COMMENTARY

THE NATIONAL INSTITUTE FOR HEALTH RESEARCH: MAKING AN IMPACT IN IMAGING RESEARCH

On behalf of the National Institute for Health Research Clinical Research Network Imaging Network Steering Group and Royal College of Radiologists' Academic Committee

Corresponding author:

Vicky Goh
Department of Radiology,
St Thomas’ Hospital
Westminster Bridge Road
London
SE1 7EH
Email: vicky.goh@kcl.ac.uk
Phone: 0207 188 5538
ABSTRACT

Since the inception of the National Institute for Health Research (NIHR) in 2006, the landscape for the delivery of clinical research within the NHS has been transformed. Clinical Radiology has benefitted from funding opportunities for primary imaging research as well as improvements to the supporting research infrastructure to provide imaging for many clinical trials. However, in an increasingly challenging NHS environment, the NIHR and Clinical Radiology have to evolve an effective working partnership to ensure imaging research is sustainable. The following recommendations support future sustainability: 1. Developing imaging workforce capacity; 2. Improving collaboration between research groups and disciplines; 3. Increasing the number of academic leaders from clinical and allied health disciplines; 4. Creating new and more flexible NIHR fellowships; 5. Supporting new ways for research training e.g. via RCR/NIHR CRN trainee research networks; 6. Funding research sessions for portfolio activity; 7. Incentivising research activity e.g. via RCR/NIHR outstanding researchers’ awards for clinical trainees and radiologists; and 8. Developing national industry partnerships. It is hoped that the many initiatives will be embraced and create a more dynamic sustainable imaging workforce, driving and supporting research and innovation.
THE NATIONAL INSTITUTE FOR HEALTH RESEARCH

The National Institute for Health Research (NIHR) was established by the Department of Health and Social Care in 2006 in England to improve the health and wealth of the nation through research (1). This was in response to the recognition that research in the NHS lacked a strategic focus and was being impeded by an increasing bureaucratic and regulatory burden, resulting in a lack of capacity and flexibility to generate the level of evidence crucial to deliver high-quality health services. It was also recognised that the National Health Service (NHS) was not exploiting its full potential as a research platform to support the country’s international competitiveness.

Working in partnership with the devolved administrations, NIHR is now one of the most integrated clinical research systems in the world. This has been achieved in the following ways: 1) through the NIHR’s funding of high quality research to improve health through programmes such as the Efficacy and Mechanism Evaluation (EME), Research for Patient Benefit (RfPB) and Health Technology Assessment (HTA), thus supporting early stage translational research through to later stage clinical trials in the NHS; 2) through the training and support of health researchers via NIHR doctoral, post-doctoral and other fellowships; 3) through the establishment of world-class research facilities and infrastructure embedded in the NHS, including the Clinical Research Network (CRN), NIHR Biomedical Research Centres (BRCs), NIHR Clinical Research Facilities for Experimental Medicine (CRFs) and Experimental Cancer Medicine Centres (ECMCs) co-funded with Cancer Research UK; and 4) through collaborations with the life sciences industry and charities to ensure patients gain earlier
access to breakthrough treatments or innovative technologies as well as ensuring broader investment in health research and related resources.

The NIHR CRN provides the infrastructure that allows research to be undertaken throughout the NHS. There are currently 15 Local Clinical Research Networks (LCRNs) supporting the conduct of research across 30 clinical specialties. Each specialty is linked to one of five partner universities, who each lead a programme of work spanning more than one clinical specialty, including genomics, medical technology and imaging. Through the CRN, the NIHR has made it possible for patients and health professionals across England to participate in relevant clinical research studies within the NHS, supporting more than 650,000 participants to take part in 5,000 studies in 2016/17.

Importantly, the NIHR has involved patients and the public at every step, thus ensuring that clinical research is patient-focused and driven by their needs. The NIHR has defined public involvement in research as research being carried out ‘with’ or ‘by’ members of the public rather than ‘to’, ‘about’ or ‘for’ them. This has included patients working with research funders to prioritise research, offering advice as members of a project steering group, commenting on and developing research materials, and undertaking interviews with research participants. INVOLVE, a national advisory group created in 1996 and part-funded by the NIHR, brings together expertise, insight and experience in the field of public involvement in research, with the aim of advancing it (2).

CURRENT CHALLENGES TO DELIVERING IMAGING RESEARCH

Imaging is a cross-cutting discipline that is of critical importance to the national research portfolio. However, there are currently a number of challenges to the successful delivery of
imaging research within the NHS. While imaging underpins many medical decisions in the healthcare system, its utilisation has outstripped resources in many countries, including the UK. For example, the 2016 Royal College of Radiologists (RCR) workforce census found that 97% of Radiology departments were unable to meet reporting requirements in contracted hours (3). Given the capacity pressure on NHS imaging services and the central role that imaging plays in clinical research, a strategy is essential to improve the efficient and sustainable delivery of research within the NHS.

A number of key issues surrounding the delivery of imaging research were identified in a NIHR CRN-led scoping workshop in February 2017 (4). Firstly, imaging plays a central role in many clinical specialties and it is vital to co-ordinate the provision of imaging infrastructure support. While the NIHR has invested heavily, infrastructure capacity has proven to be challenging. For example, the NHS has one of the lowest number of high-end imaging equipment per capita in Europe. The number of magnetic resonance scanners (MR's) per million people is 6.1, compared to 30.5 and 38.1 scanners per million for Germany and the US, respectively. On average, MR imaging (MRI) demand is rising by 13% per year, which increases pressure on capacity for research. Additionally, despite portfolio adoption, access to research nurses or co-ordinators for research support, e.g. due to the limited numbers of such staff and the pragmatic need for them to prioritise the studies they are involved with has been an issue for Radiology.

Secondly, the NHS imaging workforce, including radiographers, medical physicists and radiologists, remains in flux, having to develop new roles and relinquish others in order to adapt to chronic workforce shortages. Effective interdisciplinary research collaboration
requires a better understanding of the underlying challenges each discipline faces to improve the quality of interactions.

Thirdly, NHS imaging services may be fragmented and variable in extent or quality, which can make it challenging to deliver research consistently. The use of third-party commercial imaging services detached from mainstream NHS delivery, for example to deliver positron emission tomography (PET) imaging, or out-of-hours care, has introduced different drivers. In some cases, this has reduced the ability to undertake research in certain geographical areas due to limited availability of resources for activity outside of clinical endeavours.

Fourthly, the workshop also recognised the value of developments in data science and artificial intelligence, which are increasingly prominent in imaging but not yet realised to their full potential in the NHS. The cost of imaging technology remains a major consideration. Research with high-end imaging platforms is considered relatively costly compared to other types of medical research that may be mostly qualitative in nature. There are also further issues with varying site costs within the NHS, and it is important to have tariffs that reflect the actual costs of all related imaging (including advanced protocols) at every site.

Finally, and crucially, the lack of research staff and limited protected time for research in NHS job plans is a major constraint for imaging research. The UK has the third lowest number of radiologists per population within the European Union with 7.5 clinicians (radiology trainees and consultants combined) per 100,000 patients compared to the EU average of 12.7 clinicians per 100,000 patients (5). With the continuing workforce crisis in Radiology, with more than 1 in 10 posts unfilled, an increase in cross-sectional imaging workload, up 30% in the last decade, and forecasts that over half the consultant workforce
will retire by 2029 (5), there is significant pressure on both specialist trainees and NHS consultants to deliver primarily a clinical service.

This has reduced the time available for clinical radiologists to both instigate, perform and support imaging research during Supported Programmed Activities or NIHR-funded Research Programmed Activities - and in some cases, also reduced any aspirations. Whilst the NIHR has invested heavily in supporting academic training over the last 10 years through the Academic Clinical Fellow (ACF) and Academic Clinical Lectureship (ACL) posts, with 25% and 50% research funding support respectively, there is still lack of investment in the Radiology academic infrastructure. Integrated academic trainees and academic radiologists remain a very small percentage of the overall Radiology workforce.

OVERCOMING CURRENT CHALLENGES

There are considerable opportunities for the NIHR and the Royal Colleges to work together to make a greater impact in the current challenging environment. The RCR has long recognised the challenges for sustaining academic radiology (5). While the RCR has continued to foster research via the activities of the RCR Academic Committee including grant funding and a network of research mentors (6), closer collaboration with the NIHR is welcomed.

Following the NIHR CRN imaging workshop, an outline plan for action to address some of these challenges has been produced (3). Key focus areas include developing workforce capacity, improving research training opportunities, and the research infrastructure. The plan is overseen by a national steering group which includes senior RCR representation and
comprises a series of practical steps being undertaken in partnership with key national organisations.

Research Imaging Workforce Development

Developing workforce capacity is a central element of the plan and an important long term aim. Improving collaboration between research groups and disciplines, including better coordination of access to research infrastructure and key resources alongside standardisation of trials support functions is essential. Increasing the number of academic leaders for research from the range of clinical and allied disciplines is also a key priority.

In terms of training following its strategic review, the NIHR are currently supporting new approaches, including new and more flexible NIHR fellowships, after recognising the need for ‘intelligent career models’. The new NIHR Academy will integrate all current academic training and higher career personal awards, and also host all training and development activity (7). Under the new arrangements, joint funding of research fellowships with Royal Colleges, charities and industry is now possible, which will increase capacity and further promote strategic alignment. More allocated posts for Radiology would be a step in the right direction to increasing the number of Radiology academics. Equivalent programs for Allied Health Professionals will clearly bring concurrent benefits and are underway.

The RCR research certificate (8) already provides a framework for radiologist trainees to achieve research training competencies. The RCR online training resources and joint RCR/NIHR research day offer trainees hands-on research training and networking opportunities. Building on the success of trainee research networks in anaesthesia, surgery and critical care (9), the RCR will set up a NIHR CRN trainee research network within Clinical
Radiology in order to improve national engagement in research by medical trainees at an earlier career stage. This will also pave the way for more consistent mentorship of young radiologists by established clinical academics.

In terms of developing research capacity and research leadership, the RCR are working with the NIHR to develop a model for sustaining research capacity amongst clinical radiologists within the NHS beyond NIHR funded research sessions for portfolio activity. Both the RCR and NIHR have launched outstanding researchers awards for clinical trainees and radiologists, and they will work together to keep developing research leadership, for example via the NIHR leadership programme.

Research study delivery

In terms of improving research infrastructure capacity to support the delivery of imaging studies, NIHR CRN is in discussion with other elements of NIHR to develop a series of national industry partnerships intended to increase the capacity of the system for imaging research. The way in which imaging activity is recorded on the CRN national study portfolio is also being revised, in order to ensure that the volume and type of imaging research is accurately monitored. Study set-up processes are also being reviewed to expedite imaging studies, and it is anticipated that the new arrangements for excess treatment costs developed by NIHR and NHS England will further inform this key review.

LOOKING TO THE FUTURE

As in all others branches of medicine, technological advances will continue to happen, evolve and impact on practice in Clinical Radiology. Imaging is a superb example of the value
and impact of strong inter-disciplinary partnerships between basic and applied scientists and clinicians. Advanced computing and computer-assisted approaches are increasingly encroaching into Clinical Radiology practice, with applications such as ‘remote’ optimisation of image acquisitions and online workflow optimisation, and reporting tools ranging from computer aided detection to clinical decision support systems.

With the rise in applications benefitting from data science (DS), machine learning (ML) and artificial intelligence (AI), the need for large well-documented and well-curated clinical datasets; staff training on systems using DS/ML/AI within the NHS to address the skill-gaps of our current workforce; and better inter-disciplinary working will be addressed jointly by the RCR, NIHR and other national bodies; of course, accounting for patients' wishes and preferences about the collection and use of their data.

The emphasis on multi-disciplinary research in the newly created UK Research and Innovation (10) offers significant collaboration and funding opportunities. In particular, Clinical Radiology is in a very strong position to evaluate and harness the related developments in data science (e.g. ML and AI), working in partnership with industry and national bodies, including Health Data Research UK and Innovate-UK.

This opportunity for health care and the UK economy, has been logically reflected in the recently announced Industrial Strategy Challenge Fund competition, in which, Innovate UK, on behalf of UK Research and Innovation, will invest up to £50m to create a network of centres in digital pathology, imaging and AI (11). The creation of strong collaborations between industry, academia and the clinical community is imperative to unlocking the UK’s potential.
As imaging research becomes increasingly complex the challenge for its future sustainability is the need for a cultural shift in the NHS. Creating the right culture and incentives for academia is an important driver (12). Working together with the NIHR is an important step forward for Clinical Radiology.

REFERENCES

1. https://www.nihr.ac.uk/about-us/our-purpose
2. www.invo.org.uk
6. https://www.rcr.ac.uk/clinical-radiology/academic-radiology-and-research/radiology-research-map
8. https://www.rcr.ac.uk/clinical-radiology/academic-radiology-and-research/research-certificate
10. https://www.ukri.org

ACKNOWLEDGEMENTS:

NIHR Representatives and NIHR CRN Imaging Steering Group (in alphabetical order)
Royal College of Radiologists Academic Committee (in alphabetical order)

Professor V Goh (Chair), Dr O Arthurs, Dr GM Baxter, Dr A Beale, Professor L Bidaut, Dr T Booth, Professor M Callaway, Professor A Denison, Professor M Hall-Craggs, Dr S P Harden, Professor N Hoggard, Dr K D Jethwa, Dr C Messiou, Mr M Mistry Dr W H Ramsden, Dr P Robinson, Dr CME Rubin, Dr NH Strickland, Dr J Teh