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Abstract: We show that the benchmark Bayesian framework that R&D used to assess 

optimality is actually suboptimal under realistic assumptions about how noise corrupts 

decision-making in biological brains. This model is therefore invalid qua normative standard. 

We advise against generally forsaking optimality and argue that a biologically constrained 

definition of optimality could serve as an important driver for scientific progress. 

 

Main Text: R&D’s extensive review of the perceptual decision-making literature points to 

the fact that human behavior substantially deviates from optimality. Notably, R&D define 

optimality according to a standard Bayesian framework (henceforth, the “benchmark 

model”). Here, we would like to support and elaborate on the claim that this benchmark 

model has limited validity in describing perceptual decisions. However, rather than 

addressing the descriptive (in)ability of the model to account for behavioral data, we would 

like to go a step further and postulate that this model has limited normative validity once 

constrains of information-processing in biological brains are taken into account.  

 

Specifically, we argue that the assumptions of the benchmark model are over-simplistic, 

considering how perceptual processing is implemented in biological brains, and that under 

more realistic assumptions the benchmark model ceases to be optimal. A key assumption in 

the benchmark model is that encoding noise is the sole corrupting element of perceptual 

decisions (Sec. 2.2). Alas, decision-making operations are never limited to stimulus encoding. 

Rather, they involve a sequential cascade of processes past the encoding stage, such as 

integration of information across different sources, mental inference, decision-formation, 

response selection and motor execution. In biological brains, these processes are performed 

across a hierarchy of cortical layers, which are prone to different sources of noise (Servan-



Schreiber et al., 1990).  Thus, perceptual choices are unavoidably corrupted by “late”, post-

encoding, noise.  This notion was corroborated in a recent study that dissociated the 

contributions of three noise-sources to decision sub-optimality: sensory-encoding, response 

selection and mental inference (Drugowitsch et al., 2016). Strikingly, noise in mental-

inference, rather than encoding, was found to be the main contributor to sub-optimality. 

 

Here, we argue that in the presence of post-encoding sources of noise, the benchmark model 

ceases to be optimal. As we next show, higher accuracy can be obtained by down-weighting 

some aspects of the available information via a “selective integration” process (Tsetsos et al., 

2016a; Tsetsos et al., 2016b; See Osmmy et al., 2013 for an illustration of how a different 

form of information down-weighting can facilitate signal detection performance).  

 

To illustrate the superiority of the selective integration model, we consider a simple binary 

choice scenario, as in R&D’s Fig. 1. We assumed that the measurement distributions of these 

two stimuli are 𝑁(±1, 0.72), that both stimuli are presented with equal prior probabilities and 

that observers are awarded or penalized one point for each correct or erroneous choice, 

respectively. Critically, unlike R&D, we assumed that predicted action costs calculated by 

observers are prone to an additional source of late Gaussian noise denoted by 𝑁(0, 𝜉2). Note 

that this late noise affects only the costs that observers predict but not the actual rewards and 

penalties they receive (±1). We assumed that late noise is independent across actions and 

independent of the encoding noise. Using R&D notations, the predicted cost of each action is: 

𝑐𝑜𝑠𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑎) = ∑[𝑙(𝑠|𝑥, 𝜃)𝜋(𝑠)ℒ(𝑠, 𝑎)] + 𝑁(0, 𝜉2)

𝑠∈𝑆

 

According to the benchmark model, the chosen action on each trial minimizes predicted cost: 

𝛿(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈𝐴{𝑐𝑜𝑠𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑎)} 



Unsurprisingly, the actually realized cost of the model-selected action increases as a function 

of late noise, 𝜉  (Fig. 1). Focal to our interest, however, is the comparison between the 

benchmark and the selective integration models. In the selective integration model, cost 

predictions are based on ‘pseudo-likelihoods’ 𝑙′ defined as follows: 

𝑙′(𝑥|𝑠𝑖, 𝜃) = {
𝑙(𝑥|𝑠𝑖, 𝜃),             𝑖𝑓 𝑙(𝑥|𝑠𝑖, 𝜃) ≥ 𝑙(𝑥|𝑠𝑗 , 𝜃) 

𝑙(𝑥|𝑠𝑖, 𝜃)𝑤, 𝑖𝑓 𝑙(𝑥|𝑠𝑖, 𝜃) < 𝑙(𝑥|𝑠𝑗, 𝜃)
 

,where 𝑤 < 1 (in Fig. 1, 𝑤 = 0.1). Note that the pseudo-likelihood equals the standard 

likelihood for the more likely of the two stimuli. However, the likelihood of the less likely 

stimulus is selectively down-weighted.  Action-selection is determined by minimization of 

the predicted pseudo-costs:  

𝑐𝑜𝑠𝑡′𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑎) = ∑[𝑙′(𝑠|𝑥, 𝜃)𝜋(𝑠)ℒ(𝑠, 𝑎)] + 𝑁(0, 𝜉2)

𝑠∈𝑆

 

𝛿′(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎∈𝐴{𝑐𝑜𝑠𝑡′𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑎)} 

By down-weighting the likelihood of the less likely stimulus, observers attenuate the harmful 

influences that late noise exerts on performance (see Tsetsos et al., 2016a for a detailed 

discussion). Indeed, the selective integration model strikingly outperforms the benchmark 

model by achieving lower actual costs (Fig. 1; negative costs correspond to positive gains). 

Therefore, the benchmark model is suboptimal when post-encoding noise is present and is 

thus an inadequate standard for assessing optimality in behavior. We recently showed that an 

intriguing violation of rational choice theory, intransitivity of choices, was a byproduct of 

adaptive selective integration processes (Tsetsos et al., 2016a). Future research should 

investigate whether and which of the sundry “suboptimal” behaviors reviewed by R&D 

actually reflect biologically constrained adaptive processes. 



 

Figure 1. Comparison between the Bayesian “benchmark” and the selective integration 

models.  Average actual cost is displayed as a function of late noise (𝜉). See 

https://osf.io/gexrd/?view_only=aa02df150be94beebf310f1e56cec16f for simulation code. 

 

Next, we wish to qualify R&D’s arguments about the overall utility of assessing optimality 

(Sec. 4). While we agree that addressing optimality should not be in itself the ultimate goal of 

the study of perception, we still think that the notion of optimality can serve as an important 

driver to scientific progress. From an evolutionary perspective, perceptual processing reflects 

an extended adaptation process and as such, is ex ante expected to be optimal (Moran, 2015). 

Therefore, when theories of optimality are defined appropriately, taking into account the 

biological constrains of human information processing, they can provide an invaluable 

benchmark, guiding both theory development and behavioral assessments. On the one hand, 

when organisms are found to behave optimally, it raises questions about how optimality is 

achieved at the algorithmic and implementation levels.  When, on the other hand, suboptimal 

https://osf.io/gexrd/?view_only=aa02df150be94beebf310f1e56cec16f


behaviors are found, it raises questions pertaining to why these alleged deviations from 

optimality occur. Such questions can lead to a better understating of the constraints and 

limitations of human information processing (Tsetsos et al., 2016a), of the cost function that 

neural systems strive to minimize (Soltani et al., 2012), and of the statistical structure of the 

environment in which cognitive processes evolved (Fawcett et al., 2014). This understating 

often leads to a subtler definition of optimality, which supports novel behavioral hypotheses 

and assessments. In sum, we conceive of scientific progress as an iterative process, in which 

the notion of optimality, rather than being relinquished, continually evolves and undergoes 

refinement. It is challenging to define optimality but we nevertheless think that such attempts 

are instrumental in scientific progress.  
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