability participated in the 

study with an average age of 7 years 1 month (SD = 9.42 months, range 5;6 – 8;8 

[years; months]): 130 children from two schools in London, England and 74 children 

from one school in Brisbane, Australia. Children in England were tested on all 

measures, had an average age of 6 years 2 months (SD = 6.67 months, range = 5;6– 

7;8) and were in Year 1 (n =77) and Year 2 (n = 53). Children in Australia were tested 

on finger gnosis and numerical measures, but not other sensori-motor measures, and 

were in Year 2 with an average age of 7 years 11 months (SD = 3.88, range = 7;4 – 

8;8)1. Children of this age were chosen for consistency with previous similar studies. 

The schools provided consent for all children in a year group to participate and parents 

were given the option to opt-out or withdraw their child from the study at any time. 

Full ethical approval was provided by The University of College London Ethics 

Committee and the Australian Catholic University Ethics Committee.  

                                                 
1 Note that Australian children showed equivalent scores for arithmetic and other outcomes as those in 

Year 2 (equivalent age) of the UK sample.  
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3.3.2 Test and procedures  

Children in the UK were assessed on numerical skills (arithmetic, magnitude 

comparison tasks and counting) sensori-motor skills (finger gnosis, left-right 

orientation and graphisthesia) and receptive vocabulary. Children in Australia were 

tested on the numerical tests and the finger gnosis measures only.  

The numerical and vocabulary measures were administered in groups whereby all 

children in a class completed the tests at the same time with instruction from the lead 

researcher. Teachers and teaching assistants supervised the sessions to ensure all 

children were concentrating and answering the questions appropriately. Sensori-motor 

skills were measured individually by the lead researcher and by trained research 

assistants. These sessions took place in an unused classroom at the school and took a 

total of 20-30 minutes per child. The order in which the sensori-motor tests were 

administered was randomised across participants. Children were awarded a sticker for 

their participation.  

Sensori-motor tasks 

The sensori-motor tasks, including finger gnosis, were based largely on those used in 

previous studies but were adapted to improve reliability (e.g. increase number of 

stimuli) and reduce cognitive confounds (e.g. remove numerical processing).  

Finger Gnosis. The finger gnosis test was based on Noël (2005) and assessed a child’s 

ability to identify the finger(s) pressed without visual assistance. It was adapted to 

include a larger number of finger presses to increase reliability. Children placed their 

hands palm down into a box that covered their hands but allowed the experimenter to 

see them. The experimenter applied light pressure to the child’s finger between the 

nail and finger joint using a stylus. The child pointed to the finger(s) pressed using the 

index finger of the other hand whilst their hands remained out of their sight. 

The test was first administered on the left hand and then repeated with the child’s right 

hand. There were 25 trials for each hand with one point awarded for each correct trial. 

No feedback was provided apart from the first five practice items in which single 

finger presses were administered. The first five test items involved individual finger 

presses, the second 10 trials involved two different fingers being pressed in succession 

and the final 10 trials involved two different fingers being pressed simultaneously. In 
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the simultaneous trials, children were awarded one point for correctly identifying both 

fingers but were not awarded a point if they only identified one finger correctly. 

Similarly, for successive trials, children were awarded a point for correctly identifying 

both fingers that were pressed although the correct identification did not have to be in 

the correct order. The maximum possible score on the task was 50.  

Left-right orientation. The task used was the same as that used in Noël (2005) and 

aimed to measure the child’s knowledge of left and right. There were two components 

to the task: colour and words which were identical apart from the lack of verbal 

confounds in the colour version of the task. All children completed the colour task first 

in which the experimenter tied different coloured paper to their wrists and feet. Facing 

away from the child, the experimenter asked the child to raise a coloured arm or leg 

(e.g. “raise your green arm like me”). Then the experimenter repeated this but facing 

the child. One mark was awarded if the child raised the same body part as the 

experimenter making a total score of 8 (four points possible when facing away from 

the child and four points when facing towards the child). Next, the children completed 

the same task, but the colours were replaced with left or right (e.g. “raise your right 

leg like me”). Again, one point was awarded for correct responses, with a total of 16 

points for both parts of this task. Children were not given feedback and there were no 

practice items.   

Graphisthesia. This task measured the child’s ability to identify shapes through touch 

and was adapted from Fayol et al. (1998) to include more shapes and trials and remove 

numerical confounds. Children closed their eyes and the experimenter traced a shape 

onto the back of their hand with the tip of a pen. In front of the child was a piece of 

A4 paper showing ten shapes and the child had to point to the shape that they thought 

had been traced on their hand. Shapes were simple and verbal such as a square, heart, 

star and balloon and unlike in Fayol et al. (1998) there were no shapes that could be 

related to numerical learning (e.g. 4, +, -). Shapes were first traced onto the child’s 

dominant hand and then the procedure repeated with the other hand. There were ten 

trials for each hand and one mark awarded for each correct answer; a maximum 

possible score of 20.  
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Arithmetic and number processing tasks  

Number tasks were measured using the Test of Basic Arithmetic and Number Skills 

(TOBANS; Brigstocke, Moll & Hulme, 2016). This standardised measure requires 

children to complete simple numerical subtests under timed conditions. All children 

were tested in a group setting and were provided with a booklet to write their 

responses. Subtests were presented in the following order: addition, subtraction, 

symbolic magnitude comparison, approximate magnitude comparison and dot 

counting. For each subtest, there were three practice items for which the experimenter 

provided the answer once children had attempted the questions.  

Arithmetic. One minute was given for each of the addition and subtraction tasks and 

30 seconds for all other tasks. Children were instructed to answer as many questions 

as possible before the instructor said “stop”. Teaching assistants were in the classroom 

to ensure children were following instructions appropriately and understood the tasks. 

Arithmetic was a combined score from the addition and subtraction subtest which 

included items with sums less than 10 (e.g. 3+5 and 7 -3).  

Number knowledge. Approximate and symbolic magnitude judgement tasks were used 

to assess numerical knowledge. The symbolic task used the digits 1-9 and the 

approximate task used dots. In the symbolic task, children were instructed to circle the 

larger of two numbers and in the approximate task, children were instructed to identify 

the more numerous group of dots from a series of stimulus pairs. Separate scores were 

created as the total number of correct items for each of these subtests. 

Counting. Counting was assessed through a dot counting task in which children had 

to count the number of dots (up to 20) in a series of displays and write the associated 

Arabic numeral. Children scored one point for each correct written answer. 

Vocabulary  

Receptive vocabulary was assessed using a group-administered test adapted from the 

British Picture Vocabulary Scale (Dunn & Dunn, 2009). Four pictures were projected 

onto the classroom whiteboard and children were asked to identify the picture that 

matched a target word spoken by the experimenter. The items were graded in difficulty 

and children responded by marking the correct picture in their response booklet. There 

were two practice items in which feedback was given, followed by 33 test items.  
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3.4 Results  

The primary aim of the study was to assess the contribution of finger gnosis, and other 

sensori-motor skills, as predictors of arithmetic skill. This was assessed through 

simple and partial correlations (controlling for age) and follow-up regression analyses 

whereby known predictors of arithmetic (e.g. counting and magnitude comparison 

tasks) were controlled. All data analyses were conducted in Stata (Version 14.0).   

Descriptive statistics and reliabilities for all tasks are shown in Table 3.1. Tests showed 

good distributions (no ceiling or floor effects) and good reliabilities. As expected, the 

improved finger gnosis test showed better reliability (Cronbach’s alpha = .74) than 

previous similar measures. Note that a small minority of children (n = 8) scored 0 on 

one or more of the following tests: dot counting (1 child), approximate comparison (4 

children), symbolic comparison (1 child) and vocabulary (2 children). It is likely that 

these children had difficulty in following the instructions for these group-administered 

tasks. All children were retained in our analyses but dropping these eight cases made 

no difference to the pattern of effects reported. Some children were absent during the 

individual or group testing periods. Missing cases were dealt with by casewise 

deletion.   

3.4.1 Correlations   

The Pearson correlations (and partial correlations controlling for age) are shown in 

Table 3.2. Age was strongly correlated with all cognitive measures, apart from left-

right orientation, and for this reason it was critical to control for it in the analyses. 

Importantly, although finger gnosis correlated with arithmetic (r = .43) this was greatly 

reduced once age was controlled (r = .12). The other two sensori-motor skills, left-

right orientation and graphisthesia showed slightly better correlations with arithmetic 

(partial: r = .29 and r =.25, respectively) however, arithmetic was better correlated 

with approximate magnitude comparison (partial r = .34), and strongly correlated with 

symbolic magnitude comparison (partial r = .49) and dot counting (partial r = .58).  

Unexpectedly, finger gnosis showed a moderate correlation (r = .38) with 

nonsymbolic magnitude comparison after the effects of age were controlled and 

vocabulary was only found to moderately correlate with arithmetic (r = .24). 
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Table 3.1 Descriptive statistics (means, standard deviations, and ranges), reliabilities and 

95% confidence intervals for all measures. 

 N Mean (SD) Reliability Range 95% CI’s 

Finger (/50) 188 31.49 (7.95) .741 14-50 [30.35 – 32.63] 

    Left (/25)  15.83 (4.31) --- 7-25 [15.21 – 15.45] 

    Right (/25)  15.66 (4.54) --- 0-25 [15.01 – 15.31] 

    Single (/10)  9.41 (.97) --- 5-10 [9.27 – 9.55] 

    Succ (/20)  10.55 (4.07) --- 2-20 [9.96 – 11.13] 

    Sim (/20)  11.53 (4.15) --- 2-20 [10.94 – 12.13] 

Left-right (/16) 111 9.63 (2.73) .801 4-16 [9.12 – 10.14] 

    Colour (/8)  4.89 (1.51) --- 2-8 [4.61 – 5.18] 

    Verbal (/8)  4.74 (1.79) --- 0-8 [4.40 – 5.07] 

Graph (/20) 114 8.11 (3.21) .641 2-18 [7.51 – 8.70] 

    Right (/10)  3.84 (1.63) --- 0-8 [3.54 – 4.14] 

     Left (/10)  4.26 (2.05) --- 0-10 [3.88 – 4.64] 

Calculation  197 18.99 (11.17) .892 0-55 [17.43 – 20.56] 

    Addition   11.28 (7.15) --- 0-34 [10.27-12.84] 

    Subtraction  7.72 (4.70) --- 0-24 [7.06-8.38] 

Dot comp          197 11.50 (7.51) .722 0-32 [10.44 – 12.55] 

Digit comp  197 19.63 (6.78) .802 0-38 [18.68 – 20.59] 

Dot count           197 9.65 (3.53) .792 0-19 [9.15 – 10.15] 

Vocab (/33) 197 21.04 (5.78) .752 0-31 [20.22 – 21.85] 

Notes: CI, confidence interval. Finger = finger gnosis; Suc = successive; Sim = simultaneous; 

Left-right = left-right orientation; Graph = graphisthesia  

    1 Cronbach’s Alpha for children in the UK (n = 130) 

    2 Test-retest reliabilities taken from the standardised TOBANS manual.   

3.4.2 Finger gnosis, sensori-motor skills and arithmetic   

The partial correlation between finger gnosis and calculation was r = .12 (95% 

confidence interval (CI) [-0.03, 0.26]) which is a very weak effect that is far from 

significant even in this large sample. We also assessed whether finger gnosis might be 

more closely related to calculation skills in younger than older children, as this group 

may use fingers more to assist with calculation. However, a median split of the sample 

indicated that the partial correlation between finger gnosis and calculation controlling 

for age was similar in the younger (r = .13 [95% CI -0.09; 0.33]; mean age 77 months, 
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range 66 to 85 months) and older halves of the sample (r = .15 [95% CI -0.051; 0.339]; 

mean age 93 months, range 86 to 104 months).   

It is worth noting that the putative role of finger gnosis in the development of 

arithmetic has often been related to its possible role in the development of counting 

skills (Butterworth, 1999).  However, the partial correlation between finger gnosis and 

counting controlling for age was also negligible (r = .10 [95% CI -0.051; 0.238]).  

Even though finger gnosis was only weakly correlated to arithmetic, both left-right 

orientation and graphisthesia were shown to correlate moderately with arithmetic, 

after age was controlled. The partial correlation for left-right orientation was r = .29, 

p = .002 and for graphisthesia was r = .25, p = .009. To assess the relative importance 

of these measures against other predictors of arithmetic, multiple regression models 

were used. 

3.4.3 Predictors of calculation ability  

We used hierarchical regression to model the relationships between calculation ability 

and the remaining cognitive measures that were significant correlates of calculation 

after age had been controlled (left-right orientation, graphisthesia, nonsymbolic 

magnitude comparison, symbolic magnitude comparison, dot counting and 

vocabulary).  
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Table 3.2 Correlations between measures. 

 1 2 3 4 5 6 7 8 

1. Finger gnosis - -.02 .23* .12 .38** .06 .10 .05 

2. Left-right -.02 - .24* .29* .10 .25* .17 .07 

3. Graphisthesia  .23* .29* - .25* .16 .15 .18 .17 

4. Arithmetic .43** .34* .43** - .34** .49** .58** .24* 

5. Approximate 

comparison 

.61** .16 .27* .61** - .50** .36** .26* 

6. Symbolic 

comparison 

.33** .29* .28* .62** .64** - .46** .28* 

7. Dot counting .42** .24* .36** .73** .63** .61** - .24* 

8. Vocabulary .43** .15 .37** .55** .63** .50** .55** - 

9. Age      .58** .17 .42** .59** .71** .47** .63** .69** 

Notes: Left-right = left-right orientation; Arithmetic = addition and subtraction summed 

scores. Partial correlations controlling for age are above the diagonal and simple correlations 

below the diagonal. * p < .05; ** p < .001. 

 

In the first stage of the model, we entered age as this was strongly correlated with 

calculation (r = .60, p < .001) and is a well-established predictor of arithmetic (e.g. 

Durand et al., 2005). Age explained 35% of variation in arithmetic. In the next stage 

of the model, we entered nonsymbolic magnitude comparison, symbolic magnitude 

comparison, dot counting and vocabulary simultaneously as predictors. Approximate 

comparison and vocabulary were not significant predictors of arithmetic and were 

dropped from the model, leaving 61% of the variation in arithmetic explained by age 

symbolic comparison and dot counting (dot counting: unique R2 = .11, p < 0.001; 

symbolic comparison, unique R2 = .04, p < 0.001); together these two predictors 

accounted for 26% of the variance in calculation scores. Finally, we entered left-right 

orientation, graphisthesia and finger gnosis into the model. Only left-right orientation 

remained a significant predictor of arithmetic explaining an additional 2% of the 

variation (R2 = .02, p < 0.001). When graphisthesia and left-right orientation were 

dropped from the model, finger gnosis accounted for just 1.4% of the variance, in line 

with Wasner et al. (2016).  
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In summary, both symbolic magnitude comparison and dot counting explained large 

proportions of unique variance in arithmetic whereas nonsymbolic magnitude 

comparison and vocabulary were not found to predict unique variation in arithmetic. 

Despite left-right orientation remaining significant in the final model, the relationship 

was small, accounting for only 2% of the variance in arithmetic. Neither finger gnosis 

nor graphisthesia explained any additional variation in arithmetic and it is likely that 

any such relationship between these sensori-motor measures and arithmetic are due to 

the substantial shared variance with age.  

3.5 Discussion   

In this study, we examined how a range of cognitive predictors relate to arithmetic. 

We showed that sensori-motor skills, including finger awareness, are less well 

correlated with arithmetic than numerical abilities. These findings contradict some 

previous evidence supporting a relationship between sensori-motor skills and 

arithmetic (Fayol et al., 1998; Gracia-Bafalluy & Noël, 2008; Noël, 2005). However, 

these studies suffer from small sample sizes, measures with low reliability and a failure 

to control for important predictors of arithmetic (e.g. age, counting and magnitude 

comparison). More recent evidence, which overcomes such limitations, is in line with 

our findings (Newman, 2016; Wasner et al., 2016).  

3.5.1 Sensori-motor skills and arithmetic  

The first, and major finding is that finger gnosis does not remain a strong correlate of 

arithmetic after age is controlled. It is important to consider age within the analyses 

because age is both a strong correlate of arithmetic and shows variance within our 

study (children ranged from 5-8 years across two year groups). Importantly, one study 

which suggests a strong correlation between finger gnosis and arithmetic (Noël, 2005) 

did not control for age, despite examining children with an age range of 5-7 years. Our 

results are in line with Newman (2016) who showed that before age, finger gnosis and 

arithmetic correlated significantly (r = .36) at similar levels to our study (r = .43). 

However, after controlling for age, finger gnosis correlated with arithmetic non-

significantly and at negligible levels (r = .20) akin to our findings (r = .12). Wasner et 

al. (2016) do not provide partial correlations with age between finger gnosis and 

arithmetic.  
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The correlations with addition (r = .23) and subtraction (r = .24) are small (although 

significant) but when age is controlled in a hierarchical regression, the relationship 

between finger gnosis and arithmetic scores is reduced significantly (explaining only 

1-2% of variation). This is in line with our finding that finger gnosis predicts (a non-

significant) 1% of the variation in arithmetic, when other important factors are 

controlled. Together, this suggests a weak and clinically insignificant relationship 

between finger gnosis and arithmetic. 

Our second finding concerns the role of two sensori-motor skills in arithmetic 

development. We find that left-right orientation and graphisthesia were small but 

significant correlates of arithmetic after controlling for age (r = .29, r = .25) but only 

left-right orientation remained a unique and significant predictor after controlling for 

other predictors of arithmetic (R2 = .02). Previous studies supporting a relationship 

between sensori-motor skills and arithmetic are limited by a failure to control for other 

predictors, including numerical abilities (e.g. Noël, 2005) and the inclusion of 

numerical processing in the sensori-motor tasks (e.g. Fayol et al., 1998). As we found 

no strong relationship between the sensori-motor skills and arithmetic, we cannot 

support a localizationist account. Rather, we tentatively suggest that the small 

relationship in arithmetic explained by left-right orientation is due to verbal abilities; 

our left-right orientation task contained considerable verbal processing and arithmetic 

is linked with verbal skills (Durand et al., 2005), whereas our finger gnosis and 

graphisthesia tasks relied on minimal verbal information.  

3.5.2 The functional and localizationist accounts 

Sensori-motor skills were first linked to arithmetic via Gerstmann’s syndrome, which 

is argued to be a cluster of symptoms involving skills relying on the integration of 

motor and sensory skills (Lebrun, 2005). There are two dominant theories attempting 

to explain the co-occurrence of these symptoms; a functional account and 

localizationist account. In the functional account, theorists propose that finger 

awareness (a sensori-motor skill) and arithmetic are related due to the role of using 

fingers in counting and addition and subtraction (Butterworth, 1999). In this account, 

finger awareness would be better correlated with counting and arithmetic than other 

sensori-motor skills. Alternatively, the localizationist account proposes that sensori-

motor skills and other symptoms of Gerstmann’s syndrome are correlated with 
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arithmetic due to the proximity of brain regions associated with these skills (e.g. 

Dehaene, Piazza, Pinel, & Cohen, 2003). In this account, any sensori-motor ability 

relying on the parietal lobe will be related to numerical and calculation abilities.  

We aimed to assess these theories by including finger gnosis and sensori-motor skills 

including graphisthesia (argued to rely on the parietal lobe) and left-right orientation 

(a Gerstmann’s syndrome). Previous studies have not included all three factors within 

one design. Moreover, finger gnosis tasks used in previous studies have shown low 

reliability (Noël, 2005; Wasner et al., 2016) and one study examining graphisthesia 

included verbal and numerical information within it. Our study used a reliable finger 

gnosis task (Cronbach’s alpha = .74), removed verbal and numerical confounds in the 

graphisthesia task, and included other Gerstmann syndrome tasks to directly compare 

the relationship between these measures.  

In our study, we found no evidence to support a functional account and limited 

evidence to support a localizationist account. The three skills were moderately and 

significantly correlated with arithmetic (rs = .34-.43) but these were reduced to a weak 

correlation after age was controlled for left-right orientation and graphisthesia (rs = 

.29; .25, respectively) and non-significant and negligible correlation with finger gnosis 

(r = .12, p < .05). Moreover, regression analyses showed that graphisthesia does not 

play a unique role in predicting arithmetic once other important factors (age, counting 

and symbolic number comparison) are included, and left-right orientation is a weak 

correlate of arithmetic.  

All three skills were entered into the model and only left-right orientation remained a 

significant predictor, explaining an additional 2% of the variation in arithmetic. 

Importantly, our counting and comparison tasks showed good reliability and a good 

range of scores, and the finding that these exact skills are important predictors of 

arithmetic is in line with previous evidence (see Section 2.2.1). This suggests that our 

study is well placed to find a relationship between sensori-motor skills and arithmetic, 

should one exist, and therefore we argue that there is limited evidence to support either 

a functional or localizationist account of the relationship between sensori-motor skills 

and arithmetic development.  

We found that left-right orientation remained a significant unique predictor of 

arithmetic after controlling for exact number abilities (R2 = .20). Although this is a 
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small and likely clinically insignificant effect, it is worth considering what this means 

in regard to the localizationist theory. This theory proposes that skills relying on the 

parietal lobe, for instance Gerstmann symptoms, will predict arithmetic which also 

relies on the parietal lobe (see Dehaene et al., 2003). However, we found that the 

correlations between left-right orientation and finger gnosis and graphisthesia, also 

proposed to rely on the parietal lobe (Fayol et al., 1998; Noël, 2005) were weak.  

We tentatively suggest that it is possible that verbal abilities may explain in part the 

correlations seen between left-right orientation and arithmetic, as both of these rely on 

verbal abilities (Durand et al., 2005). The left-right orientation task involved 

considerable verbal information, whereas the graphisthesia task (point to objects) and 

the finger gnosis task (point to fingers) required less verbal information. However, we 

found weak relationships between the sensori-motor skills and vocabulary once age 

was controlled (although vocabulary was moderately and significantly correlated with 

arithmetic; partial r = .24). Further research should consider including spatial 

awareness and non-verbal IQ measures to assess why such a relationship may exist.  

We suggest that previous evidence which supports a relationship between finger 

gnosis and other sensori-motor skills is limited, explaining the difference in findings 

from some previous studies and our study. For example, Noël (2005) fails to account 

for the effect of age in a study which had variation within ages of the children and 

therefore likely over estimates the correlation between finger gnosis and left-right 

orientation. Our study highlights the importance of including age as a control measure 

due to the significant correlation with arithmetic (age explained 35% of the unique 

variation in arithmetic scores). Gracia-Bafalluy and Noël (2008) report a significant 

improvement in arithmetic scores after finger gnosis training, although this study had 

a small sample size (N = 33) and no baseline scores for the groups were reported (see 

Fischer, 2010). Fayol et al. (1998) report a relationship between a composite score of 

sensori-motor skills including graphisthesia and finger gnosis. However, this battery 

included some numerical processing which may have confounded the results, and the 

arithmetic measure was a composite of numerical tasks including approximate number 

abilities and complex verbal addition tasks (e.g. “Jack has 6 green pencils, 4 red 

pencils and 5 blue pencils. How many pencils has he got?” p. 66). Moreover, when 

the “pure” arithmetic task (addition and subtraction scores) was compared to the 
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neuropsychological composite score, the relationship with arithmetic was far weaker 

than it was to the numerical composite.  

More recent evidence, which has overcome such limitations, fails to report a 

significant and important relationship between finger gnosis and arithmetic. For 

example, Wasner et al. (2016) showed that finger gnosis explained 1-2% of the 

variation in arithmetic (N = 321) after controlling for age, number skills and memory; 

the same level we showed. Penner-Wilger et al. (2007) showed that finger gnosis and 

arithmetic was weakly correlated (r = .16, N = 146) which is equivalent to the 

correlation we found between finger gnosis and arithmetic. Similarly, Newman (2016) 

found no evidence for a correlation in a sample of 76 children once age was controlled. 

None of these studies have examined how sensori-motor skills, other than finger 

gnosis, relate to arithmetic and therefore we are the first to show that neither finger 

gnosis, nor other sensori-motor skills, appear to play an important role in arithmetic 

development.  

3.5.3 Numerical measures 

In line with other studies, our data showed that symbolic number comparison and dot 

counting were important predictors of arithmetic (together explaining 26% of the 

variation). Our approximate magnitude comparison task did not remain a unique 

predictor after controlling for these abilities. Both of these findings are in line with 

considerable evidence supporting the role of exact and symbolic number skills in 

arithmetic abilities (see Schneider et al., 2016 for a meta-analysis). 

Symbolic magnitude comparison and counting rely on exact number abilities and 

counting abilities. Counting is clearly related to arithmetic: Basic addition and 

subtraction relies on counting abilities (see Section 1.1). Symbolic number skills are 

likely related to arithmetic because for symbolic comparison the child is required to 

have number knowledge which is the ability to identify the numbers, know the 

magnitude of the numbers and/or the order the numbers come in. Arithmetic also relies 

on number knowledge, as to compute written arithmetic sums a child must understand 

the relationship between the orthography, verbal code and magnitude of the number.  

Several studies have linked these skills and, importantly, recently evidence has 

suggested that symbolic number comparison is more important in arithmetic than 
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approximate number skills (e.g. Lyons et al., 2014; Schneider et al., 2016; Xenidou-

Dervoua et al., 2017). Our data supports a greater role of symbolic number skills than 

approximate in this age group as approximate comparison was a weaker correlate with 

arithmetic. This suggests that, for children in the first years of formal education, exact 

number skills are a better predictor of arithmetic than approximate number skills. We 

discuss findings concerning a causal relationship in Chapter 4. 

Our finding that approximate and symbolic number tasks are related to one another, 

but that symbolic number skills are more strongly linked to arithmetic, has 

implications for theories of numerical development. This finding does not support the 

innate core number hypothesis (See Section 1.4) which proposes that approximate 

skills will relate to later arithmetic. However, more recently, researchers have 

proposed that this innate skill may have some influence over the way that children 

learn symbolic numbers which, in turn, affects arithmetic. Our data could support this, 

although longitudinal evidence would be required to confirm this. For instance, by 

showing that early approximate skills and later arithmetic are mediated by symbolic 

number, as shown in some recent evidence (Marle, Chu, Li, & Geary, 2014). 

One unexpected finding from the current study was that finger gnosis correlated 

moderately to strongly with nonsymbolic magnitude comparison (r = .61; after age 

was controlled, r = .38). This is a finding that deserves replication, although we may 

tentatively suggest that inhibitory control may be a third variable driving the 

relationship, as this has shown to relate to magnitude comparison (Fuhs & McNeil, 

2013) and may potentially relate to finger gnosis, although further examination is 

required to support this suggestion.  

3.5.4 Limitations 

One possible limitation of the current study is that it examined children who had 

generally mastered basic addition and subtraction skills and therefore may be too old 

to identify any relationship that may exist in younger children. We chose children 

between 5-7 years old to match the age of children in previous studies. Newman (2016) 

found that the relationship between finger gnosis and arithmetic was stronger, 

although still non-significant, in younger children compared to older children. 

Moreover, our study showed that the youngest children (50% split) showed a slightly 

higher, although still small and non-significant, relationship with arithmetic (r = .17, 
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p > .05) compared to the full sample. Further research examining children closer to 

the start of formal education is needed to examine this question.  

In summary, we found no support for the suggestion that finger gnosis, or other 

sensori-motor skills, are related in any important way to arithmetic development. On 

the other hand there is evidence to support a relationship between number skills and 

arithmetic, providing a rationale for the next study which further examined the causal 

relationship between these skills. We therefore argue that sensori-motor skills are less 

important in numerical development than exact number abilities in children aged 5-7 

years, and therefore suggest that educational practices focus more closely on number 

knowledge learning (e.g. identifying numbers and knowing the magnitude and order; 

Merkley & Ansari, 2016) than on sensori-motor skills. 
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Chapter 4. Study 2: Training early number knowledge 

using an app-based game. The transfer to arithmetic and 

numerical skills.   

In the first study, symbolic magnitude comparison and counting were good correlates 

and unique predictors of arithmetic. From this finding arose an interest in examining 

the causal relationship between symbolic number knowledge and arithmetic. A game 

that had been previously developed (see Section 1.2.2) was used to design a symbolic 

number knowledge training study. When playing the game, the player is required to 

create numerical sequences whilst hearing the sound of the digit pressed. This utilises 

two key components of symbolic number knowledge: understanding ordinality 

(creating sequences) whilst reinforcing the identity of Arabic digits (by hearing the 

sound of the number as they pressed to choose it).  

Number knowledge is a critical part of early numerical development and is taught from 

a young age in formal education. Critical to mastering basic addition and subtraction 

sums is the ability to identify written numbers and understand numerical order. There 

is now robust evidence linking number knowledge to arithmetic skills in typically 

developing children from both correlational and longitudinal studies (e.g. Göbel et al., 

2014; Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Nguyen et al., 2016; Vanbinst 

et al., 2016; Xenidou-Dervoua et al., 2017). This evidence provides rationale for 

developing training designs to assess if training in number knowledge can lead to 

improvements in arithmetic.  

4.1.1 Training symbolic number knowledge  

Much of the earliest training evidence comes from Siegler and Ramani (Ramani & 

Siegler, 2008; Siegler & Ramani, 2008; Siegler & Ramani, 2009) who showed, using 

a linear board game, that number knowledge can be taught. The linear game involved 

naming and recognising the numbers 1-10. Children played individually with an 

experimenter, and took turns rolling a 2-sided die (numbers 1 and 2) before moving 

the corresponding number of spaces up the board whilst naming the numbers moved 

aloud. The game allowed children to practice identifying numbers (identification) and 

reinforced knowledge of the order in which numbers appear (ordinality). Children in 

a control group played an equivalent game using colours rather than numbers.  
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In Ramani and Siegler (2008) 124 children aged 5 years 4 months were recruited from 

Head Start centres and randomly assigned to either a number game condition (n = 68) 

or colour game condition (n = 56). Children from these centres, who are from low-

income families, were chosen due to the relatively poor performance in early 

numerical skills (see Jordan & Levine, 2009, for a review). After playing the game for 

a total of one hour, children were tested on counting, number line estimation, symbolic 

comparison, and number identification for the numbers 1-10. Those children in the 

number game condition improved more than those in the colour condition in all 

measures from pre-test (session one) to post-test (session four) and follow-up (session 

five). Improvements were all significant with medium to large effect sizes (for pre-

test to post-test and pre-test to follow-up: counting, d = 0.65 and d = 0.69; line 

estimation, d = 0.99, d = 0.59; symbolic comparison, d = 0.79 and d = 0.57; number 

identification, d = 0.44 and d = 0.63). Similar findings were reported by Siegler and 

Ramani (2008, 2009) in two other training studies using the same board game. Taken 

together, these findings suggest that when trained in basic number knowledge, 

children from low-income families can improve on numerical tasks.  

These few training studies are promising as they support a causal relationship between 

number knowledge and numerical skills. However, only children from low-income 

families benefited from playing the number game. Children from middle- to upper-

class backgrounds failed to improve on post-training measures (Siegler & Ramani, 

2008). Additionally, children in Ramani & Siegler (2008) were only tested on their 

knowledge of the digits 1-10, i.e. the digits they were trained on and therefore the 

transfer to other numbers is not known. Finally, in all but one training study, the 

authors failed to include arithmetic as an outcome measure. When arithmetic was 

included as an outcome (Siegler & Ramani, 2009) children were trained on the board 

game and had additional training in arithmetic. Therefore, this additional direct 

training in arithmetic may be the reason for increased arithmetic performance rather 

than training in number knowledge. Resultantly, the relationship between training in 

number knowledge and arithmetic outcome is not known from these studies.  

Some subsequent training studies assessed transfer to arithmetic after more extensive 

training in number knowledge. For example, Jordan and colleagues (2012) randomly 

assigned 128 children in Kindergarten from low-income families to number training 
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(n = 42), language training (n = 42) or an untreated control group (n = 44). Training 

sessions for the intervention groups were conducted in small groups for 30 minutes 

over 24 sessions. Children in the number training group played the linear board game 

(as in Ramani & Siegler, 2008) as well as practicing other number skills, including 

numbers outside the 1-10 range. The skills practiced were number recognition, number 

sequencing, verbal subitizing, finger use in counting, number writing, and verbal and 

nonverbal addition and subtraction sums. The language intervention focused on story 

books and vocabulary. All children were assessed pre- and post-training on number 

knowledge skills including counting, number identification, story addition problems 

and nonverbal calculation.  

Performance of the number training and language training groups were compared to 

an untreated control group, and larger gains were reported on all number measures for 

the number training group compared to untreated controls (overall average effect size 

for significant gains; d = 1.12) compared to no change for language group versus 

controls (overall average effect size for significant gains; d = -0.18). Particularly 

impressive were the gains found for verbal calculation; children in the number sense 

group showed large gains compared to untreated control group (d = 2.64) remaining 

at eight-weeks post-test (d = 2.27). Conversely, for verbal calculation, children in the 

language group did not improve significantly at post-test compared to those in the 

untreated condition (d = -.23) thus suggesting that the number intervention was 

instrumental in improving scores on verbal arithmetic questions. However, the same 

gains were not found for nonverbal arithmetic, in which children in the number 

training group showed small and non-significant gains compared to those in the 

untreated control group (d = .19).  

In a follow-up training study, the primary aim was to improve non-verbal arithmetic 

abilities in a similar group of children (Dyson, Jordan and Glutting, 2013). The 

intervention was adapted slightly by increasing focus on the relationship between story 

problems (e.g. “Jane has three apples and picks two more, how many will she have?”) 

and the symbolic representation of numbers. Children were encouraged to choose 

symbolic numbers that matched the numbers used in the story to help them solve 

addition and subtraction problems. Other aspects of the intervention remained the 

same. Three sessions a week for 8-weeks were given to low-income Kindergarten 
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children split into either a number sense group (n = 65) or “business as usual” group 

(n = 56). The number training group improved significantly more than those in the 

control group at post-test in number skills, including verbal and nonverbal calculation: 

written calculation (R2 = .20, p < .01), story problems (R2 = .30, p < .001) (pre-test 

number scores were controlled). However, the non-verbal calculation effect was not 

significant at six-weeks post intervention.  

These findings suggest that through intensive training on number knowledge and 

calculation, and particularly the relationship between Arabic numerals and verbal 

codes, children can improve their calculation skills. A clear limitation of this study is 

a failure to include a treated control condition, and therefore, it is not clear if the 

improvements in the number group are merely due to extra attention. Additionally, for 

both this study and Jordan et al. (2012) the training included practice of calculation 

and therefore, it is not clear what the specific role of training in number knowledge is 

in transfer to arithmetic.  

The training studies discussed so far provide initial evidence that children from low-

income families can improve in arithmetic and other number skills, including number 

recognition and number knowledge after symbolic number training. A clear limitation 

of these studies is that the training included components of the outcome measures, for 

example training children in addition and then examining changes to addition scores. 

Moreover, these studies focus on children from low-income families, and thus there is 

a lack of evidence from studies training children from a range of demographic 

backgrounds.  

A study by Honoré and Noël (2016) sought to overcome these limitations by 

examining children from a range of demographic backgrounds, and testing transfer to 

arithmetic whilst not including this as part of the training. Fifty-six preschool children 

(mean age 5 years 9 months) from a middle/high social class were trained for ten 30-

minute sessions in symbolic number skills (n = 19) approximate number skills (n = 

19) or non-numerical training (control condition; n = 18). Number training groups 

played two games during each session, either a comparison game or a line estimation 

game. For the comparison game, those in the symbolic training condition were shown 

three bags of equal physical size, but with three different Arabic digits printed on the 

front alongside three toy animals of different sizes. Children were told to give the bag 
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with the highest digit to the biggest animal (or smallest digit to smallest animal) and 

were provided with feedback. The approximate training was equivalent but used 

magnitude representations (dots) rather than Arabic numerals to represent the size of 

the bag. Numbers used were 1-9 for small sizes and 10-19 for more difficult levels.  

For the number line game, children were told to position an Arabic digit (or dot 

collection) on a number line between 1-10 (first level) or 1-20 (second level). Children 

played both games on a laptop with little input from the experimenter apart from 

encouragement to continue with the game. Arithmetic was measured immediately 

before and after training using a word addition task in which child chose answers in 

an Arabic digit or dot representation (depending on group). After controlling for pre-

test scores, the authors report that children in the symbolic number group improved 

significantly in addition score at post-test compared to those in the other groups, with 

a large effect size (Pearson’s correlation coefficient effect size; r = .72). Those in the 

approximate training group did not show significant improvements in arithmetic score 

after training. This study is therefore the first to show that training in symbolic number 

knowledge (without training in arithmetic) can lead to significant improvements in 

arithmetic performance.  

Also, of interest from this study is the use of a computer-based training design. Studies 

using a computer-based design have potential advantages over traditional 

interventions. Firstly, interacting with a computer (rather than experimenter) allows 

more children to be trained at once. Secondly, it may enable children to play a game 

at home, and therefore play for longer periods of time than is available during the 

school day. Finally, computer games, particularly those with advanced graphics, may 

result in training which is interesting and more engaging for the child; an important 

consideration as maximum motivation is important for training.  

Sella, Tressoldi, Lucangeli and Zorzi (2016) used a computerised design to examine 

changes in number skills after 23 preschool children played the Italian “Number Race” 

game (Wilson et al., 2006) which involved practising counting and calculation. 

Children played the game for approximately six hours, a long training time made 

possible as the game was played in large groups (each child had a computer and played 

without much input from the experimenter). Children in the training group (n = 23) 

showed improvements above those in an untreated control condition (n = 22) in some 
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numerical tasks, including calculation. Mental calculation error scores were 

significantly lower for children in the training group compared to the control group, 

with a large effect (improvement index = 44). However, as with previous training 

studies, the game included calculation as part of the training. Moreover, when 

Obersteiner, Reiss and Ufer (2013) adapted the Number Race game to remove the 

calculation component of the game different outcomes were observed.  

The authors examined the role of exact and approximate number training in numerical 

skills and arithmetic. Those in the exact training condition (n = 39) had to identify 

which of two dot sets matched the symbolic number presented (it is not reported what 

range of numbers were used). The authors report significant improvements in 

numerical skills for those in the exact number training study. However, no significant 

effects were found in arithmetic (p > .05, partial  2 = .003). Despite these mixed 

findings, the implication of using a computerised task is twofold; both computer-based 

studies report high motivation through computerised learning and additionally show 

that it is possible to train children for large periods of time via group training and 

limited input from an experimenter. 

In summary, there are a handful of studies which have aimed to improve arithmetic 

and numerical abilities in young children through training symbolic number 

knowledge. Of these, some report improvements in arithmetic after training (e.g. 

Dyson et al., 2013; Honoré & Noël, 2016; Jordan et al., 2012; Ramani & Siegler, 2009; 

Sella et al., 2016). However, the majority of these studies included calculation as part 

of the training, and only Honoré & Noël (2016) report significant improvements in 

arithmetic scores after number training not involving a calculation component. We 

therefore conducted a training study with typically developing children at the start of 

formal education to examine if training in number skills can improve arithmetic 

abilities.  

4.1.2 The present study 

The present study assesses whether training in number knowledge (but not arithmetic) 

improves calculation and other numerical abilities in children. Children in Reception, 

the first year of formal schooling in England, played a computerised game on a tablet 

every day for three weeks. The game required children to create numerical sequences 

and in doing so, children practiced (and learnt) the ordinality of numbers. As the sound 
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of the digit pressed was presented orally (through headphones) the game also trained 

children in the association between the Arabic digit and verbal representation 

(identification). As the study involves training in basic number skills, children in the 

first year of formal schooling were chosen to participate as they will not yet have 

mastered basic number skills (as children in the second year of formal schooling may 

have done, for example). We compared changes to numerical outcome measures for 

three groups; experimental training group (numbers game), a treated control group 

(equivalent game with letter rather than number sequences) and a “business-as-usual” 

control group.  

We aim to show that children in the number training group will improve in numerical 

measures, including arithmetic, compared to the untreated control group. Conversely, 

we do not expect that those in the letter training group will show meaningful 

differences in numerical measures at post-training when compared to the untreated 

control group. Additionally, we do not expect to find meaningful improvements in 

literacy-based outcomes for children trained in number knowledge compared to the 

untreated control group. 

4.2 Method  

4.2.1 Participants    

Participants were children from three Reception classes at a school in South West 

London, England. All children in the year participated unless the parent/guardian 

opted out, or the teacher identified them as having a learning disorder (e.g. autism 

spectrum disorder). Ethical approval granted by University College London Ethics 

Committee. Six parents chose for their children to opt-out of the study, and three 

children were identified as having a learning need, resulting in the recruitment of 81 

children (31 boys, 50 girls) in the initial testing stage. Three children left the school 

during the study (two from letter training group and one from numbers training group), 

so the final sample was 78 children (29 boys, 49 girls) with a mean age of 4 years 8 

months (SD = 3.69 months, range = 4;3 – 5;4 [years; months]).  

Children were tested on outcome measures immediately before training at time 1 (t1) 

and immediately after training at time 2 (t2). Using stratified random assignment of 

addition score at t1, children were split evenly into three training groups; Number 



77 

 

Training (n = 26), Letter Training (n = 25) and Untreated Control (n = 27). A one-

way ANOVA (Analysis of Variance) test with between-subjects factor Group 

(number, letter, control) showed that the average addition scores at pre-test for number 

training (mean = 3.04, SD = 2.69) letter training (mean = 2.64, SD = 2.36) and 

untreated control (mean = 2.93, SD = 2.84) were equivalent across the groups (F(2,75) 

= .15, p = .86). Similarly, age was similar across groups: number training (mean = 

57.62 months, SD = 3.89), letter training (mean = 56.32, SD = 3.45) and untreated 

control (mean = 57.41, SD = 3.74) with no significant differences found (F(2, 75) = .90, 

p = .41).  

4.2.2 Measures 

Participants were tested individually at t1 and t2 on a range of numerical and literacy 

measures. For all tests, feedback was provided for practice items but not for test items, 

although encouragement was given by the experimenters throughout. The individual 

testing sessions were run by a lead experimenter and two trained research assistants, 

with each session lasting no longer than 40 minutes. Pre-tests were administered 

during a three-week period at the end of the first term of school. In the new school 

term, the intervention was carried out (lasting three weeks) and t2 tests were 

administered over three weeks immediately following training. The research assistants 

were blind to group membership, but the lead researcher who also administered all 

training sessions had knowledge of the groups. 

Number measures  

Arithmetic. Arithmetic was measured via an addition task. Children were given a 

maximum of three minutes to solve basic addition questions, spoken aloud by the 

experimenter. After two practice questions, the first 13 questions were addends below 

10 (e.g. 1+3, 7+2) and the final seven questions were addends above and including 10 

(e.g. 5+5, 6+8). Children were encouraged to use their fingers to compute the sums. 

One point was awarded for each correctly written answer. The experimenter 

discontinued testing after five consecutive errors. A maximum of 20 marks were 

available.  

Number identification. To assess number knowledge, children were asked to identify 

numbers spoken by the experimenter. On A4 pieces of paper, children were shown a 

grid with four numbers; three distractors and one target. Distractor items were similar 
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to the target number for example, target number 7 had distractors 706, 17 and 70. 

Target numbers were single, double and triple digits ranging from 2-807 and were 

presented in ‘Comic Sans’ size 72 font. There were three practice items and 20 test 

items with one point awarded for each correct answer.  

Number reading. Number knowledge was also assessed via a number reading task. 

Children were asked to read numbers aloud. Numbers were single, double and triple 

digits ranging from 1-437. All numbers were presented on A4 paper in bold ‘Calibri’ 

font, size 330. There were three practice items and 20 test items with one mark 

awarded for each.  

Number writing. Children were instructed to write 15 numbers, including the numbers 

1-10 and five larger numbers (range 15-100). There were 15 test items with one point 

awarded for each correct response. Mirror writing was allowed.  

Counting. Rote counting was measured via an oral count-on task. Children were asked 

to count from one and were stopped when they made a mistake, or when they reached 

50. The score was the number the child counted to without mistakes (maximum score 

was 50).  

Literacy Measures  

Letter-sound knowledge. Children’s knowledge of letter sounds was assessed using a 

subtest from the York Assessment for Reading Comprehension (YARC; Hulme et al., 

2009). Children were presented with single letters and digraphs and asked to say aloud 

the sound that the letter(s) makes. One point was given for each correct response, and 

therefore a maximum of 17 points available.  

Word reading. Examined using a subtest from the YARC, children were asked to read 

single words presented to them. Words increased in difficulty and experimenter 

stopped testing after ten consecutive errors. One point was given for each correct 

answer, and therefore a maximum of 30 points available.  

Rapid Automatized Naming (RAN). The letter and number subtests from the 

Comprehensive Test of Phonological Processing (Wagner, Torgesen, Rashotte, & 

Pearson, 2013) were used to assess children’s ability to rapidly name letters and 

numbers. Children first practiced naming the numbers (4 8 7 2 5 3) and letters (a t s k 

c n) which were used in the test. Those children who were able to name the letters and 
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numbers went on to take the test (note that letter names and not letter sounds were 

required). In both tests, 4 X 9 arrays of the letters or numbers were presented on A4 

paper and children were asked to read the numbers/letters aloud as quickly as possible. 

If children made more than 4 errors, they were discontinued from testing (and given a 

score of 0). Other children progressed to Test 2 which involved the same numbers and 

letters presented in a different order. Total score for children who completed both tests 

was the combination of total time taken at Test 1 and Test 2 (seconds).    

Sequences  

Number sequences. Children were instructed to fill in the blanks for ten numerical 

sequences (e.g. 1 __ 3 __ 5 __). Numbers ranged from 1-101, with larger numbers 

used in later test items. Each sequence contained two or three blank items, and a child 

was awarded one point for correctly filling in all blank items (maximum 10 points). 

Numbers were presented in Calibri size 24. There was one practice item and the 

experimenter discontinued after two consecutive errors.  

Letter sequences. The letter sequences task was the same as the number sequence task 

but used letters, rather than numbers. Sequences were generally matched across tasks 

(e.g. 1_3_5_ became A_C_E_) apart from the final three items which used numbers 

above 26 and therefore letters at the end of the alphabet were used. Letters were 

presented in capitals, Calibri size 24. Again, there was one practice item and ten test 

items with a maximum of 10 points available.    

4.2.3 Training procedure 

All children in the training groups played the assigned training game for a total of 60 

minutes over a period of 15 consecutive days. Sessions lasted between five and seven 

minutes. Most children played the game over 12 consecutive days, although those who 

were absent caught up during the additional sessions. For training sessions, children 

were taken to an unused classroom in groups of five. Each child played the game on a 

tablet (Kindle Fire, 8-inch display) and wore over-ear headphones for the duration of 

the session. In the first training session, the experimenter showed all children how to 

play the game and allowed children to practice with feedback. For the remainder of 

the training sessions, the experimenter provided support if the child was stuck, for 

example prompting the child to recite the number sequence or alphabet.  
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All children received a similar level of help and most children in the numbers training 

group required little help from the experimenter after the third session, although some 

children in the letters group continued to require some assistance throughout the 

training period.  

In the number sequences game, children were shown Arabic digits (numbers ranged 

from 1-10). The aim of the game was to create numerical sequences by joining 

adjacent numbers within an array (see Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequences were required to be at least three digits long and could start from any 

number. Every time the child pressed a square, they would hear the number or letter 

through their headphones. To submit a sequence the child pressed the final digit twice 

and received written positive feedback on the screen (e.g. “well done” or “fantastic”). 

Incorrect sequences turned purple (rather than blue for correct) and a prompt “press to 

correct” was shown. The letter sequences game was equivalent but used letters A-J 

rather than numbers 1-10).  

 
Figure 4.1 Example array in the numbers game (left) and letters game (right) with a 

correct sequence created. 
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All children started at Level 1 of the game and could progress to higher levels if they 

successfully completed the requirements of the level within the time given during the 

session. For each level the total number of moves varied, and the length of each 

required sequence differed. For example, to pass Level 1, players were given a total 

of 17 moves and required to make a minimum of two sequences at five digits long 

(e.g. 1-2-3-4-5) and two sequences containing at least six digits (e.g. 3-4-5-6-7-8). 

Higher levels required a greater number of longer sequences, or longer sequences 

within a varied number of moves. Additionally, the array size increased in higher 

levels. Levels 1 and 2 had arrays of 9 blocks, Levels 3 and 4 had arrays of 16 blocks 

and Level 5 had 36 (see Figure 4.2). The experimenter noted the level each child was 

on at the end of the training session and children started the next training session at 

the beginning of this level. 

Figure 4.2 Example of screen for Number Game Level 3 (left) and Letters Game Level 5 

(right). 
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4.3 Results  

Outcome measures showed good distributions without floor or ceiling effects. 

However, the subtests of Rapid Naming were problematic for some children who did 

not know letter or number names. We removed the letter rapid naming task from 

analysis as only 10 children were able to complete this measure at pre-test. 

Performance on the number naming task was better with 58 children completing the 

test at t1 and 72 children completing at t2. We therefore included number naming in 

the analyses. 

4.3.1 Effectiveness of the training games     

We examined how well children played the number and letter games by assessing the 

number of children who progressed to higher levels of each game during the training 

period. The numbers game was considered to be successfully understood as 18 

children (69%) progressed above Level 1; nine children were at Level 2 at the end of 

training, six children were at Level 3, two children were at Level 4 and one child was 

at Level 5. The eight children still at Level 1 at the end of the training period likely 

reflects a lack of basic number knowledge or an inability to complete level 

requirements within the time-frame of a session. For example, the experimenter noted 

that of these children the majority could create sequences, but the sequences were not 

of the required length to progress to the next level. 

In the letters game fewer children progressed from Level 1; 19 children (76%) 

remained at Level 1 at the end of the training period, three children progressed to Level 

2, one to Level 3 and two to Level 5. This indicates that the letters game was more 

difficult than the numbers game. Additionally, the experimenter noted that children 

required more assistance than those in the numbers condition. Despite the relative 

differences, we deem the training effective as most children were able to play the game 

and create alphabetic sequences. The issue appears to be a failure to create long enough 

sequences to pass the level within the timeframe of each session. This suggests that if 

the game is remodelled, earlier levels should have simpler requirements to ensure 

levels are passed. The lower abilities in the letter group likely reflects limited formal 

teaching of letter knowledge compared to letter-sound knowledge or number 

knowledge at this school; this was also reflected in the poorer scores in the letter 

naming task compared to number naming and letter-sound knowledge.  
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Table 4.1 Means, standard deviations, ranges and effect sizes on all outcome measures at t1 and t2 for all groups. 

  Number group 

(n = 26) 

Letter group 

(n = 25) 

Control group 

(n = 27) 

Cohen’s d 

 

Reliability M SD M SD M SD 

Number 

vs. 

control 

Letter     

vs. 

control 

Age (months) ---         

    t1  57.62 3.89 56.32 3.44 57.41 3.73   

    t2  59.59 3.85 58.68 3.50 59.81 3.61 --- --- 

Addition (/20) .59a         

    t1  3.04 2.69 2.64 2.31 2.93 2.84   

    t2  4.92 3.61 3.40 2.92 3.93 3.06 .29 -.09 

Number sequence (/10) .59a         

    t1  1.62 2.14 1.28 1.59 2.59 2.32   

    t2  3.77 2.25 2.92 2.40 4.26 2.89 .20 -.01 

Rote counting (/50) .52b         

    t1  23.38 11.44 24.80 11.62 30.48 15.71   

    t2  33.69 14.82 29.04 12.68 33.74 13.03 .51 .07 

Number identification 

(/20) 

.59a         

    t1  9.46 1.84 9.20 3.00 10.63 3.51   

    t2  11.42 2.67 10.24 2.96 11.44 2.72 .43 .08 
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Number writing (/15) .80a         

    t1  8.23 3.43 6.76 4.19 9.56 2.69   

    t2  10.85 2.54 9.56 3.08 11.26 2.46 .33 .35 

RAN+1 (secs) .69a         

    t1  62.29 41.24 67.28 46.40 71.44 44.38   

    t2  74.85 31.24 69.64 34.58 72.15 35.02 .35 .04 

Number reading (/20)  .88b         

    t1  11.81 3.31 10.40 4.12 12.19 3.83   

    t2  14.08 2.64 12.88 3.44 14.30 2.48 .05 .11 

Letter sequence (/10) .63a         

    t1  1.00 1.62 .92 1.78 1.22 1.72   

    t2  1.85 1.93 2.52 1.87 2.19 2.24 -.06 .33 

Word reading (/30) .83b         

    t1  5.08 4.17 3.80 4.51 4.74 7.06   

    t2  9.92 5.31 8.24 6.00 10.96 7.08 -.23 -.29 

LSK (/17) .64a         

    t1  10.62 2.67 10.12 4.01 10.33 2.81   

    t2  14.46 1.73 14.28 2.72 14.67 1.88 -.22 -.06 

a Cronbach’s alpha internal reliability at time 1  
bTest/retest reliability  
+Higher scores indicate slower time, 1Results for those who completed the task; numbers group (n = 26), letters group (n = 22), control group (n = 

24)  
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4.3.2 Group analyses     

Table 4.2 reports the raw scores for the three groups on measures at t1 and t2. As is 

expected, higher scores (or faster reaction times) are reported at t2 in all measures.  

To examine if the changes in performance differed across groups, we conducted 

regression (ANCOVA) models in Stata (Version 14.0). For each measure at post-test, 

the same measure at pre-test was used as a covariate. The difference between each of 

the training groups (number, letter) and the control group were represented by two 

dummy codes. To check the homogeneity of regression slopes, initial models included 

the two group by covariate interaction terms. In no case did these interaction terms 

approach being significant, and they were therefore dropped from the models reported 

here.  

The unstandardized coefficients and 95% confidence intervals for number training and 

letter training versus the control are reported in Table 4.2. These unstandardized 

coefficients represent the difference in marginal means between groups at post-test 

after controlling for any differences on the same measure at pre-test. Positive scores 

represent a higher score for the intervention (number of letter) group compared to the 

control group.  

Numerical measures  

Children in the number training group showed improvements compared to the 

untreated control group for the following numerical measures: addition, number 

sequences, counting, number identification, number writing and rapid number naming 

(ds = .20 - .51; unstandardized coefficient > 0). Number reading showed negligible 

improvements (d < .10). Despite good effect sizes in the predicted direction, none of 

the differences were found to be significant. Children in the letter training group 

conversely failed to show gains in numerical measures (unstandardized coefficient < 

0) for all number measures except number writing and rapid number naming. Rapid 

number naming showed a negligible effect and number writing showed a small effect 

(d = .35). As with the number training group, no significant effects were found.  
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Table 4.2 Unstandardized coefficients (B) for number versus control and letters versus 

control and 95% confidence intervals (CI) for pre- and post-training. 

 Number 

vs. 

control 

Letter 

vs. 

control 

95% CI 

 B B Pre-training Post-training 

Addition .92 -.32 
[2.28 - 3.46] [3.36 – 4.81] 

Number sequence .20 -.41 [1.37 – 2.32] [3.09 – 4.24] 

Counting .20 -1.63 [23.29 – 29.30] [29.16 –35.27] 

Number ID .64 -.40 [9.13 – 10.44] [10.42 –11.68] 

Number writing .40 .02 [7.40 – 9.03] [9.95 –11.19] 

Number naming 4.76 5.06 [85.00 – 95.93] [71.94 –84.59] 

Number reading  .02 -.31 [10.63 – 12.34] [13.12 –14.42] 

Letter sequences -.17 .56 [.67 – 1.43] [1.72 –2.63] 

Word reading  -1.36 -1.83 [3.33 – 5.77] [8.34 -11.14] 

Letter-sound 

knowledge 

-.33 -.30 [9.64 – 11.07] [14.00 –14.95] 

 

Literacy measures 

We did not expect children trained in number knowledge to improve on literacy 

measures compared to the untreated control group. This expectation was confirmed 

(see Table 4.2). Children trained in letter knowledge improved slightly in letter 

sequences compared to untreated controls (d = .33; unstandardized coefficient > 0). 

The other literacy measures did not show such improvements (unstandardized 

coefficient < 0). 

4.4 Discussion  

The primary aim of this study was to assess if training in number knowledge can lead 

to improvements in arithmetic (addition) score. Children in the first year of formal 

schooling (aged 4-5) played a computerised number knowledge game which trained 

them in number identification (recognising and associating the visual and verbal 

components of Arabic digits) and ordinality (the order of the digits 1-10). These are 

two important components of symbolic number knowledge (see Merkley & Ansari, 

2016). 
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As predicted, children who played the number game showed greater gains in 

arithmetic, and other numerical measures, compared to children who did not play the 

game (untreated control group). This improvement was unique to numerical measures, 

as children trained in number knowledge did not improve in literacy-based measures 

compared to the untreated control group. Moreover, children trained in an equivalent 

game using letters (rather than numbers) did not show improvements in numerical 

outcomes compared to the untreated control group. These results support previous 

training studies which suggest that training in number knowledge can improve 

numerical skills, including arithmetic (e.g. Honoré & Noël, 2016; Jordan et al., 2009; 

Ramani & Siegler, 2008). However, despite initial findings supporting our hypotheses, 

none of the gains were statistically significant. This reflects the small sample size and 

resulting low statistical power of this study.  

4.4.1 Our study lacks power  

The major limitation of our study is that we have low power to find a significant effect 

should it exist. Our sample size is relatively small compared to previous similar 

studies. For example, Ramani and Siegler (2008) who used a similar training design 

to our study, had significant gains in numerical measures for 124 children (62 per 

group). Similarly, Jordan and colleagues (2012) had 44 children in each training group 

(N = 132). Our study had 79 children in total (n = 25-27 per group) which is 

considerably smaller than these two studies. Our sample size was influenced by 

practical considerations such as time available to test and train children within a year 

group. In the school there were 90 children in the year group, so we had the maximum 

number of children sign up that was possible within the timeframe. Practical 

limitations are discussed further in Section 6.4. 

A second potential issue was the length of intervention. Our training period was short, 

at only one hour of game play for each child. Again, this time was chosen for practical 

reasons (see Section 6.4) and was less time compared to other similar computerised 

interventions in which children played for eight hours (Sella et al., 2016) or five hours 

(Honoré & Noël, 2016). Our one hour training time matched the time that the children 

in Ramani and Siegler (2008) played the numbers game. However, children in that 

study played the game one-on-one with an experimenter rather than in a group setting 
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and therefore it is possible that within the first hour of training, children playing 

individually may gain more than children playing in a group.   

Finally, there were some important limitations associated with the outcome measures 

used at pre- and post- analysis which would need to be changed if running the study 

again. Firstly, the arithmetic measure had very low scores (pre-training mean score = 

2.87, post-mean score = 4.09) and this is likely to be because children of this young 

age (who have only been in formal education for a few months) are at the early stages 

of arithmetic learning. Moreover, the test required children to write the Arabic digit as 

an answer, rather than state it aloud. It was noted by researchers that children were 

sometimes able to speak aloud the answer to the question, but writing was not possible 

or was problematic (although mirror writing was allowed to help control for some 

issues here). Writing may be difficult due to limited motor and processing abilities in 

children of this age group. Children of this age were not fluent in their arithmetic and 

were working out each answer in turn. The processing power required to not only 

calculate the addition question but also hold it in memory whilst preparing to write the 

answer was challenging for many of the children. Moreover, simply holding the pencil 

and the motor skills require to write the Arabic digit (as well as remembering how it 

is written) was problematic for children of this age range. A similar finding can be 

reported from the number and letter sequence tests which again required children to 

write a response. One error in the preparation of this study was a lack of insight into 

the poor written abilities of children on this young age. Arguably a better test for 

children aged 4-5 would be one that required children to state the answer aloud, rather 

than write it and this observation highlights the importance of creating suitable tests 

for children of different ages.  

If the present analysis showed good results in the predicted direction despite low 

power, a key question is: why not collect more data? A power analysis revealed that 

180 additional participants would be required in order to reach the expected power and 

although this is theoretically possible to do, there were a number of very important 

reasons that this study was not extended, and more data were not collected. As 

presented in the overview chapter (Section 1.2.2), reasons for this included time and 

resource limitations, issues with the difficulty of the game meaning that many children 

did not enjoy playing the game, and a control group that was not equivalent to the 
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experimental group (the letter game was harder than the number game). These reasons 

are presented in more detail in Section 6.4 which is devoted to discussing practical 

limitations of this type of research.  

4.4.2 Theoretical issues  

One potential reason for the lack of significance in our study is that training in 

symbolic number knowledge does not lead to an improvement in arithmetic because 

the two are not causally linked. To our knowledge the only which reports significant 

improvements in arithmetic after a symbolic number intervention, and which did not 

include calculation as part of the training design, is by Honoré and Noël (2016). In 

line with our study, the games they used supported the development of symbolic 

number knowledge (enhancing the relationship between the visual digit and verbal 

number). However, there are a few potentially crucial differences between their design 

and ours which are worth mentioning.  

Firstly, their study used the numbers 1-20, whereas the present design was limited to 

the numbers 1-10. It is possible that this limited range of numbers is not sufficient to 

transfer to arithmetic (note that in Ramani & Siegler, 2008 which used the numbers 1-

10, arithmetic was not an outcome measure). Secondly, and perhaps more importantly, 

the theoretical motivation behind the games in Honoré & Noël (2016) was different to 

that of the present study. In their study, children played a game involving number 

comparison and number line estimation, both of which focus on the magnitude and 

cardinality of numbers.  

In the present design, the primary focus was on the identification and ordering of 

numbers; understanding the magnitude of numbers was not crucial to succeeding in 

the game. The magnitude of numbers is considered a critical part of number 

knowledge (Merkley & Ansari, 2016) and it is possible that in order to develop 

arithmetic skills, children need to understand the relative size of numbers rather than 

just reciting the number sequence. Indeed, in a cross-sectional study of 1,391 children, 

Lyons and colleagues (2014) report that symbolic number comparison is a more 

important predictor of arithmetic at the start of formal schooling than number ordering. 

Number ordering was a non-significant unique predictor of arithmetic (partial r-value 

= -.092, p = .20, d = -.18), whereas number comparison was a significant and unique 

predictor (partial r-value = .29, p < .001, d = .60). Therefore, it may be critical to 
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consider the magnitude of numbers within a number knowledge training intervention 

to see benefits to post-training arithmetic scores.  

4.4.3 Training in letter knowledge 

A second aim of the study was to examine the changes in outcome measures for those 

trained in letter knowledge. As predicted, children in this training group showed 

limited improvement in number knowledge, similar to children in the untreated 

condition and less than those in the number training condition. Similarly, children in 

the letter training group showed greater gains in letter sequences at post-test than those 

in the untreated control group, whereas number training did not lead to any 

improvement in this measure. However, as with the numerical measures, this 

difference was not significant, and together with the other results suggests that the 

study had low power to detect an effect, should it exist.  

4.4.4 Why are symbolic number skills related to arithmetic?  

Despite not finding significant gains in our study, we propose that symbolic number 

skills are critical for numerical development. Our results were in the predicted 

direction and, with greater power, we suggest significant differences would have been 

reported. Additionally, there appears to be some evidence from training studies that it 

is possible to improve arithmetic through training in symbolic number knowledge (e.g. 

Honoré & Noël, 2016) and ample evidence from correlational and longitudinal studies 

supporting a non-casual but robust link (see Section 2.1.3).  

The most obvious reason for a relationship is that without the ability to identify digits 

alongside and understand the count sequence and cardinality, it is not possible to 

perform arithmetic. Verbal sums and counting do not require written knowledge but 

in formal education, arithmetic is measured from an early age using Arabic symbols. 

Thus, a child is required to understand how much an Arabic digit represents in order 

to count-on to another digit or compute simple sums, and it may be this understanding 

that leads to the transition from informal to formal numerical knowledge (Merkley & 

Ansari, 2016).  

4.4.5 Conclusions 

In summary, this second study aimed to provide evidence that training in number 

knowledge can lead to improvements in arithmetic. Although children in our number 
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training group improved on number measures (but not literacy measures) compared to 

an untreated control group, effect sizes were generally medium to small and none of 

the effects were statistically significant. This study had low statistical power and 

therefore, to reach significance, we suggest running the study with more participants 

or a longer training time (or both). However, due to practical limitations, as outlined 

above, this was not possible in our study, highlighting the importance of time and 

resource implications when conducting a training study. These findings are discussed 

in more detail in the final discussion chapter.   
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Chapter 5. Study 3: The role of patterning skills in 

predicting later arithmetic abilities  

This chapter reports a study of the relationships between patterning and arithmetic 

skills in typically developing children. This study is reported in part in Long & 

Burgoyne (submitted manuscript). Patterns are sequences of items that follow a 

predictable rule (e.g. 112112, 13579) and became of interest due to the role of number 

knowledge in pattern tasks (see Section 1.2.3). Children’s understanding of patterns is 

commonly assessed using alphanumeric (numbers, letters) or nonalphanumeric (e.g. 

shapes, objects) stimuli.  

Pattern understanding (patterning skills) is commonly taught in early education, and 

evidence suggests that these skills are correlated with arithmetic (Lee et al., 2011, 

2012; Pasnak, 2017; Rittle-Johnson, Fyfe, Hofer, & Farran, 2017; Schmerold, 2015; 

VanDerHeyden et al., 2011; Warren & Miller, 2013). However, the majority of the 

studies examining patterning and arithmetic have used pattern tests which involve 

number stimuli but have failed to control for number knowledge. Therefore, the 

relationship with arithmetic may be in part due to symbolic number knowledge which 

we know is an important component of arithmetic learning. Moreover, the majority of 

studies have failed to include other predictors of arithmetic, such as executive function 

and spatial awareness, which may also correlate with patterning. Finally, studies have 

used a variety of pattern tasks (e.g. repeating and increasing) with various stimuli (e.g. 

numbers or objects) without a full understanding of how these relate to one another, 

and to arithmetic. 

In the present study, we aimed to examine how pattern skills relate to one another 

across different stimuli (numbers, letters, shapes and objects) and types of pattern task 

(e.g. repeating, increasing and rotating). Secondly, we wanted to examine if one or all 

of these pattern tests correlate with arithmetic, whilst considering other potential 

factors including numerical skills and domain-general predictors.  

5.1 Patterning skills 

In recent years, researchers have become interested in how pattern understanding may 

predict variation in arithmetic. Patterns are sequences of items that follow a predictable 

rule (e.g. 112, 1357) and children’s understanding of patterns is commonly assessed 
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using alphanumeric (numbers, letters) or nonalphanumeric (e.g. shapes, objects) 

stimuli. In early years’ education children will typically be exposed to some simple 

patterns: repeating (e.g. abab) and increasing (e.g. 1234). In the United Kingdom, 

children are taught basic patterning in the first three years of formal education and it 

is considered an important aspect of numerical development (UK Department of 

Education, 2017). However, research examining the exact role of patterning in later 

arithmetic is in its infancy and more evidence is required to clarify the nature and 

strength of the relationship between these skills. 

5.1.1 Development of patterning  

The very earliest patterns that children become familiar with are repeating patterns, 

often presented using coloured blocks or objects. Most children aged four are able to 

duplicate these types of patterns (Clements, Sarama, & Liu, 2008; Papic, Mulligan, & 

Mitchelmore, 2011; Starkey, Klein, & Wakeley, 2004). Rittle-Johnson, Fyfe, Loehr 

and Miller (2015) used a coloured block task and showed that children aged four (N = 

66) are also able to abstract repeating items. Abstraction requires the child to create 

the same pattern they see (e.g. red-blue-red-blue) using different items (e.g. yellow-

green-yellow-green). Around three quarters of children in this study were able to copy 

repeating patterns, and half were able to abstract, suggesting variability in pattern 

understanding at this young age. For the half who show abstraction abilities, it suggests 

some advanced pattern understanding as abstraction requires understanding of the 

structure of a pattern, rather than merely using perceptual abilities to copy it. Rittle-

Johnson et al. (2015) suggest that this advanced ability to manipulate and form a 

mental representation of patterns is related to more advanced reasoning skills, and 

perhaps arithmetic.  

It is important to consider the way that patterns are taught because research has 

suggested that simply asking children to recreate patterns is not allowing them to 

understand the pattern in a sophisticated way (Rittle-Johnson et al., 2015; Rittle-

Johnson, Fyfe, McLean, & McEldoon, 2013). Therefore, research examining pattern 

development should focus on abstraction and more advanced patterns such as 

increasing (e.g. 1357) and rotating patterns.    
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5.1.2 Patterning and arithmetic  

Studies which have aimed to assess the relationship between patterning and arithmetic 

have typically looked at children from the ages of 5-8 and used both alphanumeric 

(numbers and letters) and non-alphanumeric (e.g. colours, objects or shapes) 

patterning tasks. The exact relationship between these skills and arithmetic is not clear, 

although it is logical to assume that alphanumeric tasks are better correlated with 

arithmetic than nonalphanumeric tasks (Burgoyne, Witteveen, Tolan, Malone, & 

Hulme, 2017).  

The simplest patterning tasks require children to complete sequences which appear in 

a repeated format with more complex tasks requiring children to complete increasing 

or rotating items. It is possible that patterning tasks relate to numerical development 

as many early number abilities involve predictable sequences. For example, counting 

in 2s involves an alternating pattern of 0s and 2s and the ability to generalise 

underlying relationships for early arithmetic (e.g. 1+2 is the same as 2+1) is a key 

concept which may act as a foundation to later arithmetic ability (Burgoyne et al., 

2017). However, as research into patterning and arithmetic is in its infancy, the 

underlying mechanisms are not completely clear.  

Correlational evidence 

Evidence supporting a concurrent correlation between patterning and arithmetic in 

children comes from a number of studies. For example, Warren and Miller (2013) 

examined performance on a simple repeating patterns task involving numbers in 230 

children aged 5 years 9 months. Mathematics was measured via a general maths test 

which examined basic number knowledge (14 questions) and some advanced 

mathematical knowledge including probabilities and geometry (5 questions). 

Patterning scores correlated with general maths score (r = .44, p < .05) and explained 

unique variation in maths score, after controlling for language abilities (patterning 

unique beta = .24, p < .05; language unique beta = .52, p < .05). Together, language 

and patterning scores explained 43% of the variation in general math abilities (note 

that no unique R-squared values were provided). Despite controlling for language, the 

authors failed to control for other predictors of arithmetic, such as executive function 

which has been linked to both maths and patterning abilities (e.g. Bull & Lee, 2014; 

Lee et al., 2012; Miller, Rittle-Johnson, Loehr, & Fyfe, 2016).  
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A study by Lee, Ng, Bull, Pe, & Ho (2011) used a number patterning task whilst 

controlling for executive function in a correlational design involving 151 children 

(mean age = 10 years 1 month). Number patterns correlated strongly with maths 

ability, measured via three numerical tasks (rs = .42-.60, p < .001). Structural equation 

modelling showed that understanding of number patterns, arithmetic and working 

memory (an executive function measure) explained 63% of the variation in algebra, 

with number patterns remaining a unique predictor of algebra score concurrently (β = 

.04, p < .01) and when children were tested again one year later (β = .31, p <.001). For 

this study algebra, rather than arithmetic, was the main outcome measure (possibly 

because children were older in this study). Taken together, these studies suggest a role 

of patterning in maths skills after controlling for predictors of numerical abilities 

(including language or executive function). However, an important caveat is that the 

patterning tasks used included numbers, and therefore the relationship between 

pattering and numerical skills may be simply explained by number knowledge.  

Schmerold (2015) used an extensive patterning task to assess the relationship with 

math ability and executive functioning in 74 children in the first grade (mean age = 7 

years 2 months). Children completed repeating, increasing and rotating pattern tasks 

which used numbers, letters, shapes, pictures and object stimuli (a total of 48 

patterning questions). As is commonly seen in patterning tasks, missing items were 

presented at the beginning, middle and end of a sequence and children were asked to 

identify the correct option from four possible answers. Maths abilities were measured 

using the Woodcock-Johnson Test of Cognitive Abilities III (W-J Test) (Woodcock, 

McGrew and Mather, 2001) and included applied problems, quantitative concepts and 

number series. Executive functioning was measured via working memory, cognitive 

flexibility and inhibition.  

In line with previous evidence, patterning was strongly correlated with math score for 

the three math measures (r = .52-.54, p < .001). Patterning was also correlated with 

cognitive flexibility and working memory (r = .41, p < .001 and r = .23, p < .05, 

respectively) although not inhibition (r = .17, p > .05). Together, the correlated 

measures were entered into hierarchical regression and explained 40% of the variation 

in applied problems and quantitative concepts, with patterning explaining 29% of the 

variation in number series. Patterning remained a unique and significant predictor in 
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all three models (β = .18, .08 and .11, respectively). Importantly, the patterning task 

used in this study used numbers and other stimuli and therefore this relationship cannot 

be explained purely by number knowledge. However, the results are not fully 

replicated in a study by Lee et al. (2012) who reports similar correlations between 

patterning (numbers and shapes test) and arithmetic (number patterns: r = .46, p < 

.001; shape patterns: r = .25, p < .05) but no unique relationship once executive 

functioning is controlled.  

One reason for this difference may be due to methodology of the patterning tasks for 

which there were several differences across the two studies. Schmerold (2015) used a 

patterning task in which children chose one of four options to complete the pattern, as 

is seen for other pattern measures. Lee et al. (2012) created a combined pattern score 

based on the child’s ability to choose the correct response and their ability to describe 

the rules governing the pattern, a process which may involve a number of different 

factors to choosing a missing piece. Secondly, the stimuli in Lee et al. (2012) were 

manipulated according to size and relative position of the shape but not in Schmerold 

(2015). Finally, only repeating shapes and numbers were examined in Lee et al. rather 

than range stimuli and pattern types used in Schmerold. These different methods may 

be in part the reason for the difference in results, although more evidence from other 

studies is required to confirm that patterning plays a unique role in number skills.  

In summary, there are a number of studies which show that patterning and arithmetic 

are concurrently correlated and some evidence to support a unique relationship 

between these variables. What is not clear from these studies is whether pattern 

abilities predict later arithmetic, and therefore whether these two factors are causally 

linked.  

Longitudinal evidence 

Some longitudinal evidence points to a relationship between alphanumeric patterns 

and later numerical abilities. For example, Pasnak et al. (2016) explored the 

longitudinal relationship between increasing patterns and later arithmetic. Nighty-six 

children in Grade 1 (mean age 6 years 6 months) were examined on increasing pattern 

ability, maths score (W-J III) and reading ability at two time-points (beginning and 

end of school year). In the patterning task, children were presented with letter and 

number sequences that increased by one, two, or three numbers or letters. Children 
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selected the correct answer from a choice of four responses. The authors used a time-

lag correlation design which compares performances across tests at the two time points 

to indicate a direction of any significant relationship. Number patterning at time 1 was 

a significant correlate of math score at time 2 (r = .39, p < .01) although the converse 

was not true (maths at time 2 to number patterns at time 1: r = -.05, p < .05) thus 

indicating that earlier patterning may lead to later numerical ability (difference in 

correlation coefficients is significant: z = 3.47, p < .01). These findings mirror those 

of VanDerHeyden et al. (2011) who showed using a similar patterning task (but 

repeating rather than increasing) that number patterning correlates longitudinally with 

addition (r = .42, p < .05). Unfortunately, both studies failed to control for known 

predictors of arithmetic and therefore the unique relationship between these skills is 

not known. Moreover, as the relationship between patterning and maths abilities 

focuses on numerical patterns the relationship reported may be due largely to number 

knowledge.  

One study which assessed nonalphanumeric patterning as a predictor of arithmetic is 

by Rittle-Johnson, Fyfe, Hofer and Farran (2017). In this large-scale longitudinal 

study, several predictors of mathematical achievement were examined in 517 low-

income children aged 4-11. In the study, children were assessed at four time-points: 

beginning of pre-school year (mean age = 4 years 5 months) end of pre-school year, 

end of kindergarten and end of first grade (aged 7) and maths achievement was 

measured again four years later at time 5 when children were aged 11. Patterning was 

measured via a repeating nonalphanumeric task whereby children were required to 

choose the correct coloured cube to complete a repeating sequence presented with 

coloured cubes (e.g. red-blue-red-blue). Children were assessed on a range of 

numerical cognitive measures at several time points including general maths 

achievement, calculation, nonsymbolic comparison, counting, number identification 

and shape completion. Language measures, reading and general cognitive abilities 

(e.g. working ability in the classroom) were also taken at the four time-points.  

Patterning at the end of first grade was a unique and significant predictor of maths 

achievement five years later (β = .08, SE = .04, p < .05) therefore suggesting an 

important role for early nonalphanumeric repeating patterning skills in later 

arithmetic. However, the patterning task was not reliable and despite controlling for 
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many known predictors of arithmetic, the authors did not include executive function 

or intelligence measures, which are strong predictors of both patterning and arithmetic.  

In a later study, Rittle-Johnson, Zippert, and Boice (2018) used a reliable patterning 

task (Cronbach’s alpha = .83) and controlled for important predictors of arithmetic 

including spatial awareness, working memory and general cognitive skills. Seventy-

three children were assessed at time 1 (mean age = 4 years 7 months) on repeating 

number patterns and general maths skills (Research-Based Early Mathematics 

Assessment; Weiland et al., 2012). Patterning score was significantly correlated with 

both concurrent mathematical skills, and maths performance measured 6.8 months 

later (r = .64, r = .65, respectively). Moreover, when other important factors of 

arithmetic were controlled (e.g. spatial skills, verbal skills and working memory) 

patterning remained a unique predictor of maths achievement (time 1: β = .30, p = .01; 

time 2: β = .40, p < .001). Spatial skills correlated significantly to both patterning score 

(r = .38) and maths scores (time 1: r = .61; time 2: r = .59). What is not known from 

this study is how different types of patterning task correlate with one another and with 

arithmetic, as the authors focused upon one type of task (repeating) with one type of 

stimuli (numbers).  

5.1.3 Teaching patterning 

Two studies have attempted to examine if teaching patterning can lead to changes in 

patterning and arithmetic. In Hendricks, Trueblood, and Pasnak (2007) 62 first grade 

children (mean age = 7 years 1 month) who performed poorly in class tests were 

randomly assigned to a pattern training group (n = 33) or control training group (n = 

29). Training was conducted in small groups for 15 minutes every day on alternating 

weeks for 6 months. Those in the patterning training condition practiced creating 

repeating and increasing patterns with numbers, letters, shapes and objects. The 

patterns were presented in physical form (felt board and stickers) and on a computer. 

Those in the control group were trained in school subjects.  

Patterning score at post-training was higher for those trained in patterning than those 

in the control group, and patterning score correlated with arithmetic (r = .40, p < .01). 

However, children trained in patterning did not score significantly higher in later 

arithmetic than those in the control group (t = .39, p <.05). Importantly, as with other 

studies, patterning score correlated well with a range of language measures, and 
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therefore it is possible that intelligence may be explaining the relationship between 

patterning and numerical abilities, although the authors did not control for intelligence 

levels. This highlights a problem as is consistent throughout the literature; a failure to 

control for important predictors of patterning, language and arithmetic abilities.  

In a later and similar training study, Kidd et al. (2013) examined how training in 

patterning affected performance on patterning tasks and mathematical skills for 

children from low income families aged 6 years 8 months. Children who scored in the 

bottom (40%) in their class for a pattern task were eligible for the study (N = 140) and 

were split randomly into four training groups according to the class they were in (2 

from each class into each group): pattern training, mathematics training, reading 

training and social studies training. All children were trained for 45 minutes per week 

(over three sessions) for 6.5 months. Similarly to Hendricks et al. (2007), the 

patterning training consisted of practising with physical and computerised repeating 

and increasing patterns using numbers, letters, colours, objects and shapes. 

Immediately after training, children took the Woodcock-Johnson (W-J III) which 

included patterning, general mathematical tests and reading tests.  

Analysis of variance (ANOVA) tests were conducted to compare the difference in 

Woodcock-Johnson scores across groups and showed that children trained in 

patterning scored significantly higher in the patterning subtest than those in the other 

groups (A priori Least Significant Differences test were significant for patterning vs. 

other groups). However, scores were not significantly higher for the patterning group 

versus control groups in any maths or reading subcomponent. Therefore, as with 

Hendricks et al. (2007) it appears that although possible to improve patterning skills, 

training in patterning does not appear to transfer to arithmetic.  

Similar findings are reported in a later study by the same research group (Kidd et al., 

2014) who trained 120 children (aged 6 years 5 months). In this sample (also low 

income children who scored poorly on a patterning screen test) children were 

randomly assigned according to classroom (again, two from each class to each group) 

into the same groups as used in Kidd et al. (2013). The patterning training now 

included a wider range of patterning tasks including random repeating, progressive 

increasing and rotating items for shapes, colours, letters and numbers. Children trained 

in patterning and maths skills scored significantly higher than other groups (language 
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and social skills) in maths outcomes (W-J 18A and B). However, as pre-test scores 

were not taken this study lacks power. Aside from the patterning screening, only 

measures after training were assessed, and similarly pre-training scores were not 

included in the analysis in Kidd et al. (2013). Therefore, despite providing initial 

evidence that patterning skills can be trained in young children, the causal relationship 

with number skills and arithmetic is not clear.   

5.1.4 The present chapter  

Despite some initial evidence suggesting a relationship between patterning and 

arithmetic, many of these studies have used tests which involve number stimuli. 

Therefore, a relationship between understanding of numeric patterns (e.g. 1122) and 

arithmetic would not be surprising since it may reflect no more than Arabic number 

knowledge. Moreover, most of these studies have failed to include known predictors 

of arithmetic such as number skills or other predictors which may be related to both 

pattering and arithmetic, such as executive function and spatial awareness.  

In this study, we have two main aims. Firstly, to assess how different types of patterns 

(repeating, increasing and rotating) compare to one another, and how this relationship 

compares across different stimuli (numbers, letters, shapes and objects). Secondly, to 

assess if patterning skills are predictive of arithmetic ability once known predictors of 

arithmetic are controlled.  

Children completed a large battery of pattern tasks including different pattern types 

(repeating, increasing and rotating) for numbers, letters, shapes and objects (120 

items). This is by far the most extensive patterning battery to date and should give a 

clearer indication of the way that different types of pattern task correlate with one 

another, and with arithmetic. As with many other similar studies, children will be 

shown a pattern (four stimuli with the fifth missing) and choose the answer from four 

possible options. We will examine how the different patterning tasks correlate with 

arithmetic controlling for known predictors of arithmetic including age, executive 

functioning and spatial awareness. This should provide a clearer indication of the 

unique relationship between these measures. We predict that patterning tasks will 

correlate with and predict unique variance in arithmetic.  
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5.2 Method  

5.2.1 Participants    

Seventy-nine children (43 boys, 36 girls) were recruited from two primary schools in 

London and were tested at the start of the school year. The average age was 6 years 1 

month (SD = 7.34, range = 5;0 – 7;2 [years; months]) and children were in Year 1 (n 

= 41, mean age = 5;7, SD = 3.45 months, range = 5;0 – 6;8) or Year 2 (n = 38, mean 

= 6; 8, SD = 3.84 months, range = 6;1 – 7;2). Children were recruited from a North 

London academy (n = 25) and participated if parents opted the child in to the study. 

The remaining children (n =54) were recruited from a free-school in West London and 

all children within a year group or class participated unless the parent opted out. Full 

ethical approval was provided by The University College London Ethics Committee.   

5.2.2 Design and procedure  

All children were assessed on measures of the following constructs: pattern 

completion, arithmetic, counting, number knowledge, executive functioning, spatial 

awareness and non-verbal IQ. Tests were conducted individually or in a group setting. 

The individual test measures were split across two testing sessions lasting a maximum 

of 30 minutes each. In one session, children completed the following five tasks; two 

patterning tasks (numbers and objects), arithmetic (addition and subtraction), 

backward span and visual search. In the other session, children were assessed on the 

remaining four tasks; two patterning tasks (letter and shape), dot counting and 

cognitive flexibility. Sessions were randomised across participants. After all 

individual test items were collected, children completed the remaining measures of 

number knowledge, spatial awareness and nonverbal IQ in a group setting. Children 

completed these tests as a whole class in their normal classroom during one session 

which took a total of one hour. During each session, one teacher or teaching assistant 

was present to ensure all children were answering questions appropriately. All data 

were collected within six weeks of the initial testing date. 

Patterning tasks 

Pattern understanding was assessed using twelve subtests which varied stimulus type 

(numbers, letters, shapes and objects) and pattern type (repeating, rotating and 

increasing). Each subtest included 30 items which were 2 dimensional; 10 repeating, 
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10 rotating and 10 increasing items. For each item, children were shown a number, 

letter, shape or object which followed a predictable repeating pattern (10 items e.g. 

circle, square, circle, square; 1, 2, 1, 2). See Figure 5.1 as an example of a simple 

repeating number pattern. The first five rotating items were rotations of 90 degrees 

and the final five were rotations of 45 degrees. The stimuli rotated in the left and right 

direction and had different starting directions (e.g. upright or upside-down). Increasing 

patterns differed slightly across alphanumeric and non-alphanumeric stimuli. For 

letters and numbers, the patterns increased based on the ordinal position of the digit 

(e.g. 1357 or aceg) whereas objects and shape patterns used increasing geometric 

figures (unit identification) or relative size (proportion). See Appendix 1 for detailed 

descriptions of each of the items within each subtest.  

Shape patterns used verbal shapes: triangles, squares, circles, rectangles, hearts and 

half-moon. Object patterns used a range of animals or objects (e.g. house, tree). All 

object and shape items used were familiar to children of this age.  The final (i.e. fifth) 

item in each pattern was missing; children were asked to point to one of four 

alternatives to complete the pattern.  For repeating trials, one distractor item appeared 

in the sequence and the other two distractor items were stimuli used in the other trials 

but not in the current trial (e.g. square-triangle-square-triangle; distractors: triangle, 

heart, circle). For increasing trials, one distractor was an item which appeared in the 

sequence, one was an impossible choice (i.e. could not appear in the sequence), and 

the third was an item which would appear later in the sequence (i.e. after the fifth 

item). For the first five rotating trials (item rotated by 90˚), the distraction items were 

items which existed within the sequence. For the next five rotating trials (item rotated 

by 45˚), two distractors were an item within the sequence, and one distractor was the 

same item but rotated in a way that was not presented in the sequence.  

Test items increased in difficulty; the first five repeating patterns used an ABAB 

structure, and the final five used an ABBA/AABA structure. This was consistent 

across all stimuli. Increasing items increased in difficulty by involving larger numbers 

(e.g. 13,15,17,19) and/or a larger distance between items in the sequence (e.g. f, h, j, 

l). Similarly, object and shape increasing items increased in difficulty by including 

more complex rules between each item. For instance, unit identification could be based 

on one dimension (add/remove a unit), two dimensions (add/remove a unit of different 
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colours) or three dimensions (add/remove more than one unit of different colours). 

Additionally, the trials become more difficult due to the distractor items which, on 

increasing trials, were more closely matched to the target item. For example, one 

distractor may be the sixth item in the trial, or the ‘impossible’ distractor may be only 

one unit different to the target item. 

To ensure that children were not simply looking at the final item in the sequence (for 

instance responding: 8 as the response for the pattern 1,3,5,7), children were given two 

practice trials for objects and shapes, and three practice trials for numbers and letters 

(see Appendix) during which the experimenter encouraged the child to vocalise the 

items in the sequence whilst pointing to each item in turn. Feedback was given in these 

trials if the child got the answer wrong. In the experimental trials, children were 

encouraged to point to the items in turn and vocalise the pattern when possible 

(experimenter said “point and say what you see and tell me what comes next”). 

Children were given no feedback on these trials. A discontinuation rule of three 

consecutive errors on repeating, rotating and increasing patterns was used, i.e. if a 

child made three consecutive errors on the repeating patterns, the experimenter 

discontinued that part of the test and administered the first increasing pattern item. 

One point was awarded for each correct answer. Scores on all items within a subtest 

were summed to create a single score for each pattern subtest.  

Figure 5.1 An example of a repeating pattern number question in the patterning numbers 

test. 
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Arithmetic and number processing tasks  

Arithmetic. Arithmetic was measured via addition and subtraction fluency tests in 

which children were given two minutes to complete up to 15 addition questions 

followed by two minutes to complete up to 10 subtractions questions. Children 

completed two practice questions for each subtest in which the experimenter 

demonstrated using their fingers and corrected any mistakes the child made. For test 

items, the experimenter read aloud each question and noted down the verbal response 

given by the child. No feedback was given but children were reminded to use their 

fingers to help them answer questions. One point was awarded for each correct answer, 

making a maximum of 15 points for addition, and 10 for subtraction.  

Dot counting. Counting ability was measured using an adjusted version of the dot 

counting subcomponent of the Test of Basic Arithmetic and Number Skills 

(TOBANS; Brigstocke et al., 2016). Dots were presented within a box and children 

were required to name aloud the total number of dots in each box. After three practice 

questions, children were given 30 seconds answer as many questions as possible. 

Within each question the number of dots ranged from 2-19. The experimenter wrote 

down the verbal response the child gave, and one mark was awarded for each correct 

answer.  

Number identification. Number knowledge was measured in a group setting using a 

number identification task. Children were presented with an answer booklet and told 

that for each question they would need to circle the number read aloud by the 

experimenter. For each test item, children were given four possible answers, all of 

which were similar to the test item (e.g. target number is 28 and distractor items are 

82, 208 and 20). Target numbers ranged from 7-807. During two practice items, 

feedback was given, and the experimenter and teaching staff checked that children 

understood the instructions. Following this there were 14 test items with one mark 

awarded for each correct response. 

Executive functioning  

Executive functioning was assessed with four measures. 

Backward span. Working memory was measured via the backward span subtest of the 

Wechsler Adult Intelligence Scale – Third Revision (WAIS-III; Wechsler, 1997). 

Children were told to repeat words in the opposite order to which they heard them. 
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After two practice items in which feedback was given, there were eight experimental 

items in which words increased in length by one each time (starting with two words 

and ending in eight words) and two trials per item. Children were discontinued if they 

failed to correctly repeat both trials within an item. One point was awarded for each 

correct trial, making a total of 16 points.   

Head Toes Knees Shoulders (HTKS). Inhibition was assessed via the HTKS task 

(Burrage et al., 2008). Children were first told to touch their head shoulders knees and 

toes, then were told that they would have to do the opposite of what the experimenter 

told them, “We’re going to be silly! If I say touch your head, you should actually touch 

your toes.” The first part of the test included head and toes only. Children only 

completed test items if they were successful across two training questions and four 

practice questions, with a maximum of three corrections allowed. There were then ten 

test items which consisted of five ‘touch your head’ questions and five ‘touch your 

toes’ questions. Two points were awarded for a correct response, one point was 

awarded if the child made an initial incorrect response but then corrected themselves, 

and 0 points awarded for an incorrect or no response. A total of 20 points were 

available for the first part of the test, and if children scored five or more points they 

proceeded to the final part of the test. In the final part, children were told to touch their 

shoulders and their knees. Then were told, “now we’re going to be silly again, and do 

the opposite of what I say”. After one training question (touch your knees) and four 

practice questions (knees and shoulders) children were given ten test questions which 

included touching the head, shoulders, knees and toes. No feedback was given, and 

scoring was the same as the first part of the test, with a total of 20 points possible for 

the second part of the test and 40 points possible in total for both parts of the test.  

Selective Attention. In the Visual Search task (Breckenridge, 2007) children were told 

to find red apples. In the demonstration trial, the experimenter presented a piece of A4 

laminated paper showing a red apple, white apple and red strawberry. The 

experimenter indicated that the child should find red apples and drew a line through 

the red apple to indicate how the child could identify them. The child then practiced 

identifying apples before being shown the test page containing a 9 X 10 array of red 

apples (N = 17), white apples (N = 36) and red strawberries (N = 37). Children were 

given one minute to find as many red apples as they could. Score was an efficiency 
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rating comprised of total red apples found minus total number of errors (identifying 

strawberries or white apples) divided by total time taken.  

Cognitive Flexibility. Shifting was measured via a card matching task, adapted from 

Dick (2014). In this task, children were expected to find similarities between cards 

presented on A4 paper. The cards shared similar features of colour, shape, size or 

number of items. Cognitive flexibility was required because children needed to find 

one common feature across two cards (e.g. colour) and then shift to another common 

feature (e.g. size). For example, as shown in Figure 5.3, children should state that cards 

1 and 2 are the same because they are both red, and cards 2 and 3 are the same as they 

are both boats.  

There were four parts to the test: demonstration trial, criteria trials, 2-Match trials and 

3-Match trials. First in the demonstration trial, children were shown four cards made 

from two sets of identical pictures (see Figure 5.2). The experimenter familiarised the 

child with the language used in the task stating: “These two cards [points to cards 1&3] 

are the same because they both have one big blue rabbit. And these two cards [points 

to cards 2&4] are the same because they both have three small red roses”. Following 

the demonstration trial, there were two criteria trials in which the experimenter 

described two similar cards and asked the child to state why the other two cards on the 

page were similar. If the child failed to describe similarity between the cards for both 

criteria items they were discontinued from testing. Those who successfully described 

the cards in both or one of the trials advanced to 2-Match questions.  

For 2-Match questions, there were three cards on each page; two were the same for 

one reason and two the same for another (see Figure 5.3). After one demonstration 

trial, children completed six test items and were asked to “point to two cards which 

are the same and tell me why they are the same”. If the child correctly identified two 

similar cards they were asked to “point to two other cards which are the same but for 

a different reason”. Children were awarded one point each time they correctly 

identified two matching cards and described why they were the same. There were 2 

points available for each test item and a total of 12 points for the 2-Match condition.  
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Figure 5.2 Demonstration trial. 

If children scored the maximum two points for three or more items, they proceeded to 

the 3-Match condition. In the 3-Match condition there were three similarities between 

the three cards (e.g. two cards had the same colour, two had the same size, two had 

the same quantity, or two were the same object). Again, there was a demonstration 

trial followed by six experimental trials. Marking was the same as in the 2-Match 

condition, although 3 points were available for each item making a total of 18 points. 

In total there were 30 points for this task.  

Non-verbal IQ 

Non-verbal intelligence was measured using an adapted version on the Raven’s 

Progressive Matrices (Raven, Court & Raven, 1995). In this group test, children in a 

classroom were shown on a whiteboard different coloured patterns with a piece 

missing. The experimenter explained that children were to find the missing piece from 

four options presented below the test item. In the answer booklet, children circled the 

option they thought was the missing piece. After three practice questions, the 

experimenter moved through each question in turn. A total of 12 marks were available.   
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Figure 5.3 Example of a 2-Match task. 

Spatial reasoning  

Spatial awareness was measured in a group setting via a Spatial Reasoning subtest of 

the standardised Non-Verbal Reasoning Test suitable for children between 5:04–7:11 

years (Smith & Lord, 2002). Children were presented with a question and answer 

booklet and guided through the Windows, Hidden Shapes and Stacks sections by the 

experimenter. For each section, the experimenter first demonstrated the task, then 

children answered two practice questions with feedback before starting the timed test 

items. A total of two minutes was given for each part of the test.  

The windows questions assessed a child’s ability to switch perspective and rotate 

items. Each test item showed an image of a “view from the street”. The children’s task 

was to choose one of four options which showed the “view from inside the shop” (see 

Figure 5.4). There were 12 test items, and therefore a maximum score of 12.  
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Figure 5.4 Example of a windows task. 

Next, children completed the hidden shapes test which accessed the ability to identify 

shapes hidden within a larger shape. In the practice trials, children were shown four 

different shapes which were made from smaller shapes and labelled A-D. The 

experimenter demonstrated that for each test item, children would be asked to look at 

a smaller shape and identify which of the larger shapes (A-D) the smaller shape was 

“hidden in” (see Figure 5.5). Children were told that the hidden piece would be exactly 

the same in the larger shape, for example the same size and the same way around. 

After the practice items, children completed the test items. There were three sets, each 

contained one set of large shapes (A-D) and six associated hidden shapes; a total of 18 

marks available. 

The stacks test assessed the child’s ability to visualise the location of shapes. In each 

test, one shape was stacked in various orientations and children were required to 

identify which of the shapes was at the bottom of the stack (see Figure 5.6). In each 

test there were four or five shapes piled together. After the demonstration and practice 

questions there were 16 test items.  
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Figure 5.5 Hidden shapes test.  

5.3 Results  

A concurrent correlational design was used to assess the relationship between 

patterning and arithmetic. We then used a regression model to ascertain the strength 

of this relationship whilst considering other known predictors of arithmetic. An 

additional aim of the study was to examine how different types of patterning task relate 

to each other and we report these findings based on correlations and factor analyses. 

All data was examined using Stata (Version 14.0).  

Descriptive statistics and reliabilities for all tasks are shown in Table 5.1. All tasks 

showed good reliabilities and distribution of scores, with no ceiling or floor effects. 

Importantly, children showed a good range of scores on the patterning tasks, and these 

measures had good reliability.  
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Figure 5.6 Example of the stacks test. 

5.3.1 Patterning tasks 

To assess differences in performance on the patterning tasks, we conducted a 2-way 

repeated measures Analysis of Variance (ANOVA) with stimulus type (Numbers, 

Letters, Objects, Shapes) and pattern type (Repeating, Rotating, Increasing) as 

independent variables (see Table 5.1).  

There was a significant main effect of pattern stimuli, F(3,234) = 4.41, p = .005, partial 

η2 = .053. Post-hoc analyses using Bonferroni corrections revealed that the letter tasks 

were harder than the number tasks (mean difference = .51, p = .006) but other tasks 

did not differ significantly from each other.   

The main effect of pattern type was also significant, F(2,156) = 420.39, p < .001, partial 

η2 = .843. Post-hoc analyses revealed that repeating items were significantly easier 

than rotating items (mean difference = 5.58, p < .001) and repeating item were 

significantly easier than increasing items (mean difference = 5.38, p < .001). 

Increasing items were not significantly different to rotation items (mean difference = 

.20, p < .05).  

The interaction between pattern stimuli and pattern type was significant, F(1,78) = 

22.06, p < .001, partial η2 = .220. This interaction appears to reflect the fact that for 

Number and Object patterns, rotation items are more difficult than increasing patterns, 

whereas for Letter and Shape patterns, rotation items are easier than the increasing 

patterns. 
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Figure 5.7 Mean levels of performance on pattern tasks (error bars represent standard 

error). 

5.3.2 Correlations  

Pearson correlations (and partial correlations controlling for age) between all measures 

are shown in Table 5.2. We controlled for age because there were a range of ages 

(children were from two year groups) and age correlated significantly with all 

measures (rs = .24 - .57, p < .05). We created a ‘calculation’ score based upon the 

combined score of addition and subtraction (both of which correlated strongly with 

each other, r = .66, p < .001).  

As predicted, pattern tasks were well correlated with calculation (combined score on 

addition and subtraction task) after age was controlled (partial rs = .35 - .45, p < .05). 

Similarly, all other measures were significant correlates of calculation after age was 

controlled (rs = .29-.50, ps < .05). Importantly, our patterning tasks were well 

correlated with each other (partial rs = .63 - .75). 
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Table 5.1 Descriptive statistics, reliabilities (α) and 95% confidence intervals for all 

measures.  

 N Mean (SD) Reliability Range 95% CI 

Age (months) 79 73.43 (7.34) --- 60-86 [71.79-75.07] 

Patterning       

Numbers (30) 79 16.28 (5.35) .88 7-29 [15.08-17.48] 

     Repeating (10)   8.72 (1.69) .72 3-10 [8.34-9.10] 

     Rotation (10)   3.04 (2.64) .86 0-10 [2.45-3.63] 

     Increasing (10)   4.65 (2.58) .83 0-10 [4.07-5.22] 

Letters (30)  79 14.86 (4.99) .87 3-28 [13.74-15.98] 

     Repeating (10)   8.95 (1.77) .80 1-10 [8.55-9.35] 

     Rotation (10)   3.41 (2.88) .88 0-10 [2.76-4.05] 

     Increasing (10)   2.53 (2.18) .81 0-9 [2.04-3.02] 

Objects (30)  79 16.14 (5.12) .86 7-29 [14.99-17.29] 

     Repeating (10)   8.92 (1.55) .53 0-10 [8.58-9.27] 

     Rotation (10)   3.11 (2.80) .87 0-9 [2.49-3.74] 

     Increasing (10)   3.85 (2.70) .81 0-10 [3.24-4.45] 

Shapes (30)  79 15.61 (5.15) .86 7-29 [14.45-16.76] 

     Repeating (10)   8.94 (1.35) .53 4-10 [8.63-9.24] 

     Rotation (10)   3.66 (2.59) .83 0-10 [3.08-4.24] 

     Increasing (10)   2.99 (2.36) .73 0-9 [2.46-3.52] 

Number measures      

Calculation (25) 79 16.58 (6.44) --- 1-25 [15.14-18.02] 

     Addition (15)  10.00 (4.04) .90 0-15 [9.09-10.91] 

     Subtraction (10)  6.58 (3.00) .85 1-10 [5.91-7.25] 

Number ID (14)  74 11.47 (2.05) .64 5-14 [11.00-11.95] 

Dot counting  79 9.39 (2.93) --- 2-17 [8.74-10.05] 

Executive functioning      

Cognitive flexibility (30)  79 11.15 (9.22) .95 0-30 [9.08-13.22] 

Backwards span (16)  79 4.89 (1.37) --- 0-9 [4.58-5.19] 

Visual search (secs) 79 .27 (.08) --- -.07-.57 [.26-.29] 

HTKS (40)  79 29.49 (9.99) .94 0-40 [27.25-31.73] 

Non-verbal IQ      

Non-verbal IQ (12)  72 6.54 (3.75) .90 0-12 [5.66-7.42] 

Spatial      

Spatial awareness (46)  72 15.35 (8.73) --- 0-36 [13.30-17.40] 

     Windows (12)  3.81 (2.62) --- 0-10 [3.19-4.42] 

     Hidden shapes (18)  4.47 (3.50) --- 0-12 [3.65-5.29] 

     Stacks (16)  7.07 (5.83) --- 0-16 [5.70-8.44] 
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5.3.3 Modelling relationships between measures  

To assess the relationship between different measures and arithmetic, we first used 

factor analysis on each set of measures to derive factor scores. These analyses were 

conducted separately on the different theoretically defined sets of measures, because 

of the small sample size. The factor analyses allowed us to derive factor scores to 

represent the error free common variance from the different sets of measures. For each 

set of measures, there was clear evidence of a dominant single factor that captured a 

high proportion of common variance between the measures.  

We chose not to create a factor score for “number knowledge” because our measures 

of number identification and dot counting are theoretically different constructs; 

number identification relies on knowledge of Arabic symbols and dot counting relies 

on the count sequence but no Arabic number knowledge. These two measures were 

therefore retained as separate measures in the analyses.   

The first step of exploratory factor analysis is to compare the correlations between 

measures of a factor. According to Field (2009) if correlations between measures are 

within r = .3-.8, it is then possible to assess if these measures load onto one factor. 

Correlations that are too high indicate a single measure, and correlations that are too 

low indicate different measures. For all of our measures we found that correlations 

were within the acceptable range: patterning tasks; rs = .44 - .80 (number, letter, 

object, shape and colour), arithmetic; r = .66 (addition and subtraction) and executive 

function measures; rs = .28-.43 (backward span, visual search, HTKS and cognitive 

flexibility). We therefore derived factor scores for each group of measures.  

Pattern factor  

As correlations were strong between patterning measures (rs = .56 - .80) we assessed 

if the tasks loaded onto a single factor using factor analysis (principle axis factoring). 

A single pattern understanding factor was derived from four measures (number, letter, 

object and shape patterns) which explained 73% of the variance (factor loadings on 

the pattern factor are reported in Table 5.3).  
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Table 5.2 Correlations among measures. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. Number patterns 
- .68** .76** .75** .43** .38* .41** .46** .28* .16 .45** .37* .48** .43** .38** 

2. Letter patterns 
.63** - .74** .77** .53** .50** .46** .41* .39** .33* .56** .46** .44** .48** .42** 

3. Object patterns  
.72** .69** - .80** .50** .48** .41** .37* .27* .26* .44** .39** .47** .46** .41** 

4. Shape patterns 
.71** .73** .75** - .49** .33** .47** .43** .34* .26* .44** .42** .44** .51** .44** 

5. Calculation score  
.35* .45** .41** .40** - .94** .88** .55** .50** .45** .46** .58** .40** .54** .60** 

6. Addition  
.30* .43** .40** .34* .93** -- .66** .53** .54** .42** .45** .59** .35* .51** .60** 

7. Subtraction 
.33* .37** .32* .38** .88** .62** -- .47** .34** .40* .36** .45** .38** .46** .47** 

8. Number ID 
.36* .27* .22 .22 .46** .45** .36* - .50** .33** .44** .63** .45** .39** .49** 

9. Dot counting  
.18 .29* .15 .23* .42** .48** .24* .39** - .30* .42** .46** 26* .38* .44** 

10. Visual search 
.03 .21 .13 .11 .35* .33* .31* .16 .18 - .29* .32* .31* .45** .48** 

11. Backward span  
.40** .52** .38** .30* .40** .40** .31* .38** .37** .22 - .43** .28* .41** .38* 

12. HTKS 
.27* .36* .28* .30* .50** .52** .36* .52** .39** .20 .37** - .34* .36* .55** 

13. Shifting Task  
.39** .34* .37** .32* .29* .26* .28* .31* .13 .19 .21 .22 - .35* .48** 

14. Non-verbal IQ 
.34* .40** .37* .42** .46** .44** .38* .23 .27* .36* .34* .23 .24* - .52** 

15. Spatial   
.29* .32* .30* .32* .53** .53** .39* .35* .34* .38** .32* .45** .39** .44** - 

16. Age 
.35* .39** .40** .43** .37** .34* .35* .57** .36* .38** .24* .40** .40** .38* .40** 

Notes: Partial correlations controlling for age are below the diagonal and simple correlations above the diagonal.  

        * p < .05, **p<.001. 
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These factor loadings are all relatively high and relatively uniform. The first factor 

extracted had a large eigenvalue (2.93) with other eigenvalues being trivial in size. 

This analysis therefore gives strong support to the view that the different patterning 

measures can all be seen as tapping a unitary pattern understanding factor.  

Table 5.3 Factor loadings for patterning factor. 

 Factor Loadings Uniqueness 

Number  .83 .32 

Letter  .83 .31 

Object  .88 .23 

Shape  .89 .21 

 

Arithmetic factor 

The addition and subtraction tasks were well correlated (r = .66, p < .001) and as 

addition and subtraction are the main components of early arithmetic, we used factor 

analysis to derive an arithmetic factor. The factor explained 55% of the variance 

accounted for. These factor loadings are relatively high, and the first factor extracted 

had a moderate eigenvalue (1.10) with the other eigenvalue negligible in size. The 

factor loadings are reported in Table 5.4.  

Table 5.4 Factor loadings for arithmetic factor. 

 Factor Loadings Uniqueness 

Addition .74 .45 

Subtraction .74 .45 

 

Executive function factor 

Correlations between the four executive function tasks (backwards span, visual search, 

cognitive flexibility and HTKS) were moderate (rs = .28 - .43). As it is common in the 

literature to assess executive function as one measure, we assessed if these tasks load 

onto a single factor. The executive function factor explained 34% of the variance. The 

factor loadings on the executive function factor are reported in Table 5.5.  

These factor loadings are moderate in size and relatively uniform. The first factor 

extracted had a moderate eigenvalue (1.37) with other eigenvalues being trivial in size. 
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This analysis gives support to the view that the different executive function measure 

can be seen to tap into an executive function factor, however, the loadings are lower 

than the pattern and arithmetic factors.     

Table 5.5 Factor loadings for executive function. 

 Factor Loadings Uniqueness 

Backwards Span .60 .64 

Visual Search .62 .62 

HTKS .45 .80 

Shift task .66 .57 

 

5.3.4 Predictors of arithmetic 

We used a regression model to evaluate which measures were unique predictors of 

arithmetic. In these models, we used factor scores saved from the factor analyses 

reported above. Age was retained in all models to control for age effects.  

In the first stage, we entered all measures (age, pattern factor, executive function 

factor, number identification, dot counting, nonverbal IQ and spatial awareness) 

simultaneously as predictors of arithmetic. We then removed iteratively the least 

significant predictor from the model continuing until all retained predictors were 

significant. In the final model, executive function, patterning and spatial awareness 

were significant predictors of arithmetic, explaining 53% of the variation in arithmetic. 

Together, executive functioning and patterning explained 17% of the variation in 

arithmetic once spatial awareness and age were controlled (unique R2 = .17, p < .001).  

In summary patterning, executive function and spatial awareness explained unique 

variation in arithmetic scores whereas number identification, dot counting, and 

nonverbal IQ did not (see Figure 5.8).  
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Figure 5.8 Path diagram showing significant and unique predictors of arithmetic (age 

is not significant but is retained in the model). * p < .05. 

5.4 Discussion  

In this study, we aimed to assess how different patterning tasks relate to one another, 

and how patterning relates to arithmetic. Firstly, and in line with our prediction, we 

found that pattern tasks correlate with arithmetic. Four pattern tasks (numbers, letters, 

objects and shapes) can be defined by one unitary factor which explains unique 

variation in arithmetic even after controlling for executive function, spatial skills and 

number knowledge. Secondly, we compared different types of patterning task 

(repeating, rotating and increasing) and showed that there is some variability in 

difficulty across task type and stimuli. Repeating patterns were shown to be the easiest 

and rotating patterns the most difficult type of task. Moreover, we found that letter 

tasks were significantly more difficult than number tasks, but no other significant 

differences were found with other measures (objects and shapes).  
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Our first and main finding that pattern tasks correlate with and explain unique variance 

in arithmetic is in line with previous evidence (e.g. Lee et al., 2011; Lee et al., 2012; 

Pasnak, 2017; Rittle-Johnson et al., 2017; Schmerold, 2015; VanDerHeyden et al., 

2011; Warren & Miller, 2013). Previous studies have typically assessed patterning 

using a small number of tests and have not investigated the relationship between 

different types of patterning task and arithmetic. To do this, we tested children on a 

range of pattern tasks with different items (repeating, rotating, increasing) and 

different stimuli (numbers, letters, shapes, objects) and compared the relationship 

between different types of patterning task. We found that the different tasks can be 

loaded onto one factor and therefore are represented by one unitary factor. Moreover, 

this factor predicts unique variation in arithmetic.  

Secondly, we show that repeating patterns are the easiest type of pattern task, being 

significantly easier than increasing and rotating items across all stimuli. These findings 

are in line with previous evidence showing that children are capable of completing 

repeating pattern tasks before increasing patterns (Rittle-Johnson, Fyfe, McLean, & 

McEldoon, 2013). This is likely because, to complete a repeating pattern (e.g. 1212, 

1121) children do not need to abstract a rule but can use basic perceptual skills to 

identify the correct response. We found that rotating items were the most difficult task 

for number and object stimuli whereas increasing items were the most difficult task 

for letter and shape patterns. We suggest that increasing patterns for numbers are 

simpler than rotating items because children are used to increasing number patterns 

(e.g. 1357) but less familiar with rotating patterns. On the other hand, children are less 

exposed to alphabetic patterns (e.g. aceg) in school which may make the increasing 

letter patterns more difficult.    

Finally, we show that pattern tasks are, alongside executive function and spatial skills, 

a unique predictor of arithmetic. Some potential reasons for this relationship include 

a domain-specific role of patterning in arithmetic or domain-general role of patterning 

in arithmetic. A domain-specific role may relate to patterns which exist in numbers, 

for instance an understanding that 2+1 is the same as 1+2 or that 2+4 is the same as 

2+2+2. A domain-general role of patterning may be that general abstraction and 

manipulation skills that are required to complete pattern tasks are also important for 

the development of arithmetic and other developmental skills, such as reading. These 

suggestions do not need to be mutually exclusive and may well both be viable for 
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explaining the association between patterning and arithmetic. Future evidence should 

use different types of pattern task with more outcome measures (e.g. reading fluency) 

to examine these possible theories, both of which are discussed in more detail later in 

this chapter.   

5.4.1 Pattern tasks 

An important aim of our study was to investigate the relationship between different 

types of pattern tasks. Previous studies examining patterning have often included a 

small battery consisting of either repeating, increasing or rotating items for numbers 

and letters (e.g. Pasnak, 2017; Rittle-Johnson et al., 2017; VanDerHeyden et al., 2011; 

Warren & Miller, 2013). One study by Schmerold (2015) used a wider range of pattern 

tasks but provided a composite across all tasks, therefore the individual relationships 

between different pattern types (e.g. repeating, rotating) and different stimuli (e.g. 

numbers, colours) cannot be determined.  

In our study, we created separate tests for different types of patterning across different 

stimuli. We found that performance on these subtests were highly correlated with one 

another, and exploratory factor analysis showed that one factor adequately captured 

the shared variance between these different measures. This is consistent with other 

evidence as previous studies have shown similar correlations between patterning tasks 

and arithmetic regardless of the type of patterning used.  

Secondly, we attempted to examine the different levels of difficulty across task type 

and stimuli. We found, in line with previous evidence, that repeating tasks are simpler 

than increasing tasks (Rittle-Johnson, Fyfe, McLean, & McEldoon, 2013). The 

difficulty of the increasing and rotating items varied across the stimuli. For instance, 

increasing items (e.g. 1357) were easier than rotating items for number and object 

stimuli, although the opposite effect was found for letter and shape stimuli.  

We can tentatively suggest that this pattern was found for number and letter patterns 

because children are exposed to number sequences at school, and therefore may have 

found the increasing items more familiar than for letter items which are less well 

studied; children do not generally get exposed to the alphabetic sequence aceg whereas 

they are exposed to number sequences such as 1357. Similarly, children may be 

exposed to rotating shapes (e.g. triangles and hearts) more commonly than rotating 

objects (e.g. animal pictures). This may in part explain why the rotating items were 
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simpler for shapes than objects, although more research is needed to further support 

this finding and explain this effect. One potential suggestion is that the letter and shape 

tasks were presented in the same testing period whereas number and objects were 

tested in a different session. However, this effect is unlikely related to the testing 

session because each session was randomised across participants. Overall, we can 

suggest that increasing and rotating items are more difficult than repeating items, 

which may have implications for the design of pattern stimuli.   

5.4.2 Pattern understanding predicts unique variation in arithmetic   

The second aim of the study was to examine how performance on patterning tasks 

correlated with arithmetic. We derived factor scores for patterning, executive function 

and arithmetic. In line with previous evidence, we found that patterning remained a 

unique predictor of arithmetic once all other variables were controlled, suggesting that 

patterning is an important factor in the development of arithmetic skills (Lee et al., 

2011; Lee et al., 2012; Pasnak, 2017; Rittle-Johnson et al., 2017; Schmerold, 2015; 

VanDerHeyden et al., 2011). We extend previous knowledge because we used a large 

battery of pattern tasks with good reliabilities and controlled for a wider range of 

numerical confounds than previous studies. For example, Rittle-Johnson et al. (2017) 

found that performance on a patterning task (colours and repeating patterns) correlated 

longitudinally with arithmetic measures five years later (rs = 31 to .38; R squared 9.6% 

to 14.4%) and explained unique variation once other important factors were controlled 

(β = .08, SE = .04, p < .05). However, the patterning task had low reliability (α = .56) 

and consisted of only repeating and coloured stimuli.  

In our study, the patterning tasks generally had good reliability (α = .53-.88) and we 

are able to show that similar correlations with arithmetic remain for all patterning types 

and multiple stimuli. Similarly, Warren and Miller (2013) found that a patterning score 

correlated concurrently with arithmetic (r = .44, p < .05) at similar levels to our study. 

However, only number patterns were used without controlling for number knowledge 

and therefore the relationship between patterning skills (and not number knowledge) 

and arithmetic is not known.  

Our findings are directly in line with evidence from Schmerold (2015) who showed, 

using a large patterning battery, relying on numerical and non-numerical pattern 

stimuli, that patterning (a combined score from all tasks) correlated well with 
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arithmetic (r = .52-.54) and at similar levels to arithmetic as our patterning tasks (r = 

.43-.53). Importantly, this study also controlled for executive function which was 

similarly correlated to patterning and arithmetic, as in our study.  

5.4.3 Why does pattern understanding predict arithmetic?  

The cognitive mechanisms underlying the relationship between patterning and 

arithmetic are not completely clear, although two potential reasons for the relationship 

are proposed. The first concerns the fact that basic arithmetic and counting skills rely 

on patterns. Take, for example, the sum 3+5. A child with good arithmetic abilities 

will understand that this is the same sum as 5+3, and additionally that the latter is 

quicker to compute than the former (counting on from 5 is quicker than counting on 

from 3). Counting also involves patterns, for example counting in 2’s or 5’s requires 

the child to understand a pattern which describes how numbers increase. Pattern 

understanding may help the child to develop an understanding of these links which 

may lead to improved arithmetic.  

A second possible reason for the relationship is that pattern understanding, particularly 

for more difficult patterns, involves the manipulation and abstraction of information. 

In simple pattern tasks such as repeating patterns, children may be able to complete 

the pattern using visual representations and without understanding the underlying 

structure of the pattern. However, in increasing patterns, the child must predict the 

final pattern item by abstracting the underlying principles of the pattern. Arithmetic, 

and particularly more advanced or rapid arithmetic, also relies on the child 

understanding how numbers relate to one another. This may suggest that pattern 

understanding is related to arithmetic via the understanding of patterns within 

arithmetic. This general ability to identify patterns may be linked to other 

developmental skills, such as reading where, for example, children with good pattern 

understanding may be able to link certain sounds to letters. As a result, patterning may 

be considered as a domain-general skill and other researchers have suggested that 

patterns are important for the development of broader cognitive abilities and fluid 

intelligence which may help to develop not just arithmetic but other cognitive abilities, 

including reading (e.g. Burgoyne et al., 2017). As our study did not measure other 

developmental abilities, it is not possible to tease apart this claim although it is 

suggested that understanding how numbers relate to one another (i.e. showing a good 
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understanding of patterning) will be important for more than just numerical abilities. 

Future studies should attempt to examine this further by measuring a range of 

educational outcomes alongside measures of patterning.  

The suggestion that patterning is a domain-general skill is interesting as findings from 

our study suggest that domain-general skills are more important in predicting variation 

in arithmetic than number skills are. One suggestion is that the age of children is an 

important consideration here (discussed more in Section 6.3). For instance, for 

younger children, numerical abilities may be more important than for older children 

when executive function and domain-general skills may become more important (as 

basic number knowledge has been mastered). Future studies should attempt to 

examine how more advanced numerical abilities relate to arithmetic and other domain-

general skills in this age group.  

5.4.4 Executive function and spatial skills   

One important aspect of our study was that we controlled for domain-general skills 

which may be related to both patterning and arithmetic. We found, in line with other 

studies, that executive function and spatial awareness are good predictors of arithmetic 

(see Section 2.3). As these tasks do not rely directly on any numerical abilities, it is 

suggested that they are domain-general factors which may also predict other cognitive 

and academic skills such as reading.  

Executive function tasks rely on attention and working memory, which are linked 

strongly to arithmetic and classroom achievement (Duncan et al., 2007). A child with 

good attention will focus in class and therefore process information presented by a 

teacher. They may therefore be able to learn the required processes for arithmetic 

better than a child with poor attention. Similarly, executive function tasks rely heavily 

on working memory and this skill is related to arithmetic; addition and subtraction rely 

on the child processing information within short-term memory (see Section 2.3.1).  

One consideration is how to teach executive function. It is not as simple to teach as 

number knowledge or patterning, which can be clearly taught using pencil-and-paper 

and traditional teaching methods. Moreover, there is debate within the literature 

surrounding the way that executive function tasks relate to one another and whether 

these are one underlying construct (e.g. Miyake et al., 2000). We found partial 

evidence that the tasks we used form one factor, although the correlations between our 
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measures were weaker than some other measures we examined. Further studies may 

wish to focus on the relationship between different executive function measures and 

examine whether some, or all types of task may be better predictors of arithmetic.  

Spatial awareness was found to predict arithmetic in our study, above that of 

patterning. This suggests that although related (patterning and spatial tasks were 

significantly correlated; partial rs = .29 - .32) these factors play, at least in part, 

separate roles in predicting variance in arithmetic. There are a number of potential 

reasons for the relationship between spatial skills and arithmetic. Children may 

represent numbers via a mental number line (refer to SNARC effect; Berch et al., 

1999) or process numerical information using the same neural pathways as spatial 

information (see Hubbard et al., 2005). Our study was not placed to distinguish 

between these different potential mechanisms for this relationship and further studies 

are needed to clarify this. For example, by investigating the best ways to teach spatial 

skills to children, which, akin to executive function, warrants investigation.   

5.4.5 Limitations and further work  

One limitation of the patterning study is that our correlation does not provide evidence 

for the direction of the relationship between patterning and arithmetic. Future research 

should use longitudinal designs to examine the direction of the relationship, and 

training studies to test whether there is a causal link. Before there is strong evidence 

of a causal relationship between these factors, it is not possible to recommend that 

educational programmes contain pattern skills to enhance arithmetic abilities, although 

we may suggest that continuing to include patterning in early education will not 

disadvantage children.  

One other limitation of our study is that we used just one form of pattern task in which 

children were required to find the final item in the pattern. This type of pattern task 

has been used in previous studies (e.g. Lee et al., 2011; Schmerold, 2015) but one 

consideration is that the pattern stimuli may have, in some way, contained some 

numerical information. Take, for instance, the shape increasing stimuli. To respond to 

one of these items (e.g. total number of triangles within the group increasing), children 

can count to find the answer. Similarly, in the object increasing stimuli, children were 

sometimes able to count the number of objects (e.g. increasing carriages on a train). 

Even for the increasing number and letter items, children were required to count the 
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digits (e.g. 1357__) or count the number of letters missing within the sequence (e.g. 

DGJM__). Therefore, although potentially a minimal impact, it is possible that 

children were using counting knowledge to respond to some of the items. 

One possible outcome of this is that the relationship between pattern understanding 

and arithmetic is driven in part by numerical and counting skills which are involved 

in some of the pattern stimuli. Future studies should try to eliminate any numerical 

skills involved in the pattern stimuli, particularly those which are not alphanumeric. 

One way to do this is to ask children to recreate a pattern using different stimuli 

(referred to as abstraction) which therefore does not require any counting, but which 

shows an understanding of the underlying pattern (as an increasing task would).   

5.4.6 Conclusion 

In summary, the study used a large battery to assess pattern understanding in children 

aged 5-7 years. We found, in accordance with previous evidence, that patterning tasks 

(regardless of stimuli used or type of patterning test) are well correlated with 

arithmetic. This relationship remains once age, executive function and spatial 

awareness skills are considered, which together explain 52% of the variation in 

arithmetic. Further research should examine the longitudinal association between 

patterning and arithmetic to further understand the direction of this relationship.   
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Chapter 6. General discussion  

6.1 Key findings 

This thesis has examined a range of cognitive factors which may be important for 

arithmetic development in children. Three studies were conducted to examine how 

different factors relate to arithmetic abilities in children between 4 and 8 years old (the 

first three years of formal schooling in the UK). In an initial study, the relationship 

between arithmetic and sensori-motor skills including finger awareness was examined. 

Next, the potentially causal relationship between number knowledge and arithmetic 

was assessed using a training study. Finally, we evaluated how pattern tasks relate to 

one another, and to arithmetic. Our main findings were as follows: 

1) Finger gnosis, and other sensori-motor abilities are less important predictors 

of arithmetic than numerical abilities, including number knowledge.  

2) Children trained in number knowledge showed trends to improve in arithmetic 

and number skills compared to control groups, but these effects were not 

statistically significant.  

3) Pattern understanding is a significant predictor of arithmetic, and future 

research should focus on the potential longitudinal and causal relationship 

between these factors. 

6.1.1 Sensori-motor skills 

To examine the potential relationship between sensori-motor skills and arithmetic we 

conducted a correlational study. Our data showed that finger awareness and other 

sensori-motor abilities were moderately correlated with arithmetic, but this reduced to 

non-significant and negligible levels when age and other numerical skills are 

controlled. Some studies which have supported a relationship between sensori-motor 

abilities and mathematical learning are limited by small sample sizes and a failure to 

control for other known predictors (e.g. Gracia-Bafalluy & Noël, 2008; Noël, 2005). 

When we overcame these limitations, symbolic magnitude comparison and counting 

were shown to be unique and important predictors of arithmetic, in line with 

considerable evidence supporting a role of symbolic number skills in arithmetic 

development (Durand et al., 2005; Lyons et al., 2014; Vanbinst et al., 2016).  
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One of the most important aspects of this study was that we controlled for other 

predictors of arithmetic and used reliable measures. Controlling for important factors 

is a critical component of correlational designs, and something which is commonly 

lacking in the literature. A failure to control for known predictors can lead to 

overestimations of the role of other potential factors.  

The finding that symbolic number comparison (which measures symbolic number 

knowledge) and counting were important predictors of arithmetic led to the inception 

and development of the second study which focused on the causal link between 

symbolic number knowledge and arithmetic.  

6.1.2 Symbolic number training  

Merkley and Ansari (2016) define symbolic number knowledge as the ability to 

identify digits and understand the magnitude and ordinality of numbers. One way to 

examine this is via symbolic magnitude comparison tasks, requiring the child to 

identify which of two digits is larger, with evidence supporting strong relationships 

between this skill and later arithmetic (see Schneider et al., 2016). Additionally, 

studies can use number identification and number ordinality tasks. One critical aspect 

of which task to choose to in order to examine number knowledge is the age of the 

children. For example, for younger children tasks may focus on the count sequence 

for smaller numbers (i.e. numbers 1-10). As children get more proficient in learning 

Arabic digits, number identification tasks may be used alongside tasks which assess 

magnitude understanding (e.g. symbolic comparison tasks). For older children, tasks 

which rely on an understanding of place-value may be the best measure of number 

knowledge.   

Symbolic number knowledge has been shown to relate with arithmetic and our study 

investigating sensori-motor skills supported this. We showed that a large proportion 

of the variance in arithmetic is explained by counting and symbolic number 

comparison tasks. We examined a potential causal relationship between symbolic 

number knowledge and arithmetic through a training study. Children were trained in 

number knowledge via a game computerised App. The training consisted of playing a 

numbers game in which children were required to create numerical sequences 

(reinforcing ordinality) whilst hearing the sound of a number when pressing a digit 

(reinforcing identification).  
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We showed (non-significant) gains in the predicted direction; children in the number 

condition improved more than an untreated control group at post-training on number 

outcomes, including arithmetic. Equivalent scores were seen for literacy outcomes. 

Additionally, children in the letter training (control training group), who played an 

equivalent game with letters, did not improve more than the untreated control group 

on numerical scores but did show some improvements on some literacy measures. 

Although these findings did not reach significance, they are a good indication that 

training in number knowledge may have a positive impact on arithmetic abilities. This 

is in line with previous studies which have shown that training in number knowledge 

can improve arithmetic and numerical outcome scores (e.g. Honoré & Noël, 2016; 

Jordan et al., 2009; Ramani & Siegler, 2008). 

The likely reason for lack of significance is argued to be due in part to a lack of power. 

The potential reasons for this are initially discussed in Chapter 4 and include low 

power to find an effect, should it exist, due to too few participants, too short training 

time and limitations in the measures used (see Section 4.4.1). Additionally there are 

practical limitations including that children did not enjoy playing the game and the 

game was difficult for this age group. One of the important findings from this study is 

that designing a methodologically sound training study is very challenging. The 

training itself needs to be designed with practical considerations. For example, if 

children are trained in a group (as was the procedure in our training study) this 

increases the number of children who can play the game within the training time which 

is positive for the practicality of time implications. However, one negative of group 

training is that it is necessary to ensure that the game is engaging enough so that they 

can play without the need for one-on-one instruction and encouragement from the 

experimenter.  

We chose a group training design because it limits the overall time that children are 

taken out of the classroom for training. In our study, groups of five or six children 

were taken out of classroom during free-play as it was important for teachers that 

children were not missing lesson time each day. Due to extra pressure on teachers to 

ensure that children are reaching key milestones in the first years of formal education, 

it is possible that teachers do not want children to miss lesson time. One possible 

alternative is to have the training as part of the normal lesson, or  have training 

conducted by teaching assistants in the classroom. This would reduce the amount of 
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time that children are missing lessons. Again, if the study is re-run on a greater scale, 

this could be an important component of the training design.  

The study was eye-opening to the many considerations that are important to consider 

when conducting training studies. Although more data could have been collected to 

reach power, the practical considerations were deemed too significant to warrant 

additional data collection (further discussion of practicalities are discussed in Section 

6.4). As a result, the study is now being prepared in a different way for roll-out on a 

greater level with some practical elements reconsidered. For example, the training 

game has been redeveloped to ensure easier starting levels. Additionally, teaching 

assistants will roll out the training, rather than an experimenter.   

6.1.3 Patterning  

The final study involved pattern understanding which is gaining interest with 

researchers examining a potential link between this and arithmetic. Many pattern tasks 

require children to use number knowledge (e.g. complete the following sequence: 

1,3,5,7__) however, many studies in literature fail to control for number knowledge 

and therefore we identified a need to examine these potential relationships further.  

We created a large pattern battery and conducted a correlational study to examine the 

relationship between pattern tasks and arithmetic. Number knowledge and a range of 

other predictors (including executive function and spatial skills) were controlled. The 

findings support recent evidence showing that pattern understanding is well correlated 

with arithmetic and predicts unique variation in arithmetic after controlling for better-

established predictors. An additional aim of the study was to examine how different 

types of pattern task relate to one another. Previous studies have either combined 

pattern tasks or focused on one type. In our study we were able to compare different 

pattern types (e.g. repeating, rotating or increasing) and different pattern stimuli (e.g. 

numbers, letters, objects, shapes). We showed that these reflect a single factor which 

predicts unique variation in arithmetic.  

Interestingly, number tasks did not remain as unique predictors of arithmetic after 

controlling for domain-general skills. Therefore, there is a need to consider whether 

domain-general abilities are better predictors of arithmetic in this age range (ages 5-7) 

compared to domain-specific skills.  
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6.2 The importance of symbolic number knowledge  

We measured symbolic number knowledge across all three studies. In the first study 

examining sensori-motor skills, symbolic knowledge was measured via a symbolic 

comparison task which relies on the ability to know the magnitude or order associated 

with a number (i.e. is 9 bigger than 3). This remained a significant and unique predictor 

of arithmetic. As with previous studies, this was a stronger predictor of arithmetic than 

approximate magnitude comparison (a similar task but using dots rather than digits; 

see Section 2.1.3).  

In the second study, the potential causal relationship between symbolic number 

knowledge and arithmetic was measured with promising (albeit not significant) results 

which suggested that, with greater power, evidence for a causal link may have been 

shown. The study used a symbolic number training task in which children were 

required to create numerical sequences of Arabic digits whilst hearing the sound 

associated with the digit. This training did not include any specific magnitude training, 

for instance but rather trained in identification and ordinality. The game (which was 

already designed; see Section 1.2.3) was deemed appropriate for children in the first 

year of formal schooling. At this age children require more training on the more basic 

aspects of number learning, including the order in which numbers appear and the 

relationship between the sound and Arabic digit. One interesting avenue would be to 

examine whether the addition of magnitude training in this study would have led to 

stronger effects on arithmetic outcomes, as has been shown in one training study which 

included magnitude training (Honoré & Noël, 2016).  

In the final study, symbolic number knowledge was examined and found to correlate 

well with arithmetic (r = .55, p < .001). However, it was not a unique predictor of 

arithmetic in the final model after controlling for patterning skills, executive function 

and spatial awareness. There are a number of potential reasons for this. Firstly, 

domain-general predictors of arithmetic may be more important than symbolic number 

skills in this age group (ages 5-7). This may be because children have largely mastered 

basic number knowledge skills, and therefore other abilities (memory, attention etc.) 

may be more important for predicting arithmetic fluency. To assess this, pattern tests 

could be used on younger children and we may predict that number skills are a better 

predictor in this age range. Alternatively, it may be that the pattern tasks required 
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number identification and number counting skills (because they were largely 

increasing patterns that increased by a set number of items each time) and therefore 

the number skills that were predicting arithmetic were tied up in the pattern task. To 

assess this claim, different types of pattern task could be used which reduce potential 

numerical confounds (see Section 4.4).    

We suggest that different types of symbolic number knowledge are more critical in 

different stages of development. In early development, identification and simple 

number ordering may be the best outcome measure. Later in development, 

understanding of magnitude may be more critical. Once symbolic number knowledge 

has been mastered, other skills (such as executive function) may be more important in 

predicting arithmetic scores.  

Evidence for this proposal comes from our third study in which number knowledge 

did not remain a unique predictor of arithmetic once we controlled for domain-general 

skills. We found that executive function and spatial awareness (alongside patterning) 

remained unique predictors of arithmetic once number skills were controlled. This 

suggests that in this age group (children were 5-7 years old) domain-general skills are 

more important predictors of arithmetic than number abilities, particularly if 

patterning is deemed a domain-general skill. One limitation is that our dot counting 

task (used in the first and third study) may not be a pure measure of counting. As the 

task is timed, it is possible that this particular dot counting task is a measure of 

executive function (attention and inhibition). As executive function was controlled for 

in the third study, we may have been capturing the skills measured in the dot counting 

task within our executive function battery. Perhaps for younger children, with poorer 

counting skills, the dot counting task is a purer measure of cardinality, whereas older 

children it is measuring different skills (depending on the type of task used). Therefore, 

it is important for future studies to examine executive function versus number 

knowledge as predictors of arithmetic in older children. 

This potential limitation aside, the role of executive function in predicting arithmetic 

warrants further investigation. Additionally, it is important to examine the ways that 

domain-general skills can be measured and taught, and the ways in which these 

abilities may be more and less important at different stages of development. For 

instance, it may be that in older stages of development executive function (e.g. 
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memory and attention) abilities may become more important in arithmetic variation 

when compared to number skills. This could be because numerical abilities (basic 

symbolic number knowledge for instance) may have been mastered therefore giving 

more precedence to general abilities such as attention. For younger children, we may 

suggest that number skills are critical in predicting variation in basic arithmetic, as 

without an understanding of number knowledge, children would not be able to 

compute basic sums.  

Further studies should continue to better understand the way that number knowledge 

and other general skills relate to one another and to arithmetic and continue to 

understand when number knowledge skills (and which type) are most important in 

developing arithmetic understanding.   

6.3 Theories of numerical development 

The findings of the studies in this thesis can be applied to theories of numerical 

development. Perhaps the clearest finding is that our evidence challenges the 

suggestion that the innate magnitude analogue system is the core component of later 

numerical development. One aspect of the core number theory (Dehaene, 2001) is that 

approximate number skills are the foundation to later numerical abilities (although 

there are other components to this theory which we are not directly contesting). Our 

first study showed that, although correlated with arithmetic, approximate number 

skills were not as important as symbolic number knowledge in predicting variation in 

arithmetic. This finding challenges the claim that early approximate skills are the 

foundation to later arithmetic although it is possible that the approximate number 

system is related to some exact number skills which are related to arithmetic.  

Our finding that symbolic number skills are important in predicting arithmetic is in 

line with theories supporting a critical role in the understanding of the magnitude, 

visual and verbal number form. For example, Merkley and Ansari (2016) argue that 

number knowledge is the most critical aspect of numerical development, alongside a 

range of other environmental and domain-general skills and our studies support this 

suggestion. 

One important consideration for numerical development is how children develop an 

understanding of the association between cardinality, ordinality and magnitude. Is, for 
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instance, magnitude understanding learned in tandem with ordinality and the count 

sequence? Or, is magnitude a separate component of learning which comes later in 

development and is distinct from the other aspects (although related)? Carey (2011) 

proposes that learning takes place through qualitative learning stages and that 

children’s ability to understand the count sequence (which is in part linked to the core 

number system) is the first step in associating numbers with the magnitude.  

Other studies support the suggestion that different types of numerical understanding 

task are more important for arithmetic at different stages of development (e.g. Lyons 

et al., 2014). Understanding the developmental trajectory is challenging. For instance, 

understanding of magnitude for smaller numbers (e.g. numbers 1-10) may develop 

before the identification or larger numbers (e.g. 1023) although number identification 

for smaller numbers (e.g. 1-5) may develop before magnitude understanding. It is 

therefore proposed that number learning is a dynamic process with a complex 

interaction and further research should attempt to better understand this process in 

order to inform educators and teachers about the best ways to develop numerical 

understanding in children.  

One important component for theories of arithmetic development is the role of non-

numerical predictors. It is important to develop is a framework for the role of domain-

general and environmental factors involved in arithmetic learning. How, for instance, 

does the amount of learning at home change the way that children develop an 

understanding of numbers and arithmetic? Additionally, how do intelligence, 

attention, memory and other general skills relate to learning? In our final study, we 

showed that executive function, spatial skills and patterning were all important 

components of arithmetic and interestingly that these were stronger predictors than the 

numerical tasks. These findings highlight the importance in 1) finding the correct 

number tasks for the age range (for instance, would measuring magnitude knowledge, 

rather than identification, have led to a stronger role for number skills in this case?) 

and 2) including non-numerical learning in theories of arithmetic development. This 

is difficult, and at present there is a lack of evidence for the relative strength of these 

skills. It is proposed here that environmental aspects, along with domain-general skills, 

are critical considerations for theories. Therefore tasks measuring arithmetic 

development should include these factors in children of younger ages to access how 

number abilities and general skills relate to one another, and to arithmetic.  
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6.4 Practical limitations of developmental research  

One of the key limitations of the training study was that we failed to show significant 

differences in scores, despite effects in the predicted direction. This was likely due to 

a lack of power with a sample size increase of a further 180 participants required as 

shown in a power analysis. Due to time and logistical constraints, no additional data 

were collected. These considerations are important for future researchers designing 

training studies, and warrant consideration for all research involving children.   

Core factors were time and resource implications involved in collecting more data. 

The initial data collection of ~80 participants took considerable time and resources. 

These included school recruitment, and time and money for hiring research assistants 

to assist with collecting pre- and post- data. Moreover, it was important to consider 

the time that children would be out of class, as children were required to leave class 

every day to complete the training. As teachers did not want children missing lesson 

time, there was limited time within the day to train children (only during free-play or 

break-time). An estimated minimum of 18 months to collect the additional data was 

theoretically possible, but clearly a challenge given the time remaining for my PhD. 

These considerations are demonstrative of some of the practical challenges of 

conducting training studies with reasonable power. The time and resource implications 

are much greater than for a correlational or longitudinal design (when children are 

only tested once, for example) and demonstrate that training studies require meticulous 

planning, agreeable schools/teachers/parents and considerable resources. This may, I 

believe, have some part to play in why there is limited evidence from training studies 

for symbolic number knowledge. 

The evidence presented in the introduction of Chapter 4 highlights that there are only 

a few studies that have published evidence of training in number knowledge. 

Additionally, the published studies are limited in their evidence for transfer to 

arithmetic and number skills, with only one showing positive transfer to arithmetic. 

One important reason for the lack of positive evidence may be that any additional 

studies that have been conducted, failed (like ours) to reach significance or were not 

able to find appropriate resources to conduct the study in the first place. This is an 

important consideration for many researchers who are planning training studies. One 

way to get around this may be to have teachers implement the training rather than 
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experimenters. This would mean that the training could be conducted as part of the 

school-day for the child, avoiding children leaving the learning environment. A second 

possibility to overcome is using games or computerised training that children can 

complete alone, or at home. This was one of the reasons that we used a computerised 

App, as it might have been possible to role this out to be an at-home study (or free-

play time training game) whereby researchers were not required for the daily running 

of the programme. However, further exploring this route was deemed problematic 

because of additional limitations that were highlight during the study.  

During training, it became apparent that children did not enjoy playing the training 

games, and it took considerable effort to keep children focused on the game during the 

5-10 minutes that they played. Ideally, children would have played the game for 15 

minutes each day, but it became clear that children were unwilling to do this, and 5-

10 minutes was the maximum time that they could keep their attention. One reason for 

this might be the age of the children (who were only four years old). Testing older 

children is problematic as it is likely that they will have fully developed symbolic 

number knowledge skills and therefore the training would not have led to any 

improvements in that skill. Another reason is the game itself, which was either too 

challenging leading to distraction, or too easy leading to boredom. 

The game was designed in such a way that the first level required more number 

knowledge than was anticipated. In order to pass the level, children were required to 

create numerical sequences of differing lengths (e.g. create a sequence which includes 

6 numbers; e.g. 2-7/4-9) and this meant that if the child had limited number knowledge 

of the digits 1-10, they may have struggled to create sequences. Rather, the game 

should have been progressive in training, starting with simple tasks of creating 

sequences of smaller length. This would have reinforced learning and enabled the 

children to progress with the game without feeling demoralised. Stopping children 

from getting bored is perhaps more challenging, as it was noted that children of all 

abilities were bored whilst playing the game. Anecdotally, older children appear to be 

better at focusing during testing and enjoy research activities more. This highlights the 

importance of creating engaging tasks and games, particularly for younger children 

along with the need for age-appropriate tests during developmental research.   
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After pre-training testing, it became apparent that children of this age are less 

proficient in letter knowledge than in number knowledge. At the start of formal 

education in the UK, children focus on letter sounds rather than letter knowledge. This 

was clearly evident from our findings in letter sound, rather than letter knowledge 

scores (Section 4.3). Therefore, the control condition was not of equal difficulty to the 

number condition (as demonstrated in the number of children who reached past the 

first level). This raised questions about the usefulness of the control game in the 

present design, which together with the above limitations led to the conclusion that, in 

its present form, the game was not ready to be rolled out to more participants. 

This study highlights some of the many challenges that come with running a training 

study for young children. These implications should be considered by researchers who 

are planning training studies and hopefully will help to identify and anticipate key 

problem areas during the planning stages of a study.  

6.5 Educational implications 

Our results have implications for educational practices and theories of development. 

The findings, coupled with previous evidence, suggest that symbolic number 

understanding should be a prominent part of early formal education. Patterns, which 

currently form part of early formal education in the UK, appear to be implicated in 

arithmetic development and therefore are a potentially important part of early 

development (although we did not learn the direction of such a relationship from our 

study). Finally, we can suggest that educators should not focus on sensori-motor skills 

as a critical part of education for children within the second and third years of school. 

Despite fingers potentially being a useful tool for counting and early arithmetic, we 

did not find evidence that finger awareness is important.  

We also assessed executive function and spatial awareness as control measures in one 

study and found that they are correlated with arithmetic. Future research may wish to 

examine the best ways to teach these skills to young children as they appear to be 

important predictors of arithmetic, although may be more challenging skills to teach 

to children than some other abilities such as number knowledge or patterning. 

Focusing on teaching skills to young children which are shown to be important in 

predicting variation in arithmetic may help to reduce the number of children who face 
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difficulties in learning arithmetic, and thus reduce incidences of mathematical learning 

disorder.   

6.6 Concluding thoughts  

The data reported in this thesis add to the growing body of evidence examining the 

relationship between cognitive skills and arithmetic development in young typically 

developing children. We have identified pattern understanding as an important factor 

in the development of arithmetic, and this finding warrants future research which 

should examine the potential causal relationship. We highlight the importance of 

including known predictors of arithmetic in such future studies, as a failure to do so 

can result in overestimating the relationship between factors (as found in the sensori-

motor study). Our training study, which failed to find a statistically significant effects 

highlights the importance of power within a study, and the difficulty of obtaining large 

sample sizes in child development studies (particularly when considering multiple 

groups within one study).  

Overall, we have examined the literature and produced methodologically sound 

research to examine important questions. The results are important because they 

provide evidence for a number of key cognitive factors that may or may not be 

involved in arithmetic development. For example, we have provided clear evidence 

that finger awareness and other sensori-motor skills are less important than more exact 

number abilities such as symbolic number comparison and dot counting in children 

aged 5-7. Moreover, we have shown that it is possible to improve number skills in 

children through symbolic number learning whilst highlighting the difficulties of 

running effective and powerful training studies. Finally, we have shown that pattern 

understanding across multiple measures may have an underlying and common factor 

which predicts variation in arithmetic.  

Across these three studies we consistently examined symbolic number knowledge and 

propose that it is an important factor to consider in arithmetic development. However, 

these findings highlight the importance of controlling for other factors within research 

designs. Additionally, we propose that the age of children are an important 

consideration for future research as this may determine which skills are most important 

for different stages of development. For example, number knowledge may most 
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important in predicting variation in arithmetic in younger children. Other skills such 

as domain-general skills may become more important in later stages of development 

when basic number skills have been mastered. Further research should continue to 

assess arithmetic development and the cognitive factors implicated in order to further 

understand how children learn arithmetic and inform theories of development and 

educational practices.   
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Appendix 1. Pattern Tests: Item Descriptions 

Subtest: Number Patterns  

Item number Item description 

Practice 1 Repeating pattern, 2 items 

Practice 2 Repeating pattern, 3 items 

Practice 3  Increasing pattern, linear sequence 

Items 1-10 Repeating items 

Item 1 2-item: 2 3 2 3 

Item 2 2-item: 6 3 6 3 

Item 3 2-item: 3 5 3 5 

Item 4 2-item: 6 10 6 10 

Item 5 2-item: 8 7 8 7 

Item 6 3-item: 3 3 7 3 

Item 7 3-item: 9 4 4 9 

Item 8 3-item: 4 4 6 4 

Item 9 3-item: 3 3 4 3 

Item 10 3-item: 1 8 8 1 

Items 11-20 Rotation 

Item 11  Number 5, rotation 90˚right (starting 1) 

Item 12 Number 3, rotation 90˚right (starting 1) 

Item 13 Number 7, rotation 90˚ left (starting 5) 

Item 14 Number 2, rotation 90˚ right, (starting 7)  

Item 15 Number 4, rotation 90˚ right, (starting 3) 

Item 16 Number 3, rotation 45˚ right, (starting 1) 

Item 17 Number 4, rotation 45˚ left, (starting 5) 

Item 18 Number 2, rotation 45˚ right, (starting 7) 

Item 19 Number 1, rotation 45˚ left, (starting 1) 

Item 20 Number 3, rotation 45˚ left, (starting 8) 

Items 21-30 Increasing items 

Item 21  Linear sequence: 3 4 5 6 

Item 22 Linear sequence: 10 11 12 13  

Item 23 Skip 1: 1 3 5 7 

Item 24 Linear sequence: 14 15 16 17 

Item 25 Skip 1: 4 6 8 10  

Item 26 Skip 2: 1 4 7 10 

Item 27 Skip 2: 13 15 17 19 

Item 28 Linear sequence: 19 20 21 22 

Item 29 Skip 1: 17 19 21 23 

Item 30 Skip 2: 4 7 10 13 

Notes. Starting positions 1,3,5,7 are respectively, with starting positions 

2,4,6,8 sitting in 45 degrees in between.  
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Subtest: Letter Patterns  

Item number Item description 

Practice 1 Repeating pattern, 2 items 

Practice 2 Repeating pattern, 3 items 

Practice 3  Increasing pattern, linear sequence 

Items 1-10 Repeating items 

Item 1 2-item: a b a b 

Item 2 2-item: b c b c 

Item 3 2-item: s p s p 

Item 4 2-item: c e c e 

Item 5 2-item: f j f j 

Item 6 3-item: e e f e 

Item 7 3-item: d a a d 

Item 8 3-item: t t v t 

Item 9 3-item: x x z x 

Item 10 3-item: y w w y 

Items 11-20 Rotation items  

Item 11  Letter a, rotation 90˚ left (starting 1) 

Item 12 Letter f, rotation 90˚ left (starting 1) 

Item 13 Letter k, rotation 90˚ right (starting 3) 

Item 14 Letter y, rotation 90˚ left (starting 3) 

Item 15 Letter h, rotation 90˚ right (starting 7) 

Item 16 Letter a, rotation 45˚ right, (starting 1) 

Item 17 Letter y, rotation 45˚ left, (starting 1) 

Item 18 Letter a, rotation 45˚ right, (starting 3) 

Item 19 Letter k, rotation 45˚ left, (starting 4) 

Item 20 Letter j, rotation 45˚ left, (starting 5) 

Items 21-30 Increasing items 

Item 21  Linear sequence: c d e f 

Item 22 Linear sequence: i j k l  

Item 23 Skip 1: a c e g 

Item 24 Linear sequence: o p q r 

Item 25 Skip 1: f h j l  

Item 26 Skip 2: a d g j  

Item 27 Skip 1: n p r t 

Item 28 Linear sequence: u v w x 

Item 29 Skip 1: o q s u 

Item 30 Skip 2: e h k n 
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Subtest: Shape Patterns  

Item number Item description 

Practice 1 Repeating pattern, 2 items 

Practice 2 Repeating pattern, 3 items 

Items 1-10 Repeating items 

Item 1 2-item: triangle (tr), circle (ci), tr ci 

Item 2 2-item, numbers: square (sq), tr sq tr 

Item 3 2-item: ci sq ci sq 

Item 4 2-item: star (st), ci, st, ci 

Item 5 2-item: tr, sq, tr, sq 

Item 6 3-item: sq, tr, tr, sq 

Item 7 3-item: ci ci sq ci 

Item 8 3-item: tr tr ci tr 

Item 9 3-item: tr st st tr 

Item 10 3-item: st ci ci st 

Items 11-20 Rotation 

Item 11  Triangle, rotation 90˚ right (starting 1) 

Item 12 Heart, rotation 90˚ left (starting 1) 

Item 13 Triangle, rotation 90˚ left (starting 5) 

Item 14 Heart, rotation 90˚ right (starting 3) 

Item 15 Half-moon, rotation 90˚ left (starting 3) 

Item 16 Heart, rotation 45˚ right (starting 1) 

Item 17 Triangle, rotation 45˚ left (starting 1) 

Item 18 Triangle, rotation 45˚ right (starting 7) 

Item 19 Half-moon, rotation 45˚ right (starting 1) 

Item 20 Heart, rotation 45˚ right (starting 6) 

Items 21-30 Unit increase 

Item 21  Cross made of individual squares, remove two blocks (from top, 

then sides)  

Item 22 One triangle, add one triangle each time  

Item 23 Two blocks, add two blocks each time 

Item 24 One rectangle, add circle, add rectangle, add circle 

Item 25 Two blue squares, add one green square, add two blue squares, 

add one green square 

Item 26 One circle, add two circles, then one circle, then two circles 

Item 27 Five triangles joined together, remove one triangle each time 

Item 28 The triangles and 10 circles, remove two circles, remove one 

triangle, remove two circles, 

Item 29 One square, add two squares, add two squares, add one square 

Item 30 Five circles and four ellipses, remove one ellipse, remove one 

circle, remove one ellipses.   
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Subtest: Object Patterns  

Item number Item description 

Practice 1 Repeating pattern, 2 items 

Practice 2 Repeating pattern, 3 items 

Items 1-10 Repeating items 

Item 1 2-item: elephant, bird, elephant, bird 

Item 2 2-item: dog snake dog snake 

Item 3 2-item: bee dog bee dog 

Item 4 2-item: bird horse bird horse 

Item 5 2-item: snake bird snake bird 

Item 6 3-item: lion lion bee lion 

Item 7 3-item: snake bird bird snake 

Item 8 3-item: lion lion horse lion 

Item 9 3-item: dog dog bird dog 

Item 10 3-item: butterfly bee bee butterfly 

Items 11-20 Rotation 

Item 11  House, rotation 90˚ right (starting 1) 

Item 12 Tree, rotation 90˚ left (starting 7) 

Item 13 House, rotation 90˚ right (starting 3) 

Item 14 Mouse, rotation 90˚ left (starting 3) 

Item 15 Cat, rotation 90˚ right (starting 7) 

Item 16 House, rotation 45˚ right (starting 1) 

Item 17 Cat, rotation 45˚ right (starting 1) 

Item 18 Mouse, rotation 45˚ left (starting 3) 

Item 19 Cat, rotation 45˚ right (starting 2) 

Item 20 Tree, rotation 45˚ left (starting 5) 

Items 21-30 Relative size and unit change 

Item 21  Tree decreasing in size 

Item 22 Pizza decreasing by one slice (adjacent) 

Item 23 House increasing in size 

Item 24 Balloon increasing in size 

Item 25 Cake decreasing by one layer 

Item 26 Mouse decreasing in size 

Item 27 Train with carriages, reducing by one 

carriage at a time 

Item 28 Pizza decreasing by one slice (opposite) 

Item 29 House unit increase (one block with door, 

add windows, add a block, add windows) 

Item 30 Cupcakes with add one layer at a time in 

pyramid shape   

 


