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 3 

Introduction 4 

Machine learning applications are ever-present in our daily activities, whether the 5 

beneficiary is aware of it or not. Medical imaging, and, more specifically, clinical 6 

radiology could not have remained unaffected by these advances [1-3]. 7 

 8 

The development and application of machine learning methods in radiology, has the 9 

potential to support a series of clinical tasks, such as automatic lesion detection and 10 

segmentation, lesion classification, patient risk stratification or patient outcome 11 

prediction and may apply to radiological images of different modalities. Recently, 12 

driven by the rapid progress in computational power and speed and the availability of 13 

big datasets, the use of deep learning and, more specifically, convolutional neural 14 

networks has revolutionised the field of automated analysis of radiological images by 15 

accomplishing some of the aforementioned tasks with remarkable accuracy [4-6].  16 

 17 

The developed machine learning methodologies seek to improve the diagnostic and 18 

predictive performance of radiological scans and generate an, ‘up to the hilt’, time-19 

efficient and error-proof workflow for the reporting radiologist. The role of 20 

computational tools is intended to be complementary and supportive to the radiologist, 21 

potentially performing time-consuming tasks such as quantitative measurements; the 22 

experienced radiologists’ judgement remains the reference standard, taking many 23 

other factors and non-imaging information into account. However, to quote Curtis 24 
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Langlotz of Stanford from the Radiological Society of North America (RSNA) meeting 25 

in 2017: ‘radiologists who use artificial intelligence, will replace those who don’t’. 26 

 27 

Recent technological advances in magnetic resonance imaging (MRI), have allowed 28 

whole body MRI (WB-MRI) to be performed clinically with acceptable image quality 29 

and within reasonable time. The addition of diffusion-weighted imaging (DWI) in whole 30 

body protocols, means that WB-(DW)-MRI is now becoming an increasingly important 31 

tool in oncology for cancer diagnosis, staging and treatment response monitoring [7-32 

9]. A significant challenge when reading whole body MRI scans, is the increased 33 

volume of resulting imaging data, especially when multi-parametric acquisitions are 34 

used. The reading process can then become rather time-consuming, with increased 35 

risk of misinterpretations. Also, whole body DWI for staging cancer patients has 36 

limitations with respect to its diagnostic performance [10], as it may be prone to false-37 

positives resulting from tissues with normally occurring restricted diffusivity [11]. 38 

 39 

The National Institute of Health Research (NIHR) has funded a project (EME project 40 

XXXXX), which aims to develop state-of-the art machine learning algorithms for the 41 

automatic detection of malignant and benign lesions in multi-centre, multi-parametric 42 

whole body MRI scans [12]. The study hypothesis is that the developed machine 43 

learning tools will have the potential to improve the diagnostic performance and reduce 44 

the reading time of whole body MRI scans. We discuss here our experiences from this 45 

study and demonstrate the methodology employed and challenges met in the pathway 46 

towards translating our methods into a potentially useful clinical tool. 47 

 48 

 49 
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The XXXXXX (MAchine Learning In Body Oncology) study 50 

XXXXXX is a prospective, observational study, which aims to develop machine 51 

learning methods and validate them by comparing the diagnostic performance and 52 

reading time of WB-(DW)-MRI, when assessed alone and when assessed in 53 

conjunction with machine learning output. The study does not collect patient imaging 54 

data, but relies on data collected by other NIHR and CRUK-funded trials, referred to 55 

as ‘contributing studies’ [13, 14]. XXXXXX is funded by the NIHR, Efficacy and 56 

Mechanism Evaluation programme (EME project: XXXX) and is a collaboration 57 

between the XXXXX and the XXXXX. Contributing studies’ data are provided by the 58 

XXXXX and XXXXX. 59 

 60 

The study is divided into three phases, whereby in Phase 1 algorithms are developed 61 

and evaluated for their accuracy to identify normal structures in whole body MRI scans 62 

from healthy volunteers. In Phase 2 the developed algorithms will be further trained to 63 

identify benign lesions and then tested and further refined for detecting cancer lesions. 64 

Finally, in Phase 3 the algorithms will be tested in a large cohort of ‘unseen’ whole 65 

body MRI data. As far as we are aware, XXXXXX is the first study that applies machine 66 

learning techniques in WB-(DW)-MRI.  67 

 68 

The XXXXXX study relies on whole body MRI data from a range of multi-centre trials, 69 

and includes a range of cancer types, and thus the setting of the study is truly 70 

pragmatic in clinical terms. As a result, the imaging data is relatively heterogeneous, 71 

or “messy”, which poses significant challenges to applying any statistical image 72 

analysis approach. Current machine learning methodology requires the data to be 73 

fairly homogeneous, in the sense that the training data from which task-specific 74 
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features are learned should be similar to the unseen test data, on which one wishes 75 

to make predictions for. Figure 1 shows a block diagram identifying the XXXXXX 76 

phases, during which the most significant challenges have been encountered to date 77 

and for which our methodology required adaptation.  78 

 79 

1. Data acquisition 80 

The use of big datasets, is a desirable feature for either clinical outcome-driven 81 

imaging studies or purely machine learning outcome-driven imaging studies. A large 82 

cohort of examined patients can potentially increase the statistical power of primary 83 

and secondary outcomes in clinical trials and can also boost the accuracy of the 84 

employed algorithms in machine learning-related imaging studies, where larger 85 

datasets are more likely to sufficiently capture the natural variability of both anatomy 86 

and pathology. Thus, investigators turn to the use of retrospectively-acquired imaging 87 

data or look into multi-centre collaborations to maximise the amount of available data 88 

for their studies. However, this means that there will be data compliance issues. In 89 

studies using, for example, CT datasets, the data is likely to be fairly homogeneous, 90 

although differences in slice thickness or differences in the use of contrast may pose 91 

challenges. However, in the MRI setting, as encountered in XXXXXX, there may be 92 

extra significant variabilities in the data, including differences in imaging sequences, 93 

between manufacturers and differences in acquisition parameters posing additional 94 

challenges to the training and deployment of machine learning tools, as will be 95 

described below.  96 

 97 

 98 

 99 
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1.1 MRI systems and acquisition protocol variabilities  100 

The MRI systems used in multi-centre studies, will very commonly be of different 101 

manufacturers and different field strengths, have different coil characteristics and will 102 

be quality checked to different standards, even in the context of well-designed clinical 103 

imaging studies. This implies that images of inconsistent appearance and quality will 104 

be acquired throughout different centres. These differences are of little consequence 105 

to interpretation by the flexible human reader, who is trained to readily adapt to visual 106 

differences, but pose significant challenges for current machine learning algorithms. 107 

Furthermore, the introduction of functional imaging, which can now be incorporated 108 

into whole body protocols as in XXXXXX, means that the spatial and signal intensity 109 

discrepancies between images acquired in different centres, can be of particular 110 

importance in machine learning-related imaging studies.  111 

 112 

This protocol variability in terms of anatomical localisation and signal intensity effects 113 

is demonstrated, using XXXXXX data, in Figure 2. Methods with which a number of 114 

the variability issues mentioned above, were mitigated in XXXXXX, are described in 115 

the ‘Data preparation’ section. 116 

 117 

1.2  Image quality  118 

The versatility of MRI is the modality’s ‘blessing and curse’. It is very common that 119 

image acquisition in the body may be compromised by patient factors such as 120 

movement, bowel gas, joint prosthesis or surgical material and imaging datasets of 121 

compromised quality can be ‘passed through the sieve’ of the clinical workflow, often 122 

out of necessity.  123 
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Repeating sequences may not always be practicable, because of time constrains or 124 

patient exhaustion (especially if incorporating multiple sequences including DW-MRI). 125 

It should be stressed, however, that the quality of the acquired datasets might have 126 

been suitable for the objectives of the clinical study, involving human readers, and not 127 

all of the issues are externally-triggered (for example distortions in echo planar 128 

imaging (EPI) DWI acquisitions are unavoidable [15]), but they may cause very 129 

significant challenges to the machine learning algorithms and be detrimental to their 130 

performance.  131 

 132 

This, highlights the importance of having imaging data with readiness level of ‘Band 133 

A’, appropriate for the task at hand, as described by Lawrence 2017 [16], for machine 134 

learning studies. It is acknowledged however, that when multi-centre data are 135 

collected the scenario above is unrealistic, so removal of inappropriate or 136 

compromised datasets might be unavoidable for the purposes of algorithm training 137 

and also at test time, when predictions are made on new, ‘unseen’ data. We have 138 

estimated that a proportion of the datasets employed in XXXXXX, were not suited for 139 

machine learning purposes and had to be discarded. Figure 3 shows some of the 140 

image quality issues we encountered in XXXXXX.  141 

 142 

It is, therefore, highly recommended that MRI acquisitions for machine learning studies 143 

are standardised to the highest possible degree and are performed and monitored by 144 

an experienced research radiographer or by the local MRI physicist. This issue also 145 

raises the much wider question of acquisition uniformity throughout the radiology 146 

community, in order to harness the potential benefits of applying machine learning 147 

techniques in the future.  148 
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2. Data preparation 149 

Data preparation or pre-processing is an essential step in any machine learning study, 150 

whether related to imaging or not. In XXXXXX, where whole body MRI data from 151 

multiple imaging stations were acquired, we converted all our datasets in compressed 152 

Nifti format (nii.gz), in the interest of space and machine learning pipeline efficiency, 153 

after stitching images together according to slice location to form whole body volumes. 154 

It should be noted that, in case of DICOM data conversion to other ‘headerless’ 155 

formats,  the original data should be retained so that header information can be ‘glued’ 156 

back to the converted images for uploading to the reading platform, as these 157 

accommodate almost exclusively DICOM data. 158 

 159 

2.1 Signal intensity standardisation 160 

As discussed earlier, the richness of acquisition schemes in MRI, comes with a major 161 

challenge. Unlike other medical imaging modalities, the image intensities in MRI do 162 

not have a fixed interpretation, not even within the same protocol or when acquired in 163 

the same body region, using the same scanner for the same patient [17]. In XXXXXX, 164 

this even applies between imaging stations in whole body acquisitions. This lack of a 165 

fixed meaning for intensities poses problems, not only when it comes to image 166 

quantification, but also in machine learning tasks, such as image segmentation. 167 

Therefore it is essential that an MRI signal intensity standardisation step is 168 

incorporated in the preparation pipeline before extracting the features in supervised 169 

learning algorithms or feeding the images in deep learning algorithms.  170 

 171 

In XXXXXX we designed a specific pre-processing pipeline for intensity normalisation 172 

across images. We initially experimented with simple intra-subject intensity scaling, 173 
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based on signal normalisation using the 4th and 94th percentiles of the intensity 174 

histogram, a somewhat arbitrary choice which has been shown to work well for brain 175 

imaging [18]. However, in whole body imaging there is the challenge of inconsistent 176 

anatomical coverage due to protocol variability, as discussed in Section 1.1. A number 177 

of whole body volumes used in XXXXXX, fully included the head and neck regions 178 

down to the lower limbs, while others only covered the body from the shoulders down 179 

to knees (Figure 2). This violates the assumption that statistics, such as percentiles 180 

obtained from the image intensity histograms, correspond to similar anatomical 181 

regions. To address this, we make use of a rigid registration technique to 182 

approximately align all images to a reference image. In this way, the field of view 183 

between the tested and training images is normalised and similarity between the 184 

histogram statistics is ensured.  185 

 186 

This then allows us to employ Nyul’s intensity normalisation technique [19], which 187 

involves two stages. In the learning stage, a standard scale is derived from the 188 

intensity histograms of the training images using ten, uniformly distributed, histogram 189 

landmarks ranging from the 1st to the 99th percentile. In the testing stage, any new 190 

image, following rigid registration to the reference image, can then be mapped to the 191 

intensity standard scale, using the learned transformation from the training stage. 192 

Figure 4 shows an example of using this pipeline on a whole body T2w volume.   193 

 194 

Other histogram-based methods to perform intra and inter-subject signal intensity 195 

standardisation for the same acquisition protocol are currently explored and compared 196 

to the existing pipeline [20].  197 

 198 
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2.2  Generating training data 199 

Generating training data for machine learning algorithms is one of the most important, 200 

but also laborious and time-consuming processes. Manual, volumetric segmentations 201 

performed by clinical experts, should be used to ensure reliable and accurate 202 

algorithmic training. These labelled data, should also be used as the reference 203 

standard to compare with, when evaluating algorithmic performance. Semi-automatic 204 

or fully automatic methods can also be used to alleviate part of the workload, but it is 205 

suggested that these segmentations are always double-checked and finalised by a 206 

clinical expert. In XXXXXX, we used ITK-SNAP [21] to manually generate annotated 207 

whole body images. Labelling of heathy structures (23 anatomical structures, including 208 

organs and bones) occupied a significant proportion of Phase 1 of the project, but this 209 

work was of paramount importance as in Phase 2 we are using a two-stage approach, 210 

to identify cancer lesions, as will be discussed in Section 3.2. 211 

 212 

2.3 Image registration 213 

The use of multi-modal MRI data (‘multi-channel’ data as commonly referred to in 214 

computer science terminology) has been shown to improve algorithmic performance 215 

in tasks like brain lesion segmentation [22]. However, using multi-channel inputs for 216 

algorithm training requires optimally registered imaging datasets between modalities, 217 

so that annotated data from a single modality are used -in the interest of time-218 

efficiency- when generating training data. Anatomically-matched datasets from 219 

different modalities, is a task which can be performed efficiently enough in the brain, 220 

where minimal gross motion or anatomical deformation is expected between 221 

acquisitions, with using a rigid registration algorithm.  222 

 223 
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In abdominal imaging, where there might be significant organ motion and deformation 224 

between acquisitions, a rigid registration might not suffice. The task proved to be even 225 

more challenging with whole body MRI data. Furthermore, when we attempted to 226 

register DWI volumes to anatomical volumes, we encountered the extra challenge 227 

from the geometrically distorted EPI-acquired, high b-value DW volumes [15]. We 228 

qualitatively assessed registration between DWI and anatomical volumes, when using 229 

a 12 degrees-of-freedom affine registration [23], but with mixed results. A non-rigid 230 

registration using free-form deformations [24] was also tested, but the time required to 231 

apply on the tens of whole body datasets used in XXXXXX was unacceptably long. At 232 

this stage of XXXXXX, we simply use slice-matched acquisitions, resampled to match 233 

the spatial resolution of the reference (T2-weighted) volumes. This aligns the majority 234 

of structures, in particular bones, very well between modalities, but ignores differences 235 

due to breathing or other movements of the subjects between scans. 236 

 237 

A block diagram of the data preparation pipeline for XXXXXX, as described in Section 238 

2, is shown in Figure 5. 239 

 240 

3. Machine learning pipeline 241 

3.1 Choice of algorithm and feature crafting 242 

The choice of machine learning algorithm will depend on the task at hand. 243 

Unfortunately, there is no ‘one-fits-all’ recipe and so, the choice comes down to a 244 

recursive trial-and- error process, until the desirable performance and characteristics 245 

are reached. The number of supervised, state-of-the-art, algorithms suited for imaging-246 

related tasks and their variants, but also the choice for the hyper-parameters in each 247 

individual method may seem infinite; previous experience, already published results 248 
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and the quality and quantity of available data for training should provide guidance for 249 

a good starting point.  250 

 251 

Another important consideration for algorithm selection, is whether the model 252 

interpretability is of interest for the task at hand. Deep learning algorithms have 253 

demonstrated great accuracy in imaging-related tasks [6], but interpreting the 254 

extracted features and the complex, non-linear relationships between them, which 255 

take place in the hidden layers of the network, remains an almost impossible 256 

challenge. Despite the fact that there are now ways to visualise the features that 257 

activate specific neurons in a layer [25], the hidden layers of a deep convolutional 258 

neural network still have the traits of a ‘black box’. 259 

 260 

In XXXXXX, we mainly tested and evaluated two algorithms; one state-of-the-art 261 

ensemble algorithm based on classification forests (CFs) [26, 27] and one deep 262 

learning algorithm based on convolutional neural networks (CNNs) [28]. Classification 263 

forests are powerful, multi-label classifiers, which facilitate the simultaneous 264 

segmentation of multiple organs. They have very good generalisation properties, 265 

which means they can be effectively trained using a limited number of datasets. Both 266 

of these traits were desirable in XXXXXX. Our convolutional neural networks 267 

implementation was based on XXXXX  [28, 29], an approach which has been shown 268 

to perform very well in brain lesion segmentation with multi-parametric MRI data [22]. 269 

The details of the hyperparameters used for the CFs and network architecture for the 270 

CNNs, can be found elsewhere [30]. CNNs performed consistently better in healthy 271 

organ segmentation in Phase 1 of XXXXXX, so it was the algorithm of choice for Phase 272 

2 of the project (lesion detection). 273 
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3.2 Pipeline adjustments for task at hand and performance evaluation 274 

Whether the task at hand is organ or lesion classification, segmentation or detection, 275 

the core of the pipeline will most commonly be an accurate and robust classifier. In 276 

XXXXXX Phase 2 we were interested in lesion localisation and characterisation, rather 277 

than segmentation. We therefore had to employ a scheme to evaluate the 278 

segmentation algorithms used in Phase 1, but now in terms of detection. A specific 279 

automatic evaluation procedure was implemented to calculate detection accuracy. 280 

This uses as inputs  the manual reference segmentation and the detection map from 281 

the segmentation algorithm and calculates the true positive rate, positive predictive 282 

value and F1 score, based on a user defined distance threshold (in mm). An example 283 

plot of the accuracies for a range of detected lesions and manual segmentations 284 

distance is shown in Figure 6.   285 

 286 

We then used the CNN algorithm, developed in Phase 1 of XXXXXX, to evaluate the 287 

performance of detected primary colon lesions from colorectal cancer patients, 288 

scanned with whole body MRI [13]. We observed that lesion detection in whole body 289 

scans was suboptimal with the CNNs, presumably due to the small fraction of lesion 290 

volume occupying the scanned space, when compared to the whole body volume. The 291 

complexity of intensities in background tissue and the lesion weak boundaries 292 

appeared to be confusing the CNN [31].  293 

 294 

We therefore, had to adapt our approach to become a two-stage process, whereby in 295 

the first stage, the information from Phase 1 healthy organs/bones is used to identify 296 

normality and in stage two the lesion is detected (Phase 2 of XXXXXX). Stage two can 297 

be modular with respect to the anatomical location that the suspected lesion can be 298 
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found. According to this and the availability of training data, the architecture and 299 

configuration of the used CNN can be modified to achieve optimal performance. This 300 

work is now ongoing and the aforementioned process is depicted in Figure 7. 301 

 302 

Finally, post-processing steps are required to prepare the machine learning output for 303 

reading. In XXXXXX, the final probability maps obtained from the CNN were 304 

smoothed, normalised and ‘thresholded’ to reduce false positives and improve visual 305 

appearance for the reading process.  306 

 307 

An integrated machine learning pipeline should also incorporate an objective 308 

performance evaluation stage. The choice of performance assessment metrics will, 309 

once again, depend on the examined data availability and the task at hand. In 310 

XXXXXX, we evaluated segmentation tasks using cross-validation and a range of 311 

overlap and distance metrics [32] and detection, using the scheme described above. 312 

 313 

4. Reading process 314 

4.1 Reading platforms 315 

Traditionally, the picture archiving and communications system (PACS) is used for 316 

hosting medical images and associated reader’s reports. However, PACS is not 317 

flexible enough to accommodate hanging protocols for machine learning outputs and 318 

also, access from readers external to the hosting institution is not possible. In 319 

XXXXXX, we have used a secure central imaging server (3Dnet™), provided by 320 

Biotronics3D (London, UK) [33], to ensure that images and related machine learning 321 

output, are hosted in an environment where customised hanging protocols can be 322 

created and images are accessible by all readers via a standard internet connection.  323 
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A hanging protocol was created for XXXXXX readers in Biotronics3D, so that stitched 324 

volumes from different imaging modalities, alongside the machine learning output, are 325 

opened and browsed simultaneously, as shown in Figure 8. This setting also allows 326 

for the anatomical localisation using cross-hairs and also fusion between the colour-327 

mapped machine learning output and any of the MRI modalities.   328 

 329 

4.2 Reading paradigm and reading process 330 

In XXXXXX, we have used a similar reading paradigm and case report forms (CRFs) 331 

to the contributing studies [13, 14], with slight modifications to account for the machine 332 

learning output effects in the source study’s diagnostic performance and reading time. 333 

Pilot testing of case report forms (CRFs) used randomised reads of anonymised scans 334 

from colorectal cancer patients [13], which were performed by 6 independent readers. 335 

Before the reading process, it was essential that the involved study readers met and 336 

reached a consensus as to how the machine learning output will be interpreted (based 337 

on suspicious lesion’s size and location, detection probability value, etc.). 338 

 339 

 340 

5. Miscellaneous issues 341 

5.1 Data and databases access 342 

In the era of machine learning in radiology, there is a need for well-organised, suitably 343 

anonymised and accurately annotated database of images, annotations and metadata 344 

throughout all stages of such studies. File nomenclature, which should be clearly 345 

defined, needs to be available to all those involved with password-controlled access 346 

to data. This may include multiple radiologists undertaking human expert 347 

segmentation and standardisation of file names, which is essential for proper 348 
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management of the large number of files. In addition, version control is an important 349 

concern, which needs attention during the iterative training process. As described in 350 

Kohli 2017 [34] ideal datasets for radiology machine learning studies should be FAIR 351 

(Findable, Accessible, Interoperable and Reusable). In XXXXXX, imaging data, 352 

metadata and annotations were stored in a dedicated, secure workstation. Data 353 

sharing and reporting was accomplished via Biotronics3D. 354 

 355 

In another NIHR-funded study involving whole body MRI data (MAchine Learning In 356 

MyelomA Response - XXXXX study, EME project XXXXX), the use of XNAT [35] for 357 

the aforementioned tasks is currently being optimised. XNAT is an open-source, 358 

extensible and flexible database system that allows for image, annotations and 359 

metadata storage, sharing and management.   360 

 361 

5.2 Legal, ethical and clinical acceptance 362 

Data sharing agreements are an essential step in studies where data are being shared 363 

between collaborators. Each involved party, needs to be clear and transparent 364 

concerning the data to be shared and agreements with respect to background and 365 

foreground intellectual property should also be in place. Local contract negotiations 366 

are required prior to study commencement. Agreement for data sharing from the 367 

source study funders, trial management group, trial steering committee and sponsor 368 

should be obtained in writing.   369 

 370 

Ethics considerations will vary depending on the arrangements of the primary source 371 

studies. For the XXXXXX study, ethics approvals were available from each of the 372 

contributing studies for use of the data and, in addition, an institutional research and 373 
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development approval with information governance agreement were all in place for 374 

the XXXXXX protocol at the start of the study. Public and patient representation in the 375 

trial management group is important to ensure that the patient’s voice is heard in the 376 

planning of the study and in the dissemination of the findings and public acceptance 377 

of the use of machine learning support tools.  378 

 379 

Clinical acceptance is also an important consideration in machine learning-related 380 

imaging studies. The validation of the developed machine learning tools needs to 381 

stand up to scrutiny and the methods used for testing the tools need to be clear to 382 

clinical radiologists. In XXXXXX, we have devised a viewing framework that is widely 383 

used by radiologists and incorporates the machine learning tools into a typical clinical 384 

environment for testing.   385 

 386 

Discussion- Conclusion 387 

Machine learning algorithms can now perform image analysis tasks with performance 388 

equal, or even superior, to the one achieved by human experts. Automatically derived 389 

measurements and visual guides, obtained with machine learning techniques will 390 

serve as a valuable aid in many clinical tasks and, most certainly, will transform the 391 

ways we see and use medical imaging analysis tools. 392 

 393 

We have used XXXXXX, a study that is looking into developing machine learning 394 

methods for improving the diagnostic performance and reducing the reading time of 395 

whole body MRI data, as a platform for identifying some of the main challenges 396 

encountered in a clinical study involving machine learning. Our experiences are 397 

described in this manuscript. Given the pragmatic setting of XXXXXX, we believe that 398 
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the methodological steps and challenges described here, can be of invaluable 399 

assistance, and can serve as a guide, to groups who would like to apply similar studies 400 

in the future, not only for MRI, but in radiology generally. 401 

 402 

One of the most important considerations when designing a clinical study involving 403 

machine learning, is data readiness. Acquired and used data should be assessed in 404 

the context of appropriateness with quality and uniformity being the two most important 405 

parameters to be considered. If these data traits cannot be assured upon design, then 406 

appropriate steps towards upgrading the data level readiness should be taken or even, 407 

manually identify the appropriate datasets if necessary. A robust machine learning 408 

pipeline should be designed and implemented, a task which should now be 409 

straightforward to accomplish, given that robust machine learning libraries, modules 410 

and toolboxes are now freely available, to implement a vast amount of algorithms and 411 

preparation/evaluation schemes. An important consideration for achieving the desired 412 

clinical outcome is to effectively host the resulting machine learning output, along with 413 

the clinical images, for reading. Once again, there are now a range of cloud-based 414 

services available to facilitate this process. The reading paradigm and reading process 415 

should be agreed by the readers in consensus. Finally, a range of legal, ethical and 416 

clinical acceptance issues should be considered when attempting to incorporate 417 

computer-assisting tools into clinical trials.  418 

 419 

In conclusion, clinical studies involving the development and use of machine learning 420 

methodology require careful design, if the study objectives are to be accomplished 421 

and the employed methods to reach their full potential. The road from translating 422 
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computing methods into potentially useful clinical tools involves an analytical, stepwise 423 

adaptation approach, as well as engagement of a multi-disciplinary team. 424 

 425 

 426 
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 512 

 513 

Figure 1. Block diagram depicting the methodological components that were 514 

considered in XXXXXX study. 515 

 516 

Figure 2. Different variants of a T2-weighted whole body MRI protocol. (a): Non-fat-517 

suppressed T2w images covering the body from the neck to mid-thighs (b): Non-fat-518 

suppressed T2w images covering the body from the top of the head to mid-calves and  519 

(c): Fat-suppressed T2w images covering the body from the middle of the head to the 520 

https://www.biotronics3d.com/public/
https://www.xnat.org/
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pelvis. Note the anatomical and signal intensity variability, which is of particular 521 

importance in machine learning imaging studies. 522 

 523 

Figure 3. Demonstrating some of the data quality challenges (artefacts) we 524 

encountered in the datasets used in XXXXXX. Missing slices (a), RF interference (b) 525 

and motion artefacts (c) on T2w images. RF field inhomogeneities leading to dielectric 526 

shading (d) and RF noise in DW images.  527 

 528 

Figure 4. Using intensity normalisation pipeline on a test image. (a): Original T2w 529 

volume. (b): Same image, but scale-matched using Nyul’s histogram-based method 530 

described in the text, following rigid registration. The two volumes are displayed using 531 

the same window/level settings. Employing Nyul’s histogram-based method improved 532 

healthy organ detection on previously unseen T2w images (c), when compared to 533 

using the simple signal normalisation based on the 4th and 94th percentiles of the 534 

intensity histogram (d). 535 

 536 

Figure 5. Block diagram of the XXXXXX data preparation pipeline. 537 

 538 

Figure 6. Primary colon lesion detection accuracies (true positive rate-TPR, positive 539 

predictive value-PPV and F1 score) for different ground truth-detection distances, 540 

when using the CF algorithm. 541 

 542 

Figure 7. Two-stage lesion detection process, employed in XXXXXX Phase 2. During 543 

stage one, the normal organs/bones are identified, based on Phase 1 training. During 544 



23 
 

stage two, lesion detection takes place. Stage two can be modular, with each module 545 

algorithm training depending on anatomical position. 546 

 547 

Figure 8. Biotronics3D view of the whole body volumes from different modalities and 548 

the algorithm output, fused with the diffusion-weighted image from a colon lesion.  549 

 550 


