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Abstract: High spatial resolution Earth observation imagery is considered desirable for many
scientific and commercial applications. Given repeat multi-angle imagery, an imaging instrument
with a specified spatial resolution, we can use image processing and deep learning techniques to
enhance the spatial resolution. In this paper, we introduce the University College London (UCL)
MAGiGAN super-resolution restoration (SRR) system based on multi-angle feature restoration and
deep SRR networks. We explore the application of MAGiGAN SRR to a set of 9 MISR red band
images (275 m) to produce up to a factor of 3.75 times resolution enhancement. We show SRR results
over four different test sites containing different types of image content including urban and rural
targets, sea ice and a cloud field. Different image metrics are introduced to assess the overall SRR
performance, and these are employed to compare the SRR results with the original MISR input
images and higher resolution Landsat images, where available. Significant resolution improvement
over various types of image content is demonstrated and the potential of SRR for different scientific
application is discussed.

Keywords: MISR; super-resolution restoration; SRR; feature matching; Gotcha; GPT; generative
adversarial network; GAN; deep learning

1. Introduction

High spatial resolution imaging data is always considered desirable in many scientific and
commercial applications of Earth Observation (EO) satellite data. However, given the physical
constraints of the imaging instruments themselves, we always need to trade-off spatial resolution
against launch mass, usable swath-width, and telecommunications bandwidth for transmitting data
back to the Earth. One solution to this is through the application of super-resolution restoration
(SRR) techniques to combine image information from repeat observations at multiple viewing angles,
exploiting information learnt from multiple imaging sources, to generate images at much higher spatial
resolutions. SRR can be performed either as post-processing on the Earth or via satellite onboard
processing using a graphics processing unit (GPU).

Recently within the UK Space Agency CEOI SuperRes-EO project, a novel SRR system called
MAGiGAN has been developed at University College London (UCL) using multi-angle feature
restoration and deep learning techniques [1], which has been tested on a space-qualified GPU card. The
MAGiGAN SRR system is based on the mutual shape adapted [2] features from accelerated segment
test (MSA-FAST) [3] combined with convolutional neural network (CNN) [4] feature matching (see
stage 2 in Section 2.2), adaptive least-squares correlation (ALSC) and region growing (Gotcha) [5] (see
stage 3 in Section 2.2), partial differential equation (PDE)-based total variation (TV) regularization
(GPT) [6,7] (see stage 4 in Section 2.2), support vector machine (SVM) and graph cut (GC)-based
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shadow modelling and removal [8] (see stage 1 in Section 2.2), and the generative adversarial network
(GAN) [9] based super-resolution refinement method (see stage 5 in Section 2.2).

The MSA-FAST-CNN-GPT-GAN (short for MAGiGAN, standing for Multi Angle GPT GAN)
system not only retrieves subpixel information from multi-angle distorted features from the previous
GPT algorithm [6,10], but also uses the losses calculated from feature maps of the GAN network to
replace the pixel wise difference based content loss of the original GPT algorithm to retrieve high
texture detail. The MAGiGAN system has previously been applied to stacks of 4 m UrtheCast Corp
Deimos-2 (MS band) multi-angle repeat-pass images over several experimental sites to produce SRR
results with 3.5–3.75 times (hereafter represented as “×”) [11] resolution enhancement [1].

In this paper, we explore the application of the MAGiGAN SRR system on the National
Aeronautics and Space Administration’s (NASA) Terra Multi-angle Imaging SpectroRadiometer (MISR)
red band images. The input MISR red band images are acquired over a time period of about 7 min
from 9 different viewing angles (±70.5◦, ±60◦, ±46.1◦, ±26.1◦, 0◦) and have a native off-nadir spatial
resolution of 275 m and a native nadir resolution of 250 m which is usually resampled to 275 m on
either an ellipsoid or using a digital elevation model (DEM) [12]. Here, we employ level 1B1 (L1B1)
which is at the native resolution without reprojection to minimize distortions due to resampling. MISR
has systematically collected the entire Earth’s visible surface since March 2000.

MISR red band imagery has previously been employed with blue, green and NIR imagery at
lower resolution to generate 275 m (same resolution as the red band) multispectral imagery [13] as
well as assess sub-pixel low shrub structural elements [14]. In this work, we use the 8 off-nadir angle
red band images and 1 nadir angle red band reference image to produce output SRR images at 4×
scaled grid (68.75 m) with an effective resolution of between 2.75× to 3.5×. See an example in Figure 1.
At the network training stage, we form a large training dataset containing 225,282 high-resolution (HR)
training samples (of size 256 × 256) and 225,282 low-resolution (LR) training samples (of size 64 ×
64) using a variety of different MISR images. We give examples of the MAGiGAN SRR results from
4 testing sites, including the RadCalNet [15] satellite vicarious calibration site at the Railroad Valley,
urban and countryside scenes at the Sky Zone Trampoline Park site, a sea ice field and a cloud field.

The 30 m Landsat 7 red band images (wherever available) acquired around the same date as
the input MISR images are used to validate the SRR results. We applied four different image quality
metrics for evaluation, including two image quality metrics using the Landsat image as reference and
two independent quality scoring systems (one with, and one without, a perceptual training model).

The layout of this paper is given here. In Section 1.1, we assess previous work in this area.
In Section 2.1, we describe the input datasets used to train and test the MAGiGAN SRR system.
In Section 2.2, we describe the new methods developed. Experimental results and evaluation are given
jointly in Section 3. In Section 4 we discuss issues found before drawing conclusions in Section 5.
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1.1. Previous Work

Image spatial resolution reflects the details contained in a digital image. An imaging system
can include a Ground Sample Distance (GSD) or Instantaneous Field of View (IFoV) which is usually
defined by the optical designer along with the pixel spacing on the sensor. It is generally constrained
by the physical imaging sensor dimensions and various optical effects. Given an existing imaging
instrument or data with a specified spatial resolution, we can use image processing and deep learning
techniques to enhance the spatial resolution. This process is generally referred to as “super-resolution
restoration” which is hereafter referred to as SRR. SRR is one of the most active research areas
in computer vision and machine learning leveraging off the fundamental work on using image
registration and multi-frame sparse coding [16]. Many SRR techniques have been proposed over the
last three decades. They can be classified into three different categories, namely multi-frame feature
interpolation, inverting an image degradation model, and synthetic methods using machine learning.

The first category relates the LR frames to a HR grid with a sparse linear system. The simplest
forward approach is to perform LR image registration, non-uniform interpolation, followed by image
deblurring and noise removal to produce the SRR result. However, multi-frame feature interpolation
approaches do not guarantee optimal estimation and are generally not robust to noise and local
registration error. Karen, D. et al. [17] proposed an early two-step approach to SRR to enable resolution
enhancement and noise suppression based on global translation and rotation transformation. Alam,
M. S. et al. [18] presented an efficient interpolation scheme based on weighted nearest neighbours,
followed by Wiener filtering for de-blurring. Takeda, H. et al. [19] proposed an adaptive steering
kernel regression for interpolation on the high-resolution image grid where the low-resolution images
are registered and mapped on.

The second category relates the HR image to the LR frames stochastically by solving an assumed
observation model that describes the down-sampling, blurring, and noise effects (namely, image
degradation). Many articles have followed the maximum a posteriori (MAP) approach to solve the
inverse process, but they vary in terms of observation models and different priors used. Hardie, R.
C. et al. [20] proposed a joint MAP framework for simultaneous estimation of a high-resolution image
and motion parameters using Gaussian Markov random field (GMRF) regularization. Later articles in
SRR employ the total variation (TV) as a regularization prior. In [21], the TV terms are weighted with
an adaptive spatial algorithm based on differences in the curvature. Farsiu, S. et al. [22] introduced
bilateral TV (BTV) to reduce computational complexity and improve robustness. Bouzari, H. [7]
proposed an improved solution based on the coupling of a 4th order PDE and a special shock filter to
remove the jittering artefacts from TV and BTV. However, general multi-frame MAP-based methods
only attempt to restore the non-redundant information from subpixel shifts between LR images and
do not work with large viewing angle differences. Pre-coregistration using polynomial transformation
or image orthorectification are normally required to eliminate slight viewing angle differences of their
input LR images, in which case the distorted information from different viewing angles are lost. In our
previous work [6], we introduced a combined method, called GPT SRR, using multi-frame multi-angle
feature interpolation through Gotcha and estimation of the image degradation model through PDE-TV.
GPT SRR uses a subpixel motion prior, calculated from the Gotcha algorithm, to model the multi-angle
LR observations. Together with the assumption of a series of small Gaussian kernels to model the
LR blurring effect, the reference LR image is reversed to the SRR image which is supposed to be an
optimised estimation of the HR image. Regularization plays a vital role in inverse problems, especially
in ill-posed ones, where insufficient data are available. Purkait, P. and Chanda, B. [23] introduced a
gain-controlled based locally adaptive regularization technique for SRR for faster convergence and
more detailed reconstruction whilst suppressing the ringing artefacts found with TV or BTV near
strong edges. In addition, the total subset variation (TSV), which is a convex generalization of the TV
regularization term, has been proposed in [24]. More recently, a powerful regularization approach
is the use of examples [25]. Rather than guessing the image probability density function (PDF) and
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forcing a simple expression to be used to describe it, one can also let image examples guide in the
construction of the prior.

In recent years, inspired by the great success achieved by deep learning methods in other computer
vision tasks, researchers have started to use neural networks with deep learning architectures for
SRR. The third category synthesises high-resolution details and high-frequency textures that are
extremely similar to the “real scene” through training of deep learning networks. Deep CNN [26] and
de-convolutional networks [27] are designed that directly learn the complex non-linear mapping from
LR space to HR space in a way similar to coupled sparse coding [28]. The pioneering work introduced
in [26], described a three-layer CNN for SRR (SRCNN) and first demonstrated that the mapping from
LR to HR can be represented as a CNN. SRCNN contains four simple steps, i.e., upscaling LR to
the desired size, extracting a set of feature maps from the upscaled LR image (layer-1), mapping the
feature maps representing LR to HR patches (layer-2), and reconstructing HR images from HR patches
(layer-3). As these image networks allow end-to-end training of all the model components between
LR input and HR output, significant resolution enhancement has been observed. Subsequently, Kim,
J. et al. [29] presented a deeply-recursive convolutional network (DRCN) that allows training of
very deep recursive layers using recursive supervision and skip-connection. More recently, Radford,
A. et al. [30] introduced their deep convolutional generative adversarial network (DCGAN) that can
learn representations of object parts and scenes using two deep networks competing with each other.
Ledig, C. et al. [9] introduced the concept of perceptual loss function which consists of an adversarial
loss and a content loss to generate photo-realistic images using single image super-resolution GAN
(SRGAN). SRGAN is able to restore photo-realistic textures from 4× down-sampled images on public
benchmark datasets.

Although there has been demonstration of many deep learning networks recently for generating
photo-realistic SRR images, much less work has been carried out to successfully demonstrate SRR
with remote-sensing datasets. Lei, S. et al. [31] introduced a local-global combined network (LGCNet)
based on deep CNNs to learn both local details and global environmental priors. Their experiments
were based on a publicly available scene classification dataset (UC Merced) and GaoFen-2 (GF-2)
multispectral imagery (3.2 m). Lanaras, C. et al. [32] employed CNN to super-resolve the LR bands (20
m and 60 m) of Sentinel-2 data to the same resolution as its HR band (10 m). The CNN was trained
from ground truth images at 40 m and 20 m to transfer HR details across spectral bands. Network
training with a different imaging source was demonstrated in [33]. The authors applied deep CNNs,
trained with Sentinel-2 images, to super-resolve Landsat-5 and Landsat-8 images. Their SRR results
revealed sharper images for land cover boundaries, linear features, and within land-cover textures
using visual examination [33].

In this paper, we introduce the UCL MAGiGAN SRR system based on multi-angle feature
restoration, estimating an observation/degradation model, and using GAN as a further refinement
process. The MAGiGAN SRR system takes advantage from both the photogrammetric restoration
approach and deep learning networks. The MAGiGAN SRR system is based on [6] and [34], and has
been initially reported in [1]. In this paper, we discuss details of the methods and demonstrate results
from experiments using the MISR data.

2. Materials and Methods

2.1. Datasets

The NASA’s Terra satellite was launched on 18 December 1999 and began collecting data on 28
February 2000. It operates in a polar sun-synchronous orbit at 705 km and has a repeat cycle of 16
days. There are three main instruments of interest onboard the Terra satellite, including the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with 15 m resolution for the 3
visible and near-infrared (VNIR) bands, MISR with either 250 m, 275 m, 550 m, or 1.1 km resolutions



Remote Sens. 2019, 11, 52 5 of 22

for the 4 VNIR bands, and the Moderate-Resolution Imaging Spectroradiometer (MODIS) with either
250 m or 500 m, or 1km resolutions for all VNIR spectral bands.

MISR takes multiple-angle observations (at 26.1◦, 45.6◦, 60.0◦, and 70.5◦ forward and afterward of
nadir and nadir view) with 9 individual pushbroom cameras, originally designed to help assess the
amount of sunlight scattered in different directions. The 9 cameras are referred as Df, Cf, Bf, Af, An, Aa,
Ba, Ca, and Da, respectively, in MISR data. The time difference between each adjacent viewing angles
is 45–60 s, which results in a total time difference between the Da and Df images of about 7 min. MISR
cameras use four charge coupled device (CCD) line arrays in parallel to a single focal plane to provide
four spectral bands centered at 0.446 µm (blue), 0.558 µm (green), 0.672 µm (red), and 0.866 µm (NIR).
MISR has a narrow swath width of 360 km and has a repeat cycle of nine days at the equator. The
MISR image products are resampled to have a spatial resolution of 275 m in all bands in the nadir
camera and red bands only in all cameras. For blue, green, and NIR bands in forward and afterward
of nadir cameras, the spatial resolution is 1.1 km.

The MISR data consists of three product levels. The MISR Level 1A (L1A) Reformatted Annotated
Products are composed of CCD Science Instrument Data, CCD Calibration Data, Motor Data,
Navigation Data, Engineering Data, and On-Board Calibration Data, all stored in the Hierarchical Data
Format (HDF) file. The MISR L1B1 data is radiometrically but not geometrically corrected, while the
Level 1B2 (L1B2) ellipsoid-projected radiance product is geometrically corrected to the surface of the
WGS84 ellipsoid without using a terrain elevation model.

MISR data is ideal for the MAGiGAN SRR processing as (a) it contains the necessary multi-angle
views; (b) input LR images have very little time delay which results in fewer surface changes; (c) MISR
images have a global coverage of different targets for deep learning network training.

In parallel, the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 30 m red band images,
wherever available, are used as validation dataset in this work. Landsat ETM+ image contains 7
spectral bands with a spatial resolution of 30 m for Bands 1–5, and 7. Band 3 is the red band and is used
for comparison with the MISR red band SRR results. One could also employ Landsat 8 or Sentinel-2
for GAN training in the future.

MISR data is important for studying cloud, aerosol, and various surface properties or geological
units. In this paper, we demonstrate the MAGiGAN SRR results over 4 testing sites, including the
RadCalNet satellite calibration site at Railroad Valley, urban and countryside scenes at the Sky Zone
Trampoline Park site, a sea ice field, and a clouds field. We take all 8 off-nadir angle red band 275 m
MISR L1B1 images and 1 nadir angle MISR L1B2 image (the reference image) as inputs to produce
output SRR image at 4× scaled grid (68.75 m) with an effective resolution of about 2.75× to 3.5×.

2.2. Methods

The MAGiGAN SRR system applied in this paper is based on our previous work of the GPT SRR
system [6]. The GPT SRR system was previously demonstrated with experiments on 8 overlapping 25
cm NASA Mars Reconnaissance Orbiter (MRO) High-Resolution Imaging Science Experiment (HiRISE)
images covering the Mars Exploration Rover (MER) Spirit rover traverse to resolve up to 5× higher
spatial resolution [10]. The resulting resolution enhancement brought new surface information on
individual rocks (diameter < 50 cm), rover tracks, and new evidence for the Beagle-2 lander using
multi-angle HiRISE images [35,36]. However, when applying the original GPT SRR system to EO
data including Urthecast Corp Deimos-2 images and SSTL Carbonite-2 video sequences, we were
only able to achieve a resolution enhancement of about 2× due to changes in the Earth’s surface (e.g.,
vegetation phenology), shadow, and atmospheric obstacles. Also, GPT-SRR introduces information
from multi-angles, but cannot retrieve high-texture detail as it is based on pixel wise differences. The
new MAGiGAN SRR system is developed to address these problems by producing denser initial
feature correspondences on de-shadowed input images and applying a deep learning image network
to further refine the SRR result [1].
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A detailed flow diagram of the MAGiGAN SRR system is shown in Figure 2. A simplified flow
diagram can be found in [1]. The overall process of the MAGiGAN SRR system can be divided into 5
main stages, including:

(1) Image segmentation and de-shadowing;
(2) Initial feature matching and subpixel refinement;
(3) Subpixel feature densification;
(4) Estimation of the image degradation model;
(5) GAN network training and SRR refinement (prediction).

Stage (1) pre-processes the LR inputs to intermediate de-shadowed segmented patches. This
step aims to minimize the gaps in the motion maps caused by matching LR images with different
shading effects for stage (2) and stage (3) processing. Stage (1) also prepares image segments for stage
(4) restoration. Stage (2) produces accurate and evenly distributed initial feature correspondences
between the LR images and the reference image. Stage (3) then densifies the feature correspondences
from stage (2) and produce initial HR interpolated grid. Stage (4) iteratively refines the initial HR grid
through estimation of image degradation models. Finally, the intermediate HR image from stage (4) is
further refined via a trained GAN network at stage (5). Processing for each of the 5 stages is described
in detail as follows.
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Figure 2. Detailed flowchart of the University College London (UCL) MAGiGAN SRR system (full
resolution figure is included in the Supplementary Materials). The two red boxes stand for the input
low-resolution (LR) images and final output SRR image, respectively. The green boxes are the new
developments within the CEOI SuperRes-EO project. The yellow and blue boxes are components from
the original gotcha partial differential equation based total variation (GPT) SRR system. Both the green
and yellow boxes are ported onto a graphics processing unit (GPU). The blue boxes for the Gotcha
process remain running on the multi-core central processing units (CPUs).

Aside from these, image pre-denoising may be required for some datasets. This was initially
discovered with the HiRISE GPT-SRR processing which showed that additional noisy LR scenes
would reduce the overall quality of the SRR result. Within the CEOI SuperRes-EO project, we added
an additional pre-denoising workflow to deal with datasets containing strong noise. Because noisy
LR images produce less accurate sub-pixel feature correspondences and sparser (or invalid) motion
vectors, it will result in inaccurate estimation of the degradation matrix at stage (4). Theoretically, the
noisier the LR images which are used as inputs, the more “clear” LR images are needed for estimation
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of the HR “true scene”. When all input LR images are noisy, the noise data are generally magnified in
the intermediate SRR image produced at the end of stage (4).

In MAGiGAN, we implemented an optional adaptive non-local means (ANLM) denoising step
originally for SSTL Carbonite-2 processing, but can be used for any datasets that have continuous
repeat observations. The ANLM method is based on the non-local means (NLM) denoising which
takes a mean of all pixels in a sequence of images, weighted by how similar these pixels are to the
target pixel. The NLM denoised value at a given pixel is obtained by a weighted average of the pixels
in its temporal neighborhood. The temporal neighboring pixels are found by minimizing the mean
squared difference (MSD) of a sliding window within a constrained step size (in x and y directions).
ANLM uses the K-means clustered segments to replace the fixed sized sliding window in NLM in
order to reduce the averaging effects and preserves image details.

In the UCL MAGiGAN SRR system, we take roughly aligned overlapping multi-angle LR images
and a reference ortho-rectified image (ORI; if available) or (near-)nadir view image as inputs. A scaling
factor of 2× is set for the intermediate HR image output at stage (3) and (4), a further scaling of 2× is
set for the final SRR output at stage (5).

Firstly, at stage (1) image segmentation and de-shadowing, we aim to minimize the gaps on the
motion maps caused by matching LR images with different shading effects and use image segmentation
to restore different features separately. Differences in shading effects may be treated as image
content differences (like clouds) when matching multiple LR images. At stage (3), gaps (unmatched
regions) are forcibly interpolated using neighboring pixels on the HR grid. The de-shadowing
process can significantly minimize interpolation of the initial HR grid, by helping to find seed
feature correspondences (and later on densified) between LR images and the reference image, when
there are differences in shadow orientation. For MISR SRR processing, the difference in shadow
orientation is minor due to the short time delay between each adjacent LR images. However, producing
de-shadowed intermediate images is important for other single camera instruments, especially for
urban or forested areas.

In this work, an area-based image segmentation and de-shadowing process is applied. This stage
(1) process is summarized as follows:

Segmentation of the LR images based on their image content using the GC algorithm [37];

(1.1) Pair the segmented image patches for the same region from multiple LR images using
normalized cross-correlation;

(1.2) If paired segments are found with the same illumination, they should be labelled with the same
shadow notation (either shadowed or non-shadowed);

(1.3) If paired segments are found with different illumination, and one segment is much darker (at a
given threshold) than the other one, the darker segment is labelled as a shadow;

(1.4) Use a pre-trained SVM [38] classifier to correct the shadow labels produced from previous step
in order to increase the confidence of the shadow labelling. Note that the SVM classifier is
pre-trained using a small amount of manually selected shadowed and non-shadowed segments
from the GC results;

(1.5) Group the connected shadowed patches or non-shadowed patches to one shadow segment or
one non-shadow segment;

(1.6) Correct the illumination of the shadow segments using illumination statistics from the
neighboring non-shadowed pixels. Note that not all shadow segments are correctable, the
intensity (texture) information may already lost during imaging. Such shadow segments will
have a very low signal to noise ratio (SNR) after de-shadowing. This means that there will be no
(or only very few) added feature correspondences for that region after the de-shadowing process;

(1.7) In case of irrecoverable shadowed segments, the de-shadowed segments are reversed back to
their original intensities.
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The de-shadowed intermediate images are only used as metadata to provide seed feature points
for the shadowed regions and are not used in the follow-on processing stages. The output SRR
will keep the shading information from the reference image which are not devoid of shadows. The
segmented patches are passed through to the next processing stages for sub-segmentation based on
the threshold of the maximum differences of the magnitude of the distance of the motion vectors. This
is for further optimisation of the tiling process of the PDE-TV regularization step in order to restore
different types of image content separately.

Secondly, at stage (2) initial feature matching and subpixel refinement, we aim to produce initial
feature correspondences between LR images and the reference image for stage (3) processing, and then
derive the initial HR grid (a scaled version of the reference image interpolated by LR images). An
accurate, dense, and evenly distributed first estimation of the seed points is essential to the success of
interpolating the initial HR grid. Ideally, the subpixel feature correspondences derived at this stage
should be refined to an accuracy of 0.01 pixels and distributed evenly amongst different types of
image content (e.g., building blocks, trees, roads, flat regions, shaded regions, and saturated regions).
The UCL MAGiGAN SRR system uses a MSA-FAST-CNN [2–4] based feature matching approach
to produce much denser initial feature correspondences (as well as at a higher processing speed) as
described in [1] in comparison to the original GPT SRR system [6] which uses the scale invariant
feature transform (SIFT) [39].

The MSA-FAST-CNN feature matching and subpixel refinement process of stage (2) can be
summarized as follows:

(2.1) Derive initial feature points by considering a circle of 16 pixels around a local maximal point, if
12 out of 16 pixels are all brighter or all darker than a given threshold from the center point, then
record it as an initial feature point;

(2.2) Refine the initial feature points using a pre-trained decision tree classifier (ID3 algorithm) to
produce optimal choices of feature points;

(2.3) Compare adjacent feature points according to their sum of absolute differences (SAD) between
the feature points and 16 surrounding pixel values and discard the adjacent feature points with a
lower SAD;

(2.4) At each scale, extract circular patches of 15 by 15 pixels around each FAST feature points;
(2.5) Use a pre-trained CNN model consisting of 3 convolutional layers, proposed in [40], to extract

descriptors from all patches. The extracted descriptors include output vectors from all 3
convolutional layers and a fully connected layer;

(2.6) Initial descriptor matching using a fast library for approximate nearest neighbor (FLANN);
(2.7) Iteratively update the matched seed point locations and orientations from the previous step using

forward and backward ALSC within a transformable elliptical window [2].

The MSA-FAST-CNN method produces much denser feature correspondences compared to
the MSA-SIFT and MSA-SURF methods in our SRR experiments described in [1]. The feature
correspondences are more evenly distributed between different types of image content including
recovered shadow regions after stage (1) processing. The MSA method has an important impact on
reconstructing the initial HR grid by correcting the FAST features detected independently in each
image. This eliminates slight mismatches from significant image distortion caused by different viewing
angles. A set of dense and accurate initial seed correspondences are essential to produce a more
accurate motion map in the follow-on stage (3) and stage (4) processing.

Thirdly, at stage (3) subpixel feature densification, the optimized feature correspondences are then
used as seed points in a pyramidal version of ALSC and region growing (Gotcha) process until most
pixels in the LR images find their optimal subpixel correspondence with respect to the reference frame.
These sub-pixel correspondences are collected to form a series of 2-channel motion maps with encoded
subpixel x and y translation vectors. Pixels in any LR image that do not match with any subpixel
location in the reference HR grid, are removed from the calculation in further steps. If a subpixel
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location in the HR grid does not have any corresponding motion vector from all motion maps, this HR
pixel will be propagated by its neighboring HR pixels.

The Gotcha process of stage (3) can be summarized as follows:

(3.1) Tile the LR images (ensuring that each tile has sufficient number of seed points) and construct
image pyramids from coarse to fine resolution;

(3.2) Run ALSC on the seed points and record their similarity value;
(3.3) Sort seed tie-points by similarity value;
(3.4) A new matching is derived from any adjacent neighbors of the initial tie-point with the highest

similarity value;
(3.5) If the new match is verified by ALSC then it is considered as a seed tie-point for the next

region-growing iteration;
(3.6) This region growing process repeats from (3.3) to (3.5) until there are no more acceptable matches

at the current level of resolution;
(3.7) Propagate the intermediate correspondences to the next finer resolution level and repeat from

(3.2) to (3.6) until there are no more acceptable matches at the current level of resolution;
(3.8) Collect the densified subpixel correspondences from all tiles.

The Gotcha method progressively refines the existing subpixel correspondences and densify until
we find a matching for all valid pixels (LR pixels that cannot be matched due to image differences
are discarded). At this processing stage, an initial HR grid is produced by scaling up the reference
image and interpolated using transformed LR pixels. The dense subpixel correspondences for each
LR images are stored as 2-channel matrices (initial motion maps). The motion maps provide the
initial degradation information in the similarity measurement term of the MAP estimation at the next
processing stage.

Fourthly, at stage (4) estimation of the image degradation model, we aim to iteratively refine the
initial HR grid through estimation of a sequence of degradation matrices by minimizing the similarity
cost (calculated from the MSD of each LR image and degraded HR image) and weighted regularization
cost. This stage follows a MAP approach using PDE-TV regularization.

The PDE-TV regularization process of stage (4) is solved using a steepest descent method. This
process is summarized as below:

(4.1) LR images and the initial HR grid are segmented into tiles according to the segmented patches
from stage (1) processing and sub-segmentation based on a given threshold of the maximum
differences of the magnitude of the distance of the motion vectors;

(4.2) For the same area, each tile (t) of an initial HR image is projected with motion vector (degradation
matrix F), convolved with the first estimation of the Point Spread Function (PSF) (degradation
matrix H) which is assumed to be a small Gaussian kernel with various standard deviations
according to the size of the segment, down-sampled (degradation matrix D) with the defined
scaling factor;

(4.3) Compare the degraded image with each LR image (k) tile (t) sequentially;
(4.4) Add the transposed difference vector to the HR grid tile (t);
(4.5) Add the smoothness term and decompose the TV regularization term with a 4th order PDE;
(4.6) Repeat from (4.2) by convolving the degradation matrices with updated HR image for the next

steepest descent iteration until it converges, i.e., the differences in (4.3) is minimized;
(4.7) Collect the HR result for this tile (t) and then go back to (4.2) for the next tile (t + 1) until all

segments converge;
(4.8) Post-processing including noise filtering and de-blurring.

A mathematical representation of this process can be found in [6]. The intermediate HR output
image from stage (1) to stage (4) processing contains restored information from multi-angle distorted
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features contained in each LR input image. The intermediate HR image generally produces less
resolution enhancement for regions that changed in each LR input than the regions that are comparably
static. This means the effective resolution enhancement for the intermediate HR image (as well as the
final SRR image) is not the same for different regions depending on the number of matched pixels from
each LR input. Also, the intermediate HR image does not contain high frequency texture details for flat
regions given that there is no multi-angle information. Artefacts might be found in areas which have
difficulty in matching, for example, multiple views of a growing cloud when views are completely
different from different viewing angles. These issues were observed in processing of the Deimos-2
images for the Dubai site for urban landscape features. The intermediate HR output image from the
stage (4) processing will be used as input for the GAN refinement (prediction) at stage (5) processing.

Finally, at stage (5), GAN network training and SRR refinement, we further refine the intermediate
HR image from stage (4) output using a pre-trained GAN network. GAN uses the perceptual loss
calculated from feature maps of the deep learning network to replace the MSE-based content loss and
is, therefore, highly complementary to the multi-angle feature matching and model-based approach
in terms of restoring different features. In the UCL MAGiGAN system, the GAN single image SRR
refinement step uses the SRR output from MSA-FAST-CNN-GPT. GAN applies a deep network
(Generator G) to generate high frequency textures that are highly similar to real images, in combination
with an adversarial network (Discriminator D) to distinguish super-resolved images from real images.
In this work, we adapt the GAN architecture described in [9].

In this work, 135 full strip MISR An Red channel L1B2 images are used to form 225,282 HR
training samples with size 256 × 256 (discarded bad scenes). 135 full strip MISR Af and Aa Red
channel L1B2 images are Gaussian blurred and down-sampled to form 225,282 LR training samples
with size 64 × 64 (discarded bad scenes).

The GAN training and prediction process of stage (5) is summarised as below:

(5.1) Train a pair of the LR and HR images in the generator network;
(5.2) Minimise the perceptual loss (containing the content loss and adversarial loss) in backpropagation

of the generator network;
(5.3) Calculate/update parameterised weights and biases of the generator network;
(5.4) Generate a fake HR image using the generator network;
(5.5) Train the discriminator network with the fake HR image and a real HR image;
(5.6) Calculate discriminator loss in backpropagation of the discriminator network;
(5.7) Update parameterised weights and biases of the discriminator network;
(5.8) Record discriminator prediction and loss;
(5.9) Update the adversarial loss in the generator network;
(5.10)Repeat from (5.1) to (5.9) for all training pairs until the fake HR image is classified as a real

HR image.
(5.11)Generate the SRR image using the intermediate HR output from stage (4) with the fully trained

GAN network.

The generator network uses residual blocks consisting of 2 convolutional layers with small 3 by
3 kernels and 64 feature maps followed by batch-normalisation layers for each residual block. The
discriminator network contains 8 convolutional layers with 3 by 3 filter kernels and 64 to 512 feature
maps. At this stage, we also applied the modifications suggested by [34] in order to balance the
training strength between generator and discriminator. This includes removing the sigmoid activation
from the discriminator network, not using the algorithm in the loss calculation of both generator and
discriminator, constraining the weights to a constant range, and using stochastic gradient descent
(SGD) to replace the momentum-based optimiser.

In this work, the LR images are pre-cropped to smaller sample sizes of 1024 × 1024 (maximum
size we can handle is 2048 × 2048) pixels for the stage (1) to (4) processing. The resulting intermediate
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HR images (size 2048 × 2048) are then further divided into smaller sample sizes (128 × 128 pixels)
to be used for GAN refinement, resulting in the final SRR images (size 256 × 256) with an overall
up-scaling factor of 4×. The cropping (tiling) is mainly due to memory limitations of computation.

3. Results

In this paper, we demonstrate MISR SRR results from four test sites at the Railroad Valley, the
U.S. Sky Zone Trampoline Park urban and countryside region, a sea ice field and a cloud field. For
evaluation purpose, we applied two image quality metrics using the Landsat image as reference and
two independent quality scoring systems (one with, and one without, a perceptual training model).
These image quality metrics are as follows:

(1) Peak signal-to-noise ratio (PSNR). PSNR is derived from the mean square error (MSE), and
indicates the ratio of the maximum pixel intensity to the power of the distortion. However, PSNR
and MSE metrics are based on pixel-wise difference, they may not be able to capture perceptual
details (e.g., high-frequency textures). Mathematical equations for PSNR calculation can be found
in [35].

(2) Mean Structural Similarity Index Metric (mean SSIM) [41]. SSIM combines local image structure,
luminance, and contrast into a single local quality score. In this metric, structures are patterns
of pixel intensities, especially among neighboring pixels, after normalizing for luminance and
contrast. Because the human visual system is good at perceiving structure, the SSIM quality metric
agrees more closely with the subjective quality score. Structural similarity is computed locally, a
mean SSIM value of the overall image performance is calculated. Mathematical equations for
mean SSIM calculation can be found in [42].

(3) Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [43]. The BRISQUE model
provides subjective quality scores based on a training database of images with known distortions.
The score range is between 0 and 100. Lower values reflect better perceptual quality.

(4) Perception-based Image Quality Evaluator (PIQE) [44]. The PIQE algorithm is opinion-unaware
and unsupervised, which means it does not require a trained model. PIQE can measure the
quality of images with arbitrary distortion. PIQE estimates block-wise distortion and measures
the local variance of perceptibly distorted blocks to compute the quality score. The score range is
between 0 and 100. Lower values reflect better perceptual quality.

The first test site Railroad Valley is an EO vicarious calibration test site with large
homogenous regions located at (38.5◦, −115.69◦) in the state of Nevada, U.S. In this work,
we take cropped 275 m MISR red band L1B1 images with 8 off-nadir viewing angles
(P040_O044742_DF/CF/BF/AF/AA/BA/CA/DA_F03_0024) and 1 red band L1B2 reference image
(P040_O044742_AN_F03_0024), taken on 16 May 2008, as inputs to produce output SRR image at 4×
scaled grid (68.75 m) with an effective resolution of about 3×. The 30 m Landsat 7 red band image
(LE07_L1TP_040033_20080516_20160923_01_T1_B3), taken on the 16 May 2008, is used for comparison
with the SRR result. A comparison of the UCL MAGiGAN SRR results at Railroad Valley in comparison
with the original 275 m MISR red band image and 30 m Landsat red band image for 4 different areas
are shown in Figure 3.
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Figure 3. MISR red band SRR results at Railroad Valley in comparison with the original 275m MISR red
band image (bicubic interpolated to the same scale as SRR image) and 30m Landsat red band image.

Table 1 shows the statistics of the image quality metrics for the bicubic interpolated MISR red
band input reference image, SRR results, and the Landsat 7 red band validation reference image for
the 4 areas (A, B, C, D) of the first test site at Railroad Valley. The Landsat 7 red band validation
image is used as the reference image for calculating the PSNR and mean SSIM value of the MISR and
SRR image. The SRR images achieved higher PSNR for Areas A, C, and D compared to the bicubic
interpolated MISR images. The PSNR of the SRR image is slightly lower for Area B compared to the
bicubic interpolated MISR image. However, the PSNR measurement is inconclusive as it is based on
pixel wise differences with respect to a much higher resolution “truth” and it is not able to capture
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the perceptual details. The higher mean SSIM values of the SRR images for all four areas reflect that
the SRR images contain more structural features which are observable in the Landsat image. The
mean SSIM values agree more closely with the human perceptual resolution compared to PSNR. The
BRISQUE and PIQE measurements provide image quality scores between 0 to 100 (lower values reflect
better perceptual quality). The difference is that BRISQUE uses a pre-trained image quality scoring
model (using real LR and HR images), whereas PIQE is based on known image distortions. The SRR
images have better scores for both BRISQUE and PIQE measurement for all four areas compared to the
bicubic interpolated MISR images. Although, as expected, the much higher resolution Landsat images
have the best scores overall.

Table 1. Statistics of the image quality metrics for the bicubic interpolated MISR red band input
reference image, SRR results, and the Landsat 7 red band validation reference image for the 4 areas in
the first testing site.

Area Image
Peak

Signal-to-Noise
Ratio (PSNR)

Mean Structural
Similarity Index
Metric (SSIM)

Blind/Referenceless
Image Spatial Quality

Evaluator (BRISQUE) %

Perception-Based
Image Quality

Evaluator (PIQE) %

A
MISR red band bicubic 26.7346 0.7416 52.0543 66.1779

SRR 29.1094 0.8619 39.6647 19.7091
Landsat red band - 1.0 20.2014 8.1027

B
MISR red band bicubic 23.2949 0.5639 53.4357 63.1433

SRR 22.1310 0.7496 45.5916 28.4979
Landsat red band - 1.0 19.1740 14.9896

C
MISR red band bicubic 24.3419 0.7443 47.6324 54.6479

SRR 32.2880 0.8497 39.2999 30.8875
Landsat red band - 1.0 5.9161 10.8337

D
MISR red band bicubic 26.2917 0.7161 49.2402 62.3354

SRR 27.0486 0.8538 42.0864 25.5005
Landsat red band - 1.0 16.9750 9.1723

At the second test site, we used the urban and countryside region around the Sky Zone
Trampoline Park, located at (34.21◦, −118.49◦) northwest of Los Angeles, CA in the U.S. In this
work, we took cropped 275 m MISR red band L1B1 images with 8 off-nadir viewing angles
(P040_O044742_DF/CF/BF/AF/AA/BA/CA/DA_F03_0024) and 1 red band L1B2 reference image
(P040_O044742_AN_F03_0024), taken on the 16 May 2008, as inputs to produce output SRR image at
4× scaled grid (68.75 m) with effective resolution of about 3.5×. The 30 m Landsat 7 red band image
(LE07_L1TP_041036_20080608_20160918_01_T1_B3), taken on the 8 June 2008, is used for comparison
with the SRR result. A comparison of the UCL MAGiGAN SRR results at Sky Zone Trampoline Park
urban and countryside region in comparison with the original 275 m MISR red band image and 30 m
Landsat red band image for 4 different areas are shown in Figure 4.
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Figure 4. MISR red band SRR results at Sky Zone Trampoline Park urban and countryside region in
comparison with the original 275 m MISR red band image (bicubic interpolated to the same scale as
SRR image) and 30 m Landsat red band image.

Table 2 shows the statistics of the image quality metrics for the bicubic interpolated MISR red
band input reference image, SRR results, and the Landsat 7 red band validation reference image for
the 4 areas (E, F, G, H) of the second test site at the Sky Zone Trampoline Park. The corresponding
Landsat 7 red band validation image is used for calculating the PSNR and mean SSIM value of the
MISR and SRR image. The SRR images achieved better overall PSNR, mean SSIM, BRISQUE and PIQE
scores compared to the bicubic interpolated MISR images, except for two outliers (PSNR at Area F and
PIQE at Area H).
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Table 2. Statistics of the image quality metrics for the bicubic interpolated MISR red band input
reference image, SRR results, and the Landsat 7 red band validation reference image for the 4 areas in
the second testing site.

Area Image PSNR Mean SSIM BRISQUE % PIQE %

E
MISR red band bicubic 22.8083 0.4086 43.4232 62.1026

SRR 23.9358 0.6045 31.3546 57.5544
Landsat red band - 1.0 20.4667 20.7558

F
MISR red band bicubic 27.3632 0.5964 43.2030 72.2120

SRR 27.2719 0.7147 35.8270 69.0694
Landsat red band - 1.0 28.4648 10.5390

G
MISR red band bicubic 20.7561 0.4630 43.4571 64.9261

SRR 25.0931 0.6471 34.7673 57.8650
Landsat red band - 1.0 25.0066 11.5139

H
MISR red band bicubic 18.9588 0.4824 43.4566 59.0510

SRR 22.3327 0.6772 32.8828 60.4824
Landsat red band - 1.0 25.9460 11.5531

At the third test site, we picked a sea ice field located at (76.9◦, −142.6◦). In this
work, we took cropped 275 m MISR red band L1B1 images with 8 off-nadir viewing angles
(P080_O039735_DF/CF/BF/AF/AA/BA/CA/DA_F03_0024) and 1 red band L1B2 reference image
(P080_O039735_AN_ F03_0024), taken on the 7 June 2007, as inputs to produce output SRR image at
4× scaled grid (68.75 m) with effective resolution of about 2.75×. There is no Landsat image available
of that area for evaluation. A comparison of the UCL MAGiGAN SRR results for the sea ice field in
comparison with the original 275 m MISR red band image for 4 different areas are shown in Figure 5,
the corresponding BRISQUE and PIQE scores are given below each image. The SRR image contains
more structural details and sharper edges compared to the bicubic interpolated MISR image. The SRR
image achieved good overall scores for both BRISQUE and PIQE for all 4 areas (I, J, K, L) of the third
testing site at the sea ice field. In particular, leads and meltwater ponds can be observed in the MISR
SRR which are difficult to detect in the original MISR scene.
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Figure 5. MISR red band SRR results at the sea ice field in comparison with the original 275 m MISR
red band image (bicubic interpolated to the same scale as SRR image). BRISQUE and PIQE scores are
provided below each image.

At the last test site, we picked a cloud field located using the same MISR orbit
(P080_O039735_F03_0024) captured on the 7 June 2007. The output SRR image is 4× scaled grid
(68.75 m) with an effective resolution of about 2.75×. There is no Landsat image available around the
same time for evaluation. A comparison of the UCL MAGiGAN SRR results for the cloud field in
comparison with the original 275 m MISR red band image for 4 different areas are shown in Figure 6,
the corresponding BRISQUE and PIQE scores are given below each image. The SRR image contains
more structural and texture details compared to the bicubic interpolated MISR image. The SRR image
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achieved much better scores for both BRISQUE and PIQE compared to the bicubic interpolated MISR
image for all 4 areas (M, N, O, P) of the fourth testing site at the clouds field.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 23 
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Figure 6. MISR red band SRR results at clouds field in comparison with the original 275 m MISR red
band image (bicubic interpolated to the same scale as SRR image). BRISQUE and PIQE scores are
provided below each image.

The example results from the 4 test sites (Railroad Valley, Sky Zone Trampoline Park, sea ice field,
and cloud field) have shown restoration (resolution enhancement) of different types of features (e.g.,
urban buildings, roads, rural places, calibration targets, sea ice, and clouds) from the MISR images.
Although the SRR image quality or resolution enhancement factor may not be the same across the
whole image subject to many different factors (e.g., feature matching completeness and accuracy, image
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obstacles and noise, and sufficient training data) which have been discussed in the methods section
(Section 2.2), the SRR image achieved better overall scores using 4 different image quality/resolution
measurement methods compared to the bicubic interpolated MISR image and is tending towards the
very high-resolution Landsat image.

4. Discussion

SRR of EO imagery is more challenging than Mars imagery [6] due to frequent changes in the
Earth’s surface, atmosphere clarity, shadowing, and more complex artificial structures. In this paper,
we introduce the UCL MAGiGAN SRR system, developed within the CEOI SuperRes-EO project,
designed to address various issues found with EO SRR. The overall quality of the MAGiGAN SRR
results for EO data are generally affected by 4 factors: (1) the quality of the input LR images; (2)
the number of LR images; (3) the time difference between each LR image; (4); a sufficient volume
of training data(sets); (5) image obstacles in terms of smoke, haze, and clouds. The MISR data is
considered ideal for the MAGiGAN SRR system, because the issues from (1)–(4) are generally minor.
By manually or automatically selecting obstacle-free (or -less) input LR images, issues from (5) can be
ignored as well.

We demonstrate restoration of different types of higher resolution image content including urban
and rural targets, sea ice and clouds using MISR L1B1 red band images at 4 different sites. A rich
set of SRR training data (containing 225,282 LR samples and 225,282 HR samples) was employed
for the GAN processor using MISR L1B2 red band images. The SRR results showed different image
quality and effective resolutions, depending on how well the different types of image content have
been trained. In the future, we aim to collect a much larger training dataset combining different image
sources at different resolutions to produce better SRR results. Ideally, larger training datasets can be
split into multiple categories according to the different types of image content using an automatic
image content classification algorithm. For example, in our previous experiments with Urthecast
Corporation Deimos-2 images [1], we used two sets of training data (manually selected) for SRR of
urban and rural scenes. Given the rich global repeat coverage of MISR images, and future possibilities
of combining a multiple imaging source, a better classified training database is expected to benefit
the SRR work. It is also feasible that multiple repeat MISR images could be employed to enhance the
resolution further.

The input LR images used for the 4 test sites are extracted from two MISR orbits (44,742 and
39,735). Four different image quality/resolution measurement methods based on the overall image
performance are used to compare the SRR results with the original MISR input image and higher
resolution Landsat image, where available. During the evaluation stage, significant resolution
improvement over rural places has been observed. We are also able to retrieve detailed textures
for near featureless areas. It was determined that an increase in resolution of up to a factor of 3.5 could
be achieved with a minimal stack of 8 off-nadir images based on the MISR experiments introduced in
this paper and previous experiments with other EO imagery in [1].

The multi-angle feature matching and model-based approaches applied in the MAGiGAN SRR
system and the GAN single image SRR process are highly complementary to each other in terms
of restoring different types of features. If only GAN is applied [9] then there is a risk that artificial
features will be “detected” falsely. This is demonstrated in Figure 7, where in the lower right corner
of the central pivot irrigation (CPI) features one of the dark spots is misidentified as one of these
features, which is clearly not the case in the Landsat 30 m image. However, when GAN is applied to
the intermediate HR output from the multi-angle feature restoration and image degradation modelling
approach shown in the MAGiGAN figure below then this does not occur. Therefore, the GAN single
image SRR process was integrated as a further refinement step within the MAGiGAN SRR system.
An example is shown of a comparison of the SRR results (4× upscale) produced from our previous
GPT SRR algorithm [6], the GAN single image SRR algorithm (4× upscale) [9], and the proposed
MAGiGAN SRR algorithm (4× upscale) in Figure 7, for an area close to the satellite calibration target
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at the Railroad Valley, NV site. Reference images including the original MISR and Landsat images
and a downsampled Landsat image at 68.75 m are also included. In this visual comparison, we can
see that the GPT SRR is able to restore the structural information of the CPI targets but is not able
to restore high frequency texture details, whereas the GAN SRR result shows more texture details
than the GPT SRR result. The GAN SRR result (4× upscale) shows sharper edges of the CPI targets
compared to the GPT SRR result (4× upscale), but the textures and edges are not consistent when
compared to the Landsat truth image. For example, the textures at the top left corner has a mixture of
signal and noise. The MAGiGAN SRR result (4× upscale) is visually the most similar to the 68.75 m
downsampled Landsat truth image. The MAGiGAN SRR result (4× upscale) has shown that using
GAN as a refinement process (2× upscale) for the intermediate HR image (2× upscale), produced from
our multi-angle feature restoration and image degradation modelling approach, generated the best
overall structural and texture restoration quality and reduced unreliable synthesis (artefacts) arising
from pure machine learning-based methods.
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Figure 7. A comparison of the 275 m original MISR L1B2 red band image, GPT SRR result, generative
adversarial network (GAN) SRR result, 68.75 m MAGiGAN SRR result, 68.75 m downsampled Landsat
red band image, and the 30 m original Landsat red band image.

According to the BRIQUE and PIQE evaluation criteria, we achieved the best overall SRR results
for the Railroad Valley site, satisfactory results for the cloud field, and similar quality for the Sky Zone
Trampoline Park site and sea ice field. For the Railroad Valley and Sky Zone Trampoline Park site, we
are able to compare the restored structural features with higher resolution Landsat images. The SRR
images from the Railroad Valley site also restored the most structural features according to the mean
SSIM measurements. In addition, the regional resolution of an SRR image depends on the local feature
matching accuracy and changes (including obstacles) of the region within each LR acquisition. The
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evaluation of an enhancement factor of the SRR result may not be represented by an overall evaluation
metric or measurement of a single object due to the nature of the feature-based approach.

5. Conclusions

In this paper, we introduced the implementation details of the recently developed UCL MAGiGAN
SRR system which is based on multi-angle feature restoration, image degradation modelling, and
deep learning refinement processes. The UCL MAGiGAN SRR system takes advantage of both the
photogrammetric restoration approach and deep learning techniques to restore both multi-angle
distorted features and higher-frequency textures. We demonstrated using the multi-angle 275 m red
band MISR L1B1 and LIB2 images that SRR images at 4× scaled grid (68.75 m) with an effective
resolution of between 2.75× to 3.5×.

Examples are provided over 4 test sites, including a satellite vicarious calibration site at Railroad
Valley, nearby urban and countryside scenes at the Sky Zone Trampoline Park site, a sea ice field, and
a cloud field. Multiple evaluation methods are introduced and applied to the SRR results and the
validation images from Landsat 7.

Most components of the UCL MAGiGAN system have been ported onto a space-qualified GPU
board (NVIDIA Jetson TX-2) for speeding up the processing within the recently completed CEOI
SuperRes-EO project. This also allows potential future tests of the SRR onboard a “smart satellite”.

Future work will include (1) GPU porting of the Gotcha process (or develop an equivalent
algorithm that is better suited for parallel processing); (2) forming much richer LR/HR training
datasets for different types of targets using multiple imaging sources; and (3) a test of how far we can
use SRR onboard in future EO missions. As far as MISR is concerned, an evaluation will be conducted
of the potential of MISR SRR to be used to detect sea ice floe leads and melt-ponds with a view to
linking the surface bi-directional anisotropy of the sea ice reflectance variation with these features and
their link to sea ice surface roughness.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/1/52/s1.
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