
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Pérez-Solà C, Delgado-Segura

S, Navarro-Arribas G, Herrera-Joancomartı́ J. 2019

Another coin bites the dust: an analysis of dust in

UTXO-based cryptocurrencies. R. Soc. open sci. 6:

180817.

http://dx.doi.org/10.1098/rsos.180817
Received: 23 May 2018

Accepted: 26 November 2019
Subject Category:
Computer science

Subject Areas:
cryptography

Keywords:
cryptocurrencies, blockchain, wallets
Author for correspondence:
J. Herrera-Joancomartı́

e-mail: jordi.herrera@uab.cat
& 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
One contribution to the ‘Blockchain Technology

special collection’.
Another coin bites the
dust: an analysis of dust in
UTXO-based cryptocurrencies
C. Pérez-Solà1,2,3, S. Delgado-Segura1,2,

G. Navarro-Arribas1,2 and J. Herrera-Joancomartı́1,2

1Department of Information and Communications Engineering, Universitat Autònoma de
Barcelona, Barcelona, Catalonia
2CYBERCAT, Centre de recerca en ciberseguretat de Catalunya, Tarragona, Catalonia
3Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili

CP-S, 0000-0001-7534-1326; SD-S, 0000-0001-7783-7288;
GN-A, 0000-0003-3535-942X; JH-J, 0000-0002-4935-4681

Unspent Transaction Outputs (UTXOs) are the internal

mechanism used in many cryptocurrencies to represent coins.

Such representation has some clear benefits, but also entails

some complexities that, if not properly handled, may leave

the system in an inefficient state. Specifically, inefficiencies

arise when wallets (the software responsible for transferring

coins between parties) do not manage UTXOs properly when

performing payments. In this paper, we study three

cryptocurrencies: Bitcoin, Bitcoin Cash and Litecoin, by

analysing the state of their UTXO sets, that is, the status of their

sets of spendable coins. These three cryptocurrencies are the

top-3 UTXO-based cryptocurrencies by market capitalization.

Our analysis shows that the usage of each cryptocurrency

presents some differences, and led to different results.

Furthermore, it also points out that the management of the

transactions has not always been performed efficiently and

therefore, the current state of the UTXO sets is far from ideal.

1. Introduction
Blockchain-based cryptocurrencies are built on top of an append-

only ledger shared among all the users of the system. Once a

transaction is included in the ledger, the transaction can no

longer be modified. Transactions aim to modify account balances.

How such accounts are stored and their balances modified is

implemented in entirely different ways depending on the

specific blockchain technology used. The two main approaches

are Unspent Transaction Output (UTXO)-based and account-

based, and the most relevant cryptocurrencies for each category

are Bitcoin and Ethereum, respectively.

In the UTXO-based approach, currency units can be identified

as coins represented by a specific data-structure known as UTXO.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.180817&domain=pdf&date_stamp=2019-01-16
mailto:jordi.herrera@uab.cat
http://orcid.org/
http://orcid.org/0000-0001-7534-1326
http://orcid.org/0000-0001-7783-7288
http://orcid.org/0000-0003-3535-942X
http://orcid.org/0000-0002-4935-4681
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:180817
2
As the coins of the system, the set of all UTXOs represents the total currency supply. Each coin contains

essentially two different pieces of data: ownership data (specifically, the conditions that have to be

fulfilled to spend it), and the amount it represents (that is, the units of the currency it symbolizes).

Therefore, in this model coins do not have a fixed amount: a single coin may represent just the

smallest unit of the currency (for instance, 1 satoshi in Bitcoin) up to the total currency supply (e.g. a

unique coin with 21 million bitcoins).

On the other hand, in the account-based approach, the currency is spread among the multiple accounts

of the system, each of which has a specific balance. The sum of all accounts’ balances is the total amount of

the cryptocurrency in circulation. With this approach, the system has to track the balance of every account,

even if such balance is zero. Notice that in this case, the data required to operate the cryptocurrency is

bound to the total number of accounts rather than the total number of coins.

Both models present their benefits and problems in terms of efficiency, scalability, decentralization

and privacy.

One of the benefits of the UTXO model is its atomicity. Transactions can be processed in parallel for

different UTXOs. There is no need to order transactions since coins involved in one transaction do not

affect other coins of the system. An entity may own different coins and they can all be used alongside.

The UTXO model also entails some benefits regarding privacy. Coins are attached to an address, that

can be different for each coin. Although such approach may be also used in the account-based

approach, this model suggests holding a single address per user, to minimize the number of zero-

balance accounts the system has to keep track of. By contrast, a UTXO approach may discard the UTXO

representing a coin once such coin has been spent. Furthermore, atomic transactions involving inputs

from different parties are also easier to perform with a UTXO model than with an account-based model [1].

However, the UTXO approach comes with some shortcomings, its complexity being the main one.

When a user needs to know the total value she owns, it is much easier to check her balance directly

than to collect all the coins she owns and count them. Furthermore, for a simple payment transaction

where user A pays an amount x to user B, the account-based model can perform such operation

efficiently but the UTXO approach may generate some inefficiencies if A does not have a coin with the

exact amount x. For instance, if A has a coin with an amount greater than x, the transaction will increase

the number of coins in the system since the initial coin from A will be transformed in two new coins, a

coin of x-value for B and another coin for the remainder value to A (the change). On the other hand, if

A did not have a coin with amount greater or equal than x, she will have to collect multiple coins to

make the payment. Such complexities that arise in a simple payment in the UTXO approach become

more complex when other considerations enter into the equation. For instance, in order to reward

miners, transactions include a fee and such fee is related to the size of the transaction. The key point

here is that such fee is independent of the value the transaction is transferring, so surprisingly,

transferring 1000 bitcoins may incur the same fees as transferring 0.00001 bitcoins. This fact has huge

implications regarding the use of coins. Note that such idea indicates that when performing a payment

you will pay a fee depending on the total number of coins you use in that payment. So if you have to

collect multiple coins to achieve the x-value of your payment, you will have to pay higher fees than if

you had a single coin. Notice, however, that unless you have the exact value, after the payment you will

have a coin with a value containing the change. After multiple payments with all your bigger coins, you

will end up with multiple small coins. In the following payment, you do not have any other option that

collecting multiple coins to perform the payment, paying a higher fee for that transaction.

The complexity even goes further when the coins that are generated in a transaction end up with a

value that is lower than the fee needed to spend them. In this case, the newly created coins will

probably not be spent, since it is more expensive to spend the coin than not using the coin at all.

In that situation, the system becomes inefficient since it has to track the status of that particular coin,

that may never be spent due to an economic disincentive to do so.

To avoid such inefficiencies and to minimize the fees that users pay for their transactions, wallets should

perform accurate management of the UTXOs that they use for their payments. However, as we will see in the

analysis presented in this paper, such efficient management has not always been performed by all wallets.

The main contribution of this paper is an analysis of the UTXO sets of the three most capitalized

UTXO-based cryptocurrencies: Bitcoin, Bitcoin Cash and Litecoin.1 The paper provides insightful

details about both the current and the evolution of the status of the UTXO sets of those coins. This

analysis allows also to compare the usage of the three cryptocurrencies. Moreover, the paper further

analyses one of the problems of UTXO-based cryptocurrencies: the existence of outputs not worth
1See https://web.archive.org/web/20180227064549/https://coinmarketcap.com/.

https://web.archive.org/web/20180227064549/https://coinmarketcap.com/
https://web.archive.org/web/20180227064549/https://coinmarketcap.com/
https://web.archive.org/web/20180227064549/https://coinmarketcap.com/

3
royalsocietypublishing
spending. We propose two metrics to evaluate whether an output is worth spending and analyse the

UTXO sets of the three above-mentioned coins in terms of these metrics.

The rest of the paper is organized as follows. Section 2 provides an overview of the UTXO set concept.

Then, §3 describes the contents of the current UTXO sets of Bitcoin, Bitcoin Cash and Litecoin. After that,

§4 describes the metrics used to evaluate if outputs in the UTXO set are worth spending, that is, dust and

unprofitability. Section 5 analyses the UTXO sets taking into account the previously defined metrics

and considering both the current state and their evolution over time. Finally, §6 presents the related

work and §7 the conclusions of the paper.
 .org/journal/rsos
R.Soc.open

sci.6:180817
2. The UTXO set
In a UTXO-based cryptocurrency, the Unspent Transaction Output (UTXO) set is the subset of

transaction outputs that have not been spent at a given point in time. Whenever a new transaction is

created, funds are redeemed from existing UTXOs, and new ones are created. Basically, transactions

consume UTXOs (in their inputs) and generate new ones (in their outputs). Therefore, transactions

produce changes in the UTXO set. Regarding UTXOs, they can be identified by their outpoint, a two

field data structure containing the transaction ID and output index that created them, and they store

two data fields: the amount they are holding, and the locking script (scriptPubKey) that specifies

the conditions under which they can be redeemed.

The main purpose of the UTXO set is speeding up the transaction validation process. When a new

block is appended to the blockchain, full nodes update their vision of the UTXO set, removing the

outputs that have been spent in the block and adding the newly generated ones. Being all unspent

transactions outputs stored in the set, there is no need to scan throughout the blockchain to check for

double-spends, but just check if the inputs of a transaction can be found in the set.

The format, storage requirements and implementation of the UTXO set may differ depending on the

specific implementation. However, their content must be consistent between all the implementations,

since all of them need to be able to verify every transaction. For our analysis, we have chosen the Bitcoin

Core implementation. However, equivalent results can be obtained by any other implementation that

follows the UTXO set approach. The main benefit of such a choice is that Bitcoin Core’s implementation

is also followed by wallets used in Bitcoin Cash and Litecoin so that the same analysis tool can be used

for all three of them. In such implementation, the UTXO set is stored in the chainstate, a LevelDB

database that provides persistent key-value storage. Apart from the UTXO set, the chainstate database

stores two additional values: the block height at which the set is updated and an obfuscation key that is

used to mask UTXO data [2,3]. Such an obfuscation key is used to obtain a different file signature of the

UTXO set files for every different wallet, in order to avoid false-positives with antivirus software.

In order to perform the analysis included in the paper, we have created STATUS (STatistical Analysis

Tool for Utxo Set) [4], an open source tool that provides an easy way to access, decode and analyse data

from the Bitcoin’s UTXO set.2 STATUS works with a chainstate folder as input and can perform two

different types of analysis: a UTXO-based analysis where each output is independent of the rest, and

a transaction-based analysis where outputs belonging to the same transactions are aggregated.

Moreover, comparative analysis between different states of the UTXO set can be also performed by

using several chainstate snapshots. Our analysis has been complemented using BlockSci [5] to obtain

additional data that cannot be covered by a static analysis of the UTXO set, such as unprofitability

outputs estimation, as we will see later in §4.
3. Analysis of the UTXO sets of Bitcoin, Bitcoin Cash and Litecoin
In this section, we provide an overview of the UTXO sets of Bitcoin, Bitcoin Cash and Litecoin, the three

UTXO-based cryptocurrencies with the highest market capitalization. Results included in this section

correspond to the UTXO set as it was on 6 February 2018 and were made using the STATUS tool.

Unless the contrary is stated, all the plots included in this section show cumulative distribution

functions. Therefore, a point (x, y) in the plot shows the probability y that a given variable (depicted

in the x-axis label) will take a value less than or equal to x.
2It can be found under a bigger Bitcoin Tools library at https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/

status.

https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status
https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status
https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status

pre-fork

Bitcoin
60 206 616

Bitcoin Cash
39 738 238

19 569 651 8 336 471 32 300 494 5 427 861 2 009 883

Figure 1. Venn diagram of the UTXO sets of Bitcoin and Bitcoin Cash.

Table 1. Summary of the main properties of the UTXO sets.

coin Bitcoin Bitcoin Cash Litecoin

UTXO set date 6 Feb 2018 6 Feb 2018 6 Feb 2018

block height 507 964 516 120 1 364 009

no. tx 28 414 343 17 709 176 2 721 617

no. UTXOs 60 206 616 39 738 238 18 445 858

avg. no. UTXOs per tx 2.12 2.24 6.78

s.d. no. UTXOs per tx 16.96 26.10 80.64

median no. UTXOs per tx 1 1 1

size of the (serialized) UTXO set 3.44 GB 2.27 GB 1.04 GB

amount of coins 16 849 386 BTC 16 951 348 BCH 55 098 258 LTC

4
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
Bitcoin is the cryptocurrency with the highest market capitalization (135 thousand million dollars in

April 2018).3 Its source code was released in 2009, and since then many other cryptocurrencies have

forked that code, sharing many details from the Bitcoin protocol into theirs.

Bitcoin Cash is a fork of the Bitcoin blockchain created on August 2017 as a consequence of the

disagreements between the community about how to handle scaling problems in Bitcoin. Bitcoin and

Bitcoin Cash share the same blockchain history up to block 478 558, where they forked and each coin

followed a different path. On February 2018, Bitcoin and Bitcoin Cash still shared 32.3 million UTXOs

(figure 1), which, respectively, constitute 53:65% and 81:28% of Bitcoin and Bitcoin Cash UTXO sets.

Moreover, 40 636 965 of the UTXOs existing in Bitcoin in February 2018 belong to transactions that

were made before the fork (67:50%); on the other side, 37 728 355 of the UTXOs existing in Bitcoin

Cash were made before the fork (94:94%). This means that, at the time of analysing the data, Bitcoin

Cash has consumed 8.3 million of UTXOs existing before the fork, and has created a smaller number

of new ones (2 million), whereas Bitcoin has consumed 5.4 million outputs and created two orders of

magnitude more new ones (19.5 million).

On the contrary, Litecoin is a coin whose chain is totally independent of the Bitcoin blockchain.

However, the source code of Litecoin is a software fork4 of the original Bitcoin Core client created in

2011. Litecoin mainly differs from Bitcoin in the average time between blocks (2.5 min instead of 10),

the hashing algorithm (Scrypt instead of SHA256) and the increased maximum amount of coins

(84 instead of 21 million).

Table 1 presents a summary of the main properties of the UTXO sets of Bitcoin, Bitcoin Cash and

Litecoin, for the snapshot taken on 6 February 2018. The difference on the time between blocks in

Litecoin versus both Bitcoin versions can be clearly appreciated by its block height, which was 1.3
3See https://web.archive.org/web/20180418064506/https://coinmarketcap.com/.

4A software fork as in a github fork, not to be confused with a soft/hard fork of the chain.

https://web.archive.org/web/20180418064506/https://coinmarketcap.com/
https://web.archive.org/web/20180418064506/https://coinmarketcap.com/
https://web.archive.org/web/20180418064506/https://coinmarketcap.com/

0.88

1 10
no. UTXOs per tx

102 103 1 10
no. UTXOs per tx

102 103 104

1 10
no. UTXOs per tx

102 103

0.90

0.92

0.94

0.96

fr
ac

tio
n

of
 tx

s

fr
ac

tio
n

of
 tx

s

0.98

1.00

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.88

0.86

0.90

0.92

0.94

0.96

0.98

1.00

(b)(a)

(c)

Figure 2. Number of UTXOs per transaction in (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

5
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
million on February 2018 even though the coin started 2 years after Bitcoin. By contrast, Bitcoin and

Bitcoin Cash height were around half a million. Similarly, the changes on the coin supply are also

clearly reflected in the UTXO set: Litecoin’s current supply is already higher than the supply limit of

Bitcoin. Litecoin also presents a significantly less amount of both UTXOs and transactions. As a result,

the size of its UTXO set is smaller. However, the average number of UTXOs per transaction in

Litecoin is three times bigger than Bitcoin’s.

The distributions of the number of UTXOs per transaction are very skewed (figure 2). Even when

Bitcoin has an average of 2.12 UTXOs per transaction (2.24 for Bitcoin Cash), most of the transactions

have just one unspent output. 87:6% of transactions in Bitcoin and 88:5% in Bitcoin Cash have only 1

UTXO and 97:1% (96:8%) have less than 5 in Bitcoin (Bitcoin Cash). For Litecoin, 85% of the

transactions have a single UTXO. It is worth noting that almost 1% of transactions in Litecoin have

between 80 and 110 UTXOs (0:44% of them have exactly 90), a phenomenon not observed in either

version of Bitcoin. The maximum number of UTXOs per transaction in the chosen snapshots is

exhibited by Bitcoin Cash, with a transaction having 31 243 UTXOs5 (from a total of 31 244 outputs).

Regarding the transaction height of the UTXOs in the sets (figure 3), some differences can be already

appreciated in Bitcoin versus Bitcoin Cash: while Bitcoin shows a similar trend regarding UTXOs in the

lasts blocks, there are almost no UTXOs from the firsts blocks after the fork in Bitcoin Cash, although the

tendency seems to recover after a few blocks. Litecoin follows a different pattern, with as much as 67% of

its UTXOs being from the first five months of the coin (first 100 683 blocks). By contrast, in Bitcoin, half of

the stored UTXOs are older than December 2016 (block 441 704 corresponds to the median), whereas the

other half are younger. Such a phenomenon shows how almost half of the current UTXO set is composed

by UTXOs created in 2017 and 2018. On the other hand, there are still very old UTXOs: 2% of them are

older than October 2012 (block height 201 408).

Figure 4 shows the cumulative distribution function of the heights of coinbase transactions with

UTXOs. For Litecoin, the probability of a coinbase transaction with UTXO(s) being at any given

height is almost the same. On the contrary, for both Bitcoin versions, it is more likely for such a

transaction to belong to an old block than to a newer one (half of those transactions have heights
5See https://blockchair.com/bitcoin-cash/transaction/dbd3f7518111d679c1b229af71181c9395e3bf8c1370b6856376f391d25c883e.

https://blockchair.com/bitcoin-cash/transaction/dbd3f7518111d679c1b229af71181c9395e3bf8c1370b6856376f391d25c883e
https://blockchair.com/bitcoin-cash/transaction/dbd3f7518111d679c1b229af71181c9395e3bf8c1370b6856376f391d25c883e

0

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

transaction height

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

transaction height

0

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

1 2
00

 00
0

1 4
00

 00
0

transaction height

0.2

0.4

0.6

fr
ac

tio
n

of
 U

T
X

O
s 0.8

1.0

0

0.2

0.4

0.6

fr
ac

tio
n

of
 U

T
X

O
s 0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
(b)(a)

(c)

Figure 3. Number of UTXOs per height in (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

6
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
lower than 61 050 in Bitcoin, 84 897 in Bitcoin Cash). Note the contrast with the analysis considering all

UTXOs, regardless of whether they are coinbase or not (figure 3). In Bitcoin, 75% of the coinbase outputs

in the UTXO set were created before block 278 983 (January 2014). By contrast, just 8% of the current

UTXOs were created before that block. Regarding the differences between Bitcoin and Bitcoin Cash, it

is also worth noting that for Bitcoin Cash, 17:53% of the coinbase transactions with UTXO(s) were

created after the fork, a phenomenon not observed in Bitcoin.

Bitcoin and Litecoin also present clear differences regarding the amounts stored in the UTXOs. 66:7%

of the UTXOs in Litecoin store the smallest unit of value possible, that is, just 1 litoshi. By contrast, just

1:4% of Bitcoin’s UTXOs store 1 satoshi. Moreover, the vast majority of UTXOs are smaller than one

bitcoin/litecoin (98:8% and 94:7%, respectively). However, both currencies have one thing in common:

the preference for output amounts that are powers of 10. In Bitcoin, the most common amount is 103

satoshis (4% of the UTXOs), followed by 104 and 1 (1:9% and 1:4%, respectively). This can be seen in

the plots of figure 5 by the small upticks on the plotted line. In Litecoin, the most common amount is

1 (66:7% of the UTXOs), followed by 106 and 108 (0:7% and 0:5%, respectively).

The previous figures draw attention to the fact that there are a lot of UTXOs with an amount

equal to 1. To further explore this phenomenon, figure 6 shows the height of UTXOs with such

amount (i.e. 1 satoshi or litoshi). For Litecoin, 99% of the UTXOs with an amount equal to one have

height 100 636 or lower, that is, they were made before 15 March 2012. It turns out that these UTXOs

were created as an attack to Litecoin, and the community even considered marking these outputs as

unspendable so that they could be removed from the UTXO set. The debate about how to handle

these UTXOs is still alive while we are writing these lines.

Table 2 presents the amount of UTXOs divided by script type.6 In all the analysed coins, P2PKH is the

most common script type, representing 81% and 94% of the UTXOs in Bitcoin and Bitcoin Cash,
6See §4.2 for a detailed description of each UTXO type.

0

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

height

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

height

0

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

1 2
00

 00
0

1 4
00

 00
0

height

0.2

0.4

0.6

fr
ac

tio
n

of
 tx

s
0.8

1.0

0

0.2

0.4

0.6

fr
ac

tio
n

of
 tx

s

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
(b)(a)

(c)

Figure 4. Transaction height of the UTXO of coinbase transactions. (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

7
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
respectively, and 97% of them in Litecoin. It is worth mentioning that there are no segregated witness

scripts in Bitcoin Cash, since such kinds of scripts do not exist in the coin. Litecoin has a significant

amount less of both multisignature scripts and P2PK scripts using compressed keys.

Figure 7 shows the evolution in time of the different types of outputs in the UTXO set. Regarding Bitcoin,

most P2PK UTXOs were created during the very first years, which is an expected result since P2PKH was

developed afterwards as an improvement of P2PK. However, it is interesting to see that, after a long time

with very few outputs of this type, around March 2017 and during 324 blocks, 15% of the current P2PK

outputs included in the UTXO set were created. There are no multisig, P2SH, P2WPKH nor P2WSH

from the first blocks, since these kinds of scripts were created years after the creation of the coin.

Regarding Litecoin (figure 7c), it is surprising to see that all multisig UTXOs in the snapshot were

created in a very short time: 99% of them were created before block 753 252 and 96% of them between

blocks 743 428 and 753 252. All existing non-standard UTXOs were only created during the first 487 470

blocks. P2PKH and P2PK UTXOs were mostly created in the very beginning (as most of the coins).
4. Dust and unprofitable UTXOs
An interesting type of output included in the UTXO set is that whose economic value is small enough to

pose a problem when it has to be spent. Since such UTXOs are in the set, they occupy space and thus

convey a cost to the system. However, the cost of spending them is so high with respect to its value,

that the owner has no direct economic incentive to do so.

Bitcoin Core currently [6] defines a dust output as an output that costs more in fees to spend than the

value of the output. To compute the cost of spending an output, both its size and the size of the input

from the transaction that will spend it, are required. Since the input that spends a given UTXO is not yet

in the blockchain Bitcoin Core sets such value to 148 regardless of the type of outputs that will generate

10 103

amount
105 107 109 1011 1013 10 103

amount
105 107 109 1011 1013

10 103

amount
105 107 109 1011 1013

fr
ac

tio
n

of
 U

T
X

O
s

(b)(a)

(c)

0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

of
 U

T
X

O
s

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

Figure 5. Amount in UTXOs. (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

8
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
the input. These 148 bytes are based on the most common type of Bitcoin outputs, P2PKH and account

for the outpoint (32 þ 4), the length of the script in bytes (1), the signature (1 þ 72), the public key (1 þ 33)

and the sequence number (4).

Therefore, a given UTXO out is considered dust by the Bitcoin Core client with respect to a

fee-per-byte rate f with the following definition:

is dust(out) ¼ 1, outv , f � 41þ 107=aþ outsð Þ
0, otherwise,

�

where outv is the amount deposited in the output; outs is the size (in bytes) of the output; f is the current

fee rate (in satoshis per byte) and a is the segwit discount factor. If the output is not a native segwit script,

then a is 1. However, if it is indeed a segwit output, the size of the input script needed to redeem it is

discounted by a factor a ¼ 4.

The definition of dust, as interpreted by the Bitcoin Core, has two main limitations. First, it assumes a

fixed transaction input size of 148. Although the exact content of the input of a UTXO will never be, by

definition, known to the client, in fact, the size of an input can usually be predicted with high accuracy.

Second, it considers both the sizes of the output and the input. Although this may be useful in some

cases, we claim that since the transaction containing the output is already in the blockchain, its size

should not be taken into account when analysing the dust problem (since it has already been paid).

Therefore, we define an unprofitable output as the output of a transaction that holds less value than the

fee necessary to be spent, taking into account only the size of the input that will be needed to spend it.

is unprofitable(out) ¼ 1, outv , f � pred ins

0, otherwise,

�

where pred ins is the predicted size of the input that will spend output out. That is, instead of using a

predefined 148-byte size, we compute as accurately as possible the size of the input that is going to spend

the output.

However, it is not always possible to exactly determine the size of the input of a certain UTXO.

Depending on the type of the script found in the UTXO, we will be able to accurately determine the

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

block height block height

block height

10
0 0

00

15
0 0

00

20
0 0

00

25
0 0

00

30
0 0

00

35
0 0

00

40
0 0

00

45
0 0

00

50
0 0

00

0

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

1 2
00

 00
0

0.2

0.4

0.6

fr
ac

tio
n

of
 U

T
X

O
s 0.8

1.0

0

0.2

0.4

0.6

fr
ac

tio
n

of
 U

T
X

O
s 0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
(b)(a)

(c)

Figure 6. Transaction height of the UTXOs of amount 1 satoshi/litoshi. (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

Table 2. UTXO types.

Bitcoin Bitcoin Cash Litecoin

no. UTXOs 60 206 616 39 738 238 18 445 858

Pay-to-PubkeyHash (P2PKH) 48 884 862 37 457 455 17 949 409

Pay-to-ScriptHash (P2SH) 10 825 371 1 825 348 399 987

Pay-to-Pubkey (P2PK) 75 394 77 311 81 399

compressed 39 479 40 956 457

uncompressed 35 915 36 355 80 942

Multisig 408 847 377 355 325

P2WPKH 6 176 — 76

P2WSH 5 188 — 14

others (non-standard) 778 769 14 648

9
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
size that its input will have, or we will have some uncertainty about it. Therefore, we will consider two

different metrics for unprofitability: a lower bound on unprofitability (is_unprofitablelow), that will take

into account the minimum size of the input; and an estimation of unprofitability (is_unprofitableest), that

tries to estimate as accurately as possible the real unprofitable rates taking into account data available in

the blockchain.

In order to identify the three types of outputs (that is, dust, unprofitablelow and unprofitableest), it is

important to recall that the amount of fees a transaction has to pay to be included in a new block depend

0

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

block height

0

10
0 0

00

20
0 0

00

30
0 0

00

40
0 0

00

50
0 0

00

block height

0

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

1 2
00

 00
0

1 4
00

 00
0

block height

0.2

0.4

0.6

fr
ac

tio
n

of
 U

T
X

O
s 0.8

1.0

0

0.2

0.4

0.6

fr
ac

tio
n

of
 U

T
X

O
s 0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
(b)(a)

(c)

P2PKH

P2WPKH

P2WSH
multisig
other

P2SH
P2PK

Figure 7. UTXO output type per height in (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

10
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
on two factors: the fee-per-byte rate, f, that the network is expecting at the time of creating the transaction

and the size of the transaction. Section 4.1 explains what is the fee-per-byte rate and shows its value over

the past years. Regarding the size of the transaction, the definition of dust uses a fixed size, but our

unprofitability approach takes into account the minimum size of the input. Section 4.2 explains what

are the minimum inputs of UTXOs depending on their type. Finally, the estimation of unprofitability

needs to take into account the sizes of variable parameters. Section 4.3 presents the estimations of

those sizes made from blockchain data.

4.1. Fee-per-byte rate
Block space is a scarce resource. Whenever the throughput of transactions sent to the P2P network is

higher than what blocks can accommodate, transactions pending to be included in blocks start to

accumulate in the mempool. When a block has to be created, miners choose the set of transactions to

include in the block from those stored in the mempool. Assuming miners are rational actors and

given that block space is limited, transactions paying a higher fee-per-byte rate should be more

attractive to miners, since such transactions would usually provide the highest revenue. However,

there are many both technical and non-technical factors that may affect the miners’ decision in

choosing a certain transaction for inclusion in a block, e.g. the number of signature check operations it

contains, the cost of recomputing the merkle tree in order to include a new transaction, or even the

attempt to censor a certain transactions.

The fee-per-byte rate measured in satoshis (or litoshis, for litecoin) per byte is a highly variable factor

that depends on the transaction backlog (i.e. how many transactions are pending to be included in new

blocks and how much are those transactions willing to pay to be included in a block).

Figure 8 shows the average fee per byte paid for transactions included in blocks, from the creation of

the coin up until nowadays. Bitcoin and Bitcoin Cash show differences on the blocks after the fork, with

0
0

height
100 000 200 000 300 000 400 000 500 000 0

height

height

100 000

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

1 2
00

 00
0

1 4
00

 00
0

200 000 300 000 400 000 500 000

1000av
g.

 f
ee

 p
ai

d
(s

at
os

hi
s

pe
r

by
te

)

av
g.

 f
ee

 p
ai

d
(l

ito
sh

is
 p

er
 b

yt
e)

2000

3000

0

1000

2000

3000

0
0

10 000

5000

15 000

20 000

(b)(a)

(c)

Figure 8. Average fee rate (in satoshis/litoshis per byte) paid by transactions at a given block height. The plot is showing 1000 block
averages. (a) Bitcoin, (b) Bitcoin Cash and (c) Litecoin.

11
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
Bitcoin Cash presenting lower fee rates. Litecoin presents higher variability. In Bitcoin and Bitcoin Cash,

the highest peak is produced by block 157 138, that contains a transaction7 that paid as much as 85.9 BTC

in fees. In Litecoin, the highest peak is found in block 158 277, that has a single non-coinbase transaction8

paying 100 LTC as fees.

4.2. Determining the size of the minimum-input of an UTXO
Unprofitability is defined considering the size of the minimum-input of each UTXO. In order to label the

outputs in the UTXO set as unprofitable, we need an estimation of the size of data required to spend such

output. To identify such minimum information, we can consider an already standard transaction with its

inputs and its outputs and enough fees to be relayed. Then, we define the minimum-input of a UTXO as the

smallest size input that spends such UTXO. The size of such minimum-input, along with the value held in

the output and the fee rate, will determine whether a UTXO may be flagged as unprofitable.

To measure the size of such minimum-input, we need to review the structure of a Bitcoin transaction.

As depicted in figure 9, all transactions follow a standard structure containing some fixed length

parameters that determine a minimum transaction size, and some variable length parameters,

depending on the transaction type. When a transaction is created, inputs are defined referring to some

UTXOs. Such inputs have different sizes depending on the output type they are related to. On the

other hand, new outputs are generated for every new transaction, and thereby some additional size,

which will depend on the new output type, will be added to the transaction.

Depending on the UTXO type, its minimum-input size will be different. Such measure can be split in

two parts: fixed size and variable size. Regarding the fixed size, as depicted in figure 9 (taking into

account only the input box), we can identify three fields: prev_tx_id, pev_out_index and

nSequence. Therefore, for every UTXO, its minimum-input will be at least 40 bytes long

independently of its type. On the other hand, the content and length of the fields scriptSig and

scriptSig length depend on the UTXO type, specified in the field scriptPubKey of the UTXO.

The different types of outputs, with their corresponding size, can be classified as follows:

Pay-to-PubKey (P2PK) outputs. The minimum-input of this type of UTXO specifies just a digital

signature to redeem the output and the scriptSig includes the following data:

PUSH sig (1 byte)þsig (71 bytes)

Bitcoin uses DER encoded ECDSA signatures in the scripts of its transactions, which can be between

71 and 73 bytes long depending on their r and s components [7]. Such variability comes from the
7See https://blockchain.info/tx/1dbd420f23f8ac58b994c7b84f8667670dfcad39ec9f34e555a0c6281b7e2c04.

8See https://chainz.cryptoid.info/ltc/block.dws?2465020d67d0f08f53d1df0571af8aadd81b7b60ed27e2f236e1b08e6321547f.htm.

https://blockchain.info/tx/1dbd420f23f8ac58b994c7b84f8667670dfcad39ec9f34e555a0c6281b7e2c04
https://blockchain.info/tx/1dbd420f23f8ac58b994c7b84f8667670dfcad39ec9f34e555a0c6281b7e2c04
https://chainz.cryptoid.info/ltc/block.dws?2465020d67d0f08f53d1df0571af8aadd81b7b60ed27e2f236e1b08e6321547f.htm
https://chainz.cryptoid.info/ltc/block.dws?2465020d67d0f08f53d1df0571af8aadd81b7b60ed27e2f236e1b08e6321547f.htm

version no. inputs no. outputs nLockTime

4-byte var size var size 4-byte

value scriptPubKeyscriptPubKey length

8-byte var size var size

prev_out_index scriptSig length scriptSig nSequenceprev_tx_id

32-byte 4-byte 4-bytevar size var size

inputs

outputs

Figure 9. Generic transaction structure.

12
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
randomness of the r parameter. Since we are defining the minimum possible input to be created, 71-byte

signatures are considered. Hence, the scriptSig for a P2PK UTXO will be 72 bytes long and

scriptSig len field will be 1 byte long, resulting in a minimum-input size of 73 bytes.

Pay-to-PubkeyHash (P2PKH) outputs. For this UTXO to be redeemed, both a signature (sig) and a public

key (pk) are required in the scriptSig, as shown below:

PUSH sig (1 byte)þsig (71 bytes)þPUSH pk (1 byte)þpk (33-65 bytes)

Regarding the signatures, the same assumption as for P2PK outputs applies, that is, 71-byte length

can be considered. Regarding public keys used by Bitcoin, they can either be compressed or

uncompressed, which will significantly vary their size:

— Uncompressed keys: such keys were used, by default, in the first versions of the Bitcoin Core client,

and they are 65 bytes long.

— Compressed keys: in 2012, Bitcoin Core started using this more efficient type of keys, which are

almost half size of the previous ones (33 bytes), and therefore make smaller scripts.

So, the size for the scriptSig varies from 106 to 138 and therefore, the scriptSig length field will

be 1 byte long, resulting in a total minimum-input size between 107 and 139 bytes.

Pay-to-multisig (P2MS) outputs. The size of the minimum-input to redeem such a script varies highly

depending on the number of signatures required, which ranges up to 20 (20-of-20 multisig),9 so the

scriptSig for redeeming such output is as follows:

OP_0 (1 byte)þ(PUSH sig (1 byte)þsig (71 bytes)) *

required_signatures (1-20)

Thus, the size of the scriptSig field will range between 73 and 1441 bytes, making the scriptSig

len field range between 1 and 2 bytes, so the total minimum-input size will be between 74 and 1443.

Pay-to-ScriptHash (P2SH) outputs. Unlike any previous output type, input size created from P2SH

outputs cannot be straightforwardly defined in advance. P2SH outputs hide the actual input script

behind a hash, to make smarter outputs, by making them smaller and thus allowing the payer to pay

lower fees. However, the scripts held by those UTXOs give us no clue about how the minimum-input

should be build. Therefore, we have set the minimum-input size to just the fixed size (40 bytes) plus

an additional byte for the script length, resulting in 41 bytes.

Native Pay-to-Witness-Public-Key-Hash (P2WPKH) and Pay-to-Witness-Script-Hash (P2WSH) outputs.

These new types of outputs are redeemed with empty input scripts. Data that prove ownership

are moved into the witness and get a discount when computing the size of the input. Therefore,
9Although the standard considers a maximum number of three signatures in a P2MS output, up to 20 are valid regarding the

consensus rule [8] so they could potentially be found in the UTXO set.

Table 3. Minimum-input size summary.

scriptSig/redeemScript

UTXO fixed scriptSig. sig pk push total

type fields len. size size data size

P2PK 40 1 71 — 1 113

P2PKH 40 1 71 33 2 65 2 147 2 179

P2MS 40 1 2 2 71 * m (m [[1, 20]) — m þ 1 42 þ 1/2 þ 72*m

P2SH 40 1 2 var var var var 41 2 var

P2WPKH 40 1 71 33 2 68

P2WSH 40 1 var var var 41 2 10041

13
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
native segwit outputs will need the 40 fixed length bytes, the script size (1) and the discounted witness

size.

The witness script needed to redeem a P2WPKH script is

PUSH sig (1 byte)þsig (71 bytes)þPUSH pk (1 byte)þpk (33 bytes)

Note that, in contrast with P2PKH scripts, here the public keys will always be found in a compressed

form, as only this format is accepted in P2WPKH scripts. Therefore, P2PKH scripts will always be 106

bytes, and their inputs will need 40 þ 1 þ 106/4 ¼ 68 bytes

The witness script to redeem a P2WSH output is equivalent to the input script of a P2SH output.

However, P2WSH are not affected by the 520-byte push limit of P2SH scripts.

Table 3 summarizes the sizes of the minimum-input for each UTXO type, where var indicates the

values are variable and cannot be determined in advance.
4.3. Estimating variable values
As introduced in the last section, the inputs of some of the output script types contain values whose

size cannot be known before actually seeing the input. However, the moment an output of such

type is spent, we can observe the content of the corresponding input script and, therefore, compute its

size. Yet whenever the output is spent, it is no longer an Unspent Transaction Output (UTXO), and it

is thus no longer the subject of our analysis. On the other hand, we can indeed use historic data

about outputs that have already been spent to estimate the input sizes of unspent outputs of the

same type.

In this section, we provide an estimation of the variable-size parameters of input scripts based on the

real data that already appears in the Bitcoin blockchain. Specifically, we analyse the sizes of public keys in

P2PKH inputs, the sizes of P2SH inputs, the sizes of non-standard inputs and the sizes of P2WSH

witnesses.10 The estimation has also been performed for both Bitcoin Cash and Litecoin and the

obtained values have been used in the analysis performed in §5. However, only the analysis for the

Bitcoin blockchain will be broken down into parts due to space limitations.

Public keys can be found either in a compressed or uncompressed format. Public keys may be found

both in input and output scripts: they may appear in P2PK and multisig outputs or in inputs spending

P2PKH outputs. In our analysis, we have focused on checking public keys in inputs spending P2PKH

outputs, since these are the ones that will affect our profitability analysis. The first compressed public

key in a P2PKH input can be found in block 158 216.11 The input spends an output in block 158 214.12

The use of compressed or uncompressed public keys highly depends on the height of the block:

whereas there were no compressed public keys in the beginning, nowadays its use is prevalent. For

this reason, we are interested in knowing how likely it is for a P2PKH output at a given height to be
10The raw data to perform such an estimation has been obtained from BlockSci and http://blockchain.info, and processed and

included within STATUS.

11In the input of transaction https://blockchain.info/tx/94af4607627535f9b2968bd1fbbf67be101971d682023d6a3b64d8caeb448870.

12See https://blockchain.info/tx-index/2576077/0.

http://blockchain.info
http://blockchain.info
https://blockchain.info/tx/94af4607627535f9b2968bd1fbbf67be101971d682023d6a3b64d8caeb448870
https://blockchain.info/tx/94af4607627535f9b2968bd1fbbf67be101971d682023d6a3b64d8caeb448870
https://blockchain.info/tx-index/2576077/0
https://blockchain.info/tx-index/2576077/0

65

60

55

50

by
te

s

45

40

35

0 100 000 200 000 300 000 400 000 500 000
output height

average PK size per block (P2PKH outputs)

Figure 10. Block average public key sizes for P2PKH outputs. The plot is showing 1000 block averages.

14
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
spent by an input with a compressed or uncompressed public key. Figure 10 shows, for P2PKH outputs

at a given height, the average public key size of inputs spending them. The plot is generated by analysing

the 654 245 749 public keys found in P2PKH inputs in the blockchain, resulting in an overall average

public key size of 39.3 bytes. Before block 158 214, all spent P2PKH outputs have uncompressed

public keys in the corresponding inputs, because this was the format being used by Bitcoin clients at

that time. Consequently, the plot shows a smooth line on the low heights, denoting the constant

64-byte length of public keys being used. The shift towards using compressed public keys is

progressive, so the average public key size decreases from that point until block 450 000, when it

stabilizes at around 34.5 bytes. Such behaviour indicates that, despite the obvious advantage of using

compressed public keys, some Bitcoin users are still using uncompressed keys.

P2SH inputs must contain the redeem script (whose hash matches the one specified in the UTXO) and

any data that are required to make the redeem script evaluate to true. Both items must be taken into

account when computing the size of the input.

Table 4 breaks down the P2SH redeem scripts by type found in the blockchain, describing the average

and the standard deviation of the length of their input script. That is, they consider the size of both the

redeem script and the data consumed by that script.

Multisig scripts are by far the most common script encapsulated within P2SH, and they account for

85:6% of the P2SH redeem scripts in the blockchain. Because native multisig outputs are costly, it is

common to encapsulate them in a P2SH, transferring the fees to the redeemer of the output. The size

of a P2SH multisig input is determined by the number of allowed signers (that determines the

number of public keys) and the number of required signers (that determines the number of

signatures). Although a wide variety of encapsulated multisig scripts can be found in the blockchain,

2-of-2 and 2-of-3 multisig account for 97, 85% of multisig scripts (table 5 shows the amount of

multisig scripts of each kind found in the blockchain).

The activation of segwit added four more types of output scripts to the existing set: two native scripts

and the two P2SH nested versions. The input of a P2WPKH script nested in a P2SH is always 23 bytes

long, whereas a P2WSH nested in P2SH is always 35. This accounts for the hash (20 and 32 for P2WPKH

and P2WSH, respectively), plus the marker (0 � 00) and two data pushes.

Non-standard redeem scripts may be of arbitrary length. However, the redeem script has to be

pushed to the stack, so it is affected by the maximum stack element size of 520 bytes.13 The average

size of P2SH scripts with non-standard redeem scripts is 169.98 bytes, although most of them

(66:06%) are just 11 or 12 bytes. The largest input script of this type is 9 319 bytes long.

Inputs of P2SH scripts with nested P2PK scripts may be either 108 or 140 bytes long (assuming

71-byte signatures), depending on whether they use compressed or uncompressed public

keys. Nevertheless, data show that almost all of them have compressed public keys (there are just six

of such scripts in the blockchain using uncompressed public keys). Similarly, inputs of P2SH
13See https://github.com/bitcoin/bitcoin/blob/0277173b1defb63216d40a8d8805ae6d5d563c26/src/script/script.h#L23.

https://github.com/bitcoin/bitcoin/blob/0277173b1defb63216d40a8d8805ae6d5d563c26/src/script/script.h%23L23
https://github.com/bitcoin/bitcoin/blob/0277173b1defb63216d40a8d8805ae6d5d563c26/src/script/script.h%23L23

Table 4. Summary of P2SH redeem scripts in the blockchain.

redeem script number of inputs average input size std. input size

Multisig 80 839 329 241.6 22.7

P2WPKH 7 961 073 23 0

P2WSH 5 544 793 35 0

Nonstd 112 354 169.98 333.59

P2PK 23 557 108.01 0.51

P2PKH 448 132 0

P2SH (hash puzzle) 82 28.73 23.75

total 94 481 636 210.93 78.60

Table 5. Summary of multisig configurations found in P2SH redeem scripts in the blockchain.

multisig specs. number of scripts found multisig specs. number of scripts found

(2 of 3) 56 498 831 (1 of 3) 21 334

(2 of 2) 22 600 200 (3 of 6) 17 131

(2 of 6) 491 146 (3 of 3) 13 357

(3 of 4) 453 256 (4 of 5) 10 456

(1 of 1) 258 449 (2 of 5) 8 826

(2 of 4) 209 809 (4 of 6) 7 918

(3 of 5) 144 958 (1 of 6) 5 864

(1 of 2) 86 678 others 11 116

15
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
scripts with nested P2PKH scripts may be either 132 or 164 bytes long, although all of them used

compressed keys.

Finally, there are 82 redeem scripts that contain hash puzzles, that is, they ask for the preimage of a

hash. We have found there are just two different versions of these scripts, one asking for the preimage of

OP_0 and the other asking for the preimage of a 152-byte length value. These make input sizes of 25 and

178 bytes, respectively.

In contrast with compressed and uncompressed public key usage, whose behaviour highly depends

on the block height, we have found a small correlation between P2SH input script sizes and the block

height where they are found (figure 11). There are no blocks with P2SH input scripts up until block

170 060 and the script sizes start to decrease at height 480 000. From block � 275 000 up until block �
480 000, the average size of inputs is almost constant, because 98:2% of them are 2-of-2 and 2-of-3

multisig scripts which are 216 and 250 bytes long, respectively. However, after this period, P2WSH

and P2WPKH scripts encapsulated in P2SH inputs become popular, and because its size is smaller,

the average P2SH input script size decreases.

Inputs spending non-standard outputs may contain scripts of arbitrary length. Since such inputs do

not have a predefined structure, we resort to analysing the sizes of inputs spending non-standard

outputs in the blockchain. We have found 220 758 of such inputs in the blockchain, which correspond

to 78 different input scripts. The average size of non-standard input scripts is 1.04 bytes (99:3% of

these inputs scripts are a single byte long, and 99:94% have less than three bytes). As a matter of

curiosity, the input script OP_TRUE is found in 219 191 inputs.

These 220 758 non-standard inputs are found in just 143 different blocks, so data is too disperse to

evaluate its size with respect to block height.

As in P2SH inputs, P2WSH inputs must also include the redeem script with a matching hash and any

data needed to redeem it. However, instead of including the redeem script in the input itself, the redeem

script is found in the witness and thus gets discounted by a factor a ¼ 4.

We have found 215 742 P2WSH inputs with an average witness size of 251.6 bytes. From block �
488 000 onwards, the plot shows an stable trend. Of the redeem scripts, 97% are 252, 253 or 254 bytes

by
te

s

600

500

400

300

200

100

0
200 000 250 000 300 000 350 000 400 000 450 000 500 000

input height

avg, P2SH input script size

Figure 11. Block average P2SH input sizes. The plot is showing 1000 block averages.

300

275

250

225

200

175

av
g.

 w
itn

es
s

si
ze

 (
by

te
s)

150

125

485 000 490 000 495 000 500 000
input height

avg. witness len. (P2WSH inputs)

505 000 510 000

Figure 12. P2WSH inputs in the Bitcoin blockchain. The plot is showing 100 block averages. Average P2WSH witness size (bytes).

16
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
long, and correspond to 2-of-3 multisignature scripts. As P2SH input scripts, witness length is not clearly

correlated with block height (figure 12). The first P2WSH input is found in block 482 133.
5. An analysis of dust and unprofitable outputs
In previous sections, we have seen that the two parameters that affect the amount of fees needed to spend

a transaction are the size of the transaction and the current fee-per-byte rate. In this section, we first

evaluate the current status of the UTXO sets of Bitcoin, Bitcoin Cash and Litecoin regarding the

parameters previously defined: dust, a minimum bound on unprofitability (unprofitable_low)

and estimation of unprofitability (unprofitable_est). After that, we analyse how unprofitability

has evolved over time.

To study the impact of dust, we have considered the fixed input size of 148 bytes as defined by the

Bitcoin client (discounting segwit when needed). For a unprofitable_low, we have considered the

minimum size of the inputs. Whenever there is a parameter with variable length (whose size cannot

be precisely known in advance), we have chosen the smallest possible value (recall §4.2). On the

contrary, for unprofitable_est we have considered exact input sizes when known and resorted to

estimations based on blockchain data when a variable-length parameter is needed, as described in

Table 6. Summary of script size estimations per script type and coin (computed using data in the blockchain).

script type estimation method Bitcoin Bitcoin Cash Litecoin

P2PKH block height average [148, 180] [148, 180] [148, 180]

P2SH absolute average 210.93 240.99 184.06

non-std absolute average 1.04 1.04 —

P2WSH absolute average 251.5 — 217.5

17
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
§4.3. As explained in the previous section, the use of compressed or uncompressed public keys was

highly dependant on the block height. On the contrary, P2SH, non-standard and P2WSH sizes do not

show that tendency (compare figure 10 with figures 11 and 12). Therefore, to estimate variable sizes,

we use the absolute average of the sizes found in the blockchain for P2SH, non-standard and P2WSH

inputs, and the average for outputs at a given height for P2PKH. Table 6 presents a summary of the

values used for the estimations. Note that P2PKH input scripts are always estimated to be between

148 and 180 bytes regardless of the analysed coin, although the exact distribution differs and is

computed individually from the history of each coin.

As depicted in figure 8, fee-per-byte rate is far from fixed and has high variability. Thus, to take into

account different possible scenarios, we have considered a broad fee-per-byte spectrum, ranging from 0

to 349 satoshi/byte.

Figure 13a shows the fraction of UTXOs that are considered dust, unprofitablelow and unprofitableest

in the Bitcoin UTXO set (blue, orange and green lines, respectively). For a fee-per-byte as small as 116

satoshi/byte onwards, more than the 50% of UTXOs (30.2 million outputs) from the set can be

considered dust, whereas the same 50% size for unprofitable_low is reached for 232 satoshi/byte

onward. Note that 5 617 outputs will always be considered dust and unprofitable, regardless of the

fee rate, because they have an amount of 0.

Dust and the unprofitable_est present a very similar distribution, whereas the

unprofitable_low always shows, as expected, a lower amount of unprofitable outputs. However,

the similar trend shown by dust and unprofitable_est may lead to misinterpretation: although

the overall distribution is indeed similar, the individual estimations are very different, but

overestimations in one kind of samples compensate for underestimations of the other kind. For

P2PKH outputs (which represent 81% of the set), dust always considers size of 182 bytes (148 of the

input and 34 of the output). On the contrary, unprofitability will only take into account the size of the

input. For the lower bound, it will be either 147 or 179 (depending if a compressed or uncompressed

public key is considered, a decision taken on the basis of the block height). For the estimation, it will

be any value between 148 and 180 and will depend on the average public key size found for outputs

of the same height. Therefore, on one hand, dust will always estimate higher sizes than both

unprofitability metrics and, on the other hand, the two unprofitability distributions are very similar,

with the estimation offering slightly higher sizes than the minimum (recall figure 10). However, for

P2SH scripts (which represent 18% of the set), the contrary is observed: dust predicts a fixed 180

bytes, whereas unprofitable_est predicts around 252 bytes and unprofitable_low predicts 42

bytes. As a consequence, in this case unprofitable_est always predicts much higher sizes. So

although dust and unprofitable_est present similar distributions, it is important to note that size

estimations for individual samples differ.

Figure 13b shows the relative size of dust and unprofitable output sets within the total UTXO set.

Dust and unprofitable UTXOs represent a relevant part of the total size from the set (more than the

50% are dust for around 111 satoshi/byte onward), while the same can be seen for

unprofitable_low UTXO for a rate of 204 satoshi/byte onward.

Finally, from an economic point of view, figure 13c shows, as expected, how those dust and

unprofitable UTXOs represent a negligible amount from the total value of the UTXO set, that is, the

total number of bitcoins in circulation.

Figure 14a shows the fraction of UTXOs that are considered dust, unprofitablelow and unprofitableest

in the Litecoin UTXO set. It is worth noting that 67% of the UTXOs are considered dust and unprofitable

for a fee-per-byte as small as 1 litoshi/byte. Those UTXOs have output amounts of just 1 litoshi (recall

figure 5c). Therefore, the three metrics (dust and the two unprofitability versions) consider all those

UTXOs unprofitable at the same fee rate. From 300 litoshi/byte onwards, the same scenario

0.6

0.5

0.4

0.3

0.2

fr
ac

tio
n

of
 U

T
X

O
s

0.1

0

0.6

0.00025

0.00020

0.00015

0.00010

0.00005

0

0.5

0.4

0.3

0.2

fr
ac

tio
n

of
 U

T
X

O
s

si
ze

s

fr
ac

tio
n

of
 c

oi
ns

 in
 c

ir
cu

la
tio

n
0.1

0

0 50 100 150
fee rate (satoshi/byte)

200 250 300 350

dust
non-profitable min.
non-profitable est.

0 50 100 150
fee rate (satoshi/byte)

200 250 300 350

0 50 100 150
fee rate (satoshi/byte)

200 250 300 350

(a) (b)

(c)

Figure 13. Dust and unprofitable analysis for Bitcoin. (a) Fraction of dust/unprof. UTXOs w.r.t. fee-per-byte rate, (b) fraction of
occupied space w.r.t. fee-per-byte rate and (c) fraction of economic value w.r.t. fee-per-byte rate.

18
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
previously seen in Bitcoin is shown: dust estimates bigger sizes for P2PKH, whereas

unprofitable_est estimates bigger sizes for P2SH outputs.

Finally, Bitcoin Cash dust and unprofitability analysis (figure 15) shows little difference with respect

to Bitcoin, with dust and unprofitable_est showing very similar distributions although individual

samples’ estimations do differ.

In conclusion, we have seen that the three analysed coins exhibit lots of UTXOs that can be considered

dust/non-profitable, and they account for an important part of the UTXO set in terms of size. However,

their value is negligible.
5.1. Evolution of unprofitability over time
We have seen how for the most recent analysed UTXO set snapshot, namely data from 6 February 2018,

the percentage of data that fall into any of the three categories (dust, unprofitablelow and unprofitableest)

is far from being negligible. In this regard, we have analysed how such data have evolved since the early

days of Bitcoin. To perform such analysis, we have focused on the unprofitableest metric since we think it

is the most accurate one.

For Bitcoin, data have been obtained from nine snapshots from different heights of the blockchain,

starting from block 100 00014 and stepping every 50 000 blocks until height 500 000. Figure 16 shows

the number of UTXOs in the set in Bitcoin over time (dots indicate the snapshots used in our analysis;

table 7).

The percentage of unprofitable outputs per snapshot is almost always increasing at any point in the

chart, as we can see depicted in figure 17a. However, there are a few exceptions, the 400K snapshot with

respect to 450K and 500K being the most relevant. As we can see, the amount of unprofitable outputs

located in the lower stages of the fee rate for the 400 K snapshot (between 0 and 75 satoshi/byte)
14We have not performed the analysis starting from block 1 due to the lack of relevant information in those snapshots.

0.7

0.6

0.5

0.4

0.3

fr
ac

tio
n

of
 U

T
X

O
s

0.2

0.1

0

0.7

0.00005

0.00004

0.00003

0.00002

0.00001

0

0.6

0.5

0.4

0.3

fr
ac

tio
n

of
 U

T
X

O
s

si
ze

s

fr
ac

tio
n

of
 c

oi
ns

 in
 c

ir
cu

la
tio

n

0.2

0.1

0

0 50 100 150 200
fee rate (litoshi/byte)

250 300 350 0 50 100 150 200
fee rate (litoshi/byte)

250 300 350

0 50 100 150 200
fee rate (litoshi/byte)

250 300 350

dust
non-profitable min.
non-profitable est.

(a) (b)

(c)

Figure 14. Dust and unprofitable analysis for Litecoin. (a) Fraction of dust/unprof. UTXOs w.r.t. fee-per-byte rate, (b) fraction of
occupied space w.r.t. fee-per-byte rate and (c) fraction of economic value w.r.t. fee-per-byte rate.

19
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
stands out compared to the values from the other two. The explanation of such a huge difference is in the

content of that snapshot: the 400K snapshot has an outstanding number of UTXOs holding exactly 1000

satoshis, whereas in the 450 K and 500 K snapshots the UTXOs are more uniformly distributed. In fact,

the 54:1% of the unprofitable UTXOs located in the 0–50 range for the 400K snapshot hold exactly 1000

satoshi, whereas for the 450 K and 500 K they represent 18:35% and 14:21%, respectively.

Analysing the general trend of the data for figure 17a, we see how the accumulation of unprofitable

outputs in the lower fee rates tends to increase over time, which increases the number of outputs that will

be hardly spent. Such accumulation is mainly with regard to P2PKH outputs, which as we have already

seen in §3 represented around 81% of the outputs in the set.

Similarly, we have analysed the evolution of the UTXO sets of Litecoin by studying 13 snapshots,

from block 100 000 up until block 1 300 000 stepping every 100 000 blocks. Unprofitability is very

stable, with most snapshots (all but 100K) showing very similar distributions (figure 17b).

We have omitted the figures related to Bitcoin Cash since they share the same history with Bitcoin (the

snapshots up until 450K are thus exactly the same), and therefore do not provide any new information.
6. Related work
As we have seen, the characteristics of the UTXO set can be a key point in cryptocurrencies like Bitcoin,

Litecoin and Bitcoin Cash. The size and performance of this set have a direct impact on how the system

will perform, and it is thus a focus area where to improve the scalability and efficiency of these

cryptocurrencies. For example, transaction generation performance in Bitcoin is greatly influenced by

the size of the UTXO set [9].

We can currently find typical statics and simple visualizations of the UTXO set of Bitcoin [10,11], but

we are not aware of a more in-depth study and comparison of the UTXO set of significant

cryptocurrencies like the one presented in this paper. We believe that knowing the composition and

0.7

0.6

0.5

0.4

0.3

fr
ac

tio
n

of
 U

T
X

O
s

0.2

0.1

0

0 50 100 150 200

fee rate (satoshi/byte)

250 300 350 0 50 100 150 200

fee rate (satoshi/byte)

250 300 350

0 50 100 150 200

fee rate (satoshi/byte)

250 300 350

0.7

0.000200

0.000175

0.000150

0.000125

0.000100

0.000075

0.000050

0.000025

0

0.6

0.5

0.4

0.3

fr
ac

tio
n

of
 U

T
X

O
s

si
ze

s

fr
ac

tio
n

of
 c

oi
ns

 in
 c

ir
cu

la
tio

n

0.2

0.1

0

dust
non-profitable min.
non-profitable est.

(a) (b)

(c)

Figure 15. Dust and unprofitable analysis for Bitcoin Cash. (a) Fraction of dust/unprof. UTXOs w.r.t. fee-per-byte rate, (b) fraction of
occupied space w.r.t. fee-per-byte rate and (c) fraction of economic value w.r.t. fee-per-byte rate.

20
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
evolution of the UTXO set will undoubtedly provide the means to better understand it and develop

strategies and tools to improve the UTXO set usage, thus enhancing the whole system performance.

The relevance of the UTXO is not new, concerns about its size, composition and performance have been

around for some time [12]. These concerns are specially relevant in light of the scalability problems of

Bitcoin and are currently an important issue for the future of Bitcoin itself. For instance, Bitcoin Core

changed the UTXO set format in version v0.15 in order to improve its performance [13,14]. Both

individual users and the whole system will benefit from better management of the UTXO set.

From the user point of view, a strategy of consolidating UTXOs in order to prevent the creation of

dust and unprofitable UTXOs in the future (in case of higher fees) has always been considered [15].15

But such strategies are not easy to generalize. A consolidation will not always reduce the fees for a

given user, specially if we cannot anticipate future fee rates. On the other hand, some user will need

to maintain a minimum number of UTXOs to be able to generate transactions in parallel.

Furthermore, such strategies can undermine the privacy requirements of some users. Given these,

sometimes conflicting, constraints and the unpredictability of future fee rates, there is currently no

actual strategy for UTXO consolidation.

An important process that directly impacts (and is influenced by) the UTXO set composition and size

is the coin selection decision performed by wallets [16]. Coin selection is the decision process that a wallet

carries in order to choose UTXOs as inputs for a new transaction. Each implementation might use a

different coin selection strategy [17]. For instance, if we take a look at Bitcoin, according to [18],

several strategies are being used by different wallets. The Bitcoin Core wallet attempts to find a direct

match always minimizing the change to be generated. BRD [19] (a popular Android and iOS

wallet also known as BreadWallet), uses an FIFO strategy, where the oldest UTXOs from the pool are

chosen until the target value is matched. A similar approach is used by Electrum [20] and Mycelium
15See for instance an example of a consolidation transaction in https://blockchain.info/tx/11ee48127ebf5702

e8883cb829734e444dcc2c4efbdbdfd235726e6acea9fb5c.

https://blockchain.info/tx/11ee48127ebf5702e8883cb829734e444dcc2c4efbdbdfd235726e6acea9fb5c
https://blockchain.info/tx/11ee48127ebf5702e8883cb829734e444dcc2c4efbdbdfd235726e6acea9fb5c
https://blockchain.info/tx/11ee48127ebf5702e8883cb829734e444dcc2c4efbdbdfd235726e6acea9fb5c

Ta
bl

e
7.

UT
XO

ty
pe

s
in

ea
ch

Bi
tco

in
sn

ap
sh

ot
.

10
0

K
15

0
K

20
0

K
25

0
K

30
0

K
35

0
K

40
0

K
45

0
K

50
0

K

UT
XO

s
71

92
3

1
12

8
53

8
2

31
7

07
1

6
80

2
24

2
10

85
2

61
0

18
09

4
00

9
34

81
8

75
3

44
99

7
70

0
59

95
0

25
2

P2
PK

H
19

54
4

1
08

4
91

5
2

27
3

59
5

6
73

1
57

9
10

75
6

79
2

17
59

3
94

8
32

15
8

51
0

36
76

1
18

3
48

25
8

71
3

P2
SH

0
0

36
14

22
2

17
80

1
18

4
25

5
2

12
4

56
7

7
65

8
36

1
11

20
5

35
0

P2
PK

52
37

6
43

61
2

42
38

6
38

89
0

41
75

7
41

50
0

41
51

6
50

70
8

69
75

6

ot
he

rs
3

11
1

05
4

17
55

1
36

26
0

27
4

30
6

49
4

16
0

52
7

44
8

41
6

43
3 21

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:180817

7

6

5

4

3

no
. U

T
X

O
s

(1
07)

2

1

0

0 100 000 200 000 300 000
height

no. of UTXOs at a given height

400 000 500 000

Figure 16. Number of UTXOs in each of the snapshots.

0.6
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

100 K
150 K
200 K
250 K
300 K
350 K
400 K
450 K
500 K

100 K
200 K
300 K
400 K
500 K
600 K
700 K
800 K
900 K
1000 K
1100 K
1200 K
1300 K

0.5

0.4

0.3

0.2

pe
rc

en
ta

ge
 o

f
U

T
X

O
s

pe
rc

en
ta

ge
 o

f
U

T
X

O
s

0.1

0

0 50 100 150
fee rate (satoshi/byte)

200 250 300 350 0 50 100 150
fee rate (litoshi/byte)

200 250 300 350

(a) (b)

Figure 17. Evolution of unprofitable outputs over time. (a) Bitcoin and (b) Litecoin.

22
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
[21] which additionally prunes small-valued UTXOs. The bitcoinj library [22] determines a priority metric

from the age and value of the UTXOs in order to select new ones. It is by no means clear which strategy is

better. Different goals and strategies can be conflicting, such as minimizing the generation of small

UTXOs, minimizing the fees for the current and future transactions, or improving the user privacy.

Even so, nowadays a common goal shared by all involved parties for the coin selection is actually to

prevent the growth of the UTXO set in Bitcoin [18]. In any case, our work introduces new analysis

that can help improve these selection strategies.

Following these lines, other proposals such as TXO commitments [23,24] could allow to maintain a

smaller functional UTXO set. Similarly, one can think of a two-tier data structure where a UTXO subset

containing UTXOs with a low probability of being selected such as dust is kept on disk, while the other

UTXOs are kept in memory. We think that the work presented in this paper provides an accurate

estimation of such unprofitable UTXOs, which has not been previously considered.
7. Conclusion
In this paper, we have presented a detailed analysis of the UTXO sets of the top three UTXO-based

cryptocurrencies, that is, Bitcoin, Bitcoin Cash and Litecoin. Our analysis shows that the three

cryptocurrencies present both similarities and differences in their UTXO sets.

On the one hand, relevant differences were found in the coin sets of Litecoin with respect to both

Bitcoin versions. The two major ones are related to the height where UTXOs are found and the value

23
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:180817
they carry. Sixty-seven per cent of Litecoin’s UTXOs belong to the first five months of the coin and a

similar amount carries just one satoshi. Unlike Litecoin, Bitcoin current UTXOs present more diversity

both in their heights and their amounts.

On the other hand, there are some common properties in the UTXO sets of the three cryptocurrencies.

First, most transactions with at least one UTXO have indeed just one UTXO. Second, the usage of coins

from coinbase transactions is different than the rest of coins. Third, there is a preference for outputs with

powers of 10 values. Finally, regardless of the specific metric used to quantify if an output is worth

spending (namely, dust or unprofitability), we have found many outputs whose properties (value and

size) make them non-economically rational to spend, because spending them results in losing money.

These UTXOs represent an important part of the UTXO sets of the three coins (e.g. for a fee of 100

satoshi or litoshi per byte, they represent between 35 and 45% of Bitcoin and Bitcoin Cash UTXOs

and 67% of Litecoin’s) and occupy also a significant amount of space (similar in percentage).

However, they are just a very small amount of the current coin supply (0:01% for Bitcoin and Bitcoin

Cash and a negligible percentage of litecoins).

These results indicate the importance of designing proper coin selection strategies in UTXO-based

cryptocurrencies. If these strategies are not properly designed and applied, the UTXO sets may end

up full of outputs not worth spending. In turn, maintaining these UTXO sets becomes costly, and

thus its management may grow into a problem for users with low computational resources available.

As a result, incorrect UTXO set management threatens the scalability and the decentralization of

UTXO-based cryptocurrencies. Therefore, our work motivates the importance of designing proper coin

selection strategies.

This work opens many lines of further research. On the one hand, by describing the composition and

properties of the UTXO sets, our analysis can be used to optimize the management of the sets. On the

other hand, our work is the first step towards solving the problem of not-worth-spending UTXOs.

With this regard, we envision the design of both strategies to disincentivize the creation of dust

UTXOs and to incentivize dust consolidation.

Data accessibility. The source code of STATUS can be found in the bitcoin_tools GitHub repository. Data for size

estimations is extracted from the Bitcoin, Bitcoin Cash and Litecoin blockchains using BlockSci. The code used for

extracting the data can be found in the BlockSci Analysis GitHub repository.

Authors’ contributions. C.P.-S. and S.D.-S. developed the STATUS tool used to perform the analysis provided in the paper.

All authors discussed which data should be included in the paper and how the results would be graphically presented.

All authors proof-read the paper and gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. This work is partially supported by the Spanish ministry under grant no. TIN2014-55243-P and the Catalan

Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) grant no. 2014SGR-691. C. Pérez-Solà was affiliated

with Universitat Autònoma de Barcelona when the first version of the manuscript was done, and with Universitat

Rovira i Virgili when the revised version was written. During this later time, she was funded by the

Martı́-Franquès postdoctoral program from Universitat Rovira i Virgili.

Acknowledgements. The authors thank Joaquı́n Garcı́a-Alfaro for the computational resources provided to run some of the

experiments of this paper.
References

1. Zahnentferner J. 2018 Chimeric ledgers: translating

and unifying UTXO-based and account-based
cryptocurrencies. Cryptology ePrint Archive, Report
2018/262. See https://eprint.iacr.org/2018/262.

2. Bitcoin Core. 2016 Bitcoin Core 0.12.0 Release
Notes. See https://bitcoin.org/en/release/v0.12.0.

3. Bitcoin Core. 2015 Obfuscate database files.
Bitcoin Core Github Issue 6613. See https://
github.com/bitcoin/bitcoin/issues/6613.

4. Delgado-Segura S, Pérez-Solà C, Navarro-Arribas
G, Herrera-Joancomartı́ J. 2018 Analysis of
the Bitcoin UTXO set. In Proc. of the 5th
Workshop on Bitcoin and Blockchain Research
(in Association with Financial Crypto 18),
Curaçao, 2 March. Lecture Notes in Computer
Science. Springer.
5. Kalodner HA, Goldfeder S, Chator A, Möser M,
Narayanan A. 2017 BlockSci: design and
applications of a blockchain analysis platform.
(https://arxiv.org/abs/1709.02489)

6. Bitcoin Core. 2018 Bitcoin core dust definition.
Bitcoin core source code (policy.cpp). See
https://github.com/bitcoin/bitcoin/blob/
e561cf4fa865a89254e2e6839b3ef343e06951a2/
src/policy/policy.cpp#L20.

7. Bitcoin Wiki. 2017 Elliptic curve digital
signature algorithm. Elliptic curve digital
signature algorithm. See https://en.bitcoin.it/
wiki/Elliptic_Curve_Digital_Signature_
Algorithm.

8. Wuille P. 2014 Answer to: What are the limits
of m and n in m-of-n multisig addresses?
Bitcoin StackExchange. See https://bitcoin.
stackexchange.com/a/28092/30668.

9. Stone A. 2016 Optimizing Bitcoin’s transaction
generation code. Blog post. See https://
medium.com/@g.andrew.stone/optimizing-
bitcoins-transaction-generation-code-
92bd222bae85.

10. Lopp J. 2018 satoshi.info. Unspent Transaction
Output Set. See http://statoshi.info/dashboard/
db/unspent-transaction-output-set.

11. Johansson TE. 2018 Bitcoin UTXO Stats. See
https://utxo-stats.com/.

12. Andresen G. 2015 UTXO uh-oh Blog post.
See http://gavinandresen.ninja/utxo-uhoh.

13. Maxwell G. 2017 A deep dive into bitcoin
core 0.15. SF Bitcoin Developers Meetup.

http://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status
http://github.com/citp/BlockSci
http://github.com/cpsola/blocksci_analysis
https://eprint.iacr.org/2018/262
https://eprint.iacr.org/2018/262
https://bitcoin.org/en/release/v0.12.0
https://bitcoin.org/en/release/v0.12.0
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/issues/6613
https://arxiv.org/abs/1709.02489
https://github.com/bitcoin/bitcoin/blob/e561cf4fa865a89254e2e6839b3ef343e06951a2/src/policy/policy.cpp%23L20
https://github.com/bitcoin/bitcoin/blob/e561cf4fa865a89254e2e6839b3ef343e06951a2/src/policy/policy.cpp%23L20
https://github.com/bitcoin/bitcoin/blob/e561cf4fa865a89254e2e6839b3ef343e06951a2/src/policy/policy.cpp%23L20
https://github.com/bitcoin/bitcoin/blob/e561cf4fa865a89254e2e6839b3ef343e06951a2/src/policy/policy.cpp%23L20
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://bitcoin.stackexchange.com/a/28092/30668
https://bitcoin.stackexchange.com/a/28092/30668
https://bitcoin.stackexchange.com/a/28092/30668
https://medium.com/@g.andrew.stone/optimizing-bitcoins-transaction-generation-code-92bd222bae85
https://medium.com/@g.andrew.stone/optimizing-bitcoins-transaction-generation-code-92bd222bae85
https://medium.com/@g.andrew.stone/optimizing-bitcoins-transaction-generation-code-92bd222bae85
https://medium.com/@g.andrew.stone/optimizing-bitcoins-transaction-generation-code-92bd222bae85
https://medium.com/@g.andrew.stone/optimizing-bitcoins-transaction-generation-code-92bd222bae85
http://statoshi.info/dashboard/db/unspent-transaction-output-set
http://statoshi.info/dashboard/db/unspent-transaction-output-set
http://statoshi.info/dashboard/db/unspent-transaction-output-set
https://utxo-stats.com/
https://utxo-stats.com/
http://gavinandresen.ninja/utxo-uhoh
http://gavinandresen.ninja/utxo-uhoh

24
royalsocietypublishing.org/jou
See http://diyhpl.us/wiki/transcripts/gmaxwell-
2017-08-28-deep-dive-bitcoin-core-v0.15/.

14. Bitcoin Core. 2017 Bitcoin Core version 0.15.0
released. See https://bitcoin.org/en/release/v0.15.0.

15. Bitcoin Wiki. 2017 How to cheaply consolidate
coins to reduce miner fees. See https://en.
bitcoin.it/wiki/How_to_cheaply_consolidate_
coins_to_reduce_miner_fees.

16. Lopp J. 2015 The challenges of optimizing unspent
output selection. Blog post. See https://medium.
com/@lopp/the-challenges-of-optimizing-
unspent-output-selection-a3e5d05d13ef.
17. Erhardt M. 2016 Simulation-based evaluation of
coin selection strategies. In Scaling Bitcoin,
Milan, Italy, 8 – 9 October.

18. Erhardt M. 2016 An evaluation of coin selection
strategies. Master’s thesis, Karlsruhe Institute of
Technology.

19. BRD. 2018 BRD. BreadWallet. See https://
breadapp.com/.

20. Electrum. 2018 Electrum Bitcoin Wallet. See
https://electrum.org/.

21. Mycelium. 2018 Mycelium wallet. See https://
wallet.mycelium.com/.
22. Bitcoinj Project. 2018 bitcoinj. See https://
bitcoinj.github.io/.

23. Todd P. 2016 Making UTXO set growth
irrelevant with low-latency delayed TXO
commitments. bitcoin-dev mailing list. See
https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2016-May/012715.html.

24. Todd P. 2017 TXO commitments do not
need a soft-fork to be useful. bitcoin-dev
mailing list. See https://lists.linuxfoundation.
org/pipermail/bitcoin-dev/2017-February/
013591.html.
rnal/
rsos
R.Soc.open

sci.6:180817

http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
https://bitcoin.org/en/release/v0.15.0
https://bitcoin.org/en/release/v0.15.0
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://medium.com/@lopp/the-challenges-of-optimizing-unspent-output-selection-a3e5d05d13ef
https://medium.com/@lopp/the-challenges-of-optimizing-unspent-output-selection-a3e5d05d13ef
https://medium.com/@lopp/the-challenges-of-optimizing-unspent-output-selection-a3e5d05d13ef
https://medium.com/@lopp/the-challenges-of-optimizing-unspent-output-selection-a3e5d05d13ef
https://breadapp.com/
https://breadapp.com/
https://breadapp.com/
https://electrum.org/
https://electrum.org/
https://wallet.mycelium.com/
https://wallet.mycelium.com/
https://wallet.mycelium.com/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-February/013591.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-February/013591.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-February/013591.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-February/013591.html

	Another coin bites the dust: an analysis of dust in UTXO-based cryptocurrencies
	Introduction
	The UTXO set
	Analysis of the UTXO sets of Bitcoin, Bitcoin Cash and Litecoin
	Dust and unprofitable UTXOs
	Fee-per-byte rate
	Determining the size of the minimum-input of an UTXO
	Estimating variable values

	An analysis of dust and unprofitable outputs
	Evolution of unprofitability over time

	Related work
	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References

