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Abstract

This paper shows that rejection sampling with a two-piece Lévy intensity envelope can outperform both
the Ferguson-Klass algorithm and previously proposed envelopes for simulating realisations of completely
random measures typically used in Bayesian nonparametric statistics.

Keywords: Bayesian nonparametrics; gamma process; beta process; generalized gamma process;
stable-beta process; Ferguson-Klass algorithm

1. Introduction

Completely random measures (CRMs) play a central role in Bayesian nonparametric statistics. Most
prominently, CRMs have been used to define tractable priors for survival analysis (Doksum, 1974) and
their normalisations have been used to define tractable priors for random distributions in density estimation
building on the initial work of Regazzini et al. (2003). A full description of posterior inference in this class
of models is given by James et al. (2009) and a review of work in this area is provided by Lijoi and Prünster
(2010). Caron and Fox (2017) and Todeschini and Caron (2016) discussed the use of gamma and generalized
gamma processes to define models for sparse graphs. Thibaux and Jordan (2007) showed that the Indian
buffet process (Ghahramani and Griffiths, 2006), which is a prior for an infinite feature model, can be defined
using a beta process Hjort (1990), which was extended to the stable-beta process by Teh and Gorur (2009).

CRMs without fixed points of discontinuity (Kingman, 1967) can be represented in the form

G =

∞∑
k=1

Jkδθk

where δx is the Dirac delta function and (J1, θ1), (J2, θ2), (J3, θ3), . . . are a realisation of a Lévy intensity
ν̄(dJ, dθ). In this work, it is assumed that ν̄(dJ, dθ) = ν(dJ)α(dθ), where α is a probability measure. Often,
J1, J2, J3, . . . are referred to as jump sizes, θ1, θ2, θ3, . . . are referred to as jump locations and I will refer
to ν as the jump intensity. The jump intensities of some popular examples are given in Table 1, where all
processes, apart from the σ-stable, are standardized so that E[

∑∞
i=1 Ji] = M .

Simulating realisations of these processes is an important problem. Some MCMC algorithms for nor-
malized random measures involve simulation of these processes or tilted versions of these measures (Griffin
and Walker, 2011; Favaro and Teh, 2013). The Gibbs sampler for the sparse graph model in Todeschini and
Caron (2016) uses an approximation of the sum of all jumps of a CRM. More generally, there may be interest
in simulating these measures even in situations where the CRM is integrated from the model in the MCMC.
The most widely-used method is due to Ferguson and Klass (1972) but other methods have been developed
and are comprehensively reviewed in Campbell et al. (2018) in the context of Bayesian nonparametrics.
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Process ν(x) Parameter range
Gamma Mx−1 exp{−x} x > 0, M > 0
σ-stable σ

Γ(1−σ)x
−1−σ x > 0, 0 < σ < 1

Beta M cx−1(1− x)c−1 0 < x < 1, c > 0

Generalized gamma M a1−σ

Γ(1−σ)x
−1−σ exp{−ax} x > 0, M > 0, 0 < σ < 1, a > 0

Stable-Beta M Γ(1+c)
Γ(1−σ)Γ(c+σ)x

−1−σ(1− x)c+σ−1 0 < x < 1, 0 < σ < 1, c > 0

Table 1: The jump intensity for various CRM’s

In this paper, I will concentrate on the class of rejection sampling methods described in Rosiński (2001),
where a realisation of a CRM is generated by thinning a realisation from an enveloping CRM. I will discuss
a simple construction of the enveloping CRM which can outperform previous suggestions in the literature
for processes used in Bayesian nonparametrics. The rest of the paper is organized as follows. Section 2
describes the Ferguson-Klass and rejection algorithms for non-Gaussian Lévy processes, and proposes a two-
piece construction of the jump intensity of the enveloping CRM. Section 4 illustrates the construction for
some processes used in Bayesian nonparametrics. Section 5 reports on the performance of these algorithms
compared to some previous suggestions. Section 6 provides a brief discussion.

2. Ferguson-Klass algorithm, rejection algorithms and two-piece Lévy envelopes

The most widely used method for simulating a non-Gaussian Lévy process is due to Ferguson and Klass
(1972). Suppose that we wish to simulate a realisation of a non-Gaussian Lévy process, G, with Lévy intensity
ν̄(dJ, dθ) = ν(dJ)α(dθ). Define the tail mass function ην of a jump intensity ν to be ην(x) =

∫∞
x
ν(z) dz.

Suppose that E1, E2, . . . are the points of a Poisson process with intensity 1. Ferguson and Klass (1972)
showed that G can be represented as

G =

∞∑
k=1

Jkδθk

where Jk = η−1
ν (Ej) and θ1, θ2, θ3, · · ·

i.i.d.∼ α. This construction implies that the Jk’s are monotonically
decreasing. In practice, this algorithm can be slow to run since the function ην will need to be numerically
integrated and inverted for many processes. In the five processes in Table 1, the tail mass function is only
available analytically for the σ-stable process (although, the tail mass function of the gamma process is the
exponential-integral function for which a continued fraction method is available).

An alternative method is rejection sampling (Rosiński, 2001). Suppose, again, that we want to simulate
a realisation of G and, furthermore, that we can define an enveloping Lévy process G̃ with Lévy intensity
φ̄(dJ, dθ) = φ(dJ)α(dθ) for which ν(x) ≤ φ(x) for all x, and for which ηφ can be analytically inverted. The

algorithm works by first simulating a realisation (J̃1, θ̃1), (J̃2, θ̃2), (J̃3, θ̃3), . . . of G̃ using the Ferguson-Klass
algorithm and then simulating selection variables S1, S2, S3, . . . which are independent Bernoulli random

variables with success probability ν(J̃k)

φ(J̃k)
. Then

G =

∞∑
k=1

SkJ̃kδθ̃k .

The number of rejected points,
∑∞
k=1 I(Sk = 0), is Poisson distributed with mean

∫∞
0

[φ(x) − ν(x)] dx
(Campbell et al., 2018). This integral will become smaller as φ(x) becomes closer to ν(x). The use of the
Ferguson-Klass algorithm to simulate G̃ implies that the jumps of G are monotonically decreasing.

A simple method for constructing the jump intensity of G̃ uses a two-piece jump intensity. Suppose that
we can write ν(x) = ν1(x) ν2(x) where ν2(x) ≤ 1 for all x, ν1(x) is non-increasing and the tail mass integral
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of ν1(x) and ν2(x) are analytically invertible. A suitable enveloping jump intensity is

φ(x) =

{
ν1(x) x < b
ν1(b) ν2(x) x ≥ b

which is well-defined for all b (for a fixed b, we need ν2(x) ≤ 1 for x < b and ν1(x) ≤ ν1(b) for x ≥ b).
The parameter b can be chosen to minimize the average number of rejections, which is denoted bopt. An
alternative adaptive thinning method for a CRM truncated to [S,∞] has been studied by Favaro and Teh
(2013). In the following section, the two-piece construction is illustrated for the most popular classes of
CRMs in Bayesian nonparametrics and bopt is discussed.

3. Two-piece Lévy intensity envelopes for some non-Gaussian Lévy processes

3.1. Gamma process

Rosiński (2001) suggested an enveloping jump intensity

φ(x) = M x−1(1 + x)−1

which was termed the Lomax process by Campbell et al. (2018). The natural two-piece jump intensity is

φ(x) =

{
M x−1 x < b
M b−1 exp{−x} x ≥ b .

This implies that

η−1
φ (x) =

{
b exp{b−1 exp{−b} − x

M } x > M b−1 exp{−b}
− log(b xM ) x ≤M b−1 exp{−b} .

The optimal value bopt solves bopt − bopte−bopt − e−bopt = 0 which is approximately equal to 0.8065.

3.2. Generalized gamma process

The gamma process can be generalized by introducing a tilting parameter σ, which leads to a heavy tailed
distribution for

∑∞
i=1 Ji. Generalized gamma processes are generally considered to be more computationally

demanding to simulate than gamma processes. It is useful to first use the re-parameterization z = ax leading
to the jump intensity

ν(z) =
M a

Γ(1− σ)
z−1−σ exp{−z}.

If we generate jumps K1,K2,K3, . . . from this jump intensity then Ji = Ki
a will be the jump of the original

generalized gamma process. A suitable two-piece enveloping jump intensity is

φ(x) =

{
M a

Γ(1−σ) x
−1−σ z < b

M a
Γ(1−σ) b

−1−σ exp{−z} z ≥ b .

This choice of envelope implies that

η−1
φ (x) =

{
[σ Γ(1−σ)

a
x
M + b−σ − σb−1−σ exp{−b})]−1/σ x > M a

Γ(1−σ)b
−1−σ exp{−b}

− log(bσ+1 Γ(1−σ)
a

x
M ) x ≤ M a

Γ(1−σ)b
−1−σ exp{−b}

.

The value of σ has a small effect on the value of bopt and I suggest using bopt = 0.8065. Campbell et al.
(2018) suggest an envelope which corresponds to b =∞.
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3.3. Beta process

A suitable two-piece jump intensity envelope for the beta process is

φ(x) =

{
M cx−1 x < b
M cb−1(1− x)c−1 x ≥ b .

This choice of envelope implies that

η−1
φ (x) =

{
b exp{−c−1( xM − b

−1(1− b)c)} x > M b−1(1− b)c
1− ( xM b)1/c x ≤M b−1(1− b)c .

The value of bopt as a function of c is shown in the first column of Figure 1, and bopt = 4
5c is an extremely

good approximation. Campbell et al. (2018) suggest an envelope which corresponds to b = 1.

3.4. Stable-beta process

A possible two-piece jump intensity envelope for the stable-beta process is

φ(x) =

{
M Γ(1+c)

Γ(1−σ)Γ(c+σ)x
−1−σ x < b

M Γ(1+c)
Γ(1−σ)Γ(c+σ)b

−1−σ (1− x)c+σ−1 x ≥ b
.

This choice of jump intensity envelope implies that

η−1
φ (x) =

{
[σΓ(1−σ)Γ(c+σ)

Γ(1+c)
x
M −

σ
c+σ b

−1−σ(1− b)c+σ + b−σ]−1/σ x > M Γ(1+c)
Γ(1−σ)Γ(c+σ+1)b

−1−σ (1− b)c+σ

1− (Γ(1−σ)Γ(c+σ+1)
Γ(1+c) b1+σ x

M )1/(c+σ) x ≤ M Γ(1+c)
Γ(1−σ)Γ(c+σ+1)b

−1−σ (1− b)c+σ
.

The parameter σ has only a small effect on bopt (see Figure 1) and a simple choice is b = 4
5c , as for the

beta process. Again, Campbell et al. (2018) suggest an envelope which corresponds to b = 1.
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Figure 1: The value of bopt as a function of c for the stable-beta process (solid line) with different values of σ and the function
bopt = 4

5c
(dashed line).

4. Performance comparisons

The performance of the rejection algorithms with two-piece jump intensity was compared to direct
application of the Ferguson-Klass (FK) algorithm and the previously suggested jump intensity envelopes of
Rosiński (2001) (Lomax) and Campbell et al. (2018) (CHHB). The gamma, generalized gamma, beta and
stable beta process were considered with a range of values for the parameters of these processes. In both FK
and rejection algorithms, the 100 largest jumps of G were generated. Therefore, each algorithm produces
values with the same truncation error but the rejection algorithms will tend to simulate more than 100
jumps from the enveloping CRM. This contrasts with the simulation study of Campbell et al. (2018) where
a fixed number of jumps from G̃ are simulated and the truncation errors are compared. Arbel and Prünster
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(2016) provide a much deeper discussion about truncation errors for CRMs. Each algorithm was run 10000
times to provide Monte Carlo estimates of the average number of rejections and the computational time.
All code was written in Matlab. Numerical integrals were calculated using the built-in integral function
and numerical inverses were calculated using the built-in fzero function. The average number of rejections
from each envelope is linear in M and the results are shown in the on-line appendix.

Gamma process Generalized gamma process
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Figure 2: The speed-ups over the FK algorithm of the two-piece envelop and Lomax or CHHB envelope for the gamma and
generalized gamma proceses. The value of σ are σ = 0.1 (solid line), σ = 0.3 (dashed line) and σ = 0.9 (dotted line).

Figure 2 shows speed-ups of the rejection algorithms over the FK algorithm for the gamma and generalized
gamma processes. Both rejection algorithms are substantially faster than the FK algorithm for the gamma
process (about 2000 times) and the generalized gamma process (between 8000 and 16000 times). The
difference in speed-up is due to the availability of a continued fraction method for the tail-mass function of
the gamma process but not the generalized gamma process, where numerical integration is required. The
CHHB rejection envelope and the two-piece envelope have a similar speed-up for large σ but the difference
increases as σ decreases. This reflect the number of rejections generated by each envelope. For example,
when σ = 0.1 and M = 10, the CHHB rejection envelope has an average number of rejections of 100 whereas
the two-piece envelope has an average number of rejections of 9. For the gamma process, the Lomax envelope
gives a lower average number of rejections but the two-piece envelope is slightly faster due to the operations
involved in the computation.

The results for beta and stable-beta processes are shown in Figure 3. The speed-up is substantial for
both processes with a larger speed-up for smaller values of c. The additional speed-up of the two-piece
envelope over the CHHB envelope increases with c. For example, with c = 20 and M = 10, the two-piece
rejection envelope takes roughly half the time. This reflects that the difference in the number of rejections
is increasing with c. For example, when c = 20 and M = 10, the two-piece envelope has an average of 20
rejections whereas the CHHB envelope has an average of 600 rejections for the beta process.

5. Discussion

This paper develops two-piece jump intensity envelopes for the most popular processes in Bayesian
nonparametric modelling. These are shown to be several orders of magnitude faster than the popular
Ferguson-Klass algorithm. This shows the potential of rejection sampling algorithms for efficient compu-
tation in Bayesian nonparametric analysis. The two-piece approach is also shown to outperform envelopes
in Rosiński (2001) and Campbell et al. (2018) for some parameter values. This paper has concentrated
on simple processes but there are other challenging problems such as simulating tilted versions of these
processes.
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Figure 3: The speed-ups over the FK algorithm of the two-piece envelop (top row) and CHHB envelope (bottom row) for the
stable-beta process. The value of c are c = 2 (solid line), c = 3 (dashed line) and c = 20 (dotted line).
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