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Abstract

This thesis investigates the use of probabilistic and Bayesian methods for

analysing high dimensional signals. The work proceeds in three main parts

sharing similar objectives. Throughout we focus on building data efficient

inference mechanisms geared toward high dimensional signal processing.

This is achieved by using probabilistic models on top of informative data

representation operators. We also improve on the fitting objective to make

it better suited to our requirements.

Variational Inference

We introduce a variational approximation framework using direct optimi-

sation of what is known as the scale invariant Alpha-Beta divergence (sAB

divergence). This new objective encompasses most variational objectives

that use the Kullback-Leibler, the Rényi or the gamma divergences. It also

gives access to objective functions never exploited before in the context of

variational inference. This is achieved via two easy to interpret control pa-

rameters, which allow for a smooth interpolation over the divergence space

while trading-off properties such as mass-covering of a target distribution

and robustness to outliers in the data. Furthermore, the sAB variational

objective can be optimised directly by re-purposing existing methods for

Monte Carlo computation of complex variational objectives, leading to es-

timates of the divergence instead of variational lower bounds. We show the

advantages of this objective on Bayesian models for regression problems.
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Roof-Edge hidden Markov Random Field

We propose a method for semi-local Hurst estimation by incorporating a

Markov random field model to constrain a wavelet-based pointwise Hurst

estimator. This results in an estimator which is able to exploit the spatial

regularities of a piecewise parametric varying Hurst parameter. The point-

wise estimates are jointly inferred along with the parametric form of the

underlying Hurst function which characterises how the Hurst parameter

varies deterministically over the spatial support of the data. Unlike recent

Hurst regularisation methods, the proposed approach is flexible in that ar-

bitrary parametric forms can be considered and is extensible in as much as

the associated gradient descent algorithm can accommodate a broad class

of distributional assumptions without any significant modifications. The

potential benefits of the approach are illustrated with simulations of vari-

ous first-order polynomial forms.

Scattering Hidden Markov Tree

We here combine the rich, over-complete signal representation afforded

by the scattering transform together with a probabilistic graphical model

which captures hierarchical dependencies between coefficients at different

layers. The wavelet scattering network result in a high-dimensional repre-

sentation which is translation invariant and stable to deformations whilst

preserving informative content. Such properties are achieved by cascad-

ing wavelet transform convolutions with non-linear modulus and averag-

ing operators. The network structure and its distributions are described

using a Hidden Markov Tree. This yields a generative model for high-

dimensional inference and offers a means to perform various inference

tasks such as prediction. Our proposed scattering convolutional hidden

Markov tree displays promising results on classification tasks of complex

images in the challenging case where the number of training examples is

extremely small. We also use variational methods on the aforementioned

model and leverage the objective sAB variational objective defined earlier



Abstract 7

to improve the quality of the approximation.





Impact Statement

In the last decade the machine learning and signal processing communities

have seen game changing improvements and this has caused the devel-

opment of many applications in both academia and industry. The work

presented in that thesis leverage those methods and improve on top of

them.

Recent machine learning methods tend to rely on a having access to

a vast amount of correctly annotated examples to perform prediction and

“extrapolation“. This paradigm is not always true and this work focuses

on reducing this dependency. We propose methods allowing to perform

accurate complex image classification based on only a very limited num-

ber of training examples. This type of methods can prove to be useful

in domains where collecting examples is costly (medical studies, physic

experiments, rare events...). Those methods also heavily relies on correct

annotations. We here develop methods to alleviate that need. This types of

methods are valuable in situation where a perfect oracle —i.e. person able

to produce annotations— does not exist. This is the case for example for

medical image analysis, in analysis of spatial imagery. Those two improve-

ments reduce the cost of using machine learning by reducing the need for

big highly curated datasets.

Another pitfall of currently used methods is the lack of measure of

uncertainty on the prediction made. In this work we develop methods al-
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lowing estimation of the quality of the prediction. This information can

be leverage in systems where a wrong decision would have high conse-

quences (medical, military...) to trigger more analysis. This uncertainty can

also be used by an higher level control/learning algorithm to explore more

the training space in the direction of that uncertainty.
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Chapter 1

Introduction

1.1 Overview

This thesis explores several methods to perform Bayesian inference and

analysis on high dimensional signals. More specifically we are interested

in extracting knowledge from a small number of realisations of a po-

tentially corrupted signal whilst —ideally— being able to quantify the

uncertainty over this inferred information.

Those constraints are motivated by an application to a problem sug-

gested by the Defence Science and Technology Laboratory (Dstl). They

are interested in methods to perform underwater mine detection in sonar

images. By nature, the access to training examples is limited. And the

reliability of the detection has to be quantifiable due to how catastrophic a

false negative could be.

Throughout the thesis we explore how Probabilistic Graphical Models

(PGMs) and signal representation methods can be combined. And used to

perform inference that is both data efficient and might allow to quantify

uncertainty.
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1.2 Publications
The thesis structure is based on the following published or soon to be

published work.

Variational Inference

• J.-B. Regli and R. Silva. “Alpha-Beta Divergence For Variational In-

ference”. In: arXiv preprint arXiv:1805.01045 (2018)

Roof-Edge hidden Markov Random Field

• J.-B. Regli and J. Nelson. “Piecewise parameterised Markov random

fields for semi-local Hurst estimation”. In: Signal Processing Conference

(EUSIPCO), 2015 23rd European. IEEE. 2015, pp. 1626–1630

Scattering Hidden Markov Tree

• J.-B. Regli and J. Nelson. “Scattering convolutional hidden Markov

trees”. In: Image Processing (ICIP), 2016 IEEE International Conference

on. IEEE. 2016, pp. 1883–1887

Note that, to this day, some chapters are still unpublished.

1.3 Motivation, contribution, and related work
This section provides a brief introduction to the main themes of this thesis,

motivates the research objectives, and points out related work.

1.3.1 Alpha Beta Variational Inference

Modern probabilistic machine learning relies on complex models for which

the exact computation of the posterior distribution is intractable. This has

motivated the need for scalable and flexible approximation methods. Re-

search on this topic belongs mainly to two families, sampling based meth-

ods constructed around Markov Chain Monte Carlo (MCMC) approxima-

tions [73], or variational inference (VI) [49]. In this work, we focus on the

latter, although with the aid of Monte Carlo methods.
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Contribution. We propose a variational objective to simultaneously trade-

off effects of mass-covering, spread and outlier robustness. This is done

by developing a variational inference objective using an extended version

of the alpha-beta (AB) divergence [107], a family of divergence governed

by two parameters and covering many of the divergences already used for

VI as special cases. After reviewing some basic concepts of VI and some

useful divergences, we extend it to what we will call the scale invariant AB

(sAB) divergence and explain the influence of each parameters. We then

develop a framework to perform direct optimisation of the divergence mea-

sure which can leverage most of the modern methods to ensure scalability

of VI. Finally, we demonstrate the interesting properties of the resulting

approximation on regression tasks with outliers.

Related work. The quality of the posterior approximation is a core ques-

tion in variational inference. When using the KL-divergence [2] averaging

with respect to the approximate distribution, standard VI methods such

as mean-field underestimate the true variance of the target distribution.

In this scenario, such behaviour is sometimes known as mode-seeking [75].

On the other end, by (approximately) averaging over the target distribu-

tion as in Expectation-Propagation, we might assign much mass to low-

probability regions [75]. In an effort to smoothly interpolate between such

behaviours, some recent contributions have exploited parameterised fam-

ilies of divergences such as the alpha-divergence [75, 112, 157], and the

Rényi-divergence [158]. Another fundamental property of an approxima-

tion is its robustness to outliers. To that end, divergences such as the beta [42]

or the gamma-divergences [84] have been developed and widely used in

fields such as matrix factorisation [96, 108]. Recently, they have been used

to develop a robust pseudo variational inference method [162].

Roof-Edge hidden Markov Random Fields

The Hurst parameter determines the spectral decay rate of a process with

a power-law spectrum. Since such a simple relationship is ubiquitous in
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many signal and image processing areas and beyond [58, 63] Hurst estima-

tion continues to enjoy many, and disparate, applications including Finance

[126], signal/image denoising [83], clutter suppression [99], segmentation

[122], the analysis of ECG signals [124, 134], internet traffic flow [58], image

texture [53], and turbulence data [85].

The interconnection between wavelets and self-similar processes is a

powerful, if not, surprising one. The self-similarity explicitly built into the

wavelet basis functions via the two-scale, or refinement, relations provides

a natural representation in which to study processes that exhibit power-

law behaviour. However, the localised nature of wavelets also facilitates a

localised estimation of the Hurst parameter.

Contribution. Since it is reasonable to assume that an image of interest

may comprise multiple textures, it is appropriate to consider a piecewise

smoothly varying Hurst parameter H = H(r), for r over some subregion

of R2. Furthermore, we let the way in which this Hurst function varies

over space be governed by some parametric form H = φ(r;θ) with model

parameters θ. We would expect these parameters to be fairly constant over

certain subregions of the image domain where the image texture is homo-

geneous. We allow the spatial support to accommodate multiple textures

with a suitable partitioning of disjoint subregions. In each subregion, the

θ are assumed constant (or have very small, smooth variations). However,

between subregion boundaries, it is allowed to change arbitrarily. As a con-

sequence the Hurst parameter itself will vary smoothly inside a partition

and vary arbitrarily across the respective subregions. We here propose a

model and inference scheme that exploits this piecewise parametric out-

look. The framework utilises a Markov random field prior to constrain, or

penalise, the magnitude of parameter variation over the image.

Spatial regularisation of Hurst estimation has been recently consid-

ered as a means to exploit prior knowledge about the spatial smoothness

of the Hurst parameter [140]. However, the method was based on the
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generalised lasso and assumed only a piecewise constant varying Hurst

parameter. In contrast our model, and corresponding gradient-descent-

like algorithm, are more flexible. The framework can accommodate many

different kinds of distributional assumptions and arbitrary models that de-

scribe how the Hurst parameter varies deterministically in space. On the

other hand, the generalised lasso Hurst estimator simply penalises the `1-

norm of the Hurst parameter spatial derivatives (of some specified order).

Therefore, along with a fixed Gaussian assumption on the data, the spa-

tial derivatives of the Hurst parameter are assumed to be Laplacian and

it is difficult to incorporate other distributional assumptions without mak-

ing wholesale changes to the inference scheme. Other assumptions would

necessitate a change in inference strategy (if one existed). Furthermore,

unlike the method proposed here, the lasso inference does not obtain any

estimate of the underlying parametric form of the Hurst ‘function’.

Related work. Although there are works, such as those based on the mul-

tifractal formalism [82, 88], that describe how regularity varies across an

image, less attention has been paid to the case where the main interest is

to obtain pointwise estimates of a Hurst parameter that is allowed to vary

as a smooth, deterministic function. Such a scenario could, for example,

present itself in image processing when the texture of an object of interest

varies gradually over its spatial support in some assumed manner. In turn

this would facilitate tasks such as feature extraction, segmentation, and

change detection. Likewise, existing adaptive denoising methods, which

are currently based on a piecewise constant Hurst parameter [140], could

also be extended to include more general Hurst functions that vary as

piecewise parametric functions.

[99] leverage the expressiveness of the dual tree complex wavelet trans-

form [76], to perform efficient global Hurst estimation and apply it to ripple

suppression for underwater mine detection.
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Scattering Hidden Markov Tree

The standard approach to classify high dimensional signals can be ex-

pressed as a two step process. First the data are projected in a feature space

where the task at hand is simplified. Then prediction is done using a sim-

ple predictor in this new representational space. The mapping can either be

hand-built —e.g. Fourier transform, wavelet transform— or learned. In the

last decade methods for learning the projection have drastically improved

under the impulsion of the so called deep learning. Deep neural networks

—often enriched by convolutional architecture— have been able to learn

very effective representations for a given dataset and a given task [33, 102,

105]. Such methods have achieved state of the art on many standard prob-

lems [114, 115] as well as real world applications [150].

However deep learning methods are only efficient when we have ac-

cess to a vast quantity of training examples [97]. But in some cases, such as

in medical or defence applications for example, datapoints are rare or us-

ing an expert for hand-labelling them is time-consuming, costly or subjec-

tive. Hence in situations where training examples are expensive to collect,

learning has to be performed on smaller datasets. In that case using a fixed,

hand crafted set of filters seems to be one of the best solution [56]. Recently

Mallat [168] introduced the scattering transform— a fixed bank of wavelet

filters used to generate data representation in a convolutional neural net-

works like architecture. This representational approach was used together

with a support vector machine classifier (SVM) and achieved close to state

of the art performance on a number of standard datasets [94]. Moreover, it

has been shown that this method performs very well on a relatively smaller

numbers of training examples [130] —i.e. less that 1000 training samples.

Contribution. We propose to model Mallat’s scattering convolutional net-

work [94] using hidden Markov trees. This combines a recently proposed

deterministic, analytically tractable transformation inspired by deep con-

volutional networks with a probabilistic graphical model. It creates a po-
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tentially powerful probabilistic tool to handle high-dimensional prediction

problems. Unlike previous work on hidden Markov wavelet trees, the use

of scattering transforms allow us to exploit their full range of invariances.

However, it also compels us to adapt the HMT model to non-homogeneous,

non-regular trees. In contrast to simply passing the raw scattering coeffi-

cients into a classifier, our proposed framework captures dependencies be-

tween different layers in a generative probabilistic model. Moreover, unlike

standard classification, once trained our model can tackle not only predic-

tion problems but also other inference tasks such as generation, sensitivity

analysis, etc and can also outperform SVMs when only a very small num-

ber of training examples are available.

Related work. When only a very small number of training samples are

available one-shot learning [79] generative classification methods achieve

significantly better results than discriminative models [61], however they

require pre-training. Generative probabilistic graphical models have been

successfully constructed for various wavelet transforms; in particular, Hid-

den Markov trees have been used to model the dependencies between the

wavelet coefficients [43, 57, 71].

Thesis structure

We begin by introducing some necessary concepts and notations in Part I.

This includes a brief introduction to signal representation with a focus on

elements used in the remainder of the thesis associated to some element

more specific to this work in Chapter 2 and probabilistic graphical models

in Chapter 3.

Part II – Flexible Variational Inference

Chapter 4 defines a new objective for variational inference. It defines a

new objective based on a flexible divergence measure family allowing more

complex approximation properties.
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Part III – Roof-Edge hidden Markov Random Field estimation

Chapter 5 provides one way of combining signal representation and prob-

abilistic graphical models to perform high dimensional signal analysis.

Those tools are used to perform image segmentation based on the local

value of the Hurst coefficient.

Part IV – Scattering Hidden Markov Tree

Chapter 6 introduces a novel method to combine scattering transform and

probabilistic graphical model to describe a signal. Chapter 7 extends that

framework from exact inference to approximate inference using the objec-

tive defined in Chapter 4.

Part V – Conclusions

We finally conclude, and discuss potential future work and recent develop-

ments related to this work.
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Background
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Chapter 2

Signal representation

This chapter introduces the need for signal representation step prior to per-

forming inference. We then review the desired properties of the operator

projecting the signal into that representational space. After reviewing some

classical representation operators, we introduce the scattering transform, a

representation operator that will be used later in the thesis.
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Let us consider the problem of inferring the value of a latent variable

y given the observed signal xnew. Though some of the frameworks detailed

in this documents are more general, we will mainly focus on signals such

that x = {x[1] . . . x[d]} with d ≈ 106, x[.] ∈ R and y ∈ N. Let us call f the

inference function and {xi, ŷi = f (xi)}i≤N the N sampled potentially noisy

training values. Example of such signals and latent variables are, speech

waveforms of different words, digital photographs of different objects but

also electrocardiograms of various heart states, sonar images of multiple

features and many others.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1: Example of high dimensional signals.
Left: Waveform of a flute recording.
Bottom: Image of a Mandrill.

A naive solution to this problem would be to infer the value of the

latent variables for a new realisation xnew by looking at its neighbours in

the signal space Rd. In essence this approach is similar to the K-Nearest

Neighbours (KNN) [26]. Though this type of methods are effective for

low-dimensional problems [9], they show limitations in high dimensional

cases [48]. Indeed, the number of samples required to find a neighbour

within a given distance to a new realisation xnew grows exponentially with

the number of dimensions. This issue is known in the statistical learning

community as the curse of dimensionality [120] and prevent the use of

neighbour based methods directly on high dimensional signals.
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One can assume the signal x to belong to a manifold, say Ω, of Rd.

This yields two types of problems. Either the subset Ω is low dimensional

or Ω is also high dimensional. In the former, one can mitigate the effect of

the curse of dimensionality once the manifold has been isolated. The task

at hand is thus a manifold learning problem [86, 119] or a sparse dictio-

nary representation problem [68]. For some signals however, the manifold

Ω is also expected to be of high dimensionality. In this case, in order to

simplify the inference task, one can only try to reduce the volume of the

signal space without losing the crucial information required to characterise

it. This can be achieved by reducing the volume of Ω along the invariants

in the input signal space [168]. In the remainder of the document we focus

on this latter case.

In the remainder of this chapter we focus on designing a mapping, say

Φ, which project the signal into a new space where the inference task is

simplified. This space should not only capture the main information and

discriminatory content in the data but it should also remain stable with

respect to appropriate transformations and deformations. Before provid-

ing a formal mathematical description of this mapping, it is instructive to

consider the following intuitive examples.

2.1 Intuition:
We here provide an intuition of the desired properties of what we will refer

as a “good” signal representation. To that end, it is informative to consider

the example of image classification. And more specifically to focus on the

elements ensuring good generalisation capacities. Using this approach,

one can intuit the following properties for the projection Φ:

• The projection has to maintain enough information to permit infer-
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ence. This means ensuring that Φ preserves separability between the

different clusters.

• The mapping also has to be — partially— invariant to translations.

Indeed, the information carried by a signal remains the same under

limited shifts (see Figure 2.2). This means the transformation Φ has

to provide close, if not equal, outputs for shifted versions of the same

signal.

Figure 2.2: The information contained in a signal is invariant to local translations.
Left: Original signal.
Bottom: Translated version of the signal containing the same informa-
tion.

• To some extent the mapping also has to be stable under deforma-

tions. Again, the information contained in a signal remains similar

if it has undergone —limited— deformations. Yet if the amplitude

of the morphings are too important with regard to the information

contained in the signal, then critical features of the signal can be lost

(see Figure 2.3). This implies that to a certain degree the projections

of morphed realisations of the same signal should be mapped to a

same region of the representational space. As opposed to translation,

however, one does not want complete invariance to deformation but

rather continuous response to it. This is to ensure that the repre-
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sentation created is still informative enough and does not project all

inputs to the same region of the space, but instead provide a smooth

response to deformations.

Figure 2.3: The information contained in a signal is stable to deformations limited
in amplitude.
Top Left: Original signal.
Top Right: Very lightly deformed version of the signal still containing
the same information.
Bottom Left: Lightly deformed version of the signal still containing
the same information.
Bottom Right: Highly deformed version of the signal. The information
is lost.

• Again to a certain degree, the projection has to be invariant to rota-

tions. Only limited invariance to rotation is wanted because excessive

rotation applied to the original signal can be destructive for the in-

formation carried (see Figure 2.4). Solutions based on the method

described in this document exist [130, 142]. The methods described

in Part IV do not incorporate this invariance but could directly be
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extended to do so.

Figure 2.4: The information contained in a signal is to a certain extend invariant
to rotation.
Top Left: Original signal.
Top Right: Lightly rotated version of the signal still containing the
same information.
Bottom Left: Highly rotated version of the signal. The information is
lost.

2.2 Formalisation:
Throughout this section, attention is restricted to signals represented by

square-integrable d-dimensional functions over the real numbers, namely

x ∈ L2(Rd). For sake of simplicity, inference is reduced to categorical vari-

able such that f is now a classification function. Let us define the function

g and h such that f = h ◦ g. The function g denotes the soft classification

function, i.e. g(x) ∈ RK where K is the dimension of the mapping space,

and represents the distance to the separating surface. The labelling func-

tion h is defined such that y = h ◦ g(x) is now the label associated to a
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signal x.

To be informative enough, a representation must preserve separability

between elements of different classes. This is encapsulated by the following

definition.

Definition 2.2.1. (Separability preservation)

A representation Φ preserves separability if all elements of two different classes

are distant of at least a margin C in the representation space,

∀x, x′ ∈ Rd ∃C ∈ RK s.t. h ◦ g(x) 6= h ◦ g(x′) ⇒ ‖Φ(x)−Φ(x′)‖ ≥ C−1

where K is the dimension of the mapping space.

Translations in the input space should not affect the representation. Let

L(.) denote the translation operator for the function in L2(Rd), i.e. for x ∈
L2(Rd) and u, c ∈Rd×Rd Lcx(u) = x(u− c). A mapping Φ is translation

invariant —respectively canonical translation— if it projects a translated

signal to the same point as its original version.

Definition 2.2.2. (Translation invariance)

Let H be an Hilbert space, an operator Φ : L2(Rd)→H is translation invariant

if:

∀c ∈ Rd and ∀x ∈ L2(Rd) Φ(Lcx) = Φ(x).

Definition 2.2.3. (Canonical translation invariant)

Let H be an Hilbert space, an operator Φ : L2(Rd)→H is canonical translation

invariant if:

∀x ∈ L2(Rd) Φ(Lax) = Φ(x) where a ∈ Rd is function of x.
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For the standard representation operators, instabilities to deformations

are known to appear —especially at high frequencies. To prevent this, one

would like the representation to be non-expansive.

Definition 2.2.4. (Non-expansive representation)

A representation Φ is non-expansive if,

∀x,x′ ∈ L2(Rd) ‖Φ(x)−Φ(x′)‖ ≤ ‖x− x′‖.

The local stability to deformations of a non-expansive operator can be

expressed as its Lipschitz continuity to the action of deformations close to

translations [168]. Such a diffeomorphism can be expressed as a canonical

translation,

Lτ : L2(Rd)→L2(Rd)

x → x((.)− τ(.))

where τ(u) ∈Rd is a displacement field — i.e. a transformation associating

a displacement vector to each point of the signal.

Definition 2.2.5. (Lipschitz continuous)

A non expansive operator Φ is said to be Lipschitz continuous to the action of

C2 diffeomorphisms if for any compact Ω ⊂ Rd there exists C such that for all

f ∈ L2(Rd) supported in Ω and all τ ∈ C2(Rd),

‖Φ(x)−Φ(Lτx)‖H ≤ C‖x‖
(

sup
u∈Rd
|∇τ(u)|+ sup

u∈Rd
|Hτ(u)|

)
(2.1)

where ∇τ(u) is a matrix whose norm |∇τ(u)| measures the deformation ampli-

tude at point u, Hτ(u) is the Hessian matrix of the deformation and its sup-norm

|Hτ(u)| measures the smoothness of the deformation.
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Hence such a Lipschitz continuous operator Φ is almost invariant to

deformations by τ(.), up to the first and second order deformation terms.

Equation 2.1 also implies that Φ is invariant to global translations but this

is already enforced by the translation invariance requirement from Defin-

ion 2.2.2.

This part and more precisely Section 2.3 introduces an analytically

tractable, deterministic wavelet based transformation fulfilling all the prop-

erties mentioned in this section.

2.2.1 State of the art:

A common representational method is the modulus of the Fourier trans-

form [21]. To a certain extent, this operator is informative enough to allow

discrimination between different types of signals [133]. It is also translation

invariant [7]. It is well-known, however, that those operators present insta-

bilities to deformation at high frequencies [14] and thus are not Lipschitz

continuous to the action of diffeomorphisms.

Another popular representation method is the wavelet transform [27].

Projection of a signal into the wavelet space also provides a representation

suitable for inference [52]. We define the wavelet operator by the following

set of convolutions,

Wx =

 x ∗ φ

x ∗ ψλ

 → averaging part

→ high frequency part

The averaging part expresses is obtained by convolving the signal with

a low frequency filter. By grouping high frequencies into dyadic packet,

wavelet operators are stable to —small— deformations [121]. However

only the averaging part of a wavelet is invariant to translation. Thus

wavelets themselves are known to be non-invariant to translations.
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Another popular signal representation method are the convolutional

neural networks [33]. As opposed to the two methods mentioned previ-

ously, those operators are not fixed but learned from the data [70]. Over the

past decade they have provided state of the art results on many standard

classification tasks, on image datasets such as MNIST [151], CIFAR [114]

and ImageNet [115] as well as on speech processing problems such as

TIMIT [111]. Those good results are used to advocate that those networks

are learning “good” representations. There is, however, no mathematical

formalisation of this intuition and it seems that in certain cases they learn

representation of the data that are, for example, not invariant to deforma-

tions [131, 137].

Figure 2.5: Convolutional neural network with 3 convolution/sub-sampling
layers and 3 fully connected layers. Image from [45].

2.3 Scattering transform
In this section we describe the construction of a mathematical operator

—the scattering transform (ST) [168]— designed to generate what we de-

fined earlier as an interesting representation of signal (see Section 2.2).

This operator projects the signal’s informative content into scattering de-

composition paths, computed by cascading wavelet/modulus operators

through an architecture similar to a Convolutional Neural Network (CNN)

where the synaptic weights would be given by a wavelet operator instead
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of learned.

The remainder of this chapter is organised as follows. First, Sec-

tion 2.3.1 defines the scattering operators. Second, Section 2.3.2 describes

how those operators can be stacked to create a Scattering Convolutional

Network (SCN), an architecture comparable to a fixed filter CNNs. Then

Section 2.3.3 reviews some important properties of the SCNs. And finally,

Section 2.3.7 presents how the scattering transform is usually used in clas-

sification tasks.

2.3.1 Scattering coefficients:

In this section we focus on the details involved to build an operator ful-

filling the properties defined in Section 2.2. As seen in Section 2.2.1,

the wavelet wavelet transform already possess some of those properties.

Furthermore it can be combined with simple mathematical operators to

acquire the missing desired properties.

A two-dimensional directional wavelet is obtained by scaling and ro-

tating a mother wavelet ψ acting as a single band-pass filter. Let G be a

discrete, finite rotation group of R2, multi-scale directional wavelet filters

are defined for any scale j ∈ Z and rotation r ∈ G by,

ψλ(u) = ψ2jr(u) = 22jψ(2jr−1u). (2.2)

To simplify the notations, we set λ = λ(j,r) d
= 2jr ∈ Λ d

=G×Z.

A bank of dilated and rotated filters — a wavelet bank of filters— is

obtained by simply evaluating Equation 2.2 for different values of λ ∈ Λ.

This bank of filter has no orthogonality properties amongst each other [50].

The wavelet transform projects the signal x into a representational space

using such a bank of filters yielding {x ∗ ψλ(u)}λ. This generates a multi-
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scales and multi-orientations representation of the input signal.

The Morlet wavelet is an example of Wavelet. The mother wavelet

ψmorlet is given by,

ψmorlet(u) = C1(eiu.ξ − C2)e‖u‖
2/2σ2

,

where C1, ξ and σ are meta-parameters of the wavelet and C2 is adjusted

so that
∫

ψ(u)du = 0. Figure 2.6 shows a Morlet wavelet for ξ = 3π/4,

σ = 0.85 and C1 = 1. The complete family is obtained by evaluating ψmorlet

at different scales and orientations as described in Equation 2.2.

Figure 2.6: Representation of the complex Morlet wavelet for ξ = 3π/4, σ = 0.85
and C1 = 1. Redrawn after [113].
Left: Real part of ψ.
Center: Imaginary part of ψ.
Right: Fourier modulus |ψ̂|.

As opposed to the Fourier sinusoidal waves, wavelets are operators

stable to local L2 deformations as they can be expressed as localised wave-

forms [50]. However, as wavelet transform computes a convolution with

a wavelet basis, the resulting transform is a translation covariant opera-

tor [121].

To make a translation covariant operator translation invariant, one can

introduce a non-linearity in the processing pipeline. However one need to
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make this non linearity such that it does not remove too much of the infor-

mation contained in the signal. To illustrate that issue, let us consider the

wavelet operator as the translation covariant operator and the integration

as the non linearity. For any signal x ∈ Rd, we get the following trivial

invariant, ∫
x ∗ ψλ(u)du = 0.

This is because by definition we have,
∫

ψλ(u)du = 0. This example il-

lustrate the fact that we need to be careful when selecting the non-linearity

to introduce in our processing pipeline to avoid removing critical informa-

tion content from the original signal.

Because the integral of a wavelet operator is known to generate pow-

erful descriptors [72], we want to use an integral based non-linearity. To

do so while preserving the informative character of the scattering operator,

one has to ensure a non-vanishing integral. A second operator M has to

be introduced such that
∫

M ◦ R(x) =
∫

M(x ∗ ψλ) 6= 0. If M was a linear

transformation commuting with translation then the integral would still

vanish. Hence one has to choose M among the non-linear operator family.

We also want the scattering transform to be stable to deformations.

This means we want to define M such that it commutes with deformations,

∀τ(u) , MLτ = Lτ M.

Adding a weak differentiability condition, Bruna [113] prove that M

must necessarily be a point-wise operator — i.e. M ◦ R(x(u)) only depends

on the value of x(u).
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Finally, by adding the L2(R2) stability constraint,

∀x,x′ ∈L2(R2), ‖M ◦R(x)‖= ‖x‖ and ‖M ◦R(x)−M ◦R(x′)‖≤ ‖x− x′‖,

Bruna [113] shows that necessarily,

M(R(x)) = eiα|R(x)|. (2.3)

The scattering transform is defined using Equation 2.3 under its sim-

plest form. That is α = 0, where it reduces down to the L1(R2) norms,

‖x ∗ ψλ‖1 =
∫
|x ∗ ψλ|du

The family of the L1(R2) normalised wavelets {‖x ∗ ψλ‖1}λ generates

a crude signal representation which measures the sparsity of the wavelet

coefficients.

We have now defined an operator that is both translation invariant and

stable to deformations. We need, however to make sure it is expressive and

does not discard critical information from the original signal. First, it can

be proven that the signal x can be reconstructed from {|x ∗ψλ(u)|}λ up to a

multiplicative constant [154]. As a direct consequence, we can say that the

information loss in {‖x ∗ ψλ‖1}λ occurs during the integration of the abso-

lute value |x ∗ ψλ(u)|. This integration does indeed removes all non-zero

frequencies. However those components can be recovered by calculating

the wavelet coefficients |x ∗ ψλ1 | ∗ ψλ2(u) of the new signal |x ∗ ψλ1 |. By

doing so their L1(R2) norms define a much larger family of invariants,

∀(λ1,λ2) ∈ (G×Z)× (G×Z) ‖|x ∗ ψλ1 | ∗ ψλ2‖1 =
∫
||x ∗ ψλ1(u)| ∗ ψλ2 |du.

One can generate more coefficients with wider translation invariance
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by further iterating on the “wavelet/modulus” operators. The building

block of such a model —the scattering propagator— is thus the absolute

value of the convolution between a wavelet and the input signal.

Definition 2.3.1. (Scattering propagator)

The scattering operator U for a given scale and orientation λ ∈ (G×Z) is defined

as the absolute value of the input convoluted with the wavelet operator at this scale

and orientation.

U[λ](x) d
= |x ∗ ψλ|.

Definition 2.3.2. (Path ordered scattering propagators)

Let ∀i ∈ J1,mK, λi ∈ G×Z. The sequence p = (λ1,λ2, . . . ,λm) defines a path of

length m — i.e. the ordered product of non-linear and non-commuting operators.

The p-ordered scattering propagator is defined as,

U [p]x d
=U[λm] . . .U[λ2]U[λ1](x)

= ||||x ∗ ψλ1 | ∗ ψλ2 | . . .| ∗ ψλm |.
(2.4)

With the convention: U [∅]x = x.

We can use the propagators defined in Equation 2.4, to provide a first

formal definition of the scattering coefficients.

Definition 2.3.3. (Scattering coefficient)

The scattering coefficient along the path p is defined as the integral of the p-ordered

scattering propagator, normalised by the response to a Dirac:

S̄[p](x) d
=µ−1

p

∫
U [p]x(u)du,

with,
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µp
d
=
∫
U [p]δ(u)du.

Section 2.3.3 shows that each scattering coefficient S̄[p](x) has the

properties listed in Section 2.2. It is invariant to translation of the input

signal x, Lipschitz continuous to deformations and yet still informative.

For inference tasks, however, one might want to compute localised

descriptors only invariant to translations smaller than a predefined scale 2J ,

while keeping the spatial variability at larger scales. This can be achieved

by localising the scattering integral with a scaled spatial window φ2J (u) =

2−2Jφ(2−2Ju). We thus define the windowed scattering transform.

Definition 2.3.4. (-Windowed- scattering coefficient of order m)

If p is a path of length m ∈N, the —windowed— scattering coefficient of order m

localised at scale 2J (J ∈N) is defined as:

SJ [p](x)
d
=U [p]x ∗ φ2J (u)

=
∫
U [p]x(v)φ2J (u− v)dv

= ||||x ∗ ψλ1 | ∗ ψλ2 | . . .| ∗ ψλm | ∗ φ2J (u),

With the convention: SJ [∅]x = x ∗ φ2J .

So to get invariance up to a given scale J ∈ N∗, let us define

UJ [P]
d
={UJ [p]}p∈P and SJ [P]

d
={SJ [p]}p∈P. They respectively define a fam-

ily of scattering propagators and a family of scattering coefficients indexed

by a set of paths P.

Note that in the remainder of this document, we will use, by default,

the windowed SC operator, unless stated otherwise. For the sake of reduc-
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ing the notation clutter we will refer to simply as the scattering operator.

2.3.2 Scattering Convolution Network

This section introduces the scattering convolution network. We choose

here to present it as an iterative process over a one-step operator. Similarly

to the convolutional neural networks [98], the scattering network is built

upon a building bloc comprised of a filtering followed by a non linearity.

Let us recursively build the scattering network. The first layer gathers

all the coefficients of order 0. This is SJ [∅]x = x ∗ φ2J . The m-th layer of

the scattering network is build by taking all the possible scattering co-

efficients of order m − 1. This is SJ [Pm−1] where Pm−1 is the set of all

the path of length exactly m − 1. To construct that layer from the pre-

vious ones, it is interesting to notice that for any given path p and an

orientation-scale pair λ, we have U[λ]U [p] = U [p + λ]. We also remind

that SJ [p](x)
d
=U [p]x ∗ φ2J (u). So we can iteratively compute the nodes of

the scattering network by first recursively computing the scattering prop-

agators for all length m up to the pre-determined maximum depth of the

network M. Then all the nodes value can be extracted by localising the

scattering propagators with a scaled spatial window. Figure 2.7 provides a

graphical representation of the scattering network.

In the end, the scattering network can be constructed by iteratively ap-

plying a bank of filters and non linearity to an input signal. Thus creating

an an architecture similar to a deep convolution network [98]. It has, how-

ever, some particularities. Standard CNNs project the signal by applying

a succession of convolution/pooling steps and extract the features used

for inference at the final layer. The scattering network however outputs

features at each layers (see Figure 2.7). Also, while convolutional neural

networks use kernel filters learned from the data with back-propagation
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algorithm, SCNs use a fixed wavelet filter bank.

It is interesting to take a closer look to the second layer of the SCN. The

coefficients of the second layer are defined as {|x ∗ ψλ| ∗ φ2J (u)}. Using the

DAISY approximation [104], one can recognise the SIFT coefficients [72],

SJ [2jr] = |x ∗ ψ2jr| ∗ φ2J (u), where ψ2jr is the partial derivative of a Gaussian

computed at the finest image scale 2j and for 8 different rotations r. The

averaging filter φ2J is a scaled Gaussian. So the second layer of the SCN is

equivalent to the SIFT filters. The difference with them is in the fact that

the information pipeline is iterated over to create more complex features.

U∅

x

SJ [∅]x = x ∗ φJ

U1

U [λ1]x = |x ∗ ψλ1
|

SJ [λ1]x = UJ [λ1]x ∗ φJ

U1,1

U [λ1, λ2]x = ||x ∗ ψλ1
| ∗ ψλ2

|

SJ [λ1, λ2]x
U1,2 U1,3

U2 U3

1

Figure 2.7: A scattering propagator UJ applied to a signal x computes each
U[λi]x = |x ∗ ψλi | and outputs S[∅]x = x ∗ φ2J . Applying UJ to each

U[λi]x computes all U[λi,λj]x and outputs Sj[λi] = U[λi] ∗ φ2J .
Applying iteratively UJ to each U[p]x outputs SJ [p]x = U[p]x ∗ φ2J

and computes the next path layer.

2.3.3 Properties of the scattering transform:

The scattering coefficient having been defined, one can be interested in

the characteristics of such a data representation. This section provides an

overview of some of the properties of the scattering transform. It also in-

troduces an approximation to the scattering convolution network defined

in the previous section, leading to computationally tractable networks.

Note. Formal proofs for most of those properties can be found in [168].
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2.3.4 Non-expansivity:

The path ordered scattering propagator UJ [p]x results of the composition of

an unitary wavelet transform WJ with a non-expansive modulus operator

—as ∀(a,b) ∈ C2||a| − |b|| ≤ |a− b|— and is thus also non-expansive. Since

the scattering transform SJ [PJ ] iterates on UJ , one can prove that SJ [PJ ] is

also non-expansive (proof adapted from [46]).

Proposition 1. (Non-expansive)

The scattering transform is non expansive.

∀x,x′ ∈ L2(Rd) ‖SJ [PJ ]x− SJ [PJ ]x′‖ ≤ ‖x− x′‖

2.3.5 Energy preservation:

Each scattering propagator U[λ]x = |x ∗ ψλ| captures the frequency energy

contained in the signal x over a frequency band covered by the Fourier

transform ψ̂λ and propagates this energy towards lower frequencies. It can

thus be proved that under some assumptions on the wavelet —admissible

wavelets—, the whole scattering energy ultimately reaches the minimum

frequency 2−J and is trapped by the low-pass filter φ2J . Thus the energy

propagated by a —windowed— scattering transform goes to 0 as the path

length increases, implying that ‖SJ [PJ ]‖ = ‖x‖

But prior to showing this, one must states the necessary assumptions

to be made on the wavelet used.

Note. The notation ˆ(.) is used to design the Fourier transform.

Definition 2.3.5. (Admissible scattering wavelet)

A scattering wavelet ψ is admissible if there exist η ∈Rd and ρ ∈ L2(Rd) positive,
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with |ρ̂(ω)| ≤ |φ̂(2ω)| and ρ̂(ω) = 0, such that the function,

Ψ̂(ω) = |ρ̂(ω− η)|2 −
+∞

∑
k=1

k(1− |ρ̂(2−k(ω− η)|2),

satisfies,

α = inf
1≤|ω|≤2

+∞

∑
j=−∞

∑
r∈G

Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2 > 0.

For an admissible wavelet one can prove that the scattering transform

conserves the energy of the signal.

Theorem 2.3.6. (Energy conservation)

If the scattering wavelet ψ is admissible, then for all signal x ∈ L2(Rd),

lim
m→+∞

‖U[Λm
J ]x‖2 = lim

m→+∞

+∞

∑
n=m
‖SJ [Λn

J ]x‖2 = 0,

and

‖SJ [PJ ]x‖2 = ‖x‖2.

The proof of the Theorem 2.3.6 also shows that the scattering en-

ergy propagates progressively towards lower frequencies and that the

energy of U [p]x is mainly concentrated along frequency decreasing paths

p = (λk)k≤m, i.e. for which |λk+1| ≤ |λk|. The energy contained in the other

paths is negligible and thus for the applications in this document only

frequency decreasing paths are considered.

Moreover, the decay of ∑+∞
n=m‖SJ [Λn

J ]x‖2 implies that there exist a path

length M > 0 after which all longer paths can be neglected. For signal

processing applications, this decay appears to be exponential. And for
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classification applications, paths of length M = 3 provides the most inter-

esting results [94, 106].

The restrictions stated above yield an easier parameterisation of a scat-

tering network. Indeed when only the frequency decreasing paths up to

a given order are considered, a scattering network is completely defined by:

• ψ: The admissible wavelet used. In the remainder of the document,

unless stated otherwise, the Morlet wavelet is used.

• M: The maximum path length considered.

• J: The finest scale level considered.

• L: The number of orientation considered, which can be defined as

the cardinality of the previously define ensemble G.

Hence for a given set of parameter (ψ, M, J, L), one can generate

one and only one frequency decreasing paths scattering network. Let

ST(ψ,M,J,L)(x) now denotes the frequency decreasing windowed scattering

convolutional network of parameter (ψ, M, J, L) evaluated for signal x. Each

node i of this network generates a -possibly empty- set of of nodes of size

(ji − 1)× L where ji is the scale of node i and L is the number of orienta-

tions considered. Finally the number of nodes O of this network is,

O =
M−1

∑
m=0

(
J
m

)
Lm (2.5)

and it has the architecture displayed by Figure 2.8.

Translation invariance:

The translation invariance of the scattering transform SJ [PJ ] can be proved

for a limit metric when J goes to infinity. To do so one can first prove
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U∅

x

SJ [∅]x = x ∗ φJ

U1

U [λ1]x = |x ∗ ψλ1
|

SJ [λ1]x = UJ [λ1]x ∗ φJ

U1,1

U [λ1, λ2]x = ||x ∗ ψλ1
| ∗ ψλ2

|

SJ [λ1, λ2]x
U1,2 U1,3

U2

U2,1 U2,2

U3

U3,1

U4

1

Figure 2.8: Frequency decreasing scattering convolution network with J = 4
scales, L = 1 orientation and M = 2 layers. A node i at scale ji

generates (ji − 1)× L nodes.

that the scattering distance ‖SJ [PJ ]x − SJ [PJ ]x′‖ converges when J goes

to infinity — as it is non-increasing when J increases (see Section 2.3.4).

From there one can bound the distance between the scattering transform of

the signal and the one of its translated version ‖SJ [PJ ]Lcx− SJ [PJ ]x‖ and

prove that this bound tends to 0 when J goes to infinity. This proves the

translation invariance.

Theorem 2.3.7. (Translation invariance)

For admissible scattering wavelets,

∀x ∈ L2(Rd), ∀c ∈ Rd lim
J→∞
‖SJ [PJ ]Lcx− SJ [PJ ]x‖ = 0

Lipschitz continuity to the action of diffeomorphisms:

The Lipschitz continuity to the action of diffeomorphisms of Rd can be

proved for deformations sufficiently close to translations. Such diffeo-

morphisms map u to u − τ(u) where τ(u) is a displacement field such

that ‖∇τ‖∞ < 1 —i.e. invertible transformations [121]. Let Lτx(u) =

x(u − τ(u)) denotes the action of such diffeomorphisms on the signal x.

Once again, one can find an upper bound to the distance between the

scattering transform of the signal and the one of its deformed version

‖SJ [PJ ]Lτx − SJ [PJ ]x‖. With a bit of work on this bound, one can then

proved that the consequences of the action of Lτ is bounded by a transla-
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tion term proportional to 2−J‖τ‖∞ and a deformation error proportional

to ‖∇τ‖∞. Finally some more work on the bounding term provides the

Lipschitz continuity.

Theorem 2.3.8. (Lipschitz continuity to the action of diffeomorphisms)

There exists C such that all x ∈ L(Rd) with ‖U[PJ ]x‖1 < ∞ and all τ ∈ C2(Rd)

with ‖∇τ‖∞ < 1
2 satisfy,

‖SJ [PJ ]Lτx− SJ [PJ ]x + τ.∇SJ [PJ ]x‖ ≤ C‖U[PJ ]x‖1K(τ), (2.6)

with

K(τ) = 2−2J‖τ‖2
∞ + ‖∇τ‖∞

(
max

(
log
‖∆τ‖∞

‖∇τ‖∞
,1
))

+ ‖Hτ‖∞.

Remark. If the case where 2J� ‖τ‖∞ and ‖∇τ‖∞ + ‖Hτ‖∞� 1, then K(τ)

becomes negligible and the displacement field τ(u) can be estimated at

each u ∈ Rd. This can be done by solving the linear equation resulting

from Equation 2.6 under the assumptions mentioned above,

∀p ∈ PJ‖SJ [p]Lτx− SJ [p]x + τ.∇SJ [p]x‖ ≈ 0.

This estimate of the displacement field can be used for many applica-

tions such as object tracking in video sequences or image sequence restora-

tion [35].

2.3.6 Extensions

In the previous sections we have introduced a signal projection operator

with local translation invariance, stability to deformations and yet still

expressive. Building upon that basic architecture of wavelet filter fol-

lowed by a non linearity, extensions of the scattering transform with extra

properties have been developed. The results in Chapter Chapter 6 and
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Chapter Chapter 7 can be, with little extra work, extended to those more

complex transforms.

Sifre and Mallat [130] develop an extension to the scattering network

offering partial rotation invariance to the projection operator. This extra

invariance offers more robustness for natural image classification. Oyallon

and Mallat [142] further improve and develop that concept.

Singh and Kingsbury [164] develop the scatternet. They follow

the same general architecture of wavelet transform/non linearity, but

use a parametric log transformation with Dual-Tree complex wavelets

(DTCW) [76]. Leveraging the invertibility of the DTCW, they design a in-

vertible projection.

2.3.7 Application to classification:

The scattering transform maps a given realisation of a high-dimensional

signal into an even higher-dimensional space where the classification task

is simplified due to the inherent properties described in the previous sec-

tion yielding easily separable data clusters in the “scattering” space.

The scattering transform has been successfully applied in classifica-

tion of a wild variety of signals such as audio signals [106], images [142] or

electrocardiograms [135] and in the vast majority —if not all— the classi-

fication task has been done using the features generated by the transform

of the dataset as inputs for a discriminative classifier, e.g. Support Vector

Machine classifier. The new input vector is obtained by concatenating the

scattering coefficients of all orders, scale and orientations into a unique 1-D

vector -for 2-D signal the scattering coefficients are also flattened. Lever-

aging the richness of the representation generated the scattering transform

combined to an SVM classifier provides performance comparable to those

of a -small- deep convolutional neural network [129]. This section proposes
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to test this framework on the handwritten digit dataset MNIST [151].

MNIST is composed of 28× 28 binary and centered images of hand-

written digits. The dataset is split into a training set of 50000 images and a

testing set of 10000 images and the task at hand is a 10 classes classification

problem.

Figure 2.9: Samples from the MNIST handwritten digits recognition dataset.

For this task the frequency decreasing scattering convolutional net-

work has M = 3 layers, breaking down the images into J = 3 scales and

L = 6 orientations. For each input image this networks generates 127 scat-

tering coefficients (see Equation 2.5) and thus yields a 99568 dimensional

feature vector (Number of scattering coefficients × image dimensions —

i.e. 127× 28× 28). The discriminative classifier used is a set of binary SVM

classifiers with a Gaussian radial basis function kernel [41]. This classifier

have two meta-parameters. γ defines how influential a single training ex-

ample is and C the trade off between misclassification of training examples

and simplicity of the decision surface. Those meta-parameters are fine-

tuned by cross-validation to C = 3 and γ = 0.0018.

Using this set-up, the trained model scores 99.47% accuracy on the

test set, i.e. 9947 true positive out of 10000 realisations. This accuracy is

of the same order of what can be obtained using a convolutional neural

network [90, 151]. For reference, when apply directly to the raw pixel a
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linear classifiers reachs near 88% accuracy [45]. The improvement provided

by the scattering network projection is a compeling argument for the need

of signal representation prior to inference.

This approach of classification have been used successfully for many

more applications but unfortunately it does not directly leverage the struc-

ture created by the scattering transform and the possible information con-

tained into it. Nor that it provides a generative models of the data, with

all the advantages encompassed (see Chapter 3). In Part IV, we focus on

building a generative model describing a scattering convolutional network.



Chapter 3

Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) offer an efficient framework to ex-

press joint distributions and conditional independencies. They rely on the

usage of a graph based representation of conditional dependence between

a set of random variables. Such graphs can then be used to encode a

complete distribution over a multi-dimensional space in a compact —or

factorised— manner. Probabilistic graphical models exist under many

forms but they can be split into two main families, the Bayesian Networks

(BNs) and the Markov models (MMs). Both families encompass the prop-

erties of factorisation and independence defined by the graph, but differ

when it comes to the specificities of the set of independence they can en-

code as well as the factorisation of the distribution that they can induce [77].

In Part IV, we will use a probabilistic graphical model to describe the

scattering network defined in Section 2.3.2. This chapter aims at providing

the necessary prior knowledge for this work. Note, however, that we do

not aim here at providing a complete overview of the probabilistic graph-

ical models field but rather at introducing some concepts that are used in

the remainder of this document. A reader further interested PGMs could

refer to Heckerman [44], [91] or Bishop [77] for a more complete introduc-

tion to those models.

This chapter introduces the two main classes of probabilistic graphical
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models. Section 3.1 focuses on Bayesian networks, while Section 3.2 pro-

vides more details about Markov models. Finally Section 3.3 introduces the

basics of the approximate inference method known as variational inference.

3.1 Bayesian Networks:

A BN is subclass of probabilistic graphical model where the set of random

variables and their conditional dependencies are expressed via a Directed

Acyclic Graph (DAG). Those models can be used to describe either con-

tinuous or discrete random variables as well as system governed by a mix

of those. The architecture of Bayesian Networks is further explained in

Section 3.1.1. Section 3.1.2 describes the inference mechanism for those

networks and Section 3.1.3 presents a brief overview of the learning mech-

anisms for BNs.

3.1.1 Architecture:

A BN is a graphical model encoding a joint probability distribution via a

DAG.

Definition 3.1.1. Bayesian Network

For a set of random variables R = {Ri}i∈J1,NK, a Bayesian network consists of a

direct acyclic graph G encoding a set of conditional independence assertions about

the random variables in R and a set P of local probability distribution associated

with each variable.

Each node of G encodes one of the random variable Ri and each edge Ei→j

represents the possible conditional dependence between nodes Ri and Rj.

Such networks encodes the conditional independence properties of the

distribution [47].

Proposition 2. (Conditional independence for Bayesian networks)

In a BN, each node of the graph is conditionally independent of all its nondescen-
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R1

R2 R3

R4 R5

R6

1

Figure 3.1: A simple Bayesian network.

dants in the graph given the value of all its parents.

P({Ri}i∈J1,NK) =
N

∏
i=1

P(Ri|Rρ(i))

where Rρ(i) are the parents of the node Ri.

As a direct consequence to Property 2, one can say that a node with

no parents is not conditioned on any other random variable considered. It

defines a prior probability.

Property 2 allows to simplify the computation of the joint probability

distribution represented by a Bayesian network. For example, for the net-

work defined in Figure 3.1, the joint distribution can be obtained using the

chain rule and theory on conditional independece,
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P(R1, R2, R3, R4, R5, R6)

= P(R6|R3, R4, R5)P(R1, R2, R3, R4, R5)

= P(R6|R3, R4, R5)P(R3|R1, R5)P(R4|R2)P(R5|R2)P(R1, R2)

= P(R6|R3, R4, R5)P(R3|R1, R5)P(R4|R2)P(R5|R2)P(R2|R1)P(R1).

This example shows how BNs offer a convenient way to encode inde-

pendence and an intuitive way to decompose the joint distributions.

3.1.2 Inference:

A Bayesian network encodes the full joint distribution of the studied ran-

dom variables. This knowledge can be used to perform several interesting

inference tasks among which are:

• Belief updating: Given some evidences —i.e. values for some nodes

of the network {Rj}j∈J where J is a subset of the graph— we compute

the probability associated with an unobserved variable,

R∗i = P(Ri|{Rj}j∈J). (3.1)

Ri such that the probability from Equation 3.1 is maximised defines

a prediction for this node. This is one of the advantages of belief

updating over other prediction methods, it can provide a probabilis-

tic prediction even when given incomplete observations —i.e. a set

{Rj}j∈J such that J ∪ {i} 6= R. Belief updating can be extended to the

prediction of a set of unobserved variables.

• Optimal decision: A probabilistic graphical model can be used to

express actions taken by an agent to modify the state of an uncertain
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world. In this case given some evidence {Rj}j∈J where J is a subset

of the graph G one is interested in finding the set of action {Ai}i∈A

where A is the set of all possible actions. To do so one also needs

a reward function Oi(Ai) expressing the outcome of the action Ai,

maximising the probability of the outcome ,

{A∗i }i∈A = argmax
A

P({Oi(Ai)}i∈A|{Ai}i∈A,{Rj}j∈J).

This type of inference is useful in Reinforcement learning framework

where one is interested in learning the optimal set of actions to com-

plete a task.

• Sensitivity analysis: Given some evidences —i.e. : values for some

nodes of the network {Rj}j∈J where J is a subset of the graph— used

for belief updating, one can be interested in assessing which among

those random variables has the most influence on the prediction qual-

ity. This means find,

∆∗k = argmax
k∈J

∆k

where ∆k defines the difference between the probabilities given the

full set of evidences and given the set minus the k-th evidence,

∆k = P(Ri|{Rj}j∈J)− P(Ri|{Rj}j∈J\{k}).

This type of inference can be useful in the case where the evidence is

expensive to collect, or when prediction has to be provided within a

certain time. Then the sensitivity analysis allows to focus the effort

into collecting/incorporating the most important piece of informa-

tion.
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3.1.3 Learning:

In most applications, the full characterisation of the BN is not provided but

has to be learned from a set of observations X = {xn}n∈J1,NK. One can split

the learning problem into two main categories:

• Learning the local probability distributions: In this case the structure

of the graph G is known and fixed before hand. It can be provided

by an expert (e.g. IBM trouble shooting system [65], disease diagnos-

tic [40]) or be imposed by some construction rules (e.g. Boltzmann

Machine [19], Restricted Boltzmann Machine [23] ...). The task at

hand is then to learn the parameters θ governing the local probability

distributions of the network.

• Learning the architecture and local probability distributions: In this

case the architecture of the network G has to be learned along side

with the local probability distributions’ parameters θ. This problem

is not developed in the rest of this document, but one could refer

to [69] for an introduction to the existing methods.

Leaving aside the case where the network architecture has to be

learned, the problem of learning the parameter of a Bayesian network can

again be split into two main categories.

Complete data:

In this case each training example of the set X contains the value of the full

set of random variable R of the graph. In such a case one can use methods

such as the Maximum Likelihood estimates where the parameters of the

network are selected to maximise the log-likelihood of the data given the

model,

θML = argmax
θ

log P(X|θ).
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Another common estimator used is the Maximum A Posteriori (MAP)

estimate where one maximise the posterior distribution of the network’s

parameters given the data,

θMAP = argmax
Θ

log P(θ|X) = argmax
θ

log(P(X|θ)P(θ)).

Incomplete data:

In this case each training example of the set X only contains the value of

some random variables {Ri} of the graph. In such a case one can use a two

steps iterative algorithm named the Expectation-Maximisation (EM) algo-

rithm [16]. The first step (Expectation) aims at estimating the values of the

unobserved random variables given the current estimate of the parameters

θ. The maximisation step aims at providing a ML estimate of θ once all

the variable are known or estimated. This procedure is described in more

details in Section 6.4.

3.2 Markov Models:

Markov models are a subclass of graphical models useful when it comes

to describing a system whose observations are randomly changing over an

event. The key assumption in those models is that the upcoming a node

only depends on a finite number of previous ones.

∀t ∈N P({Ok}k∈N) = P(Ot+1 | {Ok}k∈Jt−l,tK)

where l ∈ N characterised the number of past steps used to condition the

next observation. Most of the time, for sake of computational tractability as

well as because this constraint seems to be sufficient, the future observation

is assumed to be only dependent on the present one. This is called the

order-1 Markov dependence and can be expressed as,

∀t ∈N P(Ot+1 | {Ok}k∈N) = P(Ot+1 |Ot)
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Maybe the most famous class of Markov model is the Markov chain. It

has applications in finance (Brownian motion [54]), in Internet page rank-

ing (Google page rank [67]) or as a sampling procedure (Markov Chain

Monte-Carlo (MCMC) [74]). Those models are not covered in this docu-

ment but Kemeny and Snell [5] provides a good entry point to the field for

reader with further interests for Markov chains.

Another flavor of Markov models are the Hidden Markov Models

(HMMs) [8]. The remainder of this section is dedicated to providing a

general introduction to those models. While Section 3.2.1 formalises the

HMM modelling, Section 3.2.2 and Section 3.2.3 respectively describes the

inference mechanism and the learning method for HMMs.

3.2.1 Architecture:

An HMM is a stochastic finite automaton, where each hidden state gen-

erates —i.e. emits— an observation. Let Ot be the observation at step t

and Ht denotes the hidden state at this step. Let also Kt be the number of

possible states at step t such that Ht ∈ J1,KtK. The observations in an HMM

can be discrete, continuous or mixed.

The model’s parameters are:

• The initial state distribution π(i) = P(H0 = i) where π is a multino-

mial distribution.

• The transition model at step t, A(ij)
t = P(Ht+1 = j|Ht = i) where At is

a stochastic matrix.

• The emission model P(Ot|Ht). Usually the emission model is defined

by a parametric distribution governed by ρk,t. In the case of discrete

observations, it is defined by a multinomial distributions such that,

∀t ≥ 0 ∀(l,k) ∈ |Ot| × J1,KtK P(Ot = l|Ht = k) = Pρk,t(l).
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where |Ot| is the set of value for Ot. In the continuous case, the

observation model is a continuous parametric distribution such that,

∀t ≥ 0 ∀(l,k) ∈ Rdt × J1,KtK P(Ot = l|Ht = k) = Pρk,t(l).

where dt is the dimension of Ot.

A common simplification to those model is to assume stationarity.

This means stating that the transition matrices and observation models are

shared across steps.

3.2.2 Inference:

HMMs are probabilistic graphical models. Thus, by definition, they encode

the joint distribution of the system. They can be used to perform similar

inference tasks as those described in Section 3.1.2 for Bayesian networks,

with the difference that for HMMs, the values of the hidden states have to

be inferred prior to solving any specific request.

Inferring the value of the hidden states can be done using a MAP

estimate adapted to HMMs. The initial MAP algorithm is due to Viterbi

[10] and was originally designed to analyse Markov processes observed

in memory-less noise. Forney Jr [15] expressed this algorithm as being

equivalent to finding the shortest path in a graph with weighted edges.

Note. This procedure is described at length in the special case of hidden

Markov trees in Section 6.5 but this section aims at providing an informal

explanations on the methodology.

The observation behind Viterbi’s MAP algorithm for HMMs is that

for any state at step t, we can easily find a most likely path to this state.

Therefore, one can simplify the computation by replacing several paths
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converging to a given state at step t by simply the most likely one. Ap-

plying this method at each step of the model reduces the computation

complexity from O(Kt) to O(tK2).

3.2.3 Learning:

Learning the parameters of an HMM from data is somehow similar to

learning the parameters of a Bayesian network in the case of incomplete

data, as only parts of the nodes of an HMM are observed. Hence the

parameters of an HMM model can be learned using the offline maximum

likelihood (ML) estimation method known as the EM — or Baum-Welch—

algorithm [16].

Let {On
[1:T]}n∈J1,NK be a set of observed nodes of an HMM used as train-

ing set. The learning procedure would be straight forward if one had access

to the sequences of hidden state Hn
[0:T] for all n ∈ J1, NK. The ML estimate

of the transition matrix, for example, could be computed by normalising

the matrix of co-occurrences,

A(ij)
t,ML =

Ct(i, j)

∑K
k=1 Ct(i,k)

where

Ct(i, j) =
N

∑
n=1

1(Ht+1 = j, Ht = i)

and 1(event) is the binary indicator of occurrence of a event. The ini-

tial distribution and the observation model could be estimated in a similar

fashion.

However since Hn
[0:T] is hidden, one has to estimate the hidden states

prior to performing the ML update. The general idea of the EM-algorithm

is to estimate the hidden states given the observations using a variant of

the Maximum A Posteriori approach described in the previous section with
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the current set of parameters, which compute the corresponding expected

values of the hidden states given the observation. This is the Expectation

(E) step. Those estimated sequences of hidden states are then used to

update the parameters’ estimates. This is the Maximisation (M) step.

One can prove [12, 16] the convergence of this procedure toward a

—local— maximum of the likelihood.

3.3 Variational inference

As seen in the Section 3.1 and Section 3.2, the key to performing probabilis-

tic inference in graphical models reduces down to the task of computing

a conditional probability distribution over the values of the hidden nodes,

given the values of the observed ones. Using the notation defined in the

previous sections, this can be written,

P(H|O) =
P(H,O)

P(O)

Though exact inference algorithms exist [29, 32, 36] and can used in

practice (see Chapter 6 for an example of application). The problem at

hand, however, quickly becomes intractable when increasing the complex-

ity of the model. This calls for approximate inference method.

In that field two main paradigms exist. Markov Chain Monte-Carlo

(MCMC) [13, 24]. The basic idea behind MCMC is to construct an ergodic

Markov chain on the hidden variables H such that its stationary distribu-

tion is the posterior P(H|O). We sample from that chain to collect estimates

of the posterior. Finally, we use —part of — those samples to construct an

empirical estimate of the posterior. MCMC sampling is a well established

and yet still very active field of research [3, 13, 18, 138] and has successfully

been applied to Bayesian statistics [24].
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Some problems, however, are not easily suitable for this approach.

MCMC based methods show limitation in term of scalability to large

datasets and very complex models. Theoretically the MCMC method will

converge but it might be prohibitively slow. In these settings, variational

inference provides a good alternative approach to approximate Bayesian

inference.

Rather than setting the task as a sampling problem, variational infer-

ence posit the posterior estimation task as an optimisation problem. We

assume the densities over the latent variable lay in a family Q. And we use

as approximation the member of that family that minimise the variational

objective to the exact posterior,

q∗(H) = argmin
q(H)∈Q

D.(q(H), p(H|O)). (3.2)

Where the objective D. is a divergence measure [1, 4] and can be

modified to change the properties of the approximation (see Chapter 4).

However in its simplest form the variational objective is defined using the

Kullback-Leibler (KL) divergence [2]. In that case, the objective from Equa-

tion 3.2 can bewritten,

DKL(q(H), p(H|O)) = −
∫

q(h) log
p(H|O)

q(H)
dH (3.3)

This can be interpreted as an expectation taken with regard to q(H).

Equation 3.3 reveals a dependency of this objective on the intractable prob-

ability of the observation p(O) by expressing p(H|O) as p(H,O)/p(O).

One cannot directly minimise the objective defined in Equation 3.2 for the
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KL divergence. However, in Equation 3.3, one can notice that,

DKL(q(H), p(H|O))

= −
∫

q(H)

[
log

p(H,O)

p(O)
− logq(H)

]
dH

=
∫

q(H) logq(H)dH −
∫

q(H) log p(H,O)dH +
∫

q(H) log P(O)dH

= LKL(q(H), p(H,O)) + log p(O).
(3.4)

From Equation 3.4, we get,

log p(O) = DKL(q(H), p(H|O)) + LKL(q(H), p(H,O)),

where LKL(q(H), p(H,O)) defines the Evidence Lower BOund (ELBO)

for the Kullback-Leibler divergence and can be expressed as,

LKL(q(H), p(H,O)) =
∫

q(H) log
p(H,O)

q(H)
dH. (3.5)

We know log P(O) is constant and DKL(q(H), p(H|O))≥ 0, so minimis-

ing DKL(q(H), p(H|O)) is equivalent to maximising LKL(q(H), p(H,O)).

While optimising directly the KL-divergence is intractable, this equivalent

optimisation problem is tractible.

This optimisation of an ELBO rather than the true variational objective

is common in the VI literature and has been used to extend the objective

defined in Equation 3.5 to broader families of divergences (see Part II).

Despite being, by design, better suited to large datasets than MCMC

sampling in the recent years work as been done to allow VI to scale to

the dimension of modern datasets. To that end, general method such as

stochastic variational inference [123] have been developped. It allows the

fitting of variational posteriors without iterating over the complete dataset

at every step of the procedure but only on a subset. The quantity needed
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for the updates are estimated from the fraction of data observed.

In the remainder of this document we both improve the core theory of

variational inference and propose an application on a complex graphical

model. Chapter 4 defines a new variational objective to overcome some

weaknesses of the KL-objective. In Chapter 7, we use a variational ap-

proximation to simplify learning the parameter of the SHMT model (see

Chapter 6).
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Flexible Variational Inference

71





Chapter 4

Alpha-Beta variational Inference

This chapter introduces a variational approximation framework using di-

rect optimisation of what is known as the scale invariant Alpha-Beta diver-

gence (sAB divergence). This new objective encompasses most variational

objectives that use the Kullback-Leibler, the Rényi or the gamma diver-

gences. It also gives access to objective functions never exploited before

in the context of variational inference. This is achieved via two easy to

interpret control parameters, which allow for a smooth interpolation over

the divergence space while trading-off properties such as mass-covering of

a target distribution and robustness to outliers in the data. Furthermore,

the sAB variational objective can be optimised directly by re-purposing

existing methods for Monte Carlo computation of complex variational ob-

jectives, leading to estimates of the divergence instead of variational lower

bounds. We show the advantages of this objective on Bayesian models for

regression problems.
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Chapter outline

We propose here a variational objective to simultaneously trade-off effects

of mass-covering, spread and outlier robustness. This is done by devel-

oping a variational inference objective using an extended version of the

alpha-beta (AB) divergence [107], a family of divergence governed by two

parameters and covering many of the divergences already used for VI as

special cases. Section 4.1 provides further details on the motivation behind

that new objective. After reviewing some basic concepts of VI and some

useful divergences in Section 4.2, we extend it to what we will call the scale

invariant AB (sAB) divergence and explain the influence of each parameters

(see Section 4.3). In Section 4.4, we then develop a framework to perform

direct optimisation of the divergence measure which can leverage most of

the modern methods to ensure scalability of VI. Finally, in Section 4.5, we

demonstrate the interesting properties of the resulting approximation on

regression tasks with outliers.

4.1 Introduction

Modern probabilistic machine learning relies on complex models for which

the exact computation of the posterior distribution is intractable. This has

motivated the need for scalable and flexible approximation methods. Re-

search on this topic belongs mainly to two families, sampling based meth-

ods constructed around Markov Chain Monte Carlo (MCMC) approxima-

tions [73], or optimisation based approximations collectively known under

the name of variational inference (VI) [49]. In this chapter, we focus on the

latter, although with the aid of Monte Carlo methods.

The quality of the posterior approximation is a core question in varia-

tional inference. When using the KL-divergence [2] averaging with respect

to the approximate distribution, standard VI methods such as mean-field

underestimate the true variance of the target distribution. In this scenario,

such behaviour is sometimes known as mode-seeking [75]. On the other end,
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by (approximately) averaging over the target distribution as in Expectation-

Propagation, we might assign much mass to low-probability regions [75].

In an effort to smoothly interpolate between such behaviours, some recent

contributions have exploited parameterised families of divergences such as

the alpha-divergence [75, 112, 157], and the Rényi-divergence [158]. An-

other fundamental property of an approximation is its robustness to outliers.

To that end, divergences such as the beta [42] or the gamma-divergences

[84] have been developed and widely used in fields such as matrix factori-

sation [96, 108]. Recently, they have been used to develop a robust pseudo

variational inference method [162]. A cartoon depicting stylised examples

of these different types of behaviour is shown in Figure 4.1,

4.2 Background

This section briefly reviews the basis of variational inference (for a longer

introduction to the concept please refer to Section 3.3). It also introduces

some divergence measures which have been used before in the context of

VI, and which will be used as baselines in this chapter.

4.2.1 Variational Inference

We first review the variational inference method for posterior approxima-

tion, as typically required in Bayesian inference tasks. Unless stated oth-

erwise, the notation defined in this section will be used throughout this

chapter.

Let us consider a set of N i.i.d samples X = {xn}N
n=1 observed from

a probabilistic model p(x|θ) parameterised by a random variable θ that

is drawn from a prior p0(θ). Bayesian inference involves computing the

posterior distribution of the unknowns given the observations:

p(θ|X) = p0(θ)∏N
n=1 p(xn|θ)

p(X)

This posterior is in general intractable due to the normalising constant.
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Robustness Mass-covering

Efficiency Mode-seeking

Figure 4.1: Illustration of the robustness/efficiency properties (left) and mass-
covering/mode-seeking (right). The red region is a stylised repre-
sentation of a high probability region of a model approximated to fit
training data (blue points). Mass-covering and mode-seeking are well-
established concepts described by [75]. Efficiency refers to the ability of
capturing the correct distribution from data, including tail behaviour.
Robustness is defined here as the ability of ignoring points contami-
nated with noise that are judged not to be representative of test-time
behaviour if their probability is too small, according to a problem-
dependent notion of outliers.

The idea behind variational inference is to reduce the inference task to an

optimisation problem rather than an integration problem. To do so, it intro-

duces a probability distribution q(θ) from a tractable family Q, optimised

to approximate the true posterior to an acceptable standard. The approx-

imation is found by minimising a divergence D[q(θ)||p(θ|X)] between the

approximation and the true posterior. For the vast majority of divergences,

this objective remains intractable as it usually involves computing p(X). VI

circumvents the issue by considering the equivalent maximisation a lower-
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bound (“ELBO,” short for evidence lower-bound) of that objective,

LD(q,X,ϕ) ≡ log p(X|ϕ)− D(q(θ)||p(θ|X,ϕ)) (4.1)

where D(.||.) is a divergence measure and LD(.) denotes the objective

function associated with D.

4.2.2 Notable Divergences and their Families

A key component for successful variational inference lies in the choice of

the divergence metric used in Equation (4.1). A different divergence means

a different optimisation objective and results in the approximation having

different properties. Over the years, several have been proposed. The re-

view below here does not intend to be exhaustive, but focuses only on the

divergences of interest in the context of this document.

Arguably, the most famous divergence within the VI community is the

Kullback-Leibler divergence [49],

DKL(q||p) =
∫

q(θ) log
(

q(θ)
p(θ)

)
dθ. (4.2)

It offers a relatively simple to optimise objective. However, because the

KL-divergence considers the log-likelihood ratio q/p, it tends to penalise

more the region where q > p —i.e, for any given region over-estimating the

true posterior is penalised more than underestimating it. The approxima-

tion derived tends to poorly cover regions of small probability in the target

model [110] while focusing on a number of modes according to what is

allowed by the constraints of Q.

To mitigate this issue, efforts have been made to use broader fami-

lies of divergences, where one meta-parameter can be tuned to modify the

mass-covering behaviour of the approximation. In the context of variational

inference, the alpha-divergence [112] has been used to develop power EP

[75] and the black-box alpha divergence [157]. In this chapter, however, we
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focus on the Rényi divergence [6, 146] 1,

Dα
R(p||q) = 1

α− 1
log

∫
p(θ)αq(θ)1−αdθ, (4.3)

used in Rényi VI [158]. For this family, the meta-parameter α can

be used to control the influence granted to likelihood ratio p/q on the

objective in regions of over/under estimation. This flexibility has allowed

for improvements on traditional VI on complex models, by fine-tuning the

meta-parameter to the problem [155].

KL-divergence also suffers from the presence of outliers in the training

data [163]. To perform robust distribution approximation, families of di-

vergences such as the beta-divergence [42] have been developed and used

to define a pseudo variational objective [156]. Instead of solving the opti-

misation problem defined in Equation (4.1), they use a surrogate objective

function motivated by the beta-divergence. In this part, however, we focus

on the gamma-divergence [84],

Dβ
γ(p||q) = 1

β(β + 1)
log

∫
p(θ)β+1dθ

+
1

β + 1
log

∫
q(θ)β+1dθ − 1

β
log

∫
p(θ)q(θ)βdθ.

(4.4)

This family has a Pythagorean relation property [84], meaning that,

Dβ
γ(pε||q)− Dβ

γ(p||q) ≈ Dβ
γ(pε||p), (4.5)

where pε is a perturbated version of p such that their density are still

approximately similar. As direct consequence of Equation 4.5, one can say

that the parameter β controls how much importance is granted to small

perturbation in the target distribution. The upshot is that in the case the

data is contaminated with outliers — here interpreted as data points con-

taminated with noise, which are assumed to be spurious and must not be

1In this chapter we focus on divergences of the general form log
∫
(.). In Section 4.3.1,

we will see that this type of divergence allows to simplify the computation of the varia-
tional objective to something computationally tractable.



4.3. Scale invariant AB Divergence 79

covered by the model, although not easy to clean manually in multivari-

ate distributions — then the tail behaviour of the model will be compro-

mised2. If the divergence measure is not flexible enough, accommodating

outliers may have unintended effects elsewhere in the model. [162] pro-

pose a framework to use the gamma-divergences for pseudo VI. Here again

their method only proposes a pseudo-Bayesian variational updates where

the objective does not satisfy Equation (4.1). Despite that they obtain a

posterior robust to outliers.

As flexible as the divergences defined in Equations (4.3) and (4.4) are,

they control only either the mass-covering property or the robustness prop-

erty, respectively. The AB-divergence [107] allows for both properties to be

tuned independently, but to the best of our knowledge it has not yet been

used in the context of variational inference.

4.3 Scale invariant AB Divergence
In this section, we extend the definition of the scale invariant AB-

divergence [107] (sAB), as well as defining it for continuous distributions.

We also describe how it compares to other commonly used divergence mea-

sures.

4.3.1 A two degrees of freedom family of divergences

Under its simplest form, the AB-divergence cannot be used for variational

inference as it does not provide any computationally tractable form for the

loss function LAB(.) as defined in Equation (4.1) as one cannot isolate the

terms involving computing the marginal likelihood p(X). Detailed compu-

tations are available in Appendix .1. One could use the AB-divergence to

perform pseudo variational updates as described in [162]. However, in that

2The point being is that we should not focus on changing the model to accommodate
noise, which might not exist out-of-sample, but to change the estimator. The difference
between estimator and model is common in frequentist statistics, with the Bayesian coun-
terpart being less clear at the level of generating a posterior distribution. One could con-
sider a measurement error model that accounts for noise at training time, to be removed at
test time, for instance, at the cost of complicating inference. The estimator is considered,
in our context, as the choices made in the approximation to the posterior.
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case we would lose the guarantees of divergence minimisation. Consider

instead, as our primary divergence of interest, the scale invariant version

of the AB-divergence. This concept was briefly introduced by [107],

Dα,β
sAB(p||q) ≡ 1

β(α + β)
log

∫
p(θ)α+βdθ

+
1

α(α + β)
log

∫
q(θ)α+βdθ

− 1
αβ

log
∫

p(θ)αq(θ)βdθ,

(4.6)

for (α, β) ∈ R2 such that α 6= 0, β 6= 0 and α + β 6= 0. The diver-

gence from Equation 4.6 is called scale invariant as for all c1, c2 ∈ R∗+,

Dα,β
sAB(c1p||c2q) = Dα,β

sAB(p||q). This invariance property is valuable when

working with non normalised distributions.

4.3.2 Extension by continuity

In Equation (4.6), the sAB divergence is not defined on the complete R2

space. We extend this definition to cover all values (α, β) ∈ R2 for the

purpose of comparison with other known divergences, as shown in Equa-

tion( 4.7). Detailed computations are available in Appendix .2.
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Dα,β
sAB(p||q) ≡

1
αβ log (

∫
p(θ)α+βdθ)

α
α+β .(

∫
q(θ)α+βdθ)

β
α+β∫

p(θ)αq(θ)βdθ
,

for α 6= 0, β 6= 0,α + β 6= 0

1
α2

(
log
∫ ( p(θ)

q(θ)

)α
dθ −

∫
log
(

p(θ)
q(θ)

)α
dθ
)

,

for α = −β 6= 0

1
α2

(
log

∫
q(θ)αdθ∫
p(θ)αdθ

− α log
∫

q(θ)α log q(θ)
p(θ)dθ

)
,

for α 6= 0, β = 0

1
β2

(
log

∫
p(θ)βdθ∫
q(θ)βdθ

− β log
∫

p(θ)β log p(θ)
q(θ) dθ

)
,

for α = 0, β 6= 0

1
2

∫
(log p(θ)− logq(θ))2dθ, for α = 0, β = 0

(4.7)

For α = 0 or β = 0, the sAB-divergence reduces to a KL-divergence

scaled by a power term. For α = 0 and β = 0, we get a log-transformed

Euclidean distance [149]. As we will see in Section 4.4, the sAB-divergence

can be used in the variational inference context.

One can notice that the scale invariance property does not hold to the

limits. Even if desirable, this behavior is not critical for the rest of our

analysis. It is also interesting to note that the Rényi-divergence [6, 146] can

be obtained by applying the same transformation to the alpha-divergence,

similarly the gamma-divergence [84] is the transformed version of the beta-

divergence.

4.3.3 Special cases

In this section, we describe how some specific choice of parameters (α, β)

simplifies the sAB-divergence into some known divergences or families of

divergences.

When α = 0 and β = 1 the sAB-divergence reduces down to the

Kullback-Leibler divergence as defined in Equation (4.2). By symmetry,
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the reverse KL is obtained for α = 1 and β = 0.

More generally, when α + β = 1, Equation (4.7) becomes,

Dα+β=1
sAB (p||q) = 1

α(α− 1)
log

∫
p(θ)αq(θ)1−αdθ,

and the sAB-divergence is proportional to the Rényi-divergence defined in

Equation (4.3).

When α = 1 and β ∈ R, Equation (4.7) becomes

Dα=1,β
sAB (p||q) = 1

β(β + 1)
log

∫
p(θ)β+1dθ

+
1

β + 1
log

∫
q(θ)β+1dθ − 1

β
log

∫
p(θ)q(θ)βdθ.

and the sAB-divergence is equivalent to gamma-divergence.

A mapping of the (α, β) space is shown in Figure 4.2. To summarise,

the sAB-divergence allows smooth interpolation between many known di-

vergences.

4.3.4 Robustness of the divergence

To develop a better understanding on why using the sAB-divergence might

be good as a variational objective, we describe how the governing parame-

ters affect the optimisation problem for various divergences. Let us assume

here that the approximation q is a function of a vector of parameters ϕ. De-

tailed computations are available in Appendix .4.

Let us first consider as a baseline the usual KL-divergence DKL(q||p).
In that case, the optimal estimated parameter ϕ̂ is solution of,

d
dϕ

DKL(q||p) = −
∫ dq(θ)

dϕ

(
log

p(θ)
q(θ)

− 1
)

dθ = 0. (4.8)

The log-term in Equation (4.8) increases with the cost over-estimating

p and hence causes the underestimation of the posterior variance [110].

In order to gain more flexibility in the approximation behaviour, some



4.3. Scale invariant AB Divergence 83

α

β

Dα
R(p||q)

Dβ
γ (p||q)

DKL(p||q)

DKL(q||p)

∝ DHel(p||q)

DE(log p|| log q)

∝ Dχ2(p||q)

Figure 4.2: Mapping of the (α, β) space. The sAB-divergence reduces down to
many known divergences but also interpolates smoothly in between
them and cover a much broader spectrum than the Rényi or the
gamma-divergence. For (α, β) equals (0.5,0.5) and (2,−1) the sAB
divergence is proportional to respectively the Hellinger and the Chi-
square divergences. Detailed expressions for the divergences men-
tioned in that Figure are available in Appendix .3.

have suggested using broader families of divergences to formulate the vari-

ational objective. The Rényi divergence [158] is an example of such diver-

gence. The estimator ϕ̂ obtained with the Rényi divergence is a solution

of,

d
dϕ

Dα
R(q||p) = −

α

1− α

∫ dq(θ)
dϕ

(
p(θ)
q(θ)

)1−α
dθ∫

q(θ)α p(θ)1−αdθ
= 0. (4.9)

This simplifies to,

∫ dq(θ)
dϕ

(
p(θ)
q(θ)

)1−α

dθ = 0. (4.10)
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When using the Rényi-divergence as an objective, the influence of the

ratio of p/q is deformed by a factor α. This allows the practitioner to select

whether to emphasise the relative importance of the large ratios (i.e. set

α < 0) or on the small ones (i.e. set α > 0), thus going from respectively

mass-covering to mode-seeking behaviour. However this does not provide

any mechanism to handle outliers or rare events.

In the case of the gamma-divergence discussed by [162], the estimator

ϕ̂ is solution of,

d
dϕ

Dβ
γ(q||p) = −

1
β

∫ dq(θ)
dϕ q(θ)β p(θ)

q(θ) dθ∫
q(θ)β p(θ)dθ

−β

∫ dq(θ)
dϕ q(θ)βdθ∫
q(θ)β+1dθ

 = 0.

(4.11)

When using the gamma-divergence, the influence of the ratio p/q in

the gradient is weighted by the factor q(θ)β. For β < 1, its influence is

reduced for small values of q causing robustness to outliers. For β > 1,

the influence of ratios where q is large is reduced instead causing a focus

on outliers - i.e. an artificially increased influence of the low probability

events. By setting β to values slightly below 1, one can achieve robustness

to outliers whilst maintaining the efficiency of the objective [84].

Finally the sAB-divergence with regard to ϕ yields an estimator ϕ̂ so-

lution of,

d
dϕ

Dα,β
sAB(q||p) =

− 1
β


∫ dq(θ)

dϕ q(θ)α+β−1
(

p(θ)
q(θ)

)β
dθ∫

q(θ)α p(θ)βdθ

−αβ

∫ dq(θ)
dϕ q(θ)α+β−1dθ∫

q(θ)α+βdθ

 = 0.

(4.12)

The two meta-parameters of the sAB-divergence allow us to combine
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the effects of both the gamma and the Rényi divergences. All the terms

similar to Equation (4.11) are controlled by the parameter α + β − 1. For

the sake of clarity, in the reminder of the chapter we will use the expres-

sion λ = α + β and parameterised the AB divergence in terms of λ and β.

One can control the robustness of the objective by varying λ. By setting

it to small values below 2, one can achieve robustness to outliers while

maintaining the efficiency of the objective. The terms responsible for the

“mode-seeking” behaviour as seen in Equation (4.10) are here governed

by the term 1 − β. Thus for β > 1, one gets the objective to promote a

mass-covering behaviour. For β < 1, it promotes mode-seeking behaviour.

Figure 4.3 provides a visual explanation of the influence of each pa-

rameters.

In the remainder of the document, we will report the values used to

instantiate the sAB-divergence using λ = α + β instead of α to get a direct

understanding in terms of robustness and mass covering properties.

To further illustrate the flexibility offered by the two control parame-

ters of the sAB-divergence, Figure 4.4 shows the approximation q minimis-

ing DsAB(α, β)(q||p). Here p is set to be a mixture of two skewed unimodal

densities — a tall and narrow one combined with a short and wide density.

Density q is required to be a single (non skewed) Gaussian with arbitrary

mean and variance. The optimal solution is found by performing a greedy

search on the paramater space of θ — i.e. the mean and the variance of the

variational posterior.

The sAB divergence allows to smoothly tune the properties of the ob-

jective between “mass covering” and “robustness to outliers.” In this sense,

it is a richer objective than either the Rényi or the gamma divergences,

which can only affect respectively the “mass covering” or the “robustness”

properties.
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α

β

α+ β = 2

β = 1

1

1

Outliers focused
Downweights the ratios
p/q where q is large.

Robustness
Downweights the ratios
p/q where q is small.

Mass covering
Downweights the smaller ratios
p/q w.r.t. the larger ones.

Mode seeking
Downweights the bigger ratios
p/q w.r.t. the smaller ones.

Figure 4.3: Graphical illustration of the influence of the set control parameters
(α, β).The red line < α+ β = 2> shows the region where the robustness
factor q(θ)α+β−1 in Equation (4.12) is uniform. The blue line < β =
1 > shows the region where the ratio p/q in the mass-seeking term
(p(θ)/q(θ))β is constant and equal to that of the standard Kullback-
Leibler divergence.

4.4 sAB-divergence Variational Inference

In this section we present how the sAB-divergence can be used for approx-

imate inference.

Let us consider a posterior distribution of interest p(θ|X) as well as a

probability distribution q(θ) set to approximate the true posterior and let

us derive the associated sAB variational objective.

4.4.1 sAB Variational Objective

As seen in Section 4.2.1, the variational approximation is fitted by minimis-

ing the divergence between the true distribution and the approximated

posterior. Using the sAB-divergence defined in Equation (4.7) we get the
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Figure 4.4: Approximation of a mixture of 2 skewed densities p by a Gaussian q for
various parameters λ and β. λ < 2 causes the objective to be robust to
outliers, while λ > 2 increases their weight. β > 1 causes the objective
to have a mass-covering property, whilst β < 1 enforce mode-seeking.
Top Left: λ = 2.4, β = −1.0.
Top Right: λ = 2.4, β = 2.0.
Bottom Left: λ = 1.8, β = −1.0.
Bottom Right: λ = 1.8, β = 2.0.

following objective,

Dα,β
sAB(q(θ)||p(θ|X))

=
1

α(α + β)
logEq

[
p(θ,X)α+β

q(θ)

]
+

1
β(α + β)

logEq

[
q(θ)α+β−1

]
− 1

αβ
logEq

[
q(θ)α+β−1

(
p(θ,X)

q(θ)

)β
]

(4.13)

Details of the computation as well as the extension to the complete

domain of definition are detailed in Appendix .5. Note that we here

compute Dα,β
sAB(q(θ)||p(θ|X)) (as opposed to Dα,β

sAB(p(θ|X)||q(θ)) in Equa-

tion 4.6). We do so in order to match the direct KL optimisation objec-
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tive DKL(q(θ)||p(θ|X)) in standard VI. The scale invariant AB-divergence

between the true posterior and the variational approximation can be ex-

pressed as a sum of expectations with regard to the variational approxima-

tion. Usually in variational inference, the term corresponding the marginal

likelihood p(X) is dropped, so that the objective function is not the diver-

gence itself but an expression that can be interpreted as a lower bound

on the marginal likelihood, the ELBO. Here, we optimise directly on the

divergence itself as the terms involving the probability of the data p(X)

cancel each other. At least in principle, this provide a way of directly com-

paring different choices of q regarding the quality of their approximation.

This however does not mean that the computation of Equation (4.13) can

be done exactly, as we will resort to Monte Carlo approximations in the

next section. One have to keep in mind, however, that we will not leverage

MCMC-like methods. Simply perform expectations estimation using MC

sampling.

Equation (4.13) has three main components,

• The first term ensure the objective satisfies the properties of a diver-

gence. DsAB is always positive and it is equal to 0 if and only if p = q.

• The second element and the weighting of the ratio p(θ,X)/q(θ) in the

third element by q(θ)α+β−1 control the sensibility to outliers as seen

in Section 4.3.4, by setting λ = α + β to small values below 2, one can

achieve robustness to outliers whilst maintaining the efficiency of the

objective.

• The scaling on the ratio p(θ,X)/q(θ) by a power β in the last ele-

ment is similar to the bound objective of [158] and favours the mass-

covering property.

4.4.2 Optimisation framework

Unfortunately, in general the objective defined in Equation (4.13) still

remains intractable and further approximations need to be made. As ob-
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served in Section 4.3.3, the sAB-divergence has a form very similar to the

Rényi divergence, so we here use the same approximations as in [158].

However, theoretically this objective could be used with any optimisation

method as long we are able to compute p(θ,X) and q(θ) independently (i.e.

not computing the ratio of the two).

To simplify the computation of the objective, a simple Monte Carlo

(MC) method is deployed, which uses finite samples θk ∼ q(θ), k = 1, . . . , K

to approximate Dα,β
sAB ≈ D̂α,β,K

sAB ,

D̂α,β,K
sAB (q(.)||p(.|X))

=
1

α(α + β)
log

1
K

K

∑
k=1

p(θk,X)α+β

q(θk|X)

+
1

β(α + β)
log

1
K

K

∑
k=1

q(θk|X)α+β−1

− 1
αβ

log
1
K

K

∑
k=1

[
q(θk|X)α+β−1

(
p(θk,x)
q(θk|X)

)β
]

.

(4.14)

We also use the reparametrization trick [125], along with more robust

gradient descent based optimisation methods as explained in the next sec-

tion.

Equation 4.14 describe a complex optimisation objective, with poten-

tially high variance. Empirically, however, we observe that the variance

of the optimisation target is low enough to yield satisfying experimental

results for sensible values of the pair (α, β). Furthermore this variational

objective is, in essence, very similar to the Réni variational objective intro-

duced by Li and Turner [158] whose variance was also small enough even

with a reasonable number of samples.
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4.5 Experiments

To demonstrate the advantages of the sAB-divergence over a simpler objec-

tive, we use it to train variational models on regression tasks on both syn-

thetic and real dataset corrupted with outliers. The following experiments

have been implemented using tensorflow [152] and Edward [161] and the

code is publicly available at https://github.com/jbregli/edward/

tree/ab_divergence.

4.5.1 Regression on synthetic dataset

First, similarly to [162], we fit a Bayesian linear regression model [116] to

a two dimensional toy dataset where 5% of the data points are corrupted

and observe how the generalisation performances are affected for various

training objectives on a non corrupted test set. We use a fully factorised

Gaussian approximation to the true posterior q(θ). A detailed experimental

setup is provided in Appendix .6. In such a regression setup one could see

outliers as rare events not fitting the main trend of the data.

The mean of the predictive distributions for various values of (α, β)

are displayed in Figure 4.5 and Table 4.1. As expected, the network trained

with standard VI is highly sensitive to outliers and thus has poor predic-

tive abilities at test time, where contamination did not happen. On the

other end, when trained with (λ, β) = (1.8,0.8) —for this values the sAB-

divergence is equivalent to a gamma distribution set up to be robust to

outliers—, the predictive distribution ignores the corrupted values. More

complex behaviour can be obtained by tuning the values of the pair (α, β)

but only yield little improvement on such a simple problem.

4.5.2 Image classification with outliers

In this section we consider training a Bayesian Neural Network [117] for

multi-class classification on data where some training input have been

mislabelled. To do so we use MNIST [45] and randomly flip the label

associated to an input with probability p = 0.1. The objective here is not

https://github.com/jbregli/edward/tree/ab_divergence
https://github.com/jbregli/edward/tree/ab_divergence
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(λ, β) MAE MSE
(1,0,0.0) (KL) 0.58± 0.001 0.53± 0.003
(1.0,0.3) (Renyi) 0.58± 0.003 0.51± 0.007
(1.8,0.8) (Gamma) 0.34± 0.025 0.21± 0.030
(1.9,−0.3) (sAB) 0.34± 0.025 0.21± 0.030

Table 4.1: Average Mean Square Error and Mean Absolute Error over 40 regres-
sion experiments on the same toy dataset where the training data con-
tain a 5% proportion of corrupted values.

to reach a new state of the art accuracy on the non corrupted test set but

rather to show how careful selection of the meta-parameters (α, β) allows

to limit the drop in accuracy compared to the same model trained on non

corrupted data.

The network used here has one fully connected stochastic layer be-

tween the input and the output and reaches a baseline of 92.3% accuracy

when trained on without outliers using standard VI. The detailed results

can be observed in Table 4.2. As expected from the results in Section 4.3.4,

the KL objective does not cope well with outliers and we observe a huge

drop in performance when the same network is trained using partly mis-

labelled data. Exact accuracy figures are reported in Table 4.2. Again a

gamma-divergence —i.e. sAB objective with α = 1 and β ∈ R— provides

a good robustness to outliers. However even better testing accuracy can

be achieved, using an objective non described by one of the special cases

(i.e. (α, β) = (1.1,−0.3)) For some set of parameters the sAB-objective offers

classification accuracy much closer to the baseline.

4.5.3 UCI datasets regression

In this section, we show that cross validation can be used to fine-tune the

parameters (α, β) to outperform standard variational inference with a KL-

objective.

We use here a Bayesian neural network regression model [117] with

Gaussian likelihood on datasets collected from the UCI dataset repository
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Figure 4.5: Bayesian linear regression fitted to a dataset containing outliers using
several sAB objectives. The parameters α and β can be used to ensure
robustness to outliers.
Top Left: λ = 1.0 β = 0.0.
Top Right: λ = 1.0 β = 0.3.
Bottom Left: λ = 1.8 β = 0.8.
Bottom Right: λ = 1.9 β = −0.3.

[127]. We also artificially corrupt part of the outputs in the training data to

test the influence of outliers.

For all the experiments, we use a two-layers neural network with 50

hidden units with ReLUs activation functions. We use a fully factorised

Gaussian approximation to the true posterior q(θ). Independent standard

Gaussian priors are given to each of the network weights. The model is

optimised using ADAM [139] with learning rate of 0.01 and the standard

settings for the other parameters. We perform nested cross-validations [95]

where the inner validation is used to select the optimal parameters α and

β within the [−0.5,2.5]× [−1.5,1.5] (with step 0.25). Table 4.3 reports the

Root Mean Squared Error (RMSE) for the two best pairs (α, β) and for the

KL (i.e. (α, β) = (1,0)).

In the case of uncorrupted data, KL-divergence is often the best choice
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(α, β) poutliers accuracy
BASELINE (KL) 0% 92.30%
(1,0,0.0) (KL) 5% 90.11%
(1.3,−0.4) (sAB) 5% 90.32%
(1.3,−0.4) (sAB) 5% 90.29%
(1,0,0.0) (KL) 10% 83.08%
(0.6,0.4) (Renyi) 10% 83.18%
(1.3,−0.4) (Gamma) 10% 88.58%
(1.0,−0.3) (sAB) 10% 88.96%
(1.1,−0.3) (sAB) 10% 89.35%

Table 4.2: .
Classification accuracy of a one layer BNN trained on data corrupted by

poutliers% of mislabeled data points.

of objective though other set of values for (α, β) geared toward mode seek-

ing can yield comparable predictive performances. As expected when con-

taminated with outliers, a carefully selected set of parameters such that

α + β < 2 allows to achieve better generalisation performances on a non

corrupted test set compared to VI with KL. In most of the cases —with and

without outliers— the best test score is achieved with β < 1, corresponding

to a mode-seeking type of objective.

4.6 Conclusion

We introduced the extended sAB divergence and its associated variational

objective. This objective minimise directly the divergence and does not re-

quire to define an equivalent objective via a lower bound. Furthermore

this family of divergence covers most of the already known methods and

extend them into a more general framework which taps into the growing

literature of Monte Carlo methods for complex variational objectives. As

the resulting objective functions are not bounds, they provide a way of di-

rectly comparing different approximating posterior families. This flexibility

is, however coming at the price of a more complex and harder to optimise

objective. Successful approximation relies on the Monte Carlo error to be

not too difficult to control. Empirically we show that this is feasible for
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(α + β, β) RMSE
Boston housing - poutliers = 0%

(1,0,0.0) (KL) 0.99± 0.031
(1.0,0.25) (sAB) 1.01± 0.015
(0.0,−0.75) (sAB) 1.03± 0.021

Boston housing - poutliers = 10%
(1,0,0.0) (KL) 1.13± 0.043
(1.25,−0.5) (sAB) 1.07± 0.016
(1.75,−0.25) (sAB) 1.12± 0.029

Concrete - poutliers = 0%
(1,0,0.0) (KL) 1.01± 0.002
(1.0,−1.0) (sAB) 0.99± 0.001
(1.5,−0.5) (sAB) 1.02± 0.003

Concrete - poutliers = 10%
(1,0,0.0) (KL) 1.16± 0.002
(1.5,−0.25) (sAB) 1.07± 0.008
(1.25,−0.5) (sAB) 1.08± 0.003

Yacht - poutliers = 0%
(1,0,0.0) (KL) 0.98± 0.021
(1.0,0.5) (sAB) 1.00± 0.011
(1.0,−1.0) (sAB) 1.01± 0.003

Yacht - poutliers = 10%
(1,0,0.0) (KL) 1.09± 0.025
(1.25,−0.25) (sAB) 1.05± 0.011
(1.75,−0.5) (sAB) 1.06± 0.017

Table 4.3: Regression accuracy of a two layer Bayesian neural network trained on
datasets from the UCI bank of datasets with corrupted by poutliers%
training points. The flexibility offered by the sAB-objective allows us
to outperform KL-VI in most of the cases where there is noise contami-
nation.

sensible values of the pair (α, β).

We show that the two governing meta-parameters of the objective

allow to control independently the mass-covering character and the ro-

bustness of the approximation. Experimental results point out the interest

of this flexible objective over the already existing ones for data corrupted

with outliers. We also show that the variance of the Monte-Carlo estimate

of the objective is controlled and quickly becomes negligible with the num-

ber of samples.
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In Chapter 7, we will leverage the flexibility of the AB variational ob-

jective to fit complex graphical models to limited amount of datapoints.
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Chapter 5

Roof-Edge hidden Markov

Random Field

Semi-local Hurst estimation is considered by incorporating a Markov ran-

dom field model to constrain a wavelet-based pointwise Hurst estimator.

This results in an estimator which is able to exploit the spatial regular-

ities of a piecewise parametric varying Hurst parameter. The pointwise

estimates are jointly inferred along with the parametric form of the under-

lying Hurst function which characterises how the Hurst parameter varies

deterministically over the spatial support of the data. Unlike recent Hurst

regularisation methods, the proposed approach is flexible in that arbitrary

parametric forms can be considered and is extensible in as much as the

associated gradient descent algorithm can accommodate a broad class of

distributional assumptions without any significant modifications. The po-

tential benefits of the approach are illustrated with simulations of various

first-order polynomial forms. This shows that such a regularisation method

can be used to infer te value of a specific feature of the signal more robustly.
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5.1 Introduction

The Hurst parameter determines the spectral decay rate of a process with

a power-law spectrum. Since such a simple relationship is ubiquitous in

many signal and image processing areas and beyond [58, 63] Hurst estima-

tion continues to enjoy many, and disparate, applications including Finance

[126], signal/image denoising [83], clutter suppression [99], segmentation

[122], the analysis of ECG signals [124, 134], internet traffic flow [58], image

texture [53], and turbulence data [85]. Furthermore, following the work of

[99], one can use the Hurst coefficients to perform ripple suppression (see

Section 6.6.2) and improve the efficiency of mine detection systems.

The interconnection between wavelets and self-similar processes is a

powerful, if not, surprising one. The self-similarity explicitly built into the

wavelet basis functions via the two-scale, or refinement, relations provides

a natural representation in which to study processes that exhibit power-

law behaviour. However, the localised nature of wavelets also facilitates a

localised estimation of the Hurst parameter.

Although there are works, such as those based on the multifractal

formalism [82, 88], that describe how regularity varies across an image,

less attention has been paid to the case where the main interest is to ob-

tain pointwise estimates of a Hurst parameter that is allowed to vary as

a smooth, deterministic function. Such a scenario could, for example,

present itself in image processing when the texture of an object of interest

varies gradually over its spatial support in some assumed manner. In turn

this would facilitate tasks such as feature extraction, segmentation, and

change detection. Likewise, existing adaptive denoising methods, which

are currently based on a piecewise constant Hurst parameter [140], could

also be extended to include more general Hurst functions that vary as

piecewise parametric functions.
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Since it is reasonable to assume that an image of interest may com-

prise multiple textures, it is appropriate to consider a piecewise smoothly

varying Hurst parameter H = H(r), for r over some subregion of R2. Fur-

thermore, we let the way in which this Hurst function varies over space be

governed by some parametric form H = φ(r;θ) with model parameters θ.

We would expect these parameters to be fairly constant over certain subre-

gions of the image domain where the image texture is homogeneous. We

allow the spatial support to accommodate multiple textures with a suitable

partitioning of disjoint subregions. In each subregion, the θ are assumed

constant (or have very small, smooth variations). However, between sub-

region boundaries, it is allowed to change arbitrarily. As a consequence

the Hurst parameter itself will vary smoothly inside a partition and vary

arbitrarily across the respective subregions. We here propose a model

and inference scheme that exploits this piecewise parametric outlook. The

framework utilises a Markov random field prior to constrain, or penalise,

the magnitude of parameter variation over the image.

Spatial regularisation of Hurst estimation has been recently consid-

ered as a means to exploit prior knowledge about the spatial smoothness

of the Hurst parameter [140]. However, the method was based on the

generalised lasso and assumed only a piecewise constant varying Hurst

parameter. In contrast our model, and corresponding gradient-descent-

like algorithm, are more flexible. The framework can accommodate many

different kinds of distributional assumptions and arbitrary models that de-

scribe how the Hurst parameter varies deterministically in space. On the

other hand, the generalised lasso Hurst estimator simply penalises the `1-

norm of the Hurst parameter spatial derivatives (of some specified order).

Therefore, along with a fixed Gaussian assumption on the data, the spa-

tial derivatives of the Hurst parameter are assumed to be Laplacian and
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it is difficult to incorporate other distributional assumptions without mak-

ing wholesale changes to the inference scheme. Other assumptions would

necessitate a change in inference strategy (if one existed). Furthermore,

unlike the method proposed here, the lasso inference does not obtain any

estimate of the underlying parametric form of the Hurst ‘function’ [64].

In Section 5.2 we present the requisite background of wavelet-based

Hurst estimation and Li’s piecewise (roof-edge) parameterised Markov ran-

dom field model [62]. We fuse these two concepts in Section 5.3, propose

our parameterised MRF Hurst estimation framework, and describe the in-

ferential machinery. In Section 5.4 we perform estimation on a selection

of simulated imagery where the Hurst parameter is varied according to

several first-order polynomial forms. Each one manifests unique roof-like

edges in the Hurst parameter and presents different challenges to the esti-

mators. We draw conclusions in Section 5.5.

5.2 Background

The Hurst parameter controls the spectral slope of a self-similar stochas-

tic process which obeys a power-law relationship. Myriad estimation ap-

proaches exist [63]. We here follow the popular wavelet-based framework

[59].

5.2.1 Wavelet-based Hurst estimation

Consider a stochastic field z defined on a subregion of R2 with weak

statistical self-similarity namely Ez(λ·) = λHEz and Ez(λr)z(λ·) =

λ2HEz(r)z(·). Then, it is well known (see e.g. [100]), that

E
∣∣(Wz)(· ;k,α)

∣∣2 ∝ 22k(H+1) (5.1)

where W is the wavelet transform operator defined by (Wz)(r;k,α) :=

2−k〈z,ψα(2−k · −r)
〉
, with wavelet ψ defined over space r, orientation α,

and kth finest scale level.



5.2. Background 103

In practice the expectation in Equation (5.1) is approximated by the

sample second moment of the wavelet coefficients magnitudes. When the

Hurst parameter varies over space it is still possible to estimate the slope

by simply using the squared magnitude of the wavelet coefficients. This

pointwise estimate, Ek,α(·) :=
∣∣(Wz)(· ;k,α)

∣∣2, approximately satisfies the

power-law, namely Ek,α ∼ 22k(Hα(r)+1). Estimation of H is then performed

by taking the log of both sides and regressing the log wavelet magnitude

on scale. The Hurst parameter is then easily obtained from the slope of

the regression line. Generally, H can also vary with orientation too. In this

case, one can perform separate regressions in each direction as appropri-

ate (cf. [99, 128]). Alternatively, if we assume that the Hurst parameter is

isotropic there are two main options. Firstly, one could perform separate

regressions over the different orientations and then compute the average.

Secondly, one could perform one regression over the orientation -averaged

wavelet magnitude. As such, without loss of generality, we can drop any

orientation notation and write the log wavelet magnitudes about the spa-

tial location ri as γk[i] where i ∈ I simply indexes the spatial locations or

‘sites’ in Markov random field modelling parlance. This furnishes the set

of equations γ[i] = Aβ[i], with

γ[i] =


γk− [i]

...

γk+ [i]

 , A =


1 k−
...

...

1 k+

 , β[i] =

 β1[i]

β2[i]

 ,

where only the k−th to the k+th finest wavelet scale levels are used— the

coarsest levels will give poor spatial location and the finest levels will typi-

cally have low signal-to-noise ratio. Solving in the least-squares sense gives

the ordinary least squares (OLS) estimate

β̂[i] := argmin
∥∥γ[i]−Aβ[i]

∥∥
2 = (A>A)−1A>γ[i],

and then the estimate of the Hurst parameter can be recovered from the
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second element of the β vector, namely Ĥ(ri) = (β̂2[i]/2− 1).

5.2.2 Roof edge model

The roof edge model was introduced by Li [62] as a means to recover piece-

wise planar surfaces from noisy observations. Assuming that the parame-

ters of the underlying true surface are the same, or similar, over contigu-

ous regions of the spatial domain, a Markov random field prior can be

introduced to aid inference. This introduces the notion of a Markovian

label field f = { f1, . . . fm} with the property that, conditioned on its neigh-

bours, the field at a site is conditionally independent of all other sites.

This allows us to write the full conditional of f as the local conditional:

P( fi| f−i) = P( fi| fIi).

As a consequence of the Hammersley-Clifford Theorem, the joint prior

takes the form P( f ) ∝ exp(−U( f )). The prior energy term U( f ) therefore

determines the manner in which spatially incoherent label configurations

are penalised. Given observations d, this is counter-balanced to some extent

by the likelihood energy U(d| f ). By Bayes rule the posterior P( f |d) has

(posterior) energy U( f |d) = U(d| f ) + U( f ). Observations are assumed to

follow some parametric surface, corrupted by noise di := φ(ri;θi) + εi but

where the underlying labels of the parameters θi satisfy the Markov model.

For our problem we exploit this to impose piecewise smooth constraints

on the Hurst function model parameters θi and, as a consequence, on the

Hurst parameter itself. In Li’s basic roof edge model, φ(ri;θi) := θ>i ρi, with

θ>i := (θ0[i],θ1[i],θ2[i]), and ρ>i := (1, xi,yi) but higher-order polynomials

can easily be accommodated.

Given data d, the distributional assumptions of ε (i.e. the likeli-

hood), and our prior model of the underlying configuration label field

(the prior), the goal then is to estimate the maximum a posteriori, namely

f ∗ = argmin f U( f |d).



5.3. Parameterised MRF Hurst estimation 105

5.3 Parameterised MRF Hurst estimation

We assume that the Hurst parameter varies as a piecewise parametric func-

tion. The parameters which describe how H varies are therefore assumed

to change little within a given subregion. However, the parameters may

change at the boundaries between subregions. We therefore introduce a

Markov random (label) field to assign sites and model parameters to la-

bels.

5.3.1 Markov random field model

The ordinary least squares estimate β̂[i] = (A>A)−1A>γ[i] gives rise to a

‘noisy’ version of the true value of β, namely β̂[i] = β[i] + ε[i]. For nota-

tional convenience, and without generality, denote the observed spectral

log-slope (i.e. β̂2[i]) as β̂[i]. Assume that the true spectral slope follows

some parametric model: β[i] = φ(ri;θi), where ri = (xi,yi) determines pixel

location and where θi denotes the parameters of β. Then, assuming that

the noise is iid Gaussian 1 εi
iid∼N (0,σ2) we have the likelihood energy

U(β̂| f ) = λ∑
i∈I

(
β̂[i]− φ(ri;θi)

)2 (5.2)

Exploiting the Markov structure of the label field, we use a prior energy

function of the same form as Li [34, 62]:

U( f ) = ∑
i∈I

∑
i′∈Ii

g
(∥∥W(θi − θi′)

∥∥
2

)
,

where Ii is the neighbourhood of site i and the diagonal weight matrix W

provides the option to penalise the lack of smoothness of each parameter to

different degrees. Li [34] describe the conditions that g has to satisfy. The

key to edge preserving property is to define a g such that limz→∞g(z) = C

where C is a constant greater or equal to 0. We chooseg(z) = ln(1+ z2). The

1Strictly speaking there exists a small bias term due to non-linearities introduced by
the log function [58] but we neglect them here and leave such considerations as further
work
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choice of φ determines the complexity with which the underlying Hurst

parameter is assumed to vary. In contrast to the work of Nafornita et

al [140], who considered a piecewise constant Hurst, we here consider a

Hurst parameter which varies as a piecewise order-1 polynomial. However,

it should be noted that higher-order terms can easily be accommodated by

recalling that φ(ri;θi) = θ>i ρi and noting that the vectors ρi and θi can be

extended accordingly. For example higher order products (xp0yp1)p0,p1 can

be concatenated on to the vector ρi for suitable ranges of p0 and p1.

In that model one can think of β as a feature extracted from the pre-

processing of the original data. We then craft a HMRF roof-edge model for

this specific feature.

5.3.2 Inference

Given the least-squares estimate of the Hurst parameter and the Markov

random field roof-edge piecewise parametric model, we find the Maximum

A Posteriori (MAP) solution to the problem, namely

U( f |β̂) := U(β̂| f ) + U( f ).

This is an unconstrained optimization problem and can be solved using a

gradient-descent-like algorithm. The derivatives with respect to the model

parameters can be expressed analytically as

1
2

∂U( f |β̂)
∂θi

= −λ
(

β̂[i]− φ(ri;θi)
)

ρi

+ ∑
i′∈Ii

g′
(∥∥W(θi − θi′)

∥∥
2

)
W(θi − θi′),

where g′ is the derivative of g with regard to its parameters. In our im-

plementation we use the unconstrained version of the BFGS algorithm pro-

posed by Yuan [25] instead of a simple gradient descent. It is a varia-

tion of second order newton’s method where the Hessian matrix is esti-
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mated rather than computed at every steps. The optimization procedure

is detailed in Algorithm 1. Therein, for a given step `, we define θ(`) :=(
θ
(`)
i
)m

i=1 ∈R3×m, ρ(`) :=
(
ρ
(`)
i
)m

i=1 ∈R3×m, B(`) :=
(
B(`)[i]

)m
i=1 ∈R3×3×m and

where the products between the elements are defined pixel-wise, namely:

θ>(`)ρ
(`) =

(
θ
(`)>
i ρ

(`)
i
)m

i=1 and m is the number of pixels, or sites.

The meta-parameter λ in Equation (5.2) is used to control the impor-

tance of the likelihood over the prior. The weights in the diagonal matrix

allows variable emphasis to be placed on each of the model parameters θi.

Meta-parameters:
λ, W
Initialization:
` = 0 and B(0)[i] = I3 ∀i ∈ J1,mK
while convergence do

- Descent direction:
p(`) = −B−1

(`)
∇U( f |β̂(`))

- Optimal step in the direction p(`):
µ(`) = argminµ∈R

[
U( f |(θ(`) + µp(`))>ρ)

]
θ(`+1) = θ(`) + µ(`)p(`)

β̂(`+1) = θ(`)>ρ
- Hessian matrix estimate:
η(`) =∇U( f |β̂(`+1))−∇U( f |β̂(`))

B(`+1)=B(`) +
η(`)η(`)>

µ(`)η(`)>p(`)
−

B(`)p(`)p(`)>B(`)

p(`)>B(`)p(`)

l = l + 1
end

Algorithm 1: Minimization of the posterior energy

5.4 Experiments
Experiments were carried out to test the utility of the proposed method

for scenarios where the Hurst parameter varied as a first-order polynomial

surface. In particular, the behaviour of the estimator was investigated when

H varied as a selection of different roof-edge-like functions. These might

model the way in which a texture becomes gradually smoother or rougher
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Table 5.1: Mean absolute error (and standard deviation) of the OLS and MRF
Hurst estimators

Type OLS MRF
1 0.2145 (0.1502) 0.1335 (0.0955)
2 0.1906 (0.1355) 0.1330 (0.0983)
3 0.1874 (0.1376) 0.1286 (0.1038)
4 0.1495 (0.1174) 0.1117 (0.0928)

in space. The second column of Figures (5.1, 5.2, 5.3, 5.4) illustrates the

different roof-edge shapes. For simplicity, we let H vary as a function of its

`∞-norm distance from the centre of the image, namely H(r) = h(‖r‖). The

function h is a projection of the Hurst values onto the `∞-ball; we shall refer

to it as the Hurst signature. The signatures of the four different roof-types

are plotted in the first column of Figures (5.1, 5.2, 5.3, 5.4).

5.4.1 Simulation

The data was synthesised by adapting the incremental Fourier synthesis

approach of Kaplan and Kuo [37], as implemented in the Fraclab toolbox

[144]. We partition the spatial domain into disjoint `∞ tori: I[j] := {i ∈
I : ‖ri‖∞ ∈ [j∆r, (j + 1)∆r)}. Then, fractional Brownian surfaces are simu-

lated which have a Hurst parameter of h(j∆r) on the region I[j] and which

take zero values elsewhere (and which all have the same global white noise

driving process). Finally, the surfaces are simply summed over all j. The

result is a fractional Brownian surface with a piecewise, order-one polyno-

mial, varying Hurst parameter.

5.4.2 Hurst estimation

Hurst estimation was performed on the four image types ‘Hip’, ‘Pavillion’,

‘Gambrel’, and ‘Bonnet’ illustrated in Figures (5.1, 5.2, 5.3, 5.4). Ordinary

least-squares estimates were used as a baseline for our proposed MRF-

based approach although we note that a direct comparison is not neces-

sarily fair as we were free to select an optimal value of λ in our approach
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Figure 5.1: Indicative Hurst estimates of the ‘Hip‘ fractional Brownian surfaces.
Top Left: True Hurst projected onto `∞ ball
Top Right: Spatial map of true Hurst.
Bottom Left: Ordinary Least Square
Bottom Right: Markov Random Field regularisation.

to balance the effects of the prior and likelihood functions. Nevertheless,

the comparison does offer some intuition as to some of the advantages

that one might buy from the addition of an extra parameter. For exam-

ple, the bottom left and right plots of Figures (5.1, 5.2, 5.3, 5.4) depict the

Hurst parameter estimates from the OLS and MRF methods, respectively.

The spatial regularisation, or smoothing, effect of the MRF method can be

clearly seen for all edge types.

Experiments were performed over 100 instances of each of the edge

types. The value of λ was chosen by testing over a smaller subset of data as

0.001 in all cases. For simplicity, we used equal weights: W = I. The mean

absolute errors are listed in Table (5.1) and the error histograms are plotted

in Figure (5.6). The advantage of exploiting the spatial smoothness of the

Hurst parameter is evident. However, this advantage is not as marked in

the ‘Bonnet’ image. The reason for this can be seen by inspecting the error
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Figure 5.2: Indicative Hurst estimates of the ”Pavillon” fractional Brownian sur-
faces.
Top Left: True Hurst projected onto `∞ ball
Top Right: Spatial map of true Hurst.
Bottom Left: Ordinary Least Square
Bottom Right: Markov Random Field regularisation.

as a function of the Hurst signature— i.e. the distance from the centre as

measured by the `∞-norm. We see, in Figure (5.5), that the MRF method’s

tendency to smooth the edge features somewhat is more pronounced when

the edge is sharp or concave. Nevertheless, MRF still holds an advantage

here because the OLS method overshoots the edge point. For convex ridge

shapes, the advantage becomes significant.

5.5 Conclusion

A piecewise parameterised Markov random field was introduced to jointly

estimate a spatially regularised pointwise Hurst parameter and the model

parameters which govern how it varies over the spatial support. The model

is flexible in that the model can easily accommodate other likelihood or

prior assumptions without any significant changes in the gradient-descent-
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Figure 5.3: Indicative Hurst estimates of the ”Grambrel” fractional Brownian sur-
faces.
Top Left: True Hurst projected onto `∞ ball
Top Right: Spatial map of true Hurst.
Bottom Left: Ordinary Least Square
Bottom Right: Markov Random Field regularisation.

like inferential machinery. Experiments confirm that the introduction of

the Markov random field prior successfully furnishes spatially regularised

Hurst estimates with more accuracy than ordinary least squares although

this advantage is tempered somewhat when the Hurst function displays

concave ridge shapes.
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Figure 5.4: Indicative Hurst estimates of the ”Bonnet” fractional Brownian sur-
faces.
Top Left: True Hurst projected onto `∞ ball
Top Right: Spatial map of true Hurst.
Bottom Left: Ordinary Least Square.
Bottom Right: Markov Random Field regularisation.



5.5. Conclusion 113

Figure 5.5: Mean Hurst estimates of the four fractional Brownian surfaces pro-
jected onto the `∞ ball. the shaded error bars indicate the upper- and
lower-quantiles over all experiments and pixel estimates.
top left: ‘hip‘ profile.
top right: ‘pavillon‘profile.
bottom left: ‘gambrel’ profile.
bottom right: ‘bonnet’ profile.
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Figure 5.6: Absolute error histograms for the OLS and MRF Hurst estimates over
100 instances of each roof-edge type.
top left: True Hurst projected onto `∞ ball.
top right: Spatial MAP of the true Hurst.
bottom left: Ordinary Least Square.
bottom right: Markov Random Field regularisation.
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Chapter 6

Scattering Hidden Markov Tree

In this chapter we combine the rich, overcomplete signal representation

afforded by the scattering transform together with a probabilistic graphi-

cal model which captures hierarchical dependencies between coefficients

at different layers. The wavelet scattering network result in a high-

dimensional representation which is translation invariant and stable to

deformations whilst preserving informative content. Such properties are

achieved by cascading wavelet transform convolutions with non-linear

modulus and averaging operators. The network structure and its distribu-

tions are described using a Hidden Markov Tree. This yields a generative

model for high-dimensional inference and offers a means to perform var-

ious inference tasks such as prediction. Our proposed scattering hidden

Markov tree displays promising results on classification tasks of complex

images in the challenging case where the number of training examples is

extremely small.
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Chapter outline

In this chapter we introduce the Scattering Hidden Markov Tree, a Bayesian

modeling of the Scattering Convolutional network introduced in Sec-

tion 2.3. In Section 6.1, we provide more detailled motivation for such

a model. Section 6.2 introduces some related works. In Section 6.3, we

provide a first description of our proposed SHMT model and details the

hypothesis needed to develop this model as well as provides some justifi-

cations on their validity. We detail the learning and inference algorithms in

Section 6.4 and Section 6.5 respectively. Finally Section 6.6 provides some

experimental results using our proposed model.

6.1 Introduction

In Section 2.3.7 we have described how the scattering network could be

used combined with a support vector machine classifier to achieve com-

petitive classification performance. This approach, however, only provides

a Boolean label for each class. Methods to express the output of an SVM as

a probability exists [51]. This method is, however, not widely accepted as

a true probabilistic approach and shows some theoretical limitations [109].

If one is interested in a true probabilistic model to describe the scattering

coefficients, it is quite natural to try expressing them as a probabilistic

graphical model. Indeed if one ignores the propagation step from the scat-

tering transform (see Section 2.3.2) the scattering network defines the tree

structure displayed in Figure 6.1.

To simplify notations in the remainder of this section, let T denote the

tree structure defined by a scattering convolutional network ST(ψ,J,M,L)(.)

restricted to frequency decreasing path of length shorter than M, consid-

ering J scales and L orientations. Such a tree T is depicted in Figure 6.1.

Let also I denote the total number of nodes —i.e. scattering coefficients—

and let Si for i ∈ J0, I − 1K denote one of the nodes of T for a given path
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SJ [∅]x

x

SJ [λ1]x

SJ [λ1, λ1]x SJ [λ1, λ2]x SJ [λ1, λ3]x
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SJ [λ2, λ1]x SJ [λ2, λ2]x

SJ [λ3]x

SJ [λ3, λ1]x

SJ [λ4]x

1

Figure 6.1: Scattering transform tree with J = 4 scales, L = 1 orientation and
M = 2 layers.

pi = [λ0 . . . λu] (u ∈N). Note that Si represents a node and does not depend

upon the signal x. For a given signal x, the realisation of the node i for

signal x is denoted by si = S[pi]x. Note also that in the remainder of the

document, the shorter notation i ∈ T will be used to denote the path pi

to the node i. Let us also use the convention S0 = S[∅]. Finally let ρi and

Ci denote respectively the parent of a node i and the set of children of the

node i. A node Si can have no children, in such a case this node is a leaf of

the tree.

6.2 Background
We first review the usage of graphical model to describe signal representa-

tion methods. Unless stated otherwise, the notation defined in this section

will be used throughout this chapter.

Let us consider the case of a hierarchical signal representation, the

idea is to assume that it can be efficiently expressed as a graphical model

(see Chapter 3). The nodes of this PGM are the representation values —e.g.

the wavelet coefficient, the scattering coefficient, the neurons of a neural

network...— and the edges can either be aligned with the information flow

— i.e. following the signal propagation through the representational struc-

ture — or be independant of it.
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Models trying to describe directly the correlation across coefficients at

different scales have been studied for traditional wavelet transforms [38]

but are in conflict with the compression property of the wavelet —i.e. the

fact that most wavelet representations are sparse [43]. Thus it seems that

a simple one-step Markovian assumption across scales is not satisfying

to describe the complex relationship between wavelet or scattering coeffi-

cients.

A common approach when a direct Markovian model does not hold

is to introduce hidden states and assume the Markovian property across

those unobserved values. The observed nodes now are then only depen-

dent on their respective state. This architecture has been adopted to create

the SHMT. This model is represented by Figure 6.2. As the scattering

transform is closely related to wavelet transform it is not surprising to find

similar ideas exploited for wavelet trees. Crouse et al. [43] have devel-

oped a model where a hidden Markov tree model is used to model the

wavelet coefficients of a standard wavelet trees. Later Kingsbury [57] has

adapted Crouse’s model to the Dual Wavelet Complex Trees (DWCTs). The

resulting hidden Markov tree models provides better classification per-

formance than the Wavelet Hidden Markov Tree (WHMT) as the wavelet

used generates a “better” representation of the signal in the sense defined

in Section 2.1. Indeed this version can leverage the quasi-translation in-

variance property of the DWCTs. This improvement in performance due

to the quasi-invariance property provides a good motivation for using a

hidden Markov tree model on the scattering transform as they have even

“better” representational properties (see Section 2.3.3). The parameters

of the original WHMT are trained using a version of the Expectation-

Maximization adapted to binary hidden Markov trees. However since this

learning method suffers from underflowing issues [20], Durand et al. [71]
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proposed a smoothed version of the training algorithm preventing this

from happening.

We propose an adaptation of those models to create a scattering con-

volutional hidden Markov tree composed of a set of visible nodes {Si}i∈T

and a set of hidden node {Hi}i∈T . Both sets are organised in a similar tree

structure with the following characteristics, but different nodes.

6.3 SHMT model

In this section we introduce the Scattering Hidden Markov Tree (SHMT)

used to model the scattering convolutional network. We also list and argu-

ment the modeling assumptions.

6.3.1 Model

The idea behind the SHMT model is to assume that the more detailed

representations of the signal are somehow correlated to the less detailed

ones from which they are generated. More formally this means that for a

signal x, si is somehow correlated to sρ(i).

In its simplest form this assumption implies we can model the scatter-

ing network by a Markov tree and assumes

P(Si|T ) = P(Si|Sρ(i)).

Those independence properties are encoded in the graph displayed

in Figure 6.1. As seen in Section 6.2, however, modeling directly the cor-

relation is not sensible. It violates the sparsity property of the wavelet

coefficients.
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One can, however, use hidden coefficients which are themselves

Markov independent. Such a modeling of the SCN is represented by Fig-

ure 6.2 and it induces the following independence properties,

P(Hi|T ) = P(Hi|Hρ(i)),

P(Si|T ) = P(Si|Hi).

H0

State

S0

S0 = SJ [∅]x

H1

State

S1S1 = S[λ1]x

H5

State

S5S5 = S[λ1, λ2]x
H6 H7

H2S2

H8 H9

H3S3

H10

H4S4

1

Figure 6.2: Scattering hidden Markov tree.

This is the architecture we will use. The propose SHMT model is

thus composed of a set of visible nodes {Si}i∈T and a set of hidden node

{Hi}i∈T . Both sets are organised in a similar tree structure with the fol-

lowing characteristics,

• For any index i of the tree, Si ∈ R and Hi ∈ J1,KK where K is the

number of possible hidden states.

• The initial hidden state is drawn from a discrete possibly non uniform

initial distribution π0 such that:

∀k ∈ J1,KK π0(k) = P(H0 = k).
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• For any index i of the tree, the emission distribution describes the

probability of the visible node Si conditional to the hidden state Hi,

∀i ∈ T ∀k ∈ J1,KK and ∀s ∈ R P(Si = s|Hi = k) = P(s|φk,i), (6.1)

where P(.|φk,i) belongs to a parametric distribution family and where

φk,i is the vector of emission parameters for the state k and the node i.

In the remainder of the document the emission distribution is Gaus-

sian. So Equation 6.1 becomes,

∀i ∈ T ∀k ∈ J1,KK and ∀s ∈ R P(Si = s|Hi = k) =N (s|µk,i,σk,i),

where φk,i = (µk,i,σk,i) with µk,i and σk,i being respectively the mean

and the variance of the Gaussian for the k-th value of the mixture and

the node i.

• For any index i of the tree, the probability for the hidden node Hi to

be in a state k given the father’s state g is characterised by a transition

probability,

∀i ∈ T \{0} ∀g,k ∈ J1,KK2 A(gk)
i = P(Hi = k|Hρ(i) = g),

where Ai defines a transition probability matrix such that,

∀i ∈ T \{0} ∀k ∈ J1,KK P(Hi = k) =
K

∑
g=1

A(gk)
i P(Hρ(i) = g). (6.2)

Thus for a given scattering architecture —i.e. fixed M, J and L— the

SHMT model is fully parametrized by,
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θ =
(
π0,{Ai,{φk,i}k∈J1,kK}i∈t

)
. (6.3)

And we the joint distribution factorizes in,

P(H,S) = π0(H0)P(S0|H0)
|T |
∏

i
P(Hi|Hρ(i), Ai)p(Si|Hi,φi).

Our SHMT model differs from the previous works by the properties

of its tree structure. First, previous work on HMT models are based on

regular binary trees where all the leaves are found at the same depth. The

scattering tree, however, is both irregular and non-binary. Indeed, as seen

in Section 2.3, each node has a variable number of children. This yields an

architecture where the number of descendants is not constant and where

leaves can be found at any depth of the tree. Second, the SHMT is expected

to have non-homogeneous transition matrix. Indeed by the nature of the

scattering transform one can expect a non homogeneous transmission of

the information across the orders and especially across the orientations.

Hence non-homogeneous transition matrices across nodes from a same

father and across images themselves are allowed. Section 6.4 describes

an adaptation of Durand et al. [71] learning algorithm to irregular, non-

homogeneous and non-binary trees.

Even though the theoretical framework of SHMT holds for any K ∈N∗,
in all the applications of the SHMT we set K = 2. This means that the

scattering coefficients are described by a mixture of two Gaussians. Those

two states match the sparsity of the wavelet described in [57]. A wavelet

coefficient is either “low” —i.e. no information— or “high” —i.e. contain

information. This model yields a sparser representation of the scattering

coefficient as the number of hidden states is highly constrained.
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6.3.2 Hypothesis

Expressing the dependencies between the scattering coefficients as a hid-

den Markov tree requires two modelling assumptions. The statement in

Section 6.3.2 expresses the fact that there is a —simple— parameterisation

for the distribution of the scattering coefficients. In Section 6.3.2, we assert

that the coefficients are correlated across layers.

K populations

This assumption reflects the fact that the scattering coefficients can effec-

tively be expressed by K hidden states.

Assumption 1. K populations:

Each scattering coefficient of a signal can be described by K clusters.

The smooth regions are represented by small scattering coefficients, while

edges,ridges, and other singularities are represented by large coefficients.

This assumption is common for K = 2 and standard or complex

wavelets [57]. Since the scattering coefficients of order m can simply be

seen as the modulus of the wavelet transform of a “new” signal —i.e. the

scattering coefficient of order m − 1, the two-populations assumption for

scattering network is sensible.

This intuition can be confirmed by Figure 6.3 and 6.4 displaying the

scattering coefficients at a given node obtained for several signals. Fig-

ure 6.3 shows the scattering coefficients of a noisy binary square. Note that

for sake of clarity a “small” network has been used. This does not affect the

observations that can be made and one can notice that the largest values of

the scattering coefficient are obtained on highly informative pixels (edges

in this case) while the less informative pixels are represented by scattering

coefficients near 0. Similar observations can be made for more complex

signals —such as the one displayed in Figure 6.4.
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Figure 6.3: K populations - Experiment 1: The signal is a binary square (0: back-
ground, 1: square) with noise. The scattering network has M = 2 lay-
ers, J = 3 scales and L = 2 orientations.
Top Left: Original signal.
Top Right: Layer 0.
Bottom Left: Layer 1.
Bottom Right: Layer2.

A statistical interpretation of the K populations assumption implies

that scattering coefficients have non-Gaussian marginal statistics, that is,

their marginal probability density functions have a large peak at zero due

to the many small coefficients and heavy tails due to a few large coefficients

are observed. Finally since many real-world signals (photograph-like im-

ages, for example) consist mostly of smooth regions separated by a few

singularities, the K populations assumption tells us that the scattering coef-

ficients are a sparse representation for these signals (this notion of sparsity

can be made mathematically precise; see for example [30] or [28]). Most

of the scattering coefficient magnitudes are small, while a few of them
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Figure 6.4: K populations - Experiment 2: The signal is a realisation of the class
”brick wall” of the CUReT texture dataset. The scattering network has
M = 2 layers, J = 3 scales and L = 2 orientations.
Top Left: Original signal.
Top Right: Layer 0.
Bottom Left: Layer 1.
Bottom Right: Layer2.

encoding the singularities and the informative content are large.

Persistence

This assumption expresses the smoothness of the states across the scatter-

ing transform tree.

Assumption 2. Persistence:

Along a scattering path, high and low scattering coefficient values cascade

across the scattering orders.

This assumption codifies how the hidden states are structured. Smooth
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regions/singularities are assumed to be represented by low/high values at

every layer. Persistence leads to scattering coefficient values that are sta-

tistically dependent along the branches of the scattering tree. This means

that one can expect the transitions matrices to have higher diagonal coef-

ficients —i.e. same state transitions. A statistical interpretation of the K

populations assumption implies that scattering coefficients are —to some

extent— correlated across layers.

Figure 6.5 displays the magnitude of the scattering coefficients for a

given node i of the tree against those of its father ρ(i). One expects to see

a strong positive correlation but also expects the difference of orientations

between the father and the child to have an influence on how strong this

correlation is. One could intuit that the closer the orientations the higher

the correlation. This intuition can be supported by the difference between

the left and right figures of Figure 6.5. The left figure displays the cor-

relation between third order scattering coefficients and their second order

fathers in the case where the whole lineage has the same orientation. In

this case a high correlation coefficient is observed. The right figure also dis-

plays the correlation between third order scattering coefficients and their

second order fathers but in the case where the members of this lineage

have different orientations. Not surprisingly, a lower correlation coefficient

is observed. Table 6.1 reports the average correlation across all the pairs

(father, child) of a SHMT. Those two experiments tend to confirm the ex-

istence of a correlation as well as a potential dependency over the delta in

orientation between the father and the child.

In addition to those experimental intuitions, one can —under some

restrictions— prove that the correlation between scattering coefficients

across layers is decreasing exponentially with the difference between scales.

For the remainder of this section, the scattering operator is restricted to its

1-D version and is hence only function of the scale j —as opposed to scale
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Figure 6.5: Persistence - Experiment 1: Magnitude of the scattering coefficients
obtain for a realization of the class “brick wall” of the CUReT texture
dataset at a given index i of the tree against those of its father ρ(i). The
scattering network has M = 3 layers, J = 4 scales and L = 4 orientations.
Left: Same orientation for the two layers.
Right: Different orientations for the two layers.

Classification results
Signal: Correlation mean Correlation variance
diagonal: 0.909 0.260
Square: 0.811 0.300
Circle: 0.876 0.164
uiuc brick: 0.647 0.241
Mandrill: 0.503 0.255
Lena: 0.727 0.236

Table 6.1: Persistence - Experiment 2: Average correlation across nodes of the
scattering transform applied to different signals. The scattering
network has M = 3 layers, J = 4 scales and L = 4 orientations.

j and orientation θ for a 2-D operator. This scattering transform is applied

to a self-similar process x having stationary increments H. Examples of

such processes are the fractional Brownian motions or the α-stable Lévy

processes.

We know from [148] that the scattering coefficients can be expressed

as stated in the following proposition.

Proposition 3. (Scattering transform of self-similar processes)
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If x is a self-similar process with stationary increments then for all scale j1 ∈ Z,

S̃[j1]x = 2j1H,

and for all (j1, j2) ∈ Z2,

S̃[j1, j2]x = S̄[j2 − j1]x̃,

where,

S̃[j1]x =
S̄[j1]x
S̄[0]x

,

S̃[j1, j2]x =
S̄[j1, j2]x

S̄[j1]x
,

and

x̃ =
|x ∗ λ(j1)|
E[|x ∗ λ|] .

They also prove the following theorem for a signal x belonging to the

fractional Brownian family.

Theorem 6.3.1. (Scattering transform of fractional Brownian)

Let x be a fractional Brownian motion with Hurst exponent 0 < H < 1. There

exists a constant C > 0 such that, for all j1 ∈ Z,

lim
j′→∞

2j′/2S̃[j1, j1 + j′]x = C

Hence by combining Proposition 3 and Theorem 6.3.1, one can state

the following corollary.

Corollary 6.3.2. (Scattering coefficients correlation)

Let x be a fractional Brownian motion. Then for all j1 ∈ Z,

E
[
S̃[j1]x S̃[j1, j1 + j′]x

]
' 2−j′/2 (6.4)
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Corollary 6.3.2 shows that the covariance drops exponentially between

the two layers indexed by j1 and (j1 + j′) as j′ —i.e. the difference between

the two different scale levels— goes large. In other words, this shows

that there is some dependency between similar scales. Note that this is

not absolutely perfectly, since it proves the non correlation for very differ-

ent scales. However since we limit the scattering networks to frequency

decreasing paths of scale smaller than a given J, we can assume that we

are never in the case where j2 − j1 is large enough for Equation 6.4 to be

validated and the correlation to be small.

Note. We are currently working on defining a more pertinent bounding for

E
[
S̃[j1]x S̃[j1, j1 + j′]x

]
.

6.4 Learning the tree parameters
As seen in Section 3.2.3, hidden Markov models can be trained using

Expectation-Maximization methods. Hidden Markov chains use a version

of the EM algorithm called Forward-Backward (FB) algorithm allowing the

propagation of the hidden states along the chain. Crouse et al. [43] propose

an adaptation to the hidden Markov trees of the FB algorithm called the

Upward-Downward (UD) procedure. Those procedures are suffering from

underflowing issues [60], preventing from fitting them to large models.

Devijver [20] propose an smoothing trick for the FB procedure. Durand

et al. [71] adapt this smoothing procedure to tree models. This section

proposes our rewritten version of the smoothed EM algorithm adapted to

irregular, non-homogeneous and non-binary HMTs.

To do so one needs to introduce the following notation:
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• ∀i ∈ T , let ni be the number of children of the node i.

• ∀i ∈ T , let S̄i = s̄i be the observed sub-tree rooted at node i. By con-

vention S̄0 denotes the entire observed tree.

• ∀i ∈ T , let S̄Ci = s̄Ci be the entire -possibly empty collection of ob-

served sub-trees rooted at the children of node i (i.e. the sub-tree s̄i

except its root si).

• If S̄i, is a sub-tree of S̄j, then S̄j\i = s̄j\i is the sub-tree rooted at node

j except the sub-tree rooted at node i.

• ∀i ∈ T let S̄0\Ci
= s̄0\Ci

be the entire tree except for the sub-trees

rooted at children of node i.

Note. Those notations transpose to the hidden state and for instance H̄i = h̄i

is the state sub-tree rooted at node i.

It is interesting to express the logic developed for the EM algorithm to

a dynamic programming approach [11, 103, 120]. The complex parame-

ter learning problem is being successively broken down into sub-problems

until solving them becomes tractable.

6.4.1 E-Step

The smoothed version of the E-step requires the computation of the condi-

tional probability distributions ξi(k) = P(Hi = k|S̄i = s̄i) (smoothed prob-

ability) and P(Hi = k, Hρ(i) = g|S̄i = s̄i) for each node i ∈ T and states k

and g. The smoothed probability adapted to the HMT structure can be

decomposed as,
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ξi(k) =
P(S̄0\i = s̄0\i|Hi = k)
P(S̄0\i = s̄i\i|S̄1 = s̄i)

P(Hi = k|S̄i = s̄i)

The smoothed upward-downward algorithm requires the introduction

the following quantities,

βi(k) = P(Hi = k|S̄i = s̄i)

βρ(i)i(k) =
P(S̄i = s̄i|Hρ(i) = k)

P(S̄i = s̄i)

αi(k) =
P(S̄0\i = s̄0\i|Hρ(i) = k)

P(S̄0\i = s̄0\i|S̄i = s̄i)
(6.5)

The smoothed upward-downward algorithm also requires the prelim-

inary knowledge of the marginal state distributions P(Hi = k) for each

node i. However this can simply be achieved by a downward recursion

initialised at the root node with P(H0 = k) = π0(k) and then cascading the

information down the tree using the recursive Formula 6.2.

Upward recursion

The upward algorithm is initialised at all the leaves of the tree, by comput-

ing βi(k) using,

βi(k) = P(Hi = k|S̄i = s̄i)

= P(Hi = k|Si = si)

=
P(Si = si|Hi = k)P(Hi = k)

P(Si = si)

=
P(si|φi,k)P(Hi = k)

Ni
,
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where the normalization factor for the leaves Ni is given by,

Ni = P(Si = si) =
K

∑
k=1

P(si|φi,k)P(Hi = k).

Then one can recursively —upward recursion— compute βi(k) for the

remaining nodes of the tree using,

βi(k) = P(Hi = k|S̄i = s̄i)

=

[
∏
j∈Ci

P(S̄j = s̄j|Hi = k)

]
P(Si = si|Hi = k)

P(Hi = k)
P(S̄i = s̄i)

=

[
∏
j∈Ci

P(S̄j = s̄j|Hi = k)
P(S̄j = s̄j)

]
P(Si = si|Hi = k)P(Hi = k)

∏j∈Ci
P(S̄j = s̄j)

P(S̄i = s̄i)

=

[
∏j∈Ci

βij(k)
]

P(si|φi,k)P(Hi = k)

Ni
,

where the normalization factor for the non-leaf nodes Ni is given by,

Ni =
P(S̄i = s̄i)

∏j∈Ci
P(S̄j = s̄j)

=
K

∑
k=1

[
∏
j∈Ci

βij(k)

]
P(si|φi,k)P(Hi = k).

For all nodes i, the quantities βρ(i)i(k) can be extracted from βi using,

βρ(i)i(k) =
P(S̄i = s̄i|Hρ(i) = k)

P(S̄i = s̄i)

=
∑K

g=1 P(S̄i = s̄i|Hi = g)P(Hi = g|Hρ(i) = k)

P(S̄i = s̄i)

=
K

∑
g=1

P(Hi = g|S̄i = s̄i)P(Hi = g|Hρ(i) = k)
P(Hi = g)

=
K

∑
g=1

βi(g)A(kg)
i

P(Hi = g)
.
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Using those relationships, one can derive the upward Algorithm 2.

Meta-parameters:
K
Initialization:
// P(si|φi,k):
for All the nodes i of the tree T do

P(si|φi,k) =N (si|µk,i,σk,i)
end
// Loop over the leaves i of the tree:
for All the leaves i of the tree T do

βi(k) =
P(si|φi,k)P(Hi=k)

∑K
g=1 P(si|φi,k)P(Hi=g)

βi,ρ(i)(k) = ∑K
g=1

βi(g)A(kg)
i

P(Hi=g) P(Hρ(i) = k)
li = 0

end
Induction:
// Bottom-Up loop over the nodes of the tree:
for All non-leaf nodes i of the tree T do

Mi = ∑K
k=1 P(si|φi,k)∏j∈/mcalCi

β j,i(k)
P(Hi=k)ni−1

li = log(Mi) + ∑j∈Ci
lj

βi(k) =
Pθk,i(si) ∏j∈/mcalCi

(β j,i(k))

P(Hi=k)ni−1 Mi

for All the children nodes j of node i do
βi\Ci

(k) = βi(k)
βi,j(k)

end

βi,ρ(i)(k) = ∑K
g=1

βi(g)A(kg)
i

P(Hi=g) P(Hρ(i) = k)
end

Algorithm 2: Smoothed upward algorithm.

Downward recursion

The downward recursion can either be built on the basis of the quantities

αi(k) defined in Equation 6.5 or using the smoothed probabilities ξi(k) =

P(Hi = k|S̄i = s̄i). The downward recursion on ξi is initialized at the root

node with,

ξ0(k) = P(H0 = k|S̄0 = s̄0) = β0(k).
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The quantities ξi can then be computed recursively for each node of

the tree using,

ξi(k) = P(Hi = k|S̄0 = s̄0)

=
K

∑
g=1

P(Hi = k, Hρ(i) = g, S̄0 = s̄0)

P(Hρ(i) = g, S̄0 = s̄0)
P(Hρ(i) = g|S̄0 = s̄0)

= P(S̄i = s̄i|Hi = k)
K

∑
g=1

P(Hi = k|Hρ(i) = g)

P(S̄i = s̄i|Hρ(i) = g)
P(Hρ(i) = g|S̄0 = s̄0)

=
βi(k)

P(Hi = k)

K

∑
g=1

A(gk)
i ξρ(i)(g)
βρ(i),i(g)

.

(6.6)

Using the fact that for all i ∈ T ξi(k) = βi(k)αi(k) and the relationship

from Equation 6.6, one can express the downward pass as presented in

Algorithm 3.

Meta-parameters:
K
Initialization:
α0(k) = 1
Induction:
// Top-Down loop over the nodes of the tree:
for All nodes i of the tree T \{0} do

αi(k) = 1
P(Hi=k) ∑K

g=1 αρ(i)(g)A(gk)
i βρ(i)\i(g)P(Hρ(i) = g)

end
Algorithm 3: Smoothed downward algorithm.

Conditional properties

To complete the E-step one needs to compute the conditional probabilities

for each node. This is done by noticing that,

∀i ∈ T P(Hi = k|S̄0 = s̄0) = αi(k)βi(k),
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and

∀i ∈ T \{0} P(Hρ(i) = g, Hi = k|S̄0 = s̄0) =
βi(k)A(gk)

i αρ(i)(g)βρ(i)(g)
P(Hi = k)βρ(i)i(g)

.

6.4.2 M-Step

The maximization step of the EM algorithm aims at finding the optimum of

the log-likelihood of the observations with regards to the parameters and

then use those pseudo-optimal parameters for the next expectation step.

In other words at iteration l of the EM process, the M-step carries out the

update,

θl+1 = argmax
θ

(
E[ln f (x, H|θ)|x,θl)]

)
. (6.7)

The θ maximizing the log-likelihood in Equation 6.7 can be expressed

analytically and this yields Algorithm 4

Meta-parameters:
K,
Distribution family for Pθ ; // Here Gaussian
N ; // Number of observed realizations of the
signal

Initialization:
π0(k) = 1

N ∑N
n=1 P(Hn

0 = m|sn
0 ,θl)

Induction:
// Loop over the nodes of the tree:
for All nodes i of the tree T \{0} do

P(Hi = k) = 1
N ∑N

n=1 P(Hn
i = k|s̄n

0 ,θl),

Agk
i =

∑N
n=1 P(Hn

i =k,Hn
ρ(i)=g|s̄n

0 ,θl)

NP(Hρ(i)=k) ,

µk,i =
∑N

n=1 sn
i P(Hn

i =k|s̄n
0 ,θl)

NP(Hi=k) ,

σ2
k,i =

∑N
n=1(s

n
i −µk,i)

2P(Hn
i =k|s̄n

0 ,θl)

NP(Hi=k) .
end

Algorithm 4: M-step of the EM algorithm.
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6.4.3 EM algorithm

Finally the EM algorithm iterates over the E-step and the M-step as de-

scribed by Algorithm 5.

Meta-parameters:
K;
Distribution family for Pθ;
Convergence criteria ; // Iteration limit or
information based

Initialization method for θ ; // Random or prior knowledge
Initialization:
l = 0 ; // Iteration counter

Initialize(θ0)
Iteration:
while Not convergence do

E-step: Calculate P(H̄|H̄,θl).
M-step: Set θl+1 = argmaxθ

(
E[ln f (x, H|θ)|x,θl)]

)
.

l = l+1
end

Algorithm 5: EM algorithm.

6.5 Classification
Let θc now be a set of parameters for an SHMT T learned using the

EM algorithm described in Section 6.4 on a training set {S̄n
0,c}n∈J1,NK =

{ST(ψ,J,M,L)(xn
c )}n∈J1,NK composed of the scattering representations of N

realizations of a signal of class c . Let also xnew be another realization of

this signal, not used for training and T new be the instance of the SHMT

generated by this realisation.

In this context the MAP algorithm aims at finding the optimal hidden

tree ˆ̄hnew
0 = (ĥnew

0 . . . ĥnew
I−1) maximizing the probability of this sequence given

the model’s parameters P(H̄0 =
ˆ̄hnew

0 |T new,θc). The MAP framework also

provides P̂ the value of this maximum.
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For SHMT the MAP algorithm has the form described by Algorithm 6.

Meta-parameters:
K;
Initialization:
for all leaves i of T do

γi(k) = βi(k) ; // The gamma for all k must be
computed before the next step

γi,ρ(i)(k) = max1≤g≤K γi(g)εkg
i

ξi(k) = argmax1≤g≤K γi(g)εkg
i

end
Induction:
// Top-Down loop over the nodes of the tree:
for All nodes i of the tree T \{0} do

γi(k) = Pθk,i(si)∏j∈/mcalCi
γj,i(k)

γi,ρ(i)(k) = max1≤g≤K γi(g)εkg
i ; // Except at root node

ξi(k) = argmax1≤g≤K γi(g)εkg
i

end
Termination:
P̂ = max1≤g≤K γ0(g)
ĥ0 = argmax1≤g≤K γ0(g)
Downward tracking:
// Creation of the hidden tree from the root node
for All nodes i of the tree T \{0} do

ĥi = ξi(ĥρ(i))

end
Algorithm 6: MAP algorithm.

The MAP Algorithm 6 can be used in a multi-class classification prob-

lem by training an SHMT model per class and then when presented with

a new realization xnew comparing the probability of the MAP hidden tree

provided by each model as described by Algorithm 7.
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Meta-parameters:
K; C ; // Number of classes
for All classes c do

P̂c = MAP(xnew,θc,K)
end
P̂ = max0≤c<C P̂c
l = argmax0≤c<C P̂c

Algorithm 7: MAP algorithm applied to multi-class classification
problem.

6.6 Experiments
This section presents some experimental results obtained using scattering

convolutional hidden Markov trees for classification tasks. First, in Sec-

tion 6.6.1, SHMT is used to classify handwritten digits in the complex sit-

uation where only a few training examples per class are available. Sec-

tion 6.6.2 reports the use of SHMTs to classify seabed and ripples in sonar

imagery. Finally Section 6.6.3 describes an adaptation of this classifier to

perform a very naive segmentation.

6.6.1 Hand written digits

We compare the performance of SHMT to those of a SCN combined with

an SVM (SCN+SVM) restricted to a small number of training examples by

performing two experiments on the handwritten digit classification dataset

MNIST [151].

For all the experiments we use a scattering transform with M = 3 or-

ders, J = 3 scales, L = 3 orientations and a Morlet mother wavelet. The

hidden Markov tree has K = 2 states and uses a mixture of Gaussian to de-

scribe the relationship between the scattering coefficients and the hidden

states. For the SVM, the best parameters are selected by cross-validation.

MNIST - “One vs All”

In a similar fashion to Salakhutdinov et al. [101], we first test SHMT on a

“One vs All” binary classification task. However we propose this experi-
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ment with a more challenging setup. They pre-train their model with 100

samples from each class but one and then provide only limited amount of

training examples, say N, for this last class. Instead we propose a frame-

work where all the classes have the same limited amount of training points

N. We then test the models on 1000 unseen examples.

Table 6.2 displays the accuracy and the sensitivity for both SHMTs and

SCN+SVMs. With N = 5 training examples, SVM is not able to discrim-

inate the digit of interest and simply classifies everything as “All”. This

yields a sensitivity of 0.0% characteristic of an uninformative test. Under

the same conditions, SHMT is able to correctly discriminate the digit of in-

terest and provides a very informative test –good sensitivity and accuracy.

Some classes, however, —4 and 6— are more challenging than others due

to their high intra-class variability.

Note that this experimental setup should be in favor of the SVM clas-

sifier since it is effectively provided with 9N training points for one class.

With this amount training samples,

1 vs All class MNIST
SHMT SCN+SVM

9 (Acc) 97.2% 90.0%
(Sen) 94.0% 0.0%

6 (Acc) 94.1% 90.0%
(Sen) 57.5% 0.0%

Average (Acc) 93.9% 90.0%
(Sen) 60.2% 0.0%

Table 6.2: Accuracy and sensitivity on 1000 samples of MNIST trained with 5
training points per class and tested on “One vs All” for digits: “6”,
“9”, and the average over all digits.

MNIST - Full

SHMT and SCN+SVM are tested on the more complex problem of mutli-

class labelling. SHMT and SCN+SVM are both trained on a limited number
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Table 6.3: Classification score on the complete test set of MNIST (10000 samples)
trained using only a limited number N of training points per class

Training samples
per class

MNIST
SHMT SCN+SVM

N = 2 28.6% 18.7%
N = 5 48.0% 43.2%
N = 10 45.2% 49.9%

of training examples per class and tested on the full test set.

The best results for each models are displayed in Table 6.3. SHMT

displays better generalization and prediction properties than SCN+SVM

when trained on a very limited number of training points. For N = 2 seen

samples per class, SVM beats a random selector—i.e. 10%— by a small

margin while SHMT provides a near three folds improvement. With only

5 training examples per class, SHMT does close to five times better than

random. As expected, when the number of training samples grow large

enough —i.e. 10 and more, SCN+SVM reaches better maximum classifica-

tion score.

The drop in performance of SHMT for N = 10 training examples is

explained by the fact that the EM algorithm subroutine is undermined by

convergence to local minima issues [39] yielding sometimes to poor learn-

ing quality for SHMTs. However when a good minima is found, SHMTs

has acceptable generalization performance.

While confirming the superiority of our model in terms of generali-

sation performance for limited number of training points, this experiment

also highlights a potential weakness of it in that sometimes convergence

problems occur. However, in the main, SHMT provides good classification

score for such a low number of training examples.
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6.6.2 Sonar Imagery

In underwater mine detection recovering the largest proportion of the true

positives is crucial since missing a target could be very costly. However,

recovering a large proportion of the true positives may incur many false

positives. Reducing these to a manageable number is an open problem in

marine sciences. Indeed by its design an underwater mine can be mistaken

with some natural features of the seabed. One of those natural features

generating many false alarms is called “ripple”. Those regular patterns

drawn in the sand by currents can vary greatly in shape and orientation as

displayed on the right half of Figure 6.8.

As mentioned in [100] one can relatively engineer an effective mine

detector with a matched filter type detector given a clean background.

The “ripple” however yield a important number of false alarms. In [100],

they also provide a pre-processing step based on Hurst estimation (see

Chapter 5) to dim down the “ripple” pattern. This method applied too

aggressively, however, can also remove true mines. Reducing the overall

performance of the detection pipeline. It is thus interesting to develop a

classifier between seabed types to apply different processing pipeline to

different classes. This is the task proposed for the SHMT.

The data used are extracted from the UDRC MCM sonar im-

agery dataset [89]. This dataset comprises Synthetic Aperture RADAR

(7300× 2000 pixels SAS images) and meta-data —not used in this experi-

ment. From those images, easier to handle 100 by 100 patches have been

extracted and labelled as either seabed or ripple (see respectively Figure 6.7

and Figure 6.8). The classification task at hand is very challenging due to

the low informative content of each images and the high intra-class vari-

ability.
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image

Figure 6.6: SAS sonar raw image: Ripples can be observed on the right half of the
image

Figure 6.7: Sample of seabed patches.

The scattering transform used has M = 3 orders, J = 5 scales, L = 3

orientations and uses a Morlet wavelet. The hidden Markov tree has K = 2

states and is using a mixture of Gaussian to describe the relationship be-

tween the scattering coefficients and the hidden states. Two models —one

for each class considered— θripple and θseabed are trained on 200 realizations

of their class signal. The testing is then realized on 80 images —40 of each

classes. The performance of the SHMT are assessed on 100 instances of

this experiment and the results are displayed in Table 6.4.

The first row of Table 6.4 displays the results obtained on 100 exper-
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Figure 6.8: Sample of ripple patches.

Classification results
Classification
score:

N Mean Variance Maximum Minimum

Full: 100 0.74 0.101 0.9 0.5
≥ 60%: 91 0.76 0.079 0.9 0.6
≥ 70%: 73 0.79 0.058 0.9 0.7

Table 6.4: Classification performance over 100 experiments of Ripple/Seabed clas-
sification.

iments run. Despite a slightly unsatisfying average classification score of

74%, the best models reach a good accuracy of 90%. The lowest score is 50%

accuracy and is obtained because all the testing examples are all associated

to the same class. This pathological case can be explained by one class’s

model having converged to a poor local maximum — or not converged

yet. Such a model provides non informative outputs; regardless of the true

class of the image, this model will always produce a high (or always low)

probability of belonging to the class it is supposed to discriminate. other.

Those cases highly a weakness of the current learning method. At the mo-

ment the convergence is tested using simple improvement rule which can

lead to local maxima. The design of a smarter model selection test based

on information criterion could be a way to overcome this issue. One could

for example rely on the Akaike Information Criterion (AIC) [22] or the

Bayes Information Criterion (BIC) [81] to selected the best model amongst

a set of trained model prior to the supervised testing. Overall, this exper-

iment and its very satisfying best model validate the assumptions made
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since when convergence occurs correctly the discriminative performance

are good. The second and third rows in Table 6.4 simulates the results if

a validation criterion based on an imposed accuracy score on a validation

set was imposed. This validation set would be another way to address the

problem of sometimes converging to a poor local maxima.

6.6.3 Segmentation

On its simplest form segmentation can be seen as a set of independent

classification tasks on subparts of an image. Hence one can use the models

trained in the previous section to realize the segmentation of a full sonar

imagery.

One of the 2001× 7333 image from the UDRC MCM is cut into a set

100× 100 patches —some regions of the original image are not considered.

And each of those patches is presented to the classifier. Results of this

procedure can be seen in Figure 6.9.

Even though this approach to segmentation is very naive and does

not introduce any form of spatial smoothing or correlation between nearby

patches to improve accuracy, the SHMT model provides satisfying segmen-

tation of the seabed. Furthermore, as displayed by the bottom figure in

Figure 6.9, it provides a probability map for the confidence in our segmen-

tation decision. Those probability maps are very interesting as they show

that the misclassified patches do have a high variance on their prediction.

On average they are more frequently predicted as one class than the other.

The uncertainty on that prediction, however, makes that prediction less

trustworthy and call for further investigation. One could then decide to do

further analysis on those patches. Such maps are interesting as they could

easily be exploited by a huma operator to help in a decision taking process.
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image segmentation

Probability of seabed

Figure 6.9: Segmentation of a sonar imagery.
Top Left: Original signal.
Top Right: Naive segmentation.
Bottom: Prediction variance over 50 predictions on the same tile. Color
scale is ranging from dark blue (low variance) to dark red (high vari-
ance).

6.7 Conclusion
A SHMT framework has been proposed which comprises a scattering trans-

form and a hidden Markov tree model. The scattering transform projects

the data into a representational space of even higher dimensionality but

of reduced volume along the invariants in the data. Then a probabilis-

tic graphical model —hidden Markov tree— was used to fit a generative

model to the distribution of the representation of the data. As such, the

proposed model takes advantage of the way in which the scattering trans-

form introduces invariances into the representation but also the manner in

which hidden Markov models capture dependencies between coefficients.

Experiments have demonstrated that the modelled distribution can be used

to perform efficient classification tasks even with small training sizes. Even
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though we only here consider classification, a generative model is much

more versatile than a simple —yet efficient— discriminative one. Because

they model the full distribution of the data they can express more com-

plex relationships between the observed and the unknown variables than

simple discrimination.

To enhance SHMT and especially the chance of converging toward a

good minima during the EM learning, Chapter 7 will include development

of variational methodology to learn the model parameters [87].



Chapter 7

Variational Scattering Hidden

Markov Tree

In this section we detail the quantities and computations used while learn-

ing the parameters of a variational hidden Markov tree. First we recall how

a scattering network can be modelled as an Hidden Markov tree. Then we

introduce the variational approximation of this hidden Markov tree and

the necessary equations for the learning algorithm are derived.
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Chapter outline

In this chapter we extend the scattering hidden Markov Tree, a powerful

statistical model defined in Chapter 6, to use variational approximation

and flexible learning objectives. In Section 7.1, we provide more detailed

motivation for such a model. Section 7.2 introduces some related work. In

Section 7.3, we provide a description of this model under its simplest form

as well as detailed computations for the fitting algorithm. In Section 7.4, we

combine the variational SHMT with the AB-variational objective defined in

Chapter 4. Finally, Section 7.5 displays some experimental results.

7.1 Introduction

We are interested in the posterior distribution of the states tree and pa-

rameters given the observations, p(H,θ|S). As seen in Section 6.4, the

MLE can be solved exactly. One can evaluate the marginal likelihood of an

observation given the model’s parameters p(S|θ) and the most probable

state sequences given an observation argmaxH p(H|S,θ). This is done via

upward-downward algorithm where the values of θ and H are alternately

fixed [71].

This Maximum-Likelihood (ML) based approach, however, produces

a point estimate of the model’s parameters. It is thus unable to capture

the variance over them. Furthermore, it also has a known tendency to

overfitting the training data and suffers from potential convergence toward

local minimum issues [55]. The former can be overcome by setting the

problem as a fully Bayesian model where all parameters are given a prior

distribution. However those types of model quickly become intractable

and will require using approximate inference. We will focus here on vari-

ational based method as described in Section Section 3.3 and Chapter 4.

We approximate the true posterior p(H,θ|S) by a variational distribution

q(H,θ) laying within a simpler family of distributions. The variational
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approximation also takes care, to some extent, of the overfitting and con-

vergence towards local minimum issue. Since the inference problem is now

cast as a optimisation problem, we can tap into the optimisation literature

and leverage more robust solvers.

Note that in this chapter, we are considering the scattering transform of

a p pixels images but to simplify the notations, the indexing on those pixels

will be omitted. Throughout “scattering coefficient” Si will be abusively

used to express the set of p values obtained for a given node i. Similar

abuse is used for the hidden nodes.

7.2 Background

We first review briefly the usage of variational methods for hidden Markov

models and more specifically tree-like models.

Bernardo et al. [66] propose a variational version of the EM algorithm

(VBEM), allowing the use of variational methods in the context of graphical

models with missing data. In order to fit models to ever increasing size of

graphs, refinements specific to the HMMs have been developed on top of

the general VBEM algorithm. Ji et al. [80], for example, propose an exten-

sion to continuous models. McGrory and Titterington [92] establish model

selection methods. And recently, Foti et al. [136] extended the method

to perform stochastic variational inference on HMMs; thus allowing the

fitting of models to even longer chains/bigger graphs.

As seen in Section 6.2, the scattering hidden Markov tree model shares

a lot of similarity with the wavelet Markov tree models. It is thus not sur-

prising to find variational extensions of description of the standard wavelet

tree by an hidden Markov tree. Dasgupta and Carin [78] extend the work

of Crouse et al. [43] to allow fitting of variational model using the stan-
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dard upward-downward procedure. Similarly, Olariu et al. [93] propose

an extension to Durand et al. [71] to perform smoothed VBEM on hidden

Markov trees.

7.3 Structured mean field for HMTs
The idea behind the variational representation of the hidden Markov tree is

to introduce a prior distribution to the parameters θ of model described in

Section 6.3 and approximate the posterior distribution of interest p(H|S,θ).

To do so each parameter of the model is described by its own parameterised

distribution q. Under certain assumptions, we can derive the exact update

formulae for the model parameters. The remainder of this section will

describe that case.

As a starting point, we remember the joint likelihood function used for

the exact SHMT model,

P(H,S) = π0(H0)P(S0|H0)
|T |
∏

i
P(Hi|Hρ(i), Ai)p(Si|Hi,φi). (7.1)

where Ai is the transition probability matrix at node i as defined in

Equation 6.2. As seen in Section 3.3, the log-marginal probability of an

observation can be decomposed as,

ln p(S) = LKL(q(H,θ), p(H,θ|S)) + KL(q(H,θ)||p(H,θ|S)),

Where θ represents the model parameters.

θ =
(
π0,{Ai,{φk,i}k∈J1,kK}i∈t

)
.

Since KL(q(H,θ)||p(H,θ|S)) ≥ 0, minimising the divergence or max-

imising the lower bound LKL(q(θ),q(H)) are equivalent. The lower bound,

however, can be made computationally tractable and will be used in that
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section as an equivalent objective.

The usual approach to simplifying the variational problem and for

achieving tractability for hidden Markov models uses a structured mean

field approximation [92] such that,

q(H,θ) = q(π0)q(A)q(φ)q(H). (7.2)

We break the dependencies between each parameters in θ and latent

states H. Note that while we do not break the dependencies between the

hidden states to preserve possibly crucial dependencies of the tree struc-

ture, we make the parameters independent across the tree so that we have,

q(A) =
|T|
∏
i=1

q(Ai)

and

q(φ) =
|T|
∏
i=1

q(φi)

Each factor in Equation (7.2) is endowed with its own variational pa-

rameters and is set to be in the same exponential family distribution as its

respective complete conditional. This allows the variational parameters to

be optimised separately to maximise the evidence lower bound LKL.

ln p(S) ≥ LKL(q(θ),q(H))

= Eq[ln p(θ)]−Eq[lnq(θ)] +Eq[ln p(H,S|θ)]−Eq[lnq(H)]

The evidence-lower bound can be maximised using variational

EM [66]. It alternately updates:

• The global parameters θ, i.e. the hidden variables coupled to the

entire set of observations.

• The local variables Hn, i.e. a set of hidden states per observation Sn
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of a signal xn.

In some sense, this algorithm is the counterpart of the exact EM algo-

rithm introduced in Section 6.4 but using the approximated distribution

q during the E-step rather than its exact counter part p. Despite this sim-

ilarity the VB-EM algorithm is simplified by the fact that q can be made

as simple as desired — to the cost of reduced expressiveness. And thus

simplify the computational load.

To simplify the update procedures we consider the approximate distri-

butions to be members of the exponential family. In statistic, the exponen-

tial family refers to the set of probability distributions that can be expressed

in the form of the following equation:

f (x|τ) = h(x). exp(η(τ)T(x)− C(η(τ))) (7.3)

where T(x) is a sufficient statistic, η(τ) is the natural parameter, h(x)

is the carrier density and C(η(τ)) is the cumulant generating function.

Examples of common distributions belonging in the exponential family are

the Normal, binomial, or the Poisson distributions.

7.3.1 Priors

We now introduce priors over the exact model parameters defined in Equa-

tion (6.3). In the case where the approximation distributions q belong to the

exponential family, the analysis is considerably simplified if we use conju-

gate prior distributions [77]. In that case, the updated posteriors belong to

the same families of distributions.

We specify a Dirichlet prior on the initial state probability,

p(π0) = Dir(π0|απ0).
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Where Dir(π|απ0) denotes a K−dimensional Dirichlet distribution with

concentration parameters απ0 .

Each row of the transition matrix is also given a Dirichlet prior,

p(Ai) =
K

∏
g=1

Dir(A(g:)
i |α

Ai
g ).

Finally, we specify a normal-inverse Wishart (NIW) prior on the gen-

erative distribution parameters,

φi,k = (µi,k,σi,k) ∼NIW(µi
0,κi

0,ζ i
0,νi

0)

∼N (µi,k|µi
0,

1
κi

0
σi,k)W−1(σi,k|ζ i

0,νi
0).

It is interesting to note that the NIW prior is slightly over expressive for

our case. The NIW prior is the conjugate prior of a mixture when both the

mean and the covariance are unknown, but with non diagonal covariance

matrix. In the SHMT model the errors are independent — i.e. the covari-

ance matrix is diagonal. In such a case a Normal-Gamma prior can also be

used. Experimental results from Section 7.5 shows, however, that this extra

expressiveness is not too harmful to the model performance.

Figure 7.1 provides a graphical representation of the variational model

used to describe the SHMT.

7.3.2 Global update

During the global update, we optimise distribution of the parameters θ

assuming q(H) is known and optimal. This is somehow very similar in

principle to the M-step of the EM procedure described in Section 6.4.2. The

optimal local parameters q∗(H) can be computed following the procedure
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Figure 7.1: The variational approximation for the scattering hidden Markov tree
posits a Dirichlet prior on the initial state and the rows of the transition
matrices. The generation model is parameterised by a normal-inverse
Wishart prior.

detailed in Section 7.3.3.

The variational approximation cast the posterior computation problem

as an optimisation problem. Thus, given those local parameters, the global

updates can then be obtained by differentiating LKL with regard to θ. Since

we are using distributions from the conjugate-exponential family and the

KL-divergence, the update takes the simple form [123],

w = u +Eq∗(H)[t(H,S)] (7.4)

where t(H,S) is a vector of sufficient statistics, w = (wπ0 ,wA,wθ) are

the variational parameters in natural form and u = (uπ0 ,uA,uθ) are the

model hyper-parameters also in natural form.

Natural parameters

Equation (7.4) requires using the natural form of the parameters of the

variational distributions. The general definition of natural parameter can

be sen in Equation 7.3.

The initial state follows a Dirichlet distribution and thus has one nat-
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ural parameter per state,

uπ0
k = απ0

k − 1 for k = 1 . . . K.

Similarly, the transition matrix distribution has the natural parameters,

uAi
gk = α

Ai
gk − 1 for g,k = 1 . . . K.

The emission parameters of each state are governed by a normal-

inverse Wishart distribution and thus have four natural parameters per

state,

uφi
k,1 = κi

0µi
0 for k = 1 . . . K. (7.5)

uφi
k,2 = κi

0

uφi
k,3 = ζ i

0 + κi
0µi

0µiT
0

uφi
k,4 = νi

0 + 2 + p

Expected sufficient statistics

To perform the global parameter updates defined by Equation (7.4), we

need to compute the expectation of the sufficient statistics with regard to

the variational distribution q∗(H).

Since the initial state follows a Dirichlet distribution, the associated

sufficient statistics are,

tπ0
k =

N

∑
n=1

1(Hn
0 = k) for k = 1 . . . K.

The sufficient statistics for the transition matrices are also those a

Dirichlet distribution,

tAi
gk =

N

∑
n=1

1(Hn
ρ(i) = g, Hn

i = k) for g,k = 1 . . . K.
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The emission parameters are described by a NIW distribution and the

associated sufficient statistics are,

tφi
k,1 =

N

∑
n=1

Sn
i 1(Hn

i = k) for k = 1 . . . K.

tφi
k,2 =

N

∑
n=1

1(Hn
i = k)

tφi
k,3 =

N

∑
n=1

Sn
i Sn′

i 1(Hn
i = k)

tφi
k,4 =

N

∑
n=1

1(Hn
i = k)

Finally, the expectation of the sufficient statistics with regard to the

variational distribution q∗(H) can be expressed as,

Eq∗(H)[t
π0
k ] =

N

∑
n=1

q∗(Hn
0 = k) (7.6)

Eq∗(H)[t
Ai
gk ] =

N

∑
n=1

q∗(Hn
ρ(i) = g, Hn

i = k)

Eq∗(H)[t
φi
k,1] =

N

∑
n=1

Sn
i q∗(Hn

i = k)

Eq∗(H)[t
φi
k,2] =

N

∑
n=1

q∗(Hn
i = k)

Eq∗(H)[t
φi
k,3] =

N

∑
n=1

Sn
i Sn′

i q∗(Hn
i = k)

Eq∗(H)[t
φi
k,4] =

N

∑
n=1

q∗(Hn
i = k)

Using the expectations defined in Equations (7.6), we can perform the

update of the “global” parameters. Given the hidden states — i.e. the local

variable values— for this observation the global updates takes a simple

computationally tractable form.
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7.3.3 Local update

In a similar fashion to the EM algorithm, we have so far performed the

global parameter updates assuming the local parameter to be fixed. The

local updates are performed by computing the optimal distribution over

the local variables q∗(H). More precisely we need to be able to compute

both the marginal-beliefs —i.e. q∗(Hi = k) for i = 0 . . . |T| and k = 1 . . . K—

and the pairwise-beliefs —i.e. q∗(Hρ(i) = g, Hi = k) for i = 0 . . . |T| and

g,k = 1 . . . K. Following Durand et al. [71], we use the smoothed upward-

downward procedure to compute them.

Again, the local update formulae can be obtained by differentiating

LKL with regard to the local parameters H. Following [77], we can express

the optimal variational distribution over the hidden variables as,

q∗(H) ∝ exp

(
Eq(π0)[lnπ(H0)] +

|T|
∑
i=1
Eq(Ai)

[ln Ai] +
|T|
∑
i=0
Eq(θi)

[ln p(Si|Hi)]

)
.

(7.7)

Comparing with Equation 7.1, Equation 7.7 takes exponentiated ex-

pected log*probabilities under the current variational distribution instead

of simple probabilities. In this equation we also define the auxiliary pa-

rameters,

π̃0
d
= exp(Eq(π0)[lnπ0]),

Ãgk
i

d
= exp(Eq(Ai)

[ln Agk
i ]),

and

p̃(Si|Hi)
d
= exp(Eq(θi)

[ln p(Si|Hi)]).

Note that for the HMT models used here, we can express the expecta-

tions and we have,

π̃0 = exp(γ(wπ0
k )− γ(

K

∑
l=1

wπ0
l ))
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where γ(.) is the digamma function. Similarly we have,

Ãgk
i = exp(γ(wAi

gk )− γ(
K

∑
l=1

wAi
gl ))

The posterior for the generative model is expected to be in the NIW family

and can be written as,

q∗(µi,k,σi,k) =N (µi,k|µi
p,

1
κi

p
σi,k)W−1(σi,k|ζ i

p,νi
p),

where the posterior parameters are computed combining Equation 7.5 and

Equation 7.6 according to Equation 7.4.

Finally, we use those auxiliary parameters to run an upward-

downward algorithm producing β and α which allows to compute both

q∗(Hi = k) and q∗(Hρ(i) = g, Hi = k),

q∗(Hi = k) ∝ αi(k)βi(k) for k = 1 . . . K.

and

q∗(Hρ(i) = g, Hi = k) ∝
βi(k)Ãgk

i αρ(i)(g)βρ(i)(g)
p(Hi = k)βρ(i),i(g)

for g,k = 1 . . . K.

Iterating over the local and global updates as described in Section 7.3.3

and Section 7.3.2, we can efficiently fit our variational approximation to the

scattering hidden Markov tree model using the KL objective. Section 7.5

presents some experimental results using that method.

7.4 AB-variational objective for HMTs

In Section 7.3, we have shown it was possible to fit a variational approxi-

mation using the KL-objective to the SHMT. Though efficient, in Part II, we

have seen that the KL-divergence could be highly impacted by the presence
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of outliers in the training set. We have also seen that the KL variational

objective could have an undesired tendency to under-estimating the true

variance of the posterior. In Chapter 4, we have seen that one could use the

scaled AB-divergence as a variational objective and leverage its robustness

and mass-covering properties to obtain more sensible posterior estimates.

The SHMT model is a good example of model where outliers can ap-

pear in the training data. First of all, as demonstrated in Section 6.3.2, the

correlation between the coefficients through the layers is not perfect and

can introduce some unexpected/uncommon behaviours. Second, since

the VBEM performs a two stage approximation assuming the other set of

parameters to be fixed and optimal, it is likely to have some misestimated

values for the hidden coefficients.

In this section, we apply the AB-variational objective to the variational

approximation model defined in Section 7.3.

As mentioned in Chapter 4, when given a method to estimate

both p(H,θ|S) and q(H,θ) independently one can easily replace the KL-

divergence objective by the AB-objective. In the case of the variational

SHMT it simply involves swapping LKL used in the global update defined

in Section 7.3.2 by LAB as defined in Equation 4.13. The rest of the proce-

dure described in Section 7.3 — i.e. the local updates — remain unchanged.

We are thus left with a variational EM procedure where the global updates

are performed to minimise the loss,
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LAB(q||p) =

=
1

α(α + β)
logEq

[
p(H,θ|S)α+β

q(H,θ)

]
+

1
β(α + β)

logEq

[
q(H,θ)α+β−1

]
− 1

αβ
logEq

[
q(H,θ)α+β−1

(
p(H,θ|S)
q(H,θ)

)β
]

(7.8)

The idea behind optimising the variational SHMT model using the

AB-objective is the same as for the KL, and will require a two step iterative

process as described in Section 7.3. However due to the higher complexity

of the AB variational objective LAB defined in Equation 7.8 compared to

the KL variational objective LKL, we cannot express the parameter update

formulae exactly. We can however use automatic differentiation tools [17,

152, 161] to computationally estimate the gradients of the objective and

update the parameters.

7.5 Experiments
This section presents some experimental results obtained using the varia-

tional scattering hidden Markov trees for classification tasks. For the sake

of comparison we reproduce the same set of experiments as in Section 6.6

using both the KL and AB objectives. First, in Section 7.5.1, the variational

SHMT is used to classify handwritten digits in the complex situation where

only a few training examples per class are available. Section 7.5.2 reports

the use of VI-SHMTs to classify seabed and ripples in sonar imagery. Fi-

nally Section 7.5.3 describes an adaptation of this classifier to perform a

very naive segmentation.

Throughout, unless stated otherwise, we use near uninformative prior

for the hidden states with uπ0 = 0.5 + ε and uA0 = 0.5 + ε, where ε ∼
N (0,0.1) and u is normalised such that it sums to one. The priors for

the generative distributions are selected to match the observed mean and
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variance of the studied data (i.e. mean and variance of each scattering

coefficient for a given dataset) with again some added Gaussian noise.

7.5.1 Hand written digits

Similarly to the experiments presented in Section 6.6.1, we compare the

performance of the various SHMT models — i.e. exact, KL-VI and AB-VI

SHMTs— on MNIST [151] limited to a few training samples.

For sake of comparison we use the same scattering network parameters

as in Section 6.6.1. We define a SCN with M = 3 orders, J = 3 scales, L = 3

orientations and a Morlet mother wavelet. The hidden Markov tree has

K = 2 states and uses a mixture of Gaussians to describe the relationship

between the scattering coefficients and the hidden states.

MNIST - “One vs All”

We first test the different SHMT models on a “One vs All” binary classifi-

cation task. Similarly to what is done in Section 6.6.1, we train the model

in a setup where all the classes have an equally small amount of training

points N. The models are tested on 1000 unseen examples.

Table 7.1 displays the accuracy and the sensitivity for a set of vari-

ational SHMTs models trained with different variational objectives (see

Chapter 4 for more details) as well as the exact SHMT model and

SCN+SVMs used in Section 6.6.1. The meta-parameters (α, β) are se-

lected using a greedy grid search over a limited parameter space [1.5,2.5]×
[0.5,1.5].

Even when given a small number of training example, we can see the

beneficial influence of the variational approximation for SHMT over the

exact version. Furthermore we also see that a setup of the AB-objective

enforcing mass covering and mild robustness to outliers out-performs the

KL overall.
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1 vs All
class

MNIST
ab-SHMT
(KL)

ab-SHMT
(1.8,1.2)

ab-SHMT
(2.2,0.8)

e-SHMT SCN+SVM

9 (Acc) 97.9% 98.3% 97.3% 97.2% 90.0%
(Sen) 94.5% 95.4% 94.3% 94.0% 0.0%

6 (Acc) 95.4% 95.3% 94.2% 94.1% 90.0%
(Sen) 59.6% 59.5% 57.6% 57.5% 0.0%

Avg (Acc) 94.7% 95.9% 94.1% 93.9% 90.0%
(Sen) 61.5% 63.2% 60.3% 60.2% 0.0%

Table 7.1: Accuracy and recall on 1000 samples of MNIST trained with 5 training
points per class and tested on “One vs All” for digits: “6”, “9”, and
the average over all digits. The variational SHMT model is trained with
different objective. “KL” uses the standard Kullback-Leibler objective.
The AB-objective with (1.8,1.2) enforce robustness to outliers and mass-
covering. The AB-objective with (2.2,0.8) enforce focus on the outliers
and mode-seeking. As baseline we also report the SHMT trained using
the exact procedure from Chapter 6, and the SCN coupled with a SVM
classifier on the extracted features.

Table 7.2: Classification score on the complete test set of MNIST (10000 samples)
trained using only a limited number N of training points per class

Training
samples per
class

MNIST
ab-SHMT
(KL)

ab-SHMT
(1.8,1.2)

ab-SHMT
(2.2,0.8)

e-SHMT SCN+SVM

N = 2 30.1% 27.6% 29.5% 28.6% 18.7%
N = 5 52.3% 49.0% 53.1% 48.0% 43.2%
N = 10 55.7% 54.7% 58.1% 45.2% 49.9%

MNIST - Full

We also test the variational version of the SHMT on the more complex

problem of mutli-class classification. Similarly to what we have done in

Section 6.6.1, all the models are trained on a limited number of training

examples per class and this time tested on the full test set.

The best results for each models are displayed in Table 7.2. Again we

can see the benefit of the variational approach over the exact inference for

SHMT. Except when the number of training examples is extremely limited

the flexibility of the AB-objective allows us to find a better fit than the

simple KL. In that case again the best results are obtained for a model
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enforcing mild robustness and mass-covering.

Interestingly, with the variational SHMT, we do not observe the drop

in perform found in the exact SHMT when the number of example gets

bigger. This is due to the fact that we use a more powerful optimisa-

tion framework and thus avoid convergence towards local minima [39].

A test with more training points would be interesting to see if the vari-

ational SHMT stays competitive with the SVM method. However this is

currently prevented as our current implementation of the SHMT becomes

prohibitively slow when we increase too much the number of training

points.

7.5.2 Sonar Imagery

As mentioned in Section 6.6.2, in order to tackle the task of underwater

mine detection, one could use a seabed type classifier. We here test the

variational scattering hidden Markov Tree on that task. For the sake of

comparison we use the same dataset as in Section 6.6.2 as well as the same

scattering network architecture.

The task at hand is a binary image classification problem. The im-

age can either be of the class “ripple” (see Figure 7.3) or “seabed” (see

Figure 7.2). The data used are extracted from the UDRC MCM sonar im-

agery dataset [89]. This dataset comprises Synthetic Aperture RADAR

(7300× 2000 pixels SAS images). From those images, easier to handle 100

by 100 patches have been extracted and labelled. The classification task at

hand is very challenging due to the low informative content of each images

and the high intra-class variability.

The scattering transform used has M = 3 orders, J = 5 scales, L = 3

orientations and uses a Morlet wavelet. The hidden Markov tree has K = 2
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Figure 7.2: Sample of seabed patches.

Figure 7.3: Sample of ripple patches.

states and is using a mixture of Gaussians to describe the relationship

between the scattering coefficients and the hidden states. The models are

trained on 200 realisations of their class signal. The testing is then realised

on 80 images —40 of each classes. The performance of the various SHMT

models are assessed on 100 instances of this experiment and the results are

displayed in Table 7.3.

Classification results
Classification score Mean Variance
e-SHMT 0.74 0.101
ab-SHMT (KL) 0.88 0.072
ab-SHMT (1.0,0.5) 0.85 0.083
ab-SHMT (1.9,−0.1) 0.90 0.086

Table 7.3: Classification performance over 100 experiments of Ripple/Seabed clas-
sification.
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The task at hand is a binary classification problem with low in-

formative inputs. The normal seabed class can almost be described as

white noise. In those condition a variational SHMT fitted with an ob-

jective geared toward mode-seeking and mild robustness to outliers —

i.e. (λ, β) = (1.9,−0.1) outperforms all the other methods (at the cost of

a slightly higher variance). The variational SHMT systematically outper-

forms its exact counterparts.

7.5.3 Segmentation

In a similar fashion to Section 6.6.3, we use the best variational SHMT

model from the previous section to perform naive image segmentation.

One of the 2001× 7333 images from the UDRC MCM is cut into a set

200× 200 patches —some regions of the original image are not considered.

And each of those patches is presented to the classifier. Results of this

procedure can be seen in Figure 7.4.

Again this very naive segmentation method visually shows good re-

sults. When compared to the segmentation obtained with the exact shmt

model (see Figure 6.9), the variational method provides a better uncertainty

estimate for both the very easy tile and the complex ones.

7.6 Conclusion
We have here proposed a variational approximation framework for the

SHMT model defined in Chapter 6. This method allows to replace the

inference problem by an optimisation one, significantly simplifying the

problem.

We develop the framework using two different objectives. We have

first used the standard KL divergence which yields “simple” computa-

tions but suffer some pitfalls regarding the quality of the approximation.
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Figure 7.4: Segmentation of a sonar imagery.
Top: Original signal.
Middle: Naive segmentation.
Bottom: Variance map for the class predicted class. Color scale is
ranging from dark blue (low variance) to dark red (high variance).

We also leverage the flexibility of the AB variational objective defined in

Chapter 4 to fit variational SHMT models with a better control over the

approximation properties.

Experimental results demonstrate the effectiveness of both the vari-

ational approximation over the exact SHMT model and the AB-objective

over the KL objective.
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Alpha-Beta variational inference

In Chapter 4, we have developed a new variational approximation objective

based on the scale invariant Alpha-Beta divergence [107]. Chapter 7 lever-

ages this objective to learn the posterior distribution of a custom model

developed in that document. We here discuss a number of key points of

that framework.

We have seen that using the scale invariant AB-divergence to measure

the goodness of fit of the approximated posterior, one can directly optimise

the divergence, instead of an equivalent objective. Furthermore we have

developed an objective allowing control over both the robustness and the

mass-covering properties of the approximation.

Direct optimisation

Though the ELBO provides an equivalent optimisation problem to directly

optimising the —usually— intractable divergence between the true and

approximated posterior D(q(θ)||p(θ|X,ϕ)), this method shows limitation.

Rainforth et al. [166] show, for example, that a tighter ELBO can in fact be

detrimental to learning a good inference model.

Our proposed objective side steps that issue by directly optimising

the divergence of interest. Thus allowing full control on the optimisation

process on the quantity of interest.

Mass covering control

Minka [75] highlights a weakness of the the KL-divergence used in asso-

ciation to the Mean-Field assumption for variational inference. While the

approximation of the mean of the posterior is correct, its variance is not es-

timated correctly —underestimated or overestimated if using respectively

the KL or the reverse KL.
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Since then much work has been done to improve on this by using more

flexible, parameterised families of divergence to define the variational ob-

jective. Doing so the practitioner can smoothly interpolate between the

different behaviour —mass-covering/mode-seeking— by tuning a param-

eter. This idea have been developed for the alpha-divergence in [75, 157].

Li and Turner [158] have developed a similar idea based on the Rényi alpha

divergence.

Our proposed variational Alpha-Beta divergence method provides

similar level of control over the mass of the posterior approximation. In-

deed, the beta parameter of the AB-divergence offers direct control over

the mass-covering/mode-seeking property.

Robustness

The KL-divergence also suffers from the presence of outliers in the

dataset [42]. When fit on such a dataset using a KL based objective,

the posterior tends to be affected by those non statistically representative

datapoints [162]. That causes convergence to a sub-optimal posterior in

term of generalisation performance. Parameterised divergence measures

whose robustness to outliers can be controlled by a meta-parameter have

been developed [42, 84]. Their application to VI, however, is only very

recent. Futami et al. [162] leverage the properties of the Beta-divergence

to perform posterior approximation robust to outliers. However the Beta-

divergence does not provide a tractable ELBO and they set aside that

difficulty by optimising an approximate objective.

Our proposed variational AB-objective is an extension of the Gamma-

divergence and offers control over the robustness of the approximation

while maintaining the exact nature of the target optimised.
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Future work

Despite its advantages, the variational AB objective also adds complexity

for the practitioner. It has two meta-parameters to tune and finding the

best values for a specific can prove to be time consuming —despite the

intuitive selection rules provided in Section 4.3.4. This issue, however,

is not specific to the AB-variational inference but arises as soon as one

use a parameterised family of divergence for VI [158, 162]. An interest-

ing extension to our work would be to provide an automatic selection of

the optimal (α, β) parameters. To do so one could leverage the link be-

tween scale invariant AB-divergence, AB-divergence, Beta-divergence and

Tweedie models [107, 118, 132]. Leveraging those equivalences one could

express the AB-objective as a distribution over its parameters (α, β). Then

use hierarchical VI [159] to jointly optimise the model and also the diver-

gence parameters.

Another weakness of using the AB divergence for VI is the potentially

high variance of the Monte-Carlo estimator used as optimisation objective.

An interesting addition to our work would be to provide an analysis of the

bias and variance of the MC estimator along the lines of the one done for

the Rényi variational objective [158]. Another interesting extension would

be to leverage variance reduction methods such as those developed by Ran-

ganath et al. [143] and AUEB and Lázaro-Gredilla [147]. This could im-

prove the quality of the posterior as well as offer a finer control over its

properties.

Semi localised Hurst estimation

In Chapter 5, we have developed a method for semi-local Hurst estimation.

This method builds upon the global Hurst estimation method developed

by Nelson and Kingsbury [99] and extends it to make it spatially localised.

We do so by incorporating a Markov random Field on top of the Hurst
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estimate to cope with smooth variation and jumps in the coefficient value.

Future work

The work described in Chapter 5 is sequential. We first perform a pointwise

estimation of the Hurst coefficient and then apply a graphical model on top

of those estimate to spatially regulate them. A direct improvement to that

method would be to jointly optimise the estimate and the regularisation

factor in a one step procedure. This would mean defining an objective

encompassing both the regression loss and the MRF roof-edge loss. The

MRF roof-edge loss would then act as a regularisation objective.

Scattering hidden Markov Tree

We discuss a number of points that are shared by both the variational and

the exact version of the SHMT model proposed, respectively, in Chapter 7

and Chapter 6.

We have seen that we can build a probabilistic graphical model on

top of a fixed filter convolutional network like signal representation [121].

Leveraging the quality of the representation [168] and the fact that genera-

tive models are known to perform better than discriminative counter parts

when provided only limited number of training points [61], we develop

models allowing to achieve satisfying classification accuracy despite being

provided with an extremely low amount of training points.

Graphical models for high dimensional signal inference

The SHMT model develops a graphical model encoding both the features

obtained in the data representation step and the architecture of the data

projection pipeline of the scattering transform. Doing so prevents the loss

of information due to only encoding the features [121], potentially harmful

in terms of inference accuracy. This idea has been developed for other types

of signal representation pipelines [43, 57] and provides useful insights.
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Variational inference

Though possible, the exact optimisation of the SHMT parameters proves to

suffer from convergence towards poor local minima as well as underflow-

ing issues (see Chapter 6). The variational version of this model reduces

the effects of those issues (see Chapter 7). The variational setup also allows

us to use more complex objectives than the KL-divergence to better con-

trol the properties of the posterior approximation. We successfully use, for

example, the AB-variational objective defined in Chapter 4.

Future work

The architecture used for the scattering network in that work can be easily

swapped to integrate the latest development in that field to the SHMT.

Recent development includes the introduction of limited rotation invariant

layers [130], and rigid-motion —i.e. combination of translation and rotation

invariance— [145]. Since those network have the same general properties

as the SCN used for the SHMT, one could easily extend this framework

to work with those more complex transforms. Singh and Kingsbury [165]

adapt the concept of the scattering transform to the Dual Tree Complex

Wavelet (DTCW) [76]. Leveraging the exact invertibility of the DTCW,

they create an exactly invertible SCN called “scatternet”. Though slightly

different in terms of architecture, this scatternet could also be represented

by an hidden Markov tree, in a similar fashion to what we have done for

the SHMT.

It would also be interesting to use the generative properties of the

SHMT models combined with the exact invertibility of the scatternet to

sample from the feature space and perform data generation.

Another path for improving the SHMT is to improve directly on the

graphical model. One could try, for example, to reduce the number of free

parameters. One way to do so would be to develop a concept similar to
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stationarity [60] for hidden Markov chains for the trees. One could, for

example, use the same transition matrix for all transition with the same

scale difference.
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The appendix is organised as follows. Section .1, we review why it

was not possible to use the AB-divergence for VI. Section .2 develops the

computations to extend the sAB-divergence by continuity to (α, β) ∈ R2.

Section .4 provides the mathematical details fo the computation of the in-

fluence of each parameter. Section .3 lists and decribes all the divergences

encompassed within the sAB-divergence. Section .5, we provide a more

detailled derivation of the sAB-variational objective. Finally, Section .6

details the experimental setups used in Chapter 4.

.1 AB variational Inference:

In Chapter 4, we use the scale invariant version of the AB-divergence (sAB-

divergence) to derive the variational objective. We here show why the

simple AB-divergence cannot be used for this.

In [107] the AB-divergence is defined as,

Dα,β
AB(p||q) = − 1

αβ

∫ (
p(θ)αq(θ)β − α

α + β
p(θ)α+β − β

α + β
q(θ)α+β

)
dθ.

Let us try to derive the ELBO associated with this divergence,

Dα,β
AB(q(θ)||p(θ|X))

= − 1
αβ

∫ (
q(θ)α p(θ|X)β − α

α + β
q(θ)α+β − β

α + β
p(θ|X)α+β

)
dθ

= − 1
αβ

∫ (
q(θ)α

(
p(θ,X)
p(X)

)β

− α

α + β
q(θ)α+β − β

α + β

(
p(θ,X)
p(X)

)α+β
)

dθ

= − 1
αβ

(
p(X)−β

∫
q(θ)α p(θ,X)βdθ − α

α + β

∫
q(θ)α+βdθ

− β

α + β
p(X)−(α+β)

∫
p(θ,X)α+βdθ

)

At that step for the KL-divergence or the Renyi-divergence, one can

use the log term to separate the products in sums and isolate the likeli-

hood of the data p(X) from the rest of the equation (i.e. the ELBO). For the
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AB-divergence, however, we cannot apply this and isolate the intractable

terms. This makes using the AB-divergence for variational inference im-

possible. We will see in section .5 that this is not the case for the scale

invariant AB-divergence.

.2 Extension by continuity of the sAB-divergence

We here provide details of the extension by continuity of the sAB-

divergence.

In [107] they define the scale invariant AB-divergence as,

Dα,β
sAB(p||q) = 1

β(α + β)
log

∫
p(θ)α+βdθ

+
1

α(α + β)
log

∫
q(θ)α+βdθ − 1

αβ
log

∫
p(θ)αq(θ)βdθ,

(9)

for (α, β) ∈ R2 such that α 6= 0, β 6= 0 and α + β 6= 0.

We here provide detailed computation of the extension of the domain

of definition to R2. For simplicity we authorize ourselves to use some

shortcuts in the notations of undetermined forms.
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.2.1 α + β = 0

In that case β→−α and Equation 9 becomes,

Dα+β→0
sAB (p||q)

=
1

β(α + β)
log

∫
(1 + (α + β) log p(θ))dθ

+
1

α(α + β)
log

∫
(1 + (α + β) logq(θ))dθ

− 1
αβ

log
∫

p(θ)αq(θ)βdθ

=
1

β(α + β)

∫
(α + β) log p(θ)dθ +

1
α(α + β)

∫
(α + β) logq(θ)dθ

− 1
αβ

log
∫

p(θ)αq(θ)βdθ

= −1
α

∫
log p(θ)dθ +

1
α

∫
logq(θ)dθ

+
1
α2 log

∫ ( p(θ)
q(θ)

)α

dθ.

The first approximation uses xa = 1 + a log x when a ≈ 0, the second uses

log x ≈ x− 1 when x→ 1.

So finally we get

Dα+β=0
sAB (p||q) = 1

α2

(
log

∫ ( p(θ)
q(θ)

)α

dθ −
∫

log
(

p(θ)
q(θ)

)α

dθ

)
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.2.2 α = 0 and β 6= 0

In that case Equation 9 becomes,

Dα→0,β
sAB (p||q)

=
1
β2 log

∫
p(θ)βdθ +

1
α(α + β)

log
∫

q(θ)β (1 + α logq(θ))dθ

− 1
αβ

log
∫

q(θ)β (1 + α log p(θ))dθ

=
1
β2 log

∫
p(θ)βdθ +

1
α(α + β)

log
∫

q(θ)βdθ +
1

(α + β)

∫
q(θ)β logq(θ)dθ

− 1
αβ

log
∫

q(θ)βdθ − 1
β

∫
q(θ)β log p(θ)dθ

=
1
β2 log

∫
p(θ)βdθ − 1

β(α + β)
log

∫
q(θ)βdθ +

1
(α + β)

∫
q(θ)β logq(θ)dθ

− 1
β

∫
q(θ)β log p(θ)dθ

The first approximation uses xa = 1 + a log x when a ≈ 0, the second uses

log x ≈ x− 1 when x→ 1.

So finally we get

D0,β
sAB(p||q) = 1

β2

(
log

∫
p(θ)βdθ − log

∫
q(θ)βdθ − β log

∫
q(θ)β log

p(θ)
q(θ)

dθ

)
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.2.3 α 6= 0 and β = 0

In that case Equation 9 becomes,

Dα,β→0
sAB (p||q)

=
1

β(α + β)
log

∫
p(θ)α (1 + β log p(θ))dθ +

1
α2 log

∫
q(θ)αdθ

− 1
αβ

log
∫

p(θ)α (1 + β logq(θ))dθ

=
1

β(α + β)
log

∫
p(θ)αdθ +

1
(α + β)

∫
p(θ)α log p(θ)dθ +

1
α2 log

∫
q(θ)αdθ

− 1
αβ

log
∫

p(θ)αdθ − 1
α

∫
p(θ)α logq(θ)dθ

= − 1
α(α + β)

log
∫

p(θ)αdθ +
1

(α + β)

∫
p(θ)α log(θ)dθ +

1
α2 log

∫
q(θ)αdθ

− 1
α

∫
p(θ)α logq(θ)dθ

The first approximation uses xa = 1 + a log x when a ≈ 0, the second uses

log x ≈ x− 1 when x→ 1.

So finally we get

Dα,0
sAB(p||q) = 1

α2

(
log

∫
q(θ)αdθ − log

∫
p(θ)αdθ − α log

∫
pq(θ)α log

q(θ)
p(θ)

dθ

)
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.2.4 α = 0 and β = 0

In that case Equation 9 becomes,

Dα→0,β→0
sAB (p||q)

=
1

β(α + β)
log

∫
(1 + (α + β) log p(θ))dθ +

1
α(α + β)

log
∫
(1 + (α + β) logq(θ))dθ

− 1
αβ

log
∫
(1 + α log p(θ))(1 + β logq(θ))dθ

=
1

β(α + β)
log

∫
(1 + (α + β) log p(θ))dθ +

1
α(α + β)

log
∫
(1 + (α + β) logq(θ))dθ

− 1
αβ

log
∫
(1 + α log p(θ) + β logq(θ) + αβ log p(θ) logq(θ))dθ

=
1

β(α + β)

∫
(α + β) log p(θ)dθ +

1
α(α + β)

∫
(α + β) logq(θ)dθ

− 1
αβ

∫
(α log p(θ) + β logq(θ) + αβ log p(θ) logq(θ))dθ

= −
∫

log p(θ) logq(θ)dθ

The first approximation uses xa = 1 + a log x when a ≈ 0, the second uses

log x ≈ x− 1 when x→ 1.

So finally we get

D0,0
sAB(p||q) = 1

2

∫
(log p(θ)− logq(θ))2dθ

.3 Special cases of the sAB-divergence

We here provide a more complete list of the known divergences included

in the sAB-divergence.

For (α, β) = (1,0), the sAB-divergence reduces down to the KL-

divergence [2],

D(1,0)
sAB (q||p) =

∫
q(θ) log

(
q(θ)
p(θ)

)
dθ.

For (α, β) = (0,1), the sAB-divergence reduces down to the reverse KL-
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divergence,

D(1,0)
sAB (q||p) =

∫
p(θ) log

(
p(θ)
q(θ)

)
dθ.

For (α, β) = (0.5,0.5), the sAB-divergence is a function of the Hellinger-

distance [31],

D(0.5,0.5)
sAB (q||p) = −4log

∫ √
p(θ).

√
q(θ)dθ

= −4log
∫ (

1− 1
2

(√
p(θ)−

√
q(θ)

)2
)

dθ

= −4log(1− DH(p||q))

For (α, β) = (2,−1), the sAB-divergence is a function of the χ2-

divergence [141],

D(2,−1)
sAB (q||p) = 1

2
log

∫ p(θ)2

q(θ)
dθ

=
1
2

log(1− Dχ2(p||q))

For (α, β) = (0,0), the sAB-divergence is equal to the log-euclidean

divergence DE [149],

D0,0
sAB(p||q) = 1

2

∫
(log p(θ)− logq(θ))2dθ

When α + β = 1, the sAB-divergence is proportional to the Rényi-

divergence [6]

Dα+β=1
sAB (p||q) = 1

α(α− 1)
log

∫
p(θ)αq(θ)1−αdθ.

When α = 1 and β ∈ R, the sAB-divergence is equivalent to gamma-

divergence [84],

Dα=1,β
sAB (p||q) = 1

β(β + 1)
log

∫
p(θ)β+1dθ +

1
β + 1

log
∫

q(θ)β+1dθ− 1
β

log
∫

p(θ)q(θ)βdθ.
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.4 Robustness the sAB-divergence

We here provide detailed computation of the derivative of various diver-

gences with regard to the governing parameters of the approximation. Let

us here assume we approximate the distribution p by q a function of the

vector of parameters ϕ.

.4.1 Kullback-Leibler divergence

For the Kullback-Leibler divergence, we get the following results,

d
dϕ

DKL(q||p) = −
d

dϕ

(∫
q(θ) log

p(θ)
q(θ)

dθ

)
= −

∫ (dq(θ)
dϕ

log
p(θ)
q(θ)

+ q(θ)
d

dϕ
log

p(θ)
q(θ)

)
dθ

= −
∫ dq(θ)

dϕ

(
log

p(θ)
q(θ)

− 1
)

dθ.

.4.2 Rényi-divergence

For the Rényi-divergence, we get the following results,

d
dϕ

Dα
R(q||p) = −

d
dϕ

(
1

α− 1
log

∫
q(θ)α p(θ)1−αdθ

)

= − 1
α− 1

∫ dq(θ)
dϕ αq(θ)α−1p(θ)1−α∫

q(θ)α p(θ)1−αdθ

= − α

1− α

∫ dq(θ)
dϕ

(
p(θ)
q(θ)

)1−α
dθ∫

q(θ)α p(θ)1−αdθ
.
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.4.3 Gamma-divergence

For the Gamma-divergence, we get the following results,

d
dϕ

Dβ
γ(q||p) =

d
dϕ

(
1

1 + β
log

∫
q(θ)β+1dθ +

1
β(1 + β)

log
∫

p(θ)β+1dθ

− log
∫

q(θ)β p(θ)dθ

)
=

1
1 + β

d
dϕ

∫
q(θ)β+1dθ∫

q(θ)β+1dθ
−

d
dϕ

∫
q(θ)β p(θ)dθ∫

q(θ)β p(θ)dθ

=

∫ dq(θ)
dϕ q(θ)βdθ∫
q(θ)β+1dθ

− β

∫ dq(θ)
dϕ q(θ)β−1p(θ)dθ∫

q(θ)β p(θ)dθ

= − 1
β

∫ dq(θ)
dϕ q(θ)β p(θ)

q(θ) dθ∫
q(θ)β p(θ)dθ

− β

∫ dq(θ)
dϕ q(θ)βdθ∫
q(θ)β+1dθ

 .

.4.4 sAB-divergence

For the sAB-divergence, we get the following results,

d
dϕ

Dα,β
sAB(q||p) =

d
dϕ

(
1

β(α + β)
log

∫
q(θ)α+βdθ +

1
α(α + β)

log
∫

p(θ)α+βdθ

− log
∫

q(θ)α p(θ)βdθ

)
=

1
β(α + β)

d
dϕ

∫
q(θ)α+βdθ∫

q(θ)α+βdθ
−

d
dϕ

∫
q(θ)α p(θ)βdθ∫

q(θ)α p(θ)βdθ

=
1
β

∫ dq(θ)
dϕ q(θ)α+β−1dθ∫

q(θ)α+βdθ
− α

∫ dq(θ)
dϕ q(θ)α−1p(θ)βdθ∫

q(θ)α p(θ)βdθ

= − 1
β


∫ dq(θ)

dϕ q(θ)α+β−1
(

p(θ)
q(θ)

)β
dθ∫

q(θ)α p(θ)βdθ
− αβ

∫ dq(θ)
dϕ q(θ)α+β−1dθ∫

q(θ)α+βdθ

 .

.5 sAB-divergence Variational Inference

We here provide detailed computation of the variational objective using

the sAB-divergence. We also detail the extension of this objective to the

complete domain of definition.
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.5.1 sAB variational objective

We are interested in minimizing the divergence Dα,β
sAB(q(θ)||p(θ|X)), this

yields,

Dα,β
sAB(q(θ)||p(θ|X))

=
1

αβ
log

(∫
q(θ)α+βdθ

) α
α+β .

(∫
p(θ|X)α+βdθ

) β
α+β∫

q(θ)α p(θ|X)βdθ
.

=
1

αβ

log
(∫

q(θ)α+βdθ

) α
α+β

+ log
(∫

p(θ|X)α+βdθ

) β
α+β

− log
(∫

q(θ)α p(θ|X)βdθ

)]

=
1

αβ

log
(∫

q(θ)α+βdθ

) α
α+β

+ log

(∫ ( p(θ,X)
p(X)

)α+β

dθ

) β
α+β

− log

(∫
q(θ)α

(
p(θ,X)
p(X)

)β

dθ

)]

=
1

αβ

log
(∫

q(θ)α+βdθ

) α
α+β

+ log
(

p(X)−(α+β)
∫

p(θ,X)α+βdθ

) β
α+β

− log
(

p(X)−β
∫

q(θ)α p(θ,X)βdθ

)]
=

1
αβ

[
log
(∫

q(θ)α+βdθ

) α
α+β

+ log
(∫

p(θ,X)α+βdθ

) β
α+β

−β log p(X) + β log p(X) − log
(∫

q(θ)α p(θ,X)βdθ

)]
=

1
β(α + β)

log
∫

q(θ)α+βdθ +
1

α(α + β)
log

∫
p(θ,X)α+βdθ

− 1
αβ

log
∫

q(θ)α p(θ,X)βdθ

Finally rewriting this expression to make expectations over q(θ) ap-
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pears yields,

Dα,β
sAB(q(θ)||p(θ|X))

=
1

α(α + β)
logEq

[
p(θ,X)α+β

q(θ)

]
+

1
β(α + β)

logEq

[
q(θ)α+β−1

]
− 1

αβ
logEq

[
p(θ,X)β

q(θ)1−α

]

.5.2 Extension by continuity

Computation very similar to those in Section .2 yields,

Dα,β
sAB(q(θ)||p(θ|X)) =

1
β(α+β)

log
∫

q(θ)α+βdθ + 1
α(α+β)

log
∫

p(θ,X)α+βdθ − 1
αβ log

∫
q(θ)α p(θ,X)βdθ

for α, β,α + β 6= 0

1
α2

(
log
∫ ( q(θ)

p(θ,X)

)α
dθ −

∫
log
(

q(θ)
p(θ,X)

)α
dθ
)

for α = −β 6= 0

1
α2

(
log
∫

p(θ,X)αdθ − log
∫

q(θ)αdθ − α log
∫

p(θ,X)α log p(θ,X)
q(θ) dθ

)
for α 6= 0, β = 0

1
β2

(
log
∫

q(θ)βdθ − log
∫

p(θ,X)βdθ − β log
∫

q(θ)β log q(θ)
p(θ,X)dθ

)
for α = 0, β 6= 0

1
2

∫
(logq(θ)− log p(θ,X))2dθ, for α, β = 0
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.5.3 Monte Carlo approximation

E{hk}K
1

[
D̂α,β,K

sAB (q(.)||p(.|x))
]

=
1

α(α + β)
Ehk

[
log

1
K

K

∑
k=1

p(hk,x)α+β

q(hk|x)

]

+
1

β(α + β)
Ehk

[
log

1
K

K

∑
k=1

q(hk|x)α+β−1

]

− 1
αβ
Ehk

[
log

1
K

K

∑
k=1

[
q(hk|x)α+β−1

(
p(hk,x)
q(hk|x)

)β
]]

=
1

α(α + β)
Ehk

[
logEI∈{1...K}

[
1
K′

K′

∑
k=1

p(hk,x)α+β

q(hk|x)

]]

+
1

β(α + β)
Ehk

[
logEI∈{1...K}

[
1
K′

K′

∑
k=1

q(hk|x)α+β−1

]]

− 1
αβ
Ehk

[
logEI∈{1...K}

[
1
K′

K′

∑
k=1

[
q(hk|x)α+β−1

(
p(hk,x)
q(hk|x)

)β
]]]

≥ 1
α(α + β)

Ehk

[
EI∈{1...K}

[
log

1
K′

K′

∑
k=1

p(hk,x)α+β

q(hk|x)

]]

+
1

β(α + β)
Ehk

[
EI∈{1...K}

[
log

1
K′

K′

∑
k=1

q(hk|x)α+β−1

]]

− 1
αβ
Ehk

[
EI∈{1...K}

[
log

1
K′

K′

∑
k=1

[
q(hk|x)α+β−1

(
p(hk,x)
q(hk|x)

)β
]]]

=
1

α(α + β)
Ehk

[
log

1
K′

K′

∑
k=1

p(hk,x)α+β

q(hk|x)

]

+
1

β(α + β)
Ehk

[
log

1
K′

K′

∑
k=1

q(hk|x)α+β−1

]

− 1
αβ
Ehk

[
log

1
K′

K′

∑
k=1

[
q(hk|x)α+β−1

(
p(hk,x)
q(hk|x)

)β
]]

= E{hk}K′
1

[
D̂α,β,K′

sAB (q(.)||p(.|x))
]

This uses Jensen’s inequality of logarithm as well as uses the fact that both

D̂α,β,K
sAB (q(.)||p(.|x)) and D̂α,β,K′

sAB (q(.)||p(.|x)) are positive.

Next we prove that the Monte-Carlo approximation converge towards
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the exact divergence.

i.e. when K→ +∞, E{hk}K
1

[
D̂α,β,K

sAB (q(.)||p(.|x))
]
→ Dα,β

sAB(q(.)||p(.))

.6 Experiments

We here provide a more detailed description of our experimental setups.

The following experiments have been implemented using tensorflow [152]

and Edward [161].

.6.1 Regression on synthetic dataset

In this experiment we create a toy dataset to showcase the strength of the

sAB variational objective.

The non-corrupted data are generated by the following process,

y = wX +N (0,0.1)

with w = [1/2...1/2] a D-dimensional vector and b f X a set of points ran-

domly distributed between [−1,1]D.

A given percentage poutliers of the data are corrupted and follows the pro-

cess,

y = 5 + wX +N (0,0.1)

with w = [1/2...1/2] and X is sampled from N (0,0.2).

For N such data points [(xn,yn)]n∈[1,N], we uses the following distribu-

tions,
p(w) =N (w | 0,σ2

wID),

p(b) =N (b | 0,σ2
b ),

and

p(y |w,b,X) =
N

∏
n=1
N (yn | x>n w + b,σ2

y ).

We define the variational model to be a fully factorized normal across the
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weights.

For the experiments presented in Section 4.5 we use N = 1000, D = 4

and poutliers = 5%.

We train the model using ADAM [139] with learning rate of 0.01 for

1000 steps. We use 5 MC samples to evaluate the divergence.

.6.2 UCI datasets regression

We use here a Bayesian neural network regression model with Gaussian

likelihood on datasets collected from the UCI dataset repository [127]. We

also artificially corrupt part of the outputs in the training data to test the

influence of outliers. The corruption is achieved by randomly adding 5

standard deviation to poutliers% of the points after normalization.

For all the experiments, we use a two-layers neural network with 50

hidden units with ReLUs activation functions. We use a fully factorized

Gaussian approximation to the true posterior q(θ). Independent standard

Gaussian priors are given to each of the network weights. The model is

optimized using ADAM [139] with learning rate of 0.01 and the standard

settings for the other parameters for 500 epochs. We perform nested cross-

validations [95] where the inner validation is used to select the optimal

parameters α and β within the [−0.5,2.5]× [−1.5,1.5] (with step 0.25). The

best model selected from the inner loop is then re-trained on the complete

outer split. We use 25 MC samples to evaluate the divergence. The outer

cross validation used K1) = 10 folds and the inner one uses K2) = 2 folds.
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