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1 Introduction

That the past decades have witnessed a sharp increase in top income inequality worldwide

and particularly in developed countries, is by now a widely acknowledged fact.1 However

no consensus has been reached as to the main underlying factors behind this surge in top

income inequality. In this paper we argue that, in a developed country like the US, innovation

is certainly one such factor. For example, looking at the list of the wealthiest individuals

across US states in 2015 compiled by Forbes Magazine, 11 out of 50 are listed as inventors

in a US patent and many more manage or own firms that patent, which suggests that these

individuals have earned high incomes over time in relation to innovation. More importantly,

if we look at patenting and top income inequality in the US and other developed countries

over the past decades, we see that these two variables tend to follow parallel evolution. Thus

Figure 1 looks at the number of granted patents and the top 1% income share in the US

since the 1960s: up to the early 1980s, both variables show essentially no trend but since

then the two variables experience parallel upward trends.

More closely related to our analysis in this paper, Figure 2 looks at the relationship

between the increase in the log of innovation in a state between 1980 and 2005 (measured

here by the number of citations within five years after patent application per inhabitant in

the state) and the increase in the share of income held by the top 1% in that state over the

same period. We see a clearly positive correlation between these two variables.

That the recent evolution of top income inequality should partly relate to innovation,

should not come as a surprise. Indeed, if the increase in top income inequality has been

pervasive across occupations, it has particularly affected occupations that appear to be

closely related to innovation such as entrepreneurs, engineers, scientists but also managers.2

We first develop a Schumpeterian growth model where growth results from quality-

improving innovations that can be made in each sector either from the incumbent or from

a potential entrant. Facilitating innovation or entry increases the entrepreneurial share of

income and spurs social mobility through creative destruction as it makes it easier for out-

siders to become business owners. In particular, this model predicts that: (i) innovation

by entrants and incumbents increases top income inequality; (ii) innovation by entrants in-

creases social mobility; (iii) entry barriers lower the positive effects of entrants’ innovations

1The worldwide interest for income and wealth inequality, has been spurred by popular books such as
Goldin and Katz (2009), Deaton (2013) and Piketty (2014). The sharp increase in top income inequality in
the United States over the past decades was documented by Piketty and Saez (2003).

2Bakija et al. (2008) find that the income share of the top 1% in the US has increased by 11.2 percentage
points between 1979 and 2005, out of this amount, 1.02 percentage points (that is 9.1% of the total increase)
accrued to engineers, scientists and entrepreneurs. Yet, innovation also affects the income of managers and
CEOs (Balkin et al., 2000; Frydman and Papanikolaou, 2015), and firm owners (Aghion et al., 2016).
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on top income inequality and social mobility. Our model also predicts that higher mark-ups

for non-innovating incumbents (which may reflect slow diffusion of new technologies or high

entry barriers) can lead to higher top income inequality and lower innovation.

We then start our empirical analysis by exploring correlations between innovation and

various measures of inequality using OLS regressions. Our main OLS results can be sum-

marized as follows. First, the top 1% income share in a given US state in a given year, is

positively and significantly correlated with the state’s rate of innovation measured by the

flow of citations-weighted patents per capita in this state in this year. Second, innovation

is less positively or even negatively correlated with measures of inequality which do not

emphasize the very top incomes, or broader measures of inequality like the Gini coefficient,

as suggested by Figure 3 below. Next, by looking at the relationship between inequality

and innovation at various lags, we find that the correlation between innovation and the top

1% income share is temporary. Finally, the correlation between innovation and top income

inequality is dampened in states with higher lobbying intensity.

To make the case that the correlation between innovation and top inequality at least

partly reflects a causal effect of innovation on top incomes, we instrument for innovation

using data on the Appropriation Committee of the Senate (following Aghion et al., 2009).

We argue that the composition of the Appropriation Committee affects the allocation of

earmarks across US States, and that this in turn quickly affects patenting and innovation

in the states. Then we regress top income inequality on innovation instrumented by the

composition of the Appropriation Committee. We find that all the main OLS results in

Section 4 are confirmed by the corresponding IV regressions. Our IV results imply that an

increase of 1% in the number of patents increases the top 1% income share by 0.2% and that

the effects of a 1% increase in the citation-based measures are of comparable magnitude.

Our results pass a number of robustness tests. First, we show that the positive and

significant correlation between innovation and top income shares is robust to introducing

various proxies reflecting the importance of the financial sector and to controlling for specific

sectors’ size or for potential agglomeration effects. Second, we add a second instrument for

innovation in each state which relies on knowledge spillovers from the other states. We show

that when the two instruments are used jointly, the overidentification test does not reject the

null hypothesis that the instruments are uncorrelated with the error term, thereby further

validating our instruments.

Next, we use our regression results to calibrate the main parameters of the model, and

we use our calibrated model to reproduce the regressions of the paper. We find a very good

fit between the OLS and IV regressions coefficients on the one hand, and the coefficients
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estimated from the calibrated model on the other hand.

Finally, we analyze the relationship between innovation and social mobility using cross-

section regressions at the commuting zone (CZ) level. We find that: (i) innovation is pos-

itively correlated with upward social mobility (as suggested in Figure 4); (ii) this positive

correlation is mainly driven by entrant innovators, and is dampened in CZs with higher

lobbying intensity.

The analysis in this paper relates to several strands of literature. First, to the endogenous

growth literature (Romer, 1990; Aghion and Howitt, 1992). We contribute to this literature

by looking explicitly at the effects of innovation on top income shares and social mobility.3

Second, it is related to the empirical literature on inequality and growth (see for instance

Barro, 2000 who studies the link between overall growth and inequality measured by the

Gini coefficient, Forbes, 2000 or Banerjee and Duflo, 2003). More closely related to our

analysis, Frank (2009) finds a positive relationship between both the top 10% and top 1%

income shares and growth across US states. We contribute to this literature by showing that

innovation-led growth is a source of top income inequality.

Third, a large literature on skill-biased technical change aims at explaining the increase

in labor income inequality since the 1970’s.4 While this literature focuses on the direction

of innovation and on broad measures of labor income inequality (such as the skill-premium),

our paper is more directly concerned with the rise of the top 1% and how it relates with

the rate and quality of innovation. Our results also suggest that innovation does not have a

strong impact on broad measures of inequality compared to its impact on top income shares.

Fourth, our paper relates to an active literature on inequality and firm dynamics. Thus

Rosen (1981) emphasizes the link between the rise of superstars and market integration:

namely, as markets become more integrated, more productive firms can capture a larger

income share, which translates into higher income for their owners and managers. Similarly,

Gabaix and Landier (2008) show that the increase in firm size can account for the increase

in CEO’s pay. Song et al. (2015) show that most of the rise in earnings inequality can

be explained by the rise in across-firm inequality rather than within-firm inequality. Our

analysis is consistent with this line of work, to the extent that successful innovation is a main

3Relatedly, Hassler and Rodriguez Mora (2000) analyze the relationship between growth and intergenera-
tional mobility in a mulitple equilibria model where growth and social mobility are also positively associated.
Yet, in that paper, growth is driven by externalities and not innovations.

4Katz and Murphy (1992) and Goldin and Katz (2009) have shown that technical change has been skill-
biased in the 20th century. Lloyd-Ellis (1999), Acemoglu (1998, 2002, 2007) or Hémous and Olsen (2016)
endogenize the direction of technical change. Krusell et al. (2000) show that in the presence of capital-skill
complementarity, the increase in the equipment stock can account for the increase in the skill premium.
Several papers (Aghion and Howitt, 1998; Caselli, 1999 and Aghion et al., 2002) argue that General Purpose
Technologies (GPT) increase labor income inequality.
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factor driving differences in productivities across firms, and therefore in firms’ size and pay.5

Fifth, our analysis relates to a recent literature on innovation and individuals’ income.

Thus Frydman and Papanikolaou (2015) find that innovation and executive pay are positively

correlated at the firm level. Similarly, Balkin et al. (2000) finds that innovation increases

CEO pay in high-tech industries. Aghion et al. (2016) use data from Finland to show that

innovation increases an individual innovator’s probability to make it to the higher income

brackets, and that innovation has an even larger effect on firm owners’ income. Bell et al.

(2016) find that the most successful innovators see a sharp rise in income. Akcigit et al.

(2017) find a positive correlation between patenting intensity and social mobility across US

states over the past 150 years.6

Most closely related to our paper is Jones and Kim (2014), who also develop a Schum-

peterian model to explain the dynamics of top income inequality. In their model, growth

results from both, the accumulation of experience or knowledge by incumbents (which may

in turn result from incumbent innovation) and creative destruction by entrants. The former

increases top income inequality whereas the latter reduces it.7 In our model instead, a new

(entrant) innovation increases mark-ups in the corresponding sector, whereas in the absence

of a new innovation, mark-ups are partly eroded as a result of imitation. The two papers

have in common: (i) that innovation and creative destruction are key factors in the dynamics

of top income inequality; (ii) that fostering entrant innovation contributes to making growth

more “inclusive”.8

The remaining part of the paper is organized as follows. Section 2 outlays a simple

Schumpeterian model to guide our analysis of the relationship between innovation-led growth,

top incomes, and social mobility. Section 3 presents our state panel data and our measures

of inequality and innovation. Section 4 presents our OLS results. Section 5 explains our

IV instrument and presents our IV results. Section 6 performs robustness tests. Section 7

5Our analysis is also consistent with Hall et al. (2005), Blundell et al. (1999) or Bloom and Van Reenen
(2002) who find that innovation has a positive impact on market value.

6Gabaix et al. (2016) argue that standard models of individual income dynamics, which are built on
random growth, cannot quantitatively account for the increase in income inequality because they generate
transitional dynamics that are too slow. Instead, they suggest a model where some agents have a higher mean
growth rate. This literature and our paper highlight that such a higher mean could result from innovation.

7In Jones and Kim (2014) entrants innovation reduces income inequality because it affects incumbents’
efforts. Therefore in their model an exogenous increase in entrant innovation will not affect inequality if it
is not anticipated by incumbents. Moreover, their model predicts a positive correlation between growth and
inequality in the short-run (due to a scale effect) and a negative correlation only in the long-run.

8Indeed, we show that entrant innovation is positively associated with social mobility. Moreover, while
we find that incumbent and entrant innovation contribute to a comparable extent to increasing the top
1% income share, additional regressions in Table B1 of Appendix B suggest that incumbent innovation
contributes more to increasing the top 0.1% than entrant innovation (and this holds even more at the top
0.01%).
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calibrates the main parameters of the model, and then uses the calibrated model to reproduce

our regressions results. Section 8 looks at the relationship between innovation and social

mobility. Section 9 concludes. An online appendix with additional theoretical and empirical

results and a more detailed description on our calibration exercise and data construction can

be found at this link.

2 Theory

In this section we develop a simple Schumpeterian growth model to explain why increased

R&D productivity increases both the top income share and social mobility.

2.1 Baseline model

We consider a discrete time economy populated by a continuum of individuals of measure

M . At any point in time a mass M/(1 + L) are firm owners and the rest are workers (so

that L ≥ 1 represents the ratio of workers to entrepreneurs). Each individual lives only for

one period. Every period, a new generation of individuals is born and individuals that are

born to current firm owners inherit the firm from their parents. The rest of the population

works in production unless they successfully innovate and replace incumbents’ children.

2.1.1 Production

A final good is produced according to the following Cobb-Douglas technology:

lnYt =

∫ M
1+L

0

1 + L

M
ln yitdi, (1)

where yit is the amount of intermediate input i used for final production at date t. The

number of product lines M/(1+L) scales up with population size (as in Howitt, 1999). Each

intermediate is produced with a linear production function

yit = qitlit, (2)

where lit is the amount of labor used to produce intermediate i at date t, and qit is labor

productivity. Each intermediate is produced by a monopolist who faces a competitive fringe.
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2.1.2 Innovation

Productive innovation. Whenever there is a new “productive innovation” in any sector

i in period t, quality in that sector improves by a multiplicative term ηH > 1 so that:

qi,t = ηHqi,t−1.

In the meantime, the previous technological vintage qi,t−1 becomes publicly available, so that

the innovator in sector i obtains a technological lead of ηH over potential competitors. Both

entrants and incumbents can undertake productive innovations and we denote by xE,i and

xI,P,i their respective productive innovation rates in line i. At the end of period t, other

firms can partly imitate the (now incumbent) innovator’s technology so that, in the absence

of a new innovation in period t+ 1, the technological lead enjoyed by the incumbent firm in

sector i shrinks from ηH to ηL with 1 < ηL < ηH .

Defensive innovation. The incumbent may instead undertake a “defensive innovation”

which does not increase productivity (i.e. qi,t = qi,t−1) but ensures that she maintains a

technological lead of ηH . That is, a defensive innovation prevents the incumbent’s potential

competitors from using a technology which is too close to hers. We denote by xI,D,i the

defensive innovation rate of incumbents. Again, in the absence of a new innovation in period

t+ 1, the technological lead of the incumbent shrinks back to ηL.

Overall, the technological lead enjoyed by the incumbent producer in any sector i takes

two values: ηH in periods with innovation and ηL < ηH in periods without innovation.9

To innovate with probability xE,i a potential entrant needs to spend

CE,t (x) ≡
θEx

2
E,i

2

1 + L

M
Yt;

while to undertake productive innovation at rate xI,P,i and defensive innovation at rate xI,D,i,

an incumbent needs to spend

CI,t (x) ≡ θI (xI,P,i + xI,D,i)
2

2

1 + L

M
Yt.

The parameters θE and θI capture R&D productivity for entrants and incumbents respec-

tively, and the innovation cost functions scale up with per capita GDP.

Introducing the dichotomy between productive and defensive innovations allows us to

9The details of the imitation-innovation sequence do not matter for our results, what matters is that
innovation increases the technological lead of the incumbent producer over its competitive fringe.
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capture the difference between patents and “true innovation”: namely, some patents are

used to protect rents without contributing much to productivity growth. Indeed, that the

observed increase in patenting does not seem to be fully reflected in productivity growth,

may be partly due to a growing number of defensive patents.10

Finally, we assume that an incumbent producer that has not recently innovated, can still

resort to lobbying in order to prevent entry by an outside innovator. Lobbying is successful

with exogenous probability z, in which case the innovation is not implemented and the

incumbent remains the technological leader in the sector (with a lead equal to ηL).

2.1.3 Timing of events

For simplicity, we rule out the possibility that both entrant and incumbent innovate in the

same period.11 We also assume that in each line i a single potential entrant is drawn from

the mass of workers’ offsprings. The timing of each period is summarized in Figure 5.

2.2 Solving the model

We solve the model in two steps: in the first step, we compute the income shares of en-

trepreneurs and workers and the rate of upward social mobility (from being a worker to

becoming an entrepreneur) for given innovation rates; in the second step, we endogeneize

innovation.

2.2.1 Income shares and social mobility for given innovation rates

In this subsection we assume that in all sectors, at any date t, potential entrants innovate

at some exogenous rate xEt and incumbents innovate at some exogenous rate xIt, knowing

that a share φt of their innovations are productive. Limit pricing in any intermediate sector

i implies that the price charged by the incumbent producer is equal to the technological lead

ηit times the marginal cost MCit = wt/qi,t, hence:

pi,t =
wtηit
qi,t

, (3)

10An alternative or complementary explanation is that productivity growth from creative destruction may
be mismeasured (see Aghion et al., 2017).

11Hence, in a given sector, innovations by the incumbent and the entrant are not independent events. This
assumption is a discrete time approximation of a continuous time model of innovation. It can be microfounded
as follows: Every period there is a mass 1 of ideas, and only one idea is successful. Research efforts xE and
xI represent the mass of ideas that a firm investigates. Firms can observe each other actions, so that in
equilibrium they look for different ideas (as long as θE and θI are large enough to ensure x∗E + x∗I < 1).
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where ηi,t ∈ {ηH , ηL}. Innovating allows the technological leader to (temporarily) increase

her mark-up from ηL to ηH .

Given the above Cobb-Douglas technology, the final good sector spends the same amount

Yt on all intermediate goods, so that:

pi,tyit =
1 + L

M
Yt for all i. (4)

Together with (3), this allows us to express equilibrium profits in sector i at time t as

Πit = (pit −MCit)yit =
1 + L

M

ηit − 1

ηit
Yt.

Thus equilibrium profits depend only upon mark-ups and aggregate output. Profits are

higher whenever the technological leader has recently innovated (no matter the type of

innovation, productive of defensive), namely:

ΠH,t =
1 + L

M

ηH − 1

ηH︸ ︷︷ ︸
≡πH

Yt > ΠL,t =
1 + L

M

ηL − 1

ηL︸ ︷︷ ︸
≡πL

Yt.

We can now derive the expressions for the income shares of workers and entrepreneurs.

Let µt denote the fraction of high-mark-up sectors (i.e. with ηit = ηH) at date t. Then, the

gross share of income earned by an entrepreneur at time t is equal to:

entrepreneur sharet =
M

1 + L

µtΠH,t + (1− µt) ΠL,t

Yt
= 1− µt

ηH
− 1− µt

ηL
. (5)

This entrepreneur share is “gross” in the sense that it does not include any potential monetary

costs of innovation (and similarly all our share measures are expressed as functions of total

output instead of net income—see Appendix A.2 for the expressions of net shares).

The share of income earned by workers (wage share) at time t is then equal to:

wages sharet =
wtLM

Yt (1 + L)
=

µt
ηH

+
1− µt
ηL

. (6)

We restrict attention to the case where ηL − 1 > 1/L, which ensures that wt < ΠL,t for any

value of µt, so that top incomes are earned by entrepreneurs. As a result, the entrepreneur

share of income is a proxy for top income inequality (defined as the share of income that

goes to the top earners—not as a measure of inequality within top-earners).

Since mark-ups are larger in sectors with new technologies, aggregate income shifts from
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workers to entrepreneurs in relative terms whenever the share of product lines with new

technologies µt increases. By the law of large numbers this share is equal to the probability

of an (unblocked) innovation in any intermediate sector. Formally, we have:

µt = xIt + (1− z)xEt, (7)

which increases with the innovation intensities of both incumbents and entrants, but to a

lesser extent with respect to entrants’ innovations the higher entry barriers z.

Finally, we measure intergenerational upward social mobility by the probability Ψt that

the offspring of a worker becomes a business owner. This in turn occurs only if an entrant

innovates and is not blocked by the incumbent. Therefore, we get:

Ψt = xEt (1− z) /L. (8)

Social mobility is decreasing in entry barrier intensity z, and it is increasing in the entrant’s

innovation intensity xEt but less so the higher the entry barrier intensity z.12 This yields:

Proposition 1 (i) A higher entrant innovation rate, xEt, is associated with a higher en-

trepreneur share of income and a higher rate of social mobility, but less so the higher the

entry barrier intensity z; (ii) A higher incumbent innovation rate, xIt, is associated with a

higher entrepreneur share of income but has no direct impact on social mobility.

All innovations reduce the wage share; however productive innovations increase the equi-

librium wage level while defensive innovations reduce it.13 Finally, the entrepreneurial income

share is independent of innovation intensities in previous periods, so that a temporary in-

crease in innovation only leads to a temporary increase in the entrepreneurial income share;

however, once imitation occurs, the gains from the current burst in innovation will be equally

shared by workers and entrepreneurs.

12Another interpretation of the decreasing relationship between entry barrier and social mobility is that
entry barriers increase the persistence of innovation rents.

13Indeed, by plugging (4) and (3) in (1) one gets the equilibrium level of wages as: wt =

(1 + L)Qt/
(
Mηµt

H η
1−µt

L

)
, where Qt is the quality index defined as Qt ≡ exp

∫ 1+L
M

0
1+L
M ln qitdi. The law

of motion for Qt is given by Qt = Qt−1η
(φxIt+xEt(1−z))
H . Therefore, for given technology level at time t− 1,

the equilibrium wage is given by

wt =
1 + L

M
Qt−1η

φxIt+xEt(1−z)−1
L

(
ηL
ηH

)(1−φ)xIt

.

This shows that the rate of productive innovations (φxIt + xEt (1− z)) increases the contemporaneous level
of wage, while the rate of defensive innovations ((1− φ)xIt) decreases it.
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2.2.2 Endogenous innovation

We now turn to the endogenous determination of the innovation rates of entrants and incum-

bents14. The offspring of the previous period’s incumbent solves the following maximization

problem:

max
xI,P , xI,D

 (xI,P + xI,D)πH + (1− xI,P + xI,D − (1− z)x∗E) πL

+ (1− z)x∗E
wtM

(1+L)Yt
− θI

(xI,P+xI,D)
2

2

 1 + L

M
Yt.

This expression states that the offspring of an incumbent can already collect the profits of

the firm she inherited, but also has the opportunity of making higher profit by innovating.

Incumbents are indifferent between protective and defensive innovations, so that only the

total incumbent innovation rate xI = xI,P + xI,D is determined in equilibrium (while any

share of productive innovation φ is an equilibrium).15 The equilibrium incumbent innovation

rate satisfies:

xI,t = x∗I =
πH − πL

θI
=

(
1

ηL
− 1

ηH

)
1

θI
, (9)

which decreases with the incumbent R&D cost parameter θI .

A potential entrant in sector i solves the following maximization problem:

max
xE

{
(1− z)xEπH + (1− xE (1− z))

wtM

(1 + L)Yt
− θE

x2
E

2

}
1 + L

M
Yt,

since a new entrant chooses its innovation rate with the outside option of being a production

worker who receives wage wt. Using equation (6), taking first order conditions, and using

our assumption that wt < ΠL,t (so that entrant innovate in equilibrium), we can express the

entrant innovation rate as

xE,t = x∗E =

(
πH −

1

L

[
µt
ηH

+
1− µt
ηL

])
1− z
θE

. (10)

Since in equilibrium µ∗ = x∗I + (1− z)x∗E, the equilibrium entrant innovation rate satisfies:

x∗E =

(
πH − 1

L
1
ηL

+ 1
L

(
1
ηL
− 1

ηH

)
x∗I

)
(1− z)

θE − 1
L

(1− z)2
(

1
ηL
− 1

ηH

) , (11)

14Throughout this section, we implicitly assume that θI and θE are sufficiently large that the aggregate
innovation rate satisfies: x∗E + x∗I,P + x∗I,D < 1.

15It would be easy to modify the model such that φ is uniquely determined: for instance by assuming that
xI,P and xI,D are not perfect substitute in the innovation cost function.
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so that lower barriers to entry (i.e. a lower z) and less costly R&D for entrants (lower θE)

both increase the entrants’ innovation rate (as 1/ηL − 1/ηH > 0). Less costly incumbent

R&D also increases the entrant innovation rate since x∗I is decreasing in θI .
16

Therefore a reduction in either entrants’ or incumbents’ R&D costs increases innovation

and thereby the share of high mark-up sectors and the gross entrepreneurs’ share of income.

As higher entry barriers dampen the positive correlation between the entrants’ innovation

rate and the share of high mark-up sectors, they will also dampen the positive effects of a

reduction in entrants’ or incumbents’ R&D costs on the entrepreneurial share of income.

Finally, equation (8) immediately implies that a reduction in entrants’ or incumbents’

R&D costs increases social mobility but less so the higher entry barriers. We have thus

established (proof in Appendix A.1):

Proposition 2 An increase in incumbent R&D productivity leads to an increase in the in-

cumbent innovation rates x∗I ; an increase in incumbent or entrant R&D productivity leads

to an increase in the entrant innovation rates x∗E but less so the higher entry barriers z;

consequently, it leads to higher growth, higher entrepreneur share and higher social mobility

but less so the higher entry barriers.

Here we refer to the entrepreneurial share of income gross of the innovation costs, which

amounts to treating those as private utility costs. The results can be extended to the

entrepreneurial share net of innovation costs as shown in Appendix A.2.17

2.2.3 Extensions

Shared rents from innovation. In the model so far, all the rents from innovation accrue

to an individual entrepreneur who fully owns her firm. Yet, our regressions will capture the

overall effect of innovation on top income inequality, and in particular the fact that, in the real

world, the returns from innovation are shared among several actors (inventors, developers,

CEOs, firms’ owners, financiers,...). We show this formally in Appendix A.4 where we extend

our analysis, first to the case where the innovation process involves an inventor and a CEO,

second to the case where the inventor is distinct from the firm’s owner(s). Our theoretical

results are robust to these extensions.

16The entrant innovation intensity x∗E increases with x∗I as more innovation by incumbents lowers the
equilibrium wage which decreases the opportunity cost of innovation for an entrant. This general equilibrium
effect rests on the assumption that incumbents and entrants cannot both innovate in the same period.

17A reason not to include innovation costs is that in practice entrepreneurial incomes are typically gen-
erated after these costs are sunk, even though in our model we assume that innovation expenditures and
entrepreneurial incomes occur within the same period.
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CES production function. We show that our results are robust to the case where (1) is

replaced by a CES production function in Appendix A.5.

2.3 From theory to the empirics

2.3.1 Entrepreneurial share and top income share

In our empirical analysis, we shall regress top income shares on innovation. Our innovation

measure is based on the number of patents per capita, which is the empirical counterpart of

the innovation rate µt in the model (the model assumes that the total number of innovations

scales up with population size). Our focus so far has been on the entrepreneurial share of

income instead of the top income share. Yet, top incomes are earned by entrepreneurs (or

more generally individuals associated with innovation) as long as L is sufficiently large. To

solve for the top α% income share, one must consider 3 cases.

Case 1: α/100 < µt/ (1 + L): The top α% earners consist only of entrepreneurs who

have innovated successfully. Then:

Top α% share =
α (1 + L)

100

(
1− 1

ηH

)
.

In this case a marginal change in innovation—and therefore µt—has no impact the top α%

share.18

Case 2: µt/ (1 + L) < α/100 < 1/ (1 + L): Then the top α% earners consist of all

entrepreneurs who have innovated successfully plus a fraction of those who have not:

Top α% share = µt

(
1

ηL
− 1

ηH

)
+
α (1 + L)

100

(
1− 1

ηL

)
(12)

Thus in this case an increase in the number of (non-blocked) innovations leads to an increase

in the top α% share of income. In particular, we get that:

∂ lnTop α% share

∂ lnµ
=

µt
Top α% share

(
1

ηL
− 1

ηH

)
> 0. (13)

If the number of patents per capita is proportional to the number of successful innovations,

then the above expression corresponds to the elasticity of the top α% share with respect to

the number of patents per capita. We obtain that, for a given innovation rate, this elasticity

18This result depends on our assumption that all innovations have the same size ηH . If one were to relax
this assumption and allows for a continuous gap, one would get that an increase in innovation quality would
affect the top income share at all percentiles.
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is decreasing in α, decreasing in the mark-up of non-innovators ηL and increasing in the

mark-up of innovators ηH .

Case 3: 1/ (1 + L) < α/100. Then the top x% earners consist of all entrepreneurs plus

some workers. In that case we get:

Top α% share = µt

(
1

ηL
− 1

ηH

)(
1−

(
α (1 + L)

100
− 1

)
1

L

)
+1− 1

ηL
+

(
α (1 + L)

100
− 1

)
1

L

1

ηL

so that:

∂ lnTop α% share

∂ lnµ
=

µ

Top α% share

(
1

ηL
− 1

ηH

)(
1−

(
α (1 + L)

100
− 1

)
1

L

)
> 0. (14)

Here as well, an increase in the number of (non-blocked) innovations µt leads to an increase in

the top α% share of income, and the corresponding elasticity is increasing in ηH , decreasing

in ηL and decreasing in α for given innovation rate.

2.3.2 From inequality to innovation

Although we have emphasized the effect of innovation on top income shares, our model also

speaks to the reverse causality from top inequality to innovation. First, a higher innovation

size ηH leads to a higher mark-up for firms which have successfully innovated. As a result, it

increases the entrepreneur share for given innovation rate (see (5)) and therefore her incentive

to innovate. Thus a higher ηH increases incumbents’ (9) and (11) entrants’ innovation rates,

which further increases the entrepreneur share of income.

More interestingly perhaps, a higher ηL increases the mark-up of non-innovators, thereby

also increasing the entrepreneur share for a given innovation rate. Yet, it decreases incum-

bents’ innovation rate since their net reward from innovation is lower. Under mild condi-

tions (e.g. if θE ≥ (1− z) θI/L), this leads to a decrease in the total innovation rate (see

Appendix A.3). Yet, for sufficiently high R&D costs, the overall impact of a higher ηL on

the entrepreneur share remains positive. Therefore a higher ηL can contribute to a negative

correlation between innovation and the entrepreneur share, leading to a downward bias on

the innovation coefficient in an OLS regression of top income inequality on innovation.

2.3.3 Our IV strategy through the lens of our model

Our IV strategy below will rely on shocks which reduce the costs of innovation. In terms of

our model, suppose that entrant and incumbent innovation costs are respectively equal to
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θE = θΘE and θI = θΘI where exogenous reductions in θ are driven by our instrument. The

causal effect of our instrument on innovation will then be captured by the expression

dµt
dθ

= (1− z)
dx∗E
dθ

+
dx∗I
dθ

.

2.4 Predictions

Overall, the main predictions from the above theoretical discussion can be summarized as

follows:

• Innovation by both entrants and incumbents increases top income inequality;

• The effect of innovation on income inequality is stronger on higher income brackets;

• Innovation by entrants increases social mobility;

• Entry barriers lower the positive effect of entrants’ innovation on top income inequality

and on social mobility.

Before we confront these predictions to the data, note that the above model also predicts

that national income shifts away from labor towards firm owners as innovation intensifies,

which is in line with findings from the recent literature on the decline of the labor share (e.g.

see Elsby et al., 2013 and Karabarbounis and Neiman, 2014).

3 The empirical framework

In this section we present our measures of inequality and innovation and the databases used

to compute these measures. Then we describe our estimation strategy.

3.1 Data and measurement

Our core empirical analysis is carried out at the US state level. Our dataset starts in 1976,

a time range imposed upon us by the availability of patent data.

3.1.1 Inequality

The data on the share of income owned by the top 1% of the income distribution for our

cross-US-state panel analysis, are drawn from the updated Frank-Sommeiller-Price Series

from the US State-Level Income Inequality Database (Frank, 2009). From the same data
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source, we gather information on alternative measures of inequality: namely, the top 0.01,

0.1, 0.5, 5 and 10% income shares, the Atkinson Index (with a coefficient of 0.5) and the Gini

Index (definition of these measures can be found in Table 1). These data are available from

1916 to 2013 but we restrict attention to the period after 1976. We end up with a balanced

panel of 51 states (we include Alaska, Hawaii and the District of Columbia) over a maximum

time period of 36 years. In 2013, the three states with the highest top 1% income share were

New-York, Connecticut, and Wyoming with respectively 31.8%, 30.8% and 29.6% whereas

Iowa, Hawaii and Alaska were the states with the lowest top 1% income share (respectively

11.7%, 11.4% and 11.1%). In every US state, the top 1% income share has increased between

1975 and 2013, the unweighted mean value was around 8.4% in 1975 and reached 20.4% in

2007 before slowly decreasing to 17.1% in 2013. In addition, the heterogeneity in top income

shares across states is larger in the recent period than during the 1970s, with a cross-state

coefficient of variation multiplied by 2.2 between 1976 and 2013. Wyoming, Idaho, Montana

and South Dakota experienced the fastest growth in the top 1% income share during this time

period; while DC, Connecticut, New Jersey and Arkansas experienced the slowest growth.

Income in this database corresponds to the adjusted gross income from the IRS. This is

a broad measure of pre-tax (and pre-transfer) income which includes wages, entrepreneurial

income and capital income (including realized capital gains). It is not possible to decompose

total income between its various sources (wage, entrepreneurial or capital incomes) with this

dataset, but the World Top Income Database (Alvaredo et al., 2014) gives the composition

of the top 1% income share at the federal level. On average between 1976 and 2013, wage

income represented 59.3% and entrepreneurial income 22.8% of the total income earned by

the top 1%, while for the top 10%, wage income represented 76.9% and entrepreneurial

income represented 12.9% of total income. In our baseline model, entrepreneurs are those

directly benefiting from innovation. In practice, innovation benefits are shared between firm

owners, top managers and inventors, thus innovation affects all sources of income within

the top 1% (as highlighted in Appendix A). Yet, the fact that entrepreneurial income is

over-represented in the top 1% income relative to wage income, suggests that our baseline

model captures an important aspect in the evolution of top income inequality.

3.1.2 Innovation

A first measure of innovation for each state and each year is the flow number of patents

per capita in that state and year.19 For patents granted from 1976, the US patent office

19In line with the model, we consider the flow of patents per capita instead of just the flow of patents, to
normalize for the size of the state and control for the mechanical fact that larger states innovate more.
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(USPTO) provides information on the state of residence of the patent inventors, the date of

application of the patent and a link to every citing patent. Since a patent may be associated

with several co-inventors who may not live in the same state, we assume that patents are

split evenly between inventors and thus we attribute only a fraction of the patent to each

inventor (yet 85% of the patents we consider are associated with one state only).20 A patent

is also associated with an assignee that owns the right to the patent. Usually, the assignee is

the firm employing the inventor, and for independent inventors the assignee and the inventor

are the same person. We chose to locate each patent according to the US state where its

inventor lives and works. Although the inventor’s location might occasionally differ from

the assignee’s location, most of the time the two locations coincide (the correlation is above

95%).21 In addition, we show later that our baseline results are robust to allocating each

patent to the state of its assignees (see Appendix B, Table B3).

We associate a patent with its application year which is the year when the provisional

application is considered to be complete by the USPTO and a filing date is set. We only con-

sider patents that were ultimately granted by 2014, so that our data suffer from a truncation

bias due to the time lag between application and grant. The USPTO estimated in the end of

2012 that patent application data should be considered to be 95% complete for applications

filed in 2004.22 By the same logic, we consider that by the end of 2014, our patent data are

essentially complete up to 2006. For the remaining years between 2006 and 2009, we correct

for truncation bias using the distribution of time lags between the application and granting

dates to extrapolate the number of patents by states following Hall et al. (2001). We stop

our analysis in 2009 because of the smaller number of patents afterwards.

The annual flow of patent per capita has been multiplied by 1.6 on average between 1976

and 2009. More than 70% of that increase is due to an increase in the number of inventors

and 30% is due to an increase in the number of patents per inventor. Yet, simply counting

the number of patents granted by their application date is a crude measure of innovation as

patents reflect innovations of very heterogeneous quality. However, the USPTO database,

20The USPTO classification considers three types of patents: utility patents (for new and useful inventions
such as new machines or improvements to existing processes); design patents (for the design of manufactured
objects); and plant patents (for new varieties of plants). Utility patents cover 90% of all patents. They are
the best proxy for innovation and the only type of patents for which we have complete data, therefore, in
line with the literature, we restrict attention to them.

21Delaware and DC are the states for which the inventor’s address is more likely to differ from the assignee’s
address for fiscal reasons. See Table B2 in Appendix B for more detail.

22According to the USPTO website: “As of 12/31/2012, utility patent data, as distributed by year of
application, are approximately 95% complete for utility patent applications filed in 2004, 89% complete for
applications filed in 2005, 80% complete for applications filed in 2006, 67% complete for applications filed
in 2007, 49% complete for applications filed in 2008, 36% complete for applications filed in 2009, and 19%
complete for applications filed in 2010; data are essentially complete for applications filed prior to 2004.”
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provides sufficiently exhaustive information on patent citations to compute indicators which

better measure the quality of innovation. Thus, we consider five additional measures of

quality-adjusted innovation rates:

• Patents per capita weighted by the number of citations within 5 years : This variable

measures the number of citations received within 5 years of the application date. This

number has been corrected to account for the different propensity to cite across sectors

and time. In addition, because of the drop in the number of observed completed patents

in the patent data after 2006, we correct for the truncation bias in citations following

Hall et al. (2001). We consider that this series is reliable up to 2006.

• Patents per capita in the top 5% (or 1%) most cited in a given year. For each ap-

plication year, this variable only counts the patents which are among the top 5% (or

1%) most cited patents in the next five years. For the same reasons as above, the

corresponding series is stopped in 2006. A rational for using this measure, as argued

in Abrams et al. (2013), is the presence of potential non-linearities between the value

of a patent and the number of forward citations.

• Patents per capita weighted by the number of their claims. The number of claims allows

to capture the breadth of a patent (see Lerner, 1994, and Akcigit et al., 2016).

• Patents per capita weighted by their generality. Following Hall et al. (2001), we compute

the generality of a patent as one minus the Herfindahl index of the technological classes

that cite the patent, where technological classes are defined at the 4-digit level of the

International Patent Classification (IPC). Formally, the generality index Git of a patent

i whose application date is t is equal to:

Git = 1−
J∑
j=1

(
sj,t,t+5∑J
j=1 sj,t,t+5

)2

,

where sj,t,t+5 is the number of citations received from other patents in ICP class j ∈
{1..J} within five years after t. If the citing patent is associated with more than one

technology class, we include all these classes to compute the generality index.

These different measures of innovation display consistent trends: thus the four most inno-

vative states between 1975 and 1990 according to the number of patents per capita are also

the most innovative states according to the number of (5 years) citations weighted patents

per capita, and similarly if we consider the period between 1990 and 2010. From Figure 2,
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the states which experienced the fastest growth in innovation are Idaho, Washington, Oregon

and Vermont; whereas the states with the lowest growth in innovation are West Virginia,

Oklahoma, Delaware and Arkansas. More statistics and details are given in Tables 2 to 4.

As pointed out earlier, patenting per se may not fully reflect true innovation, but also

partly appropriation. Hence the distinction between “productive” and “defensive” innovation

in our model above. Moving to more qualitative measures of innovation such as citations,

breadth or generality, is meant to also partly address this concern.

3.1.3 Control variables

Regressing top income shares on innovation raises concerns which can be addressed by adding

suitable controls. First, the state-specific business cycle is likely to have direct effects on

innovation and on top income share. Second, top income share groups are likely to involve to

a significant extent individuals employed by the financial sector (see for example Philippon

and Reshef, 2012, or Bell and Van Reenen, 2014). In turn, the financial sector is sensitive to

business cycles and may also affect innovation directly. To address these two concerns, we

control for the business cycle via the unemployment rate and for the location specialization

index of the financial sector (defined as the share of total GDP accounted for by the financial

sector in the state divided by the same share at the national level). In addition, we control

for the size of the government sector which may also affect both top income inequality and

innovation. To these, we add usual controls, namely GDP per capita and the growth of

total population. The corresponding data can be found in the Bureau of Economic Analysis

(BEA) regional accounts and in the Bureau of Labor Statistics (BLS).

Taxation may also create a spurious correlation between top income inequality and inno-

vation as lower taxes could lead to both higher top incomes and higher innovation through

the migration of top inventors (see Moretti and Wilson, 2017 for US migration of star in-

ventors and Akcigit et al., 2016 for international migration). To deal with this concern we

control for the maximum marginal tax rates on labor and realized capital gains in the state,

using data from the NBER TAXSIM project. Agglomeration is also a potential geographical

determinant of both innovation and inequality, as we discuss in Section 6.2.

3.2 Estimation strategy

We seek to look at the effect of innovation measured by the flow of (quality-adjusted) patents

per inhabitants on top income shares. We thus regress the log of the top 1% income share
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on the log of our measures of innovation. Our estimated equation is:

log(yit) = A+Bi +Bt + β1 log(innovi(t−2)) + β2Xit + εit, (15)

where yit is the measure of inequality (which enters in log), Bi is a state fixed effect, Bt

is a year fixed effect, innovi(t−2) is innovation in year t − 2 (which enters in log as well),23

and X is a vector of control variables. We discuss further dynamic aspects of our data later

in the text. By including state and time fixed effects, we eliminate permanent cross state

differences in inequality and aggregate changes.24 There we are studying the relationship

between the differential growth in innovation across states with the differential growth in

inequality. In addition, by taking the log in both innovation and inequality, the coefficient

β1 can be seen as the elasticity of inequality with respect to innovation.

Since we are using two-year lagged innovation on the right-hand side of the regression

equation, and given what we said previously regarding the truncation bias towards the end

of the sample period, we were able to run the regressions corresponding to equation (15) for

t between 1978 and 2011 when measuring innovation by the number of patents, the number

of claims or the generality weighted patent count, and from 1978 and 2008 when measuring

innovation using the citation based quality-adjusted measures.

In all our regressions, we compute autocorrelation and heteroskedasticity robust stan-

dard errors using the Newey-West variance estimator. By examining the estimated residual

autocorrelations for each of the states we find that there is no significant autocorrelation

after two lags. For this reason we choose a bandwidth equal to 2 years in the Newey-West

standard errors.25

4 Results from OLS regressions

In this section we present the results from OLS regressions of income inequality on innova-

tion. We first look at the correlation between top income inequality and innovation before

23When innov is equal to 0, computing log(innov) would result in removing the observation from the
panel. In such cases, we proceed as in Blundell et al. (1995) and replace log(innov) by 0 and add a dummy
equal to one if innov is equal to 0. This dummy is not reported.

24After removing state and time effects, the inequality and innovation series are both stationary. For
example, when we regress the log of the top 1% income share on its lagged value we find a precisely estimated
coefficient of .758. Similarly when we regress innovation measured by citations in a 5-year window, on its
one year lagged value, we find a precisely estimated coefficient of .812.

25The limited residual autocorrelation and the length of the time series (T is roughly equal to 30) justifies
the use of a Newey-West estimator but we also present the main OLS regressions with clustered standard
errors in Table B4 in Appendix B.
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extending the analysis to other measures of inequality. Next, we see how top income inequal-

ity correlates with innovation at different lags. Then, we show how the correlation is affected

by the intensity of lobbying, and finally we look at the relationship between inequality and

entrant versus incumbent innovation.

4.1 Innovation and top income inequality

Tables 5 and 6 regress the log of the top 1% income share on our measures of innovation. The

relevant variables are defined in Table 1. In Table 5, we considered the number of citations

per capita in a 5 year window as our measure of innovation and introduce control variable

progressively. In Table 6, column 1 uses the number of patents per capita as a measure of

innovation, column 2 uses the number of citations per capita in a 5 year window, column 3

uses the number of claims per capita, column 4 uses the generality weighted patent count

per capita and columns 5 and 6 use the number of patents among the top 5% and top 1%

most cited patents in the year, divided by the state’s population. All these values are taken

in log and lagged by 2 years.

From these tables we see that the coefficient of innovation is always positive and signif-

icant. The coefficient on the citations weighted number of patents is larger than that on

the raw number of patents which suggests that particularly the more highly cited patents

are associated with the top 1% income share (and these are also the more likely to protect

true innovations). This is in line with Hall et al. (2005) who show that an extra citation

increases the market share of the firm which owns the patent. Finally, the positive coeffi-

cient on the relative size of the financial sector reflects the fact that the top 1% involves a

disproportionate share of the population working in that sector.

Moreover, from the coefficient presented in the column 1 of Table 6 and the summary

statistics in Table 4, we can compare the magnitude of the correlation between innovation

and the top 1% income share with the correlation between the top 1% income share and the

importance of the financial sector: thus a one standard deviation increase in our measure of

innovation, is associated with a 2.4 point increase in the top 1% income share whereas a one

standard deviation increase in the importance of the financial sector is associated with a 1.9

point increase in the top 1% income share. Since as we shall see below, the OLS estimates are

likely to be biased, we refer the reader to section 5.1 for further discussion of the magnitude

of our effects based on IV regressions.
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4.2 Innovation and other measures of inequality

We now run the same regression as before but using broader measures of inequality as

dependent variable: the top 10% income share, the Gini coefficient and the Atkinson index.

Moreover, with data on the top 1% income share and following Atkinson and Piketty (2007)

and Alvaredo (2011), we derive an estimate for the Gini coefficient of the remaining 99% of

the income distribution, which we denote by G99 where:

G99 = (G− top1) / (1− top1) ,

where G is the global Gini and top1 is the top 1% income share. To check whether the effect

of innovation on inequality is concentrated on the top 1% income, we compute the average

share of income received by each percentile of the income distribution from top 10% to top

2% and compare the coefficient on the regression of innovation on this variable with the one

obtained with the top 1% share as left hand side variable. This average share is equal to:

Avgtop = (top10− top1) /9,

where top10 represents the top 10% income share.

Table 7 shows the results obtained when regressing these measures of inequalities on

innovation. We present results for the citation variable but we get similar results when using

other measures of innovation. Column 1 reproduces the results for the top 1% income share.

Column 3 uses the top 10% income share, column 2 uses the Avgtop measure, column 4 uses

the overall Gini coefficient, column 5 uses the Gini coefficient for the bottom 99% of the

income distribution and column 6 uses the Atkinson Index with parameter 0.5. We see that

innovation: (a) is most significantly positively correlated with the top 1% income share; (b)

is less positively correlated with the top 10% income share; (c) is not significantly correlated

with the Gini index and is negatively correlated with the bottom 99% Gini. Moreover, the

Atkinson index with coefficient equal to 0.5 is positively correlated with innovation.

Finally, in Table 8, we use more concentrated top income share measures, namely the

top 0.01, 0.05 and 0.1% income shares. The correlation between innovation and top income

share increases as we move up to the income distribution, with the coefficient of innovation

reaching 0.087 for the top 0.01% income share.
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4.3 Entrants and incumbents innovation

Our empirical results so far have highlighted the positive relationship between innovation

and top income inequality. In order to distinguish between incumbent and entrant innovation

in our data, we rely on the inventor and assignee disambiguation work of the PatentViews

initiative managed by the USPTO26. We declare a patent to be an “entrant patent” if the

time lag between its application date and the first patent application date of the same

assignee amounts to less than 3 years.27 We then aggregate the number of “entrant patents”

as well as the number of “incumbent patents” at the state level from 1980.28

According to our definition, 17% of patent applications from 1980 to 2014 correspond

to an entrant innovation (this number increases up to 23.7% when we use the 5-year lag

threshold to define entrant versus incumbent innovation). Entrant patents have more cita-

tions than incumbent patents: for example in 1980, each entrant patent has 11.4 citations

on average whereas an incumbent patent only has 9.5 citations, which is line with the view

that entrant patents correspond to more radical innovations (see Akcigit and Kerr, 2010).

Table 9 presents the results from regressing the log of the top 1% income share on

incumbent and entrant innovation, where these are respectively measured by the number of

patents per capita in columns 1, 2 and 3 and by the number of citations per capita in columns

4 to 6. The coefficients on both entrant and incumbent innovation are always positive and

significant, and the two coefficients are not statistically different from one another.

4.4 Lobbying as a dampening factor

To the extent that lobbying activities help incumbents prevent or delay new entry, we con-

jecture that places with higher lobbying intensity should also be places where innovation has

lower effects on the top income share and on social mobility.

Measuring lobbying expenditures at the state level is not straightforward, in particular

since lobbying activities often occur nationwide. To obtain a local measure of lobbying we

use national sectoral variations in lobbying together with local variations in the sectoral

composition in each state. More specifically, the OpenSecrets project29 provides yearly

26Accessible online at http://www.patentsview.org
27We checked the robustness of our results to using a 5-year lag instead of a 3-year lag threshold to define

entrant versus incumbent innovation (see Table B5 in Appendix B). Here, and only here, we focus on patents
issued by firms and we have removed patents from public research institutes or independent inventors.

28We start in 1980 to reduce the risk of wrongly considering a patent to be an “entrant patent” just
because of the truncation issue at the beginning of the time period. In addition, we consider every patent
from the USPTO database to look for the first patent of each assignee, including those with application year
before 1976 (but which were granted after 1976).

29Data can be found in the OpenSecrets website.

23

https://www.opensecrets.org/lobby/list_indus.php


sector-specific lobbying expenditures at the national level from 1998. To proxy for lobbying

intensity at the state level, we construct for each state the weighted average of lobbying

expenditures in the different sectors (3-digits NAICS sectors), with weights corresponding to

sector shares in the state’s total employment from the US Census Bureau, a strategy similar

to the seminal paper by Bartik (1991).

More precisely, we want to compute the lobbying expenditure in state i in year t,

Lob(i, ., t), knowing only the national lobbying expenditure Lob(., k, t) by sector k. We

then define the lobbying intensity by sector k in state i at year t as:

Lob(i, k, t) =
emp(i, k, t)
I∑
j=1

emp(j, k, t)

Lob(., k, t),

where emp(i, k, t) denotes industry k’s share of employment in state i at date t (where

1 ≤ k ≤ K and 1 ≤ i ≤ I). From this we compute the aggregate lobbying intensity in state

i as:

Lob(i, ., t) =

K∑
k=1

emp(i, k, t)Lob(i, k, t)

K∑
k=1

emp(i, k, t)

.

Our measure of lobbying intensity is computed as the logarithm of Lob(i, ., t).

Then we run an OLS regression of the top 1% income share on innovation, this lobbying

intensity measure, and the interaction between the two; and we do that separately for entrant

innovation (columns 1 to 3 of Table 10) and for incumbent innovation (columns 4 to 6 of

Table 10) with the same definition as in previous subsection.

The results are in line with the predictions of our model: we find a negative interaction

term between entrant innovation and lobbying intensity. In other words, the effect of entrant

innovation on top income inequality is dampened when the lobbying intensity increases.

4.5 Timing between innovation and top income

One may question the choice of two-year lagged innovation in the right-hand side of our

baseline regression equation. Here is how we converged on it: first, two years is roughly the

average time between a patent application and the date at which the patent is granted by the

USPTO as well as most patent offices; second, evidence points at inventors’ income moving

up immediately after or even before the patent is granted. Thus, using Finnish individual
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data on patenting and wage income, Toivanen and Väänänen (2012) find an immediate

jump in inventors’ wages after patent grant. Similar conclusions are obtained respectively

by Depalo and Addario (2014) using EPO data and by Bell et al. (2016) using USPTO data:

Depalo and Addario (2014) find that inventors’ wage peak around the time of the patent

application, and Bell et al. (2016) show that the earnings of inventors start increasing even

before the filing date of the patent application. In the same vein, Frydman and Papanikolaou

(2015) find that executive pay goes up during the year where the patent is granted.

That inventors’ income (and more generally innovation-related incomes) should increase

even before the patent is granted, is not so surprising after all. First, patent applications are

mostly organized and supervised by firms which start paying for the financing and manage-

ment of the innovation right after (or even before) the application date as they anticipate the

future profits from the patent. Second, firms may sell a product embedding an innovation

before the patent has been granted, thereby already appropriating some of the profits from

the innovation. Similarly, the shareholders of an innovating firm can sell their stocks and

thereby benefit from the innovation even before the patent is granted. Third, already at the

application stage patenting is associated with easier access to VC financing or with a higher

likelihood of an IPO for start-up firms, both of which may translate into a higher income for

the innovating entrepreneur (e.g. see Hsu and Ziedonis, 2008 or Haussler et al., 2014).

4.6 Top income inequality and innovation at different time lags

Here we test the robustness of our results to considering to alternative lags for innovation.

Table 11 shows results from regressing top income inequality on innovation at various lags.

We let the time lag between the dependent variable and our measure of innovation vary

from 2 to 6 years. In order to have comparable estimates based on a similar number of

observations, we chose to restrict the time period to 1981-2008. From this table, we see

that the effect of lagged innovation remains significant for up to six-years lags, but with

a magnitude that decreases with the lag. The effect eventually disappears as we increase

the lag beyond six years. This latter finding is consistent with the view that innovation

should have a temporary effect on top income inequality due to imitation and/or creative

destruction, in line with the Schumpeterian model in Section 2.30

30This prediction is likely to be heterogeneous across sectors. For example, the effect is no longer significant
after 4 years when restricting to NAICS 336: Transport Equipment, whereas it is still significant after 6 years
in sector NAICS 334: Computer and electronic products.
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4.7 True innovation or simply appropriation?

The correlations we found so far are between top income inequality and patenting per capita.

But patenting per capita is only a proxy for true innovation for at least two reasons. First, a

significant proportion of innovations are not patented. Such innovations still induce increases

in rents and therefore in top income inequality; yet, to the extent that the benefits from non-

patented innovations are less easily appropriable, the relationship between non-patented

innovations and top income inequality is likely to be weaker than that between patented

innovation and top income inequality. Second, some patents are mostly geared towards

preserving incumbents’ monopoly rents without contributing much to productivity growth

(the “defensive innovations” of our model in Section 2). Yet, two considerations lead us to

believe that the correlation we found between patenting and inequality also involves true

innovation: (a) defensive innovations are typically made by incumbents, but we showed

that entrant innovation is also positively correlated with top income inequality; (b) the

correlation between innovations and top income inequality remains strong when we consider

more qualitative measures of innovation (number of citations, patent breadth, generality,..),

which suggests that it goes beyond a pure appropriation effect of patents.31

4.8 Summary

The OLS regressions of top income inequality on innovation performed in this section lead to

correlation results that are broadly in line with the predictions of our model, namely: (i) in-

novation measured by the flow or quality of patenting per capita, is positively correlated with

top income inequality; (ii) innovation is not significantly correlated with broader measures

of inequality (Gini,...); (iii) the correlation between innovation and top income inequality

is temporary (lagged innovation ceases to be significant when the lag becomes sufficiently

large); (iv) top income inequality is positively correlated with both, entrant and incumbent

innovation; (v) the correlation between entrant innovation and top income inequality is lower

in states with higher lobbying intensity.

5 Endogeneity of innovation and IV results

In this section we argue that the positive correlations between innovation and top income

inequality uncovered in the previous section, at least partly reflect a causal effect of innova-

31In particular, if: (i) changes over time in the share of true innovations among patented innovations remain
constant across states; (ii) true patented innovations lead to the same rents as “defensive innovations”, then
our regressions exactly capture the correlation between top income inequality and true patented innovations.
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tion on top income. To reach this conclusion we must account for the possible endogeneity

of our innovation measure. Endogeneity could occur in particular through the feedback of

inequality to innovation. For example, an increase in top incomes may allow incumbents to

erect barriers against new entrants thereby reducing innovation and inducing a downward

bias on the OLS estimate of the innovation coefficient. We develop this point further below.

Our first and main instrument for innovation exploits changes in the state composition

of the Appropriation Committee of the Senate which allocates federal funds in particular

to research across US states. As a robustness test, we will show in Section 6 that this

Appropriation Committee instrument can be combined with a second instrument which

exploits knowledge spillovers across states.

5.1 Instrumentation using the state composition of Appropriation

Committees

We instrument for innovation using the time-varying state composition of Appropriation

Committees. To construct this instrument, we gather data on the membership of these

committees over the period 1969-2010 (corresponding to Congress numbers 91 to 111).32

5.1.1 Some background

The Appropriation Committees of the Senate and of the House of Representatives are stand-

ing committees in charge of all discretionary spending legislation through appropriation bills.

Discretionary funding are funding that are not required to be allocated to certain program by

law (Social Security, unemployment compensation...). This discretionary budget is usually

allocated to specific federal departments or agencies. The recipient agency can then disburse

these funds to specific projects based on merit and following its own regulations.33 However,

the Appropriation Committees can also choose to add grants (or “earmarks”) to the Appro-

priation Bill to specific projects bypassing the usual peer-review competitive process (e.g.

see Aghion et al., 2009; Cohen et al., 2011; Payne, 2003; Savage, 2000; and Feller, 2001).

A member of Congress who sits on an Appropriation Committee often pushes for ear-

marked grants in the state in which she has been elected, in order to increase her chances

of reelection. As a result, state federal research funding to universities in any US State, is

32Data have been hand-collected and compared from various documents published by the Senate. The
name of each congressman has been compared with official biographical information to determine the ap-
pointment date and the termination date of the congressman.

33Nevertheless, as mentioned by Payne (2003), a congressman can influence the use of the award by
providing funding guidance to the agencies, which they typically comply with.
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largely affected by the presence of a congressman from that State in the committee as shown

by Payne (2003) and Savage (2000). Aghion et al. (2009) note that “Research universities

are important channels for pay back because they are geographically specific to a legislator’s

constituency. Other potential channels include funding for a particular highway, bridge,

or similar infrastructure project located in the constituency.” Evidence that research and

research education are large beneficiaries from Appropriation Committees’ earmarks, can

be found from looking at data from the OpenSecrets project website, which lists the main

recipients of the 111th Congress Earmarks in the US (between 2009 and 2011): universities

rank at the top of the recipients list together with defense companies. We shall control for

state-level highway and military expenditures in our IV regressions as detailed below.34

Based on these Appropriation Committee data, various instruments for innovation can be

constructed. We shall follow the simplest approach which is to take the number of senators

(0, 1 or 2) who seat on the committee for each state and at each date.

5.1.2 Discussion

We now justify the use of Appropriation Committee Membership as an instrument for inno-

vation. We first argue that the composition of the Appropriation Committee is exogenous.

Then, we explain that a nomination to the Appropriation Committee leads to an increase in

earmarks received by the state. This boosts innovation in particular because it boosts uni-

versity patenting which has positive spillovers on innovation in general. We pay particular

attention to the timing of each effect.

Exogeneity of the Appropriation Committee Membership A first concern with our

instrument is that changes in the state composition of the Appropriation Committee could be

related to growth or innovation performance in those states. However, as explained in Aghion

et al. (2009), these changes are determined by events such as anticipated elections or more

unexpectedly the death or retirement of current heads or other members of these committees,

followed by a complicated political process to find suitable candidates. This process in turn

gives large weight to seniority considerations with also a concern for maintaining a fair

political and geographical distribution of seats. Thus in order to enter the Appropriation

Committee, a senator or representative from any state i needs to wait for a seat to become

free, and this can happen only if an incumbent is not reelected (or resign, or die) which does

not depend on the economic situation in state i.

A related concern is that the composition of the appropriation committee might reflect

34See also Aghion et al. (2009), particularly Table 9 and Aghion et al. (2010), Figure 13.
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the disproportionate attractiveness - for innovation and wealthy individuals- of states such as

California and Massachusetts. However, less advanced states have also been well represented

on the committee - for example Alabama had one senator, Richard C. Shelby, sitting on the

Committee between 1995 and 2008-, whereas California had no committee members until

the early 1990s.35 Also, the OpenSecrets website shows the cross-state allocation of ear-

marks from the 111th Congress: the states that received the highest amount of earmarks per

inhabitant, are Hawaii (not too surprising, since the Chairman of the Senate Appropriation

Committee at the time, Daniel K. Inouye was a senator from Hawaii) and North Dakota.

Other evidence reported by Savage (2000) shows that the top 5 states in terms of academic

earmarks in level (not per capita) are Pennsylvania, Oregon, Florida, Massachusetts and

Louisiana for fiscal years 1980-1996. The total ranking by earmarks is uncorrelated with the

federal research rank and California receives almost the same amount as Hawaii. Cohen et al.

(2011) also report a table showing that the states receiving the largest amount of earmarks

per capita on average from 1991 to 2008 are HI, AK, WV and MS.36

A “zero-stage” regression of earmarks on Appropriation Committee composi-

tion To show more systematically how Appropriation Committee Membership affects the

allocation of earmarks across US States, we use hand-collected earmarks data gathered from

“Citizen Against Government Waste” kindly provided by Cohen et al. (2011). These data

associate a state with the “earmark” received during the year by that state. Then we run

a “zero-stage regression” of earmarks on Appropriation Committee composition. Formally,

we run the following cross-state panel regression:

log(Ei,t) = β0 + β1log(Ei,t−1) + β2Senatori,t +Xi,tγ +Bi +Bt + εi,t,

where t ranges from 1991 to 2008, Ei,t denotes the earmarks received by state i during

year t per capita, Senatori,t is the number of senators from state i in the Appropriation

Committee in year t (thus Senatori,t can only take the values 0, 1 or 2); Xi,t are our usual

set of covariates; and Bt and Bi are year and state fixed effects.

We run the regression, first using total earmarks as our dependent (LHS) variable and

then using only earmarks which we considered to be “research earmarks” based on their

35More statistics on the composition of the Senate Appropriation Committee are provided in Table 12.
36We tested directly for reverse causality: is it the case that when a state becomes more unequal, it is

likely to obtain an additional member in the Appropriation Committee? We run a Probit model with the
left hand side variable being a binary variable equal to 1 if a new senator from state i access the committee
at t and the LHS variables include the number of senators from state i currently in the committee and the
level of the top 1% in log and taken at different lags. We do not find any significant effect of the level of
inequality in state i on the probability to access the committee.
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title (for example 495,000 dollars have been appropriated to “Energy and Environmental

Research Center at the University of ND” in 1991).37 We present the results in Table 13.

We also present similar results using citations received by university patents per capita as

the dependent variable, instead of earmarks.38 Looking at university patents makes sense

as earmarks should affect innovation in a state first through their impact on university

research. The results are consistent with the existing literature (Payne and Siow, 2003),

namely: having one (or two) senator in the committee is associated with increased earmarks

and with more and better quality university patents to the corresponding state compared to

the US average in the same year.

Timing issue Our IV regression below assumes a three-year lag between the instrument

and innovation in the first stage regression. Is this a reasonable assumption?

Consider first the example of Kentucky (KY) with the arrival of the current majority

leader (senator McConnell) in the Appropriation Committee in January 1993.39 Following

McConnell’s arrival, both earmarks and innovation immediately started to sharply increase.

Thus already in 1993 an earmark of more than four million dollars was allocated to the

University of Kentucky Advanced Science & Technology Commercialization Center to further

develop a business incubator housing new and emerging technology-based companies within

the university. And from our earmarks data, we see that the share of total earmarks received

by KY underwent a tenfold increase between 1992 and 1993.

McConnell’s enrollment in the Appropriation Committee also induced a prompt and

substantial increase in patents and citations from that state. To show this, we use a synthetic

cohort approach as presented in Abadie et al. (2010). In short, we construct a “synthetic”

(or “counterfactual”) Kentucky, by pooling a set of other states selected by minimizing the

distance in several characteristics between those states and Kentucky before 1993. Figures

6(a) and 6(b) show that the difference in the number of citations to university patents per

capita between the actual Kentucky and the “synthetic” Kentucky increases quickly and

sharply after Senator McConnell’s arrival on the Appropriation Committee in January 1993;

while if we consider all patents, the gap between Kentucky and “synthetic” Kentucky widens

up three years later.

37Our measure of research earmark is a lower bound as there are several recipients which could be research
institutions but whose names are not made explicit.

38The list of university patents was provided by the USPTO and created by matching the name of the top
250 university with the name of the patent assignee.

39Senator McConnell’s accession to the committee followed the death of Senator Burdick in 1992. Even if
McConnell did not directly replaced Burdick, only four senators were new to the committee when the next
congress started operating in January 1993.
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Of course this is just one particular example. We then generalize these results by per-

forming an event study exercise, the results of which are reported in Figures 7(a), 7(b) and

7(c). There, we first restrict attention to states that experienced at least one increase in

their representation on the Senate Appropriation Committee some time over our sample

period.40 We aggregate the average share of earmarks, citations to university patents and

citations to all patents for these states. For any state where such a change occurred “Year

0” refers to the year where the increase in that state’s representation on the Appropriation

Committee occurred.41 Figure 7(a) shows that a one-member increase in state representation

on the Appropriation Committee translates almost immediately into a sharp increase in the

amount of earmarks across states. This is consistent with the findings in Cohen et al. (2011).

Figures 7(b) and 7(c) show that university innovation, as measured by a citation-weighted

count of patents, also rises quickly after a one-member increase in state representation on

the Appropriation Committee and that overall innovation increases three years later.42

Finally, our lag choice finds support in the literature. Thus Payne and Siow (2003)

find that the appointment of an alumni to the House Appropriation Committee leads to an

increase in the number of granted university patents after five years, which corresponds to an

increase in patent applications after three years, and we know from Jaffe (1989) that there

are large contemporaneous spillovers from university research on corporate patenting. Daim

et al. (2007) find a time lag between federal research funding in nanotechnology and patent

grants of 5.5 years (which corresponds to a time lag of around 3 years for patent applications);

Toole (2007) shows that in the pharmaceutical industry, the positive impact of public R&D

on private R&D is the strongest after 1 year; and using shocks to defense R&D, Moretti

et al. (2016) show that public R&D expenditures increase private R&D contemporaneously.

Finally, Pakes and Schankerman (1984) and Hall et al. (1986) have found very little lag

between private R&D and patent applications.

40The sample period depends on the measure we consider which in turns affects the number of states in
our sample. In addition, in order to increase the size of this sample, we also include states that experienced
more than one increase in their representation on the committee, in which case we only consider the first
increase event.

41 Obviously, the actual year of change in Committee representation differs from one state to another,
however in this figure we look at the average effect of a one-member increase across all states, abstracting
from the heterogeneity in the dates of change.

42Those figures also report the mean number of senators around the event—which may differ from 0 pre-
event and 1 post-event because here we ignore what happens when senators leave the committee. Moreover,
we find that the event has a significant effect on earmarks, in the sense that in Figure 7(a) the sum of the
dummies at t+1, t+2, t+3 is significantly different from the dummies at t-1, t-2, t-3 at 5.7 per cent level,
the effect on university patents similarly defined is also significant at the 9.2 per cent level, while the effect
on patents defined as the sum of the dummies at t+3, t+4, t+5 relative to the sum of the dummies at t-1,
t-2, t-3 is significant at 8.3 per cent—these level change to respectively 7.1, 7.3 and 8.8 percent if one adds
our set of covariates to the exercise.
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Controlling for other expenditures One final concern with our instrument is that

not all earmarks go to funding research. For instance, (rich) owners of construction or

military companies may capture part of the earmarked funds, given that many earmarks

are dedicated to these two sectors. In that case, the number of congressmen seating in the

appropriation committee would be correlated with the top 1% income share, but for reasons

having little to do with innovation. To deal with this possibility, we use data on total federal

allocation to states by identifying the sources of state revenues. Such data can be found

at the Census Bureau on a yearly basis. Using this data source, for each state we identify

military expenditures and a particular type of infrastructure spending, namely highways,

which is presented as a privileged source of earmarks by Aghion et al. (2009). We control

for both types of expenditures in our regressions below.

5.2 Regression results

Table 14 shows the results from the IV regression of top income inequality on innovation, us-

ing the state composition of the Senate appropriation committee as the instrumental variable

for innovation. In Table 14, column 1 uses the number of patents as a measure of innovation,

column 2 uses the number of citations in a 5 year window, column 3 uses the number of

claims, column 4 uses the generality weighted patent count and columns 5 and 6 use the

number of patents among the top 5% and top 1% most cited patents in the year. In all cases,

the instrument is lagged by 3 years with respect to the innovation variable (while innovation

itself is lagged by 2 years in the main regression) in line with our above discussion. The

resulting coefficient on innovation is always positive and significant, and, except for column

6, the F-statistic of the first stage regression is above 10 suggesting that our instrument is

reasonably strong.

The results from the first stage regression and the reduced form regression are shown

in columns 1 and 2 of Table 15. The coefficient in the reduced form regression suggests

that the appointment of an additional senator to the Appropriation Committee increases

top income inequality in that state by 1.6%. For the median state-year in terms of GDP

(namely State AZ, Year 1990 with a GDP of 103 billion dollars), the top 1% share of fiscal

income is 12.5%. Given that roughly half of the GDP ends up as taxable income, we predict

a change in income of around 100 million dollars (0.5 ∗ 103 ∗ 0.016 ∗ 0.125). As the average

yearly earmark in a state with a senator in the Appropriation Committee is equal to roughly

150 million dollars, our regressions results can be accounted for easily without assuming a

large multiplier from public R&D to innovation income.43

43This is all the more true that Delaney (2011) finds that federal earmarks lead to higher state expenditures
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5.3 Magnitude

We now consider the magnitude of the impact of innovation on top income inequality implied

by Table 14: A 1% increase in the number of patents per capita increases the top 1% income

share by 0.22% (column 1 in Table 14) and a 1% increase in the citation-based measures

of innovation has a similar effect. This means for example that in California where the

flow of patents per capita has been multiplied by 3.2 and the top 1% income share has

been multiplied by 2.4 from 1980 to 2005, the increase in innovation can explain 29% of

the increase in the top 1% income share over that period. On average across US states, the

increase in innovation as measured by the number of patents per capita explains about 23%

of the total increase in the top 1% income share over the period 1980-2005.

Yet, one should remain cautious when using our regressions to assess the true magnitude

of the impact of innovation on top income inequality. Our coefficient may underestimate

the true impact for at least three reasons: (i) the number of citations is a better measure of

innovation but is hard to compare over time; (ii) if successful, an innovator from a relatively

poor state, is likely to move to a richer state, thereby not contributing to the top 1% share of

her own state; (iii) an innovating firm may have some of its owners and top employees located

in a different state from the inventors, in which case the effect of innovation on top income

inequality will not be fully internalized by the state to which the patent is attributed. Yet, if

the share of innovations that get patented is increasing over time, the increase in innovation

will be less than the measured increase in patenting, which in turn would mean that the

increase in innovation could in fact explain less of the increase in the top 1% income share

than what we infer from our regressions.44

Looking at cross state differences in a given year, we can compare the effect of innovation

with that of other significant variables. Our IV regression suggests that if a state were

to move from the first quartile in terms of the number of citations in 2005 to the fourth

quartile, its top 1% income share would increase on average by 4.3 percentage points. By

comparison, moving from the first quartile in terms of the size of the financial sector to the

fourth quartile, would lead to a 4.2 percentage-point increase in the top 1% income share.

on research education (between 2 and 5 more dollars for each federal dollar).
44See the discussion in section 4.7. Although it is a debated topic, Kortum and Lerner (1999) argue that

the sharp increase in the number of patents in the 90’s reflected a genuine increase in innovation and a
shift towards more applied research instead of regulatory changes that would have made patenting easier.
Interestingly, our numbers seem consistent with the results of Bakija et al. (2008): they found that 9.1% of the
increase in the top 1% income share between 1979 and 2005 accrued to entrepreneurs, technical occupation
and scientists, occupations which are the most directly linked to innovation. In addition, innovation increases
executives pay and executives, managers, supervisors and business operations (outside the finance sector)
account for 38.4% of the increase in the income share of the top 1%.
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5.4 Discussion

The following concerns could be raised by this regression. First, it could be that some of

our control variables are endogenous and that, conditional upon them, our instruments may

be correlated with the unobservables in our model. Yet, the coefficient on innovation is still

positive and significant when we only include state and year fixed effects in the regression.45

Second, the magnitude of the innovation coefficients in the IV regression is larger than in

the OLS regressions. A first potential reason has to do with the relationship between inno-

vation and competition. Our model shows that a higher level of mark-ups for an incumbent

who has failed to innovate can lead to higher top income inequality and lower innovation;

this higher mark-up level may in turn reflect slow diffusion of new technologies and/or high

entry barriers. More generally, suppose that the relationship between competition and inno-

vation lies on the upward part of the inverted-U relationship between these two variables (see

Aghion et al., 2005), and consider a shock to the level of competition faced by a leading firm,

which increases its market power—such a shock could for example result from an increase in

lobbying or from special access to a new enlarged market. This shock will increase the firm’s

rents which in turn should contribute to increasing inequality at the top. However, on this

side of the inverted-U, this will also decrease innovation. Therefore, it induces an increase

in top inequality that is bad for innovation. As it turns out, lobbying is indeed positively

correlated with the top 1% income share and negatively correlated with the flow of patents.

A second reason may have to do with credit constraints: reducing inequality may increase

innovation when potential innovators who are not in the top 1% face credit constraints which

limit the scope of their innovative investments.46

Third, some talented and rich inventors may decide to move to states that are more in-

novative or to benefit from lower taxes. This would enhance the positive correlation between

top income inequality and innovation but through a very different mechanism from the one

in our model. However, using disambiguated information on the inventors of patents from

the USPTO, we are able to identify the location of successive patents by a same inventor.

This in turn allows us to delete patent from inventors that patented in various states. Our

results still hold when we look at the effect of patents per capita on the top 1%, with a re-

gression coefficient that is a bit lower than in our baseline (see Table B6 and B7 in Appendix

45The key assumption here is that the unobservables in the model are mean independent of the instruments
conditional on the included controls.

46E.g. see Benabou (1996), Aghion and Bolton (1997) and Aghion and Howitt (1998) (Ch. 9). Other
mechanisms could explain the gap between the OLS and IV coefficients: for example, a high level of inequality
could lead to higher taxes which can harm innovation (Persson and Tabellini, 1994), and inequality can reduce
innovation if it reduces the market for innovative goods (Foellmi and Zweimller, 2016).
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B respectively for OLS and IV results using only patents by single-state inventors.).

5.5 Other IV results

Appendix B shows the results from replicating in IV the OLS regressions of Section 4.

First, regressing broader measures of inequality on innovation, we find that innovation has

a positive impact on top income shares but not on Gini coefficients (Table B8). Moreover,

the effect of innovation on the top 10% remains positive but is no longer significant. Second,

regressing top income inequality on innovation at various lags, we find that the effect of

lagged innovation is strongest after 2 years; and it becomes smaller and insignificant from

five years (Table B9). These latter findings confirm those in the corresponding OLS Table

11, and indicate again that innovation has a temporary effect on top income inequality.

6 Robustness checks

In this section, we discuss the robustness of our regression results. Robustness concerns may

be grouped into three categories. First, potential omitted variables may bias our results.

To address this concern, we add more controls in the regression of top income inequality

on innovation: namely, the level of financial dependence (subsection 6.1), and a measure of

agglomeration (subsection 6.2). This does not alter our results. Second, our results may be

driven by one particular economic sector or technology, we successively exclude corresponding

sectors or patents to show that this is not the case (subsection 6.1). Finally, one may question

the power of our instrumental variable estimations. To address this issue, we add a second

instrument based on knowledge spillover and show that the overidentification test does not

reject the validity of the two instruments being used jointly (see subsection 6.3).

6.1 Industry composition

Our regressions so far have (mostly) abstracted from industry composition. Here we look

more closely at two sectors (Finance and Natural resources) which are likely to have a large

impact on top income shares.

The financial sector is heavily represented in the top 1% income share: Bakija et al. (2008)

find that 13.2% of primary tax payers belonging to the top 1% worked in the financial sector

in 2005 and 22.6% of the increase in the top income share between 1979 and 2005 accrued

to individuals in the financial sector. The above regressions already controlled for the share

of the financial sector in state GDP, but in Table 17, we perform additional tests in OLS
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regressions (and Table B11 shows similar results in IV regressions). First, we control for the

average employee compensation in the financial sector to capture any direct effect of this

variable on the top 1% income share (column 1). Second, we exclude states in which financial

activities account for a large fraction of GDP, namely New York, Connecticut, Delaware and

Massachusetts (column 2). Third, we exclude financial innovations (patents belonging to the

class 705: “Financial, Business Practice”) in column 3. In each case, the effect of innovation

on the top 1% income share is significant and positive, showing very stable values when

moving from one specification to another (innovation is measured as the number of citations

within 5 years per capita). Relatedly financial development may impact both innovation (by

providing easier access to credit to potential innovators) and income inequality at the top

(by boosting high wages). We build a specific variable to control for this channel. We map

patents to 16 NAICS industries and for each state we compute the share of patents in each

industry. Then, knowing the industry-level of external financial dependence, we compute the

average level of external financial dependence of innovations in each state.47 This variable

(denoted EFD in Table 17) should capture a variation in innovation at state-level driven by

a sector that is highly dependent on external finance. Regression results are presented in

column 4: the effect of innovation remains significant with a slightly lower coefficient than

in the baseline regression. In addition, the effect of the financial dependence of innovations

on the top 1% income share is positive and significant.

Natural resources, notably oil extraction, represent a large share of GDP in certain states

(in Wyoming, West Virginia and particularly Alaska, oil extraction activities account for

almost 30% of total GDP in 2010), so that in these states the top 1% income share is likely

to be affected by these sectors which are quite volatile. To address this issue, we control for

the share of natural resources and oil extraction in GDP in column 5 of Table 17. Moreover,

we remove patents from class 208 (Mineral oils: process and production) and 196 (Mineral

oils: Apparatus) in column 6. Here again, our results remain significant.

Finally, we check whether our results are driven by certain sectors which are particularly

innovative. We use the mapping between patent technological classes and NAICS sectors

to remove patents related to category 334: “Computer and Electronic Products” to exclude

the fast-growing computer industries. Similarly, we remove patents from the pharmaceutical

sector (NAICS 3254) and from the electrical equipment sector (NAICS 335). Next, we add

controls for the share of these three sectors.48 Then, we use the COMTRADE database to

47We use the mapping between technological classes and NAICS codes from the USPTO website. To
measure external financial dependence at the industry level, we use the numbers computed by Kneer (2013)
and averaged over the period 1980-1989 (external financial dependence is defined as the ratio of capital
expenditure minus cash flow divided by capital expenditure as in Rajan and Zingales, 1998).

48In order to obtain complete series, we replace the pharmaceutical sector by the whole chemistry manu-
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look at the extent to which our effect of innovation on top income inequality is driven more

by more export-intensive sectors. Over the period from 1976 to 2013, we identify three such

sectors (Transportation, Machinery and Electrical Machinery), and we check whether our

results are robust to excluding them. The results are shown in Appendix B, Table B12,

where we conduct OLS regressions using the number of citations within a five-year window

to measure innovation. Innovation remains positively and significantly correlated with the

top 1% income share, and the coefficient remains stable across specifications.

6.2 Controlling for agglomeration effects

One may wonder whether our results do not reflect agglomeration effects: for example,

suppose that some exogenous investment taking place in one particular location (say the

Silicon Valley), makes that location more attractive to skilled/talented individuals from other

parts of the US. The resulting increased agglomeration of high-skill individuals should lead

to both a higher top 1% income share and a higher level of innovation in the corresponding

US state, but without the former necessarily resulting from the latter. Glaeser et al. (2009)

and Baum-Snow and Pavan (2013) point to higher density cities displaying more income

inequality while Carlino et al. (2007) and Gyourko et al. (2013) point at a positive correlation

between population density and innovation and the importance of superstar cities.

Figure 2 in the introduction suggests that this should not be such a big concern for our

analysis: in particular neither California nor Massachusetts are among the states that show

the fastest increase in both innovation and top income inequality over the period we analyze.

To address the agglomeration objection head on, we need a measure of density that is

not distorted by large rural areas like upstate New York. In the spirit of Ciccone and Hall

(1996), we proceed as follows: in any state, we consider the 10 percent most populated

counties in 1970, in 2015, and on average over the period 1970-2015 from the BEA regional

accounts. We then compute the population density in these counties every year. This yields

three indicators of urban density that are meant to capture the fact that some states were

more attractive over the corresponding periods. Running our previous regressions with these

additional control variables does not affect our results as seen in Table B13 in the Appendix

B (OLS regression results in columns 1, 2, 3 and IV results in columns 4, 5, 6).

facturing sector (NAICS 325).
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6.3 Adding a second instrument

To add power to our instrumental variable estimation, we combine it with a second instru-

ment which exploits knowledge spillovers across states. The idea is to instrument innovation

in a state by its predicted value based on past innovation intensities in other states and on

the propensity to cite patents from these other states at different time lags. Citations re-

flect past knowledge spillovers (Caballero and Jaffe, 1993), hence a citation network reflects

channels whereby future knowledge spillovers occur. Knowledge spillovers in turn lower the

costs of innovation (decrease θI or θE in the model). To build this predicted measure of

innovation, we rely on the work of Acemoglu et al. (2016) and integrate the idea that the

spillover network can be very different when looking at different lags between citing and

cited patent. We thus compute a matrix of weights wi,j,k where for each pair of states (i, j)

and for each lag k between citing and cited patents where k lies between 3 and 10 years,49

wi,j,k denotes the relative weight of state j in the citations with lag k of patents issued in

state i, aggregated over the period from 1976 to 1978.50

Using this matrix, we compute our instrument as follows: if m(i, j, t, k) is the number

of citations from a patent in state i, with an application date t to a patent of state j filed

k years before t, and if innov(j, t− k) denotes our measure of innovation in state j at time

t− k, then we posit:

wi,j,k =

1978∑
t=1975

m(i, j, t, k)

1978∑
t=1975

∑
l 6=i

m(i, l, t, k)

; KSi,t =
1

Pop−i,t

10∑
k=3

∑
j 6=i

wi,j,kinnov(j, t− k),

where Pop−i,t is the population of states other than state i and the log of KS is the instru-

ment. To reduce the risk of simultaneity, we set a one year time lag between the endogenous

variable and this instrument. Without normalizing by Pop−i,t, our measure of spillovers

would mechanically put at a relative disadvantage a state which is growing relatively faster

than other states (yet doing so does not impact our results).

Reverse causality from top income inequality to this knowledge spillover IV seems unlikely

(the top 1% income share in one state is unlikely to cause innovations in other states).51

49In our sample over the period 1976-2014, 67% of backward citations are made to patents filed less than
10 years before the citing patent.

50We observe all the patents which received citations from patents granted after 1976 even if the cited
patents were granted before 1976 thanks to Hall et al. (2001).

51Reverse causality might arise from the same firm citing itself across different states. We check that this
has, if anything, a very marginal effect by removing citations from a firm to itself in two different states
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Yet, one may worry that this instrument might capture regional or industry trends that

are not directly the result of innovation but affect both top income inequality and innovation

in that state. For example, a boom in a state may increase local innovation but also lead

to more innovation in a neighboring state. Then, if these two states also cite the patents

from each other a lot, our spillover variable would capture a positive correlation between

innovation in the two states, even though this correlation would mainly reflect a common

demand shock. In practice, this concern is mitigated first by the weak correlation between

the knowledge spillover weights and geographical distance (below 15%) and second by the (at

least) 4 years time lag set between the state innovation measure and the innovation measures

used in the instrument. Nevertheless, to proxy for such demand shocks, we build a control

variable by computing a weighted average of other states’ per capita GDP using an average

of the weights calculated before for k between 3 and 10.

Similarly, consider now two states that are highly involved in, say, the computer sector.

Then a demand shock in this sector would boost innovation and may increase the top 1%

income share in both states, violating our exclusion restriction. The time lag once again

mitigates this concern. Yet, to deal with such possibility, we build new weights based on

the angular distance between the industry compositions of the manufacturing sectors of the

two states. These new weights are averaged over a three-year window. Using these industry-

composition-based weights, we compute a weighted sum of innovation in other states and

divide this sum by Pop−i,t.

A first important finding is that an overidentification test that uses the spillover and

appropriation committee instruments, does not reject the validity of the instruments: indeed,

the p-value associated with the null hypothesis is always larger than 10%. This in turn

reinforces the first instrument.52

Table 16 presents the results from the IV regressions of top income inequality on the two

instruments combined.53 As in Table 14, the coefficients are always positive and significant

(now at the 1% level). The coefficients are close to those of Table 14, which is all the more

remarkable that the two instruments are uncorrelated once one controls for states and time

fixed effects. The F-statistic for the two instruments combined, is always above 10.

when constructing the weights: the results are essentially unaffected by this change.
52This also deals with the potential objection that innovation in other states j 6= i could have a direct

impact on productivity in state i, and thereby directly affect top incomes in that state. If that were the
case, the two instruments combined would be correlated with the error term and therefore in that case the
overidentification test would reject the null hypothesis.

53The results from the corresponding first stage and reduced form regressions, are shown in Table 15. In
the Appendix, Table B10, we show the results from the IV regressions using only the second instrument.
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7 Reproducing our regression results from the model

We now calibrate the main parameters of the model and then use our calibrated model

to reproduce the regressions of the paper. Our goal here is two-fold: checking whether our

model and our empirical results can be consistent with each other for reasonable parameters,

and assessing whether the gap between the OLS and the IV coefficients can be rationalized.

We focus on the case where there is no lobbying, i.e. where z = 0, so that we are left with 6

parameters to calibrate: the mark-ups ηL and ηH , the R&D parameters θI and θE, L which

is one-to-one related to the share of the population who obtains the monopoly rents (namely

1/(1 + L)) and the share φ of productive innovations among all incumbent innovations

(technically φ is an equilibrium value but since it is undetermined in equilibrium, we treat

as a parameter here). As explained in Section 2.3, we think of the number of innovations in

the model as being proportional to the number of patents or citations-weighted patents in

the data. We draw three among the six moments directly from the data: the average top 1%

share across US states between 1977 and 2011 (M1 = 0.13), the ratio of citations to entrant

over incumbent patents (M2 = 0.2), and the elasticity of top income inequality with respect

to innovation (we take M3 = 0.185, the coefficient reported in Table 14, column 2).

We then fix the values of three moments from the literature: the average mark-up M4 =

1.2 (according to Jaimovich and Floetotto, 2008, markups range from 1.2 to 1.4 in value

added data and from 1.05 to 1.15 in gross output data); the share of employment in entering

firms M5 = 0.03 (in line with Garcia-Macia et al., 2016 who find a employment share for

entrants of 15% where entrants are defined as firms with less than 5 years) and the growth

rate of the economy M6 = 0.02.

The model is fully identified and Appendix C details how each parameter is identified.

In a nutshell, the entrant employment share M5, the semi-elasticity M1 ∗M3 and the average

mark-up M4 determine the equilibrium innovation rate µ, the low mark-up ηL and the

high mark-up which is also the innovation size ηH . In the relevant case, the semi-elasticity

M1 ∗M3 = µ
(

1
ηL
− 1

ηH

)
, so that for a given ηL, the semi-elasticity increases both in the

innovation rate µ and the innovation step ηH . On the other hand, and for given (harmonic)

average mark-ups, the entrant share of employment E increases with the innovation rate µ

but decreases with the innovation size ηH . Therefore M1 ∗M3 and M5 together allow to

separately identify µ and ηH . The low mark-up ηL is then adjusted to reproduce the average

mark-up. Given ηH , ηL and µ, the other parameters are identified through the top 1% share

(for L), the innovation ratio and the innovation rate equations (for θI and θE) and finally the

growth rate (for φ). Table 18 summarizes the moments that we target, their source, their

value in the simulated data described below and gives the value of the different parameters.
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The model predicts a large gap between θI and θE because most innovations are done by

incumbents. We find a low φ, so that a substantial fraction of incumbents’ innovations are

“defensive”, which is consistent with a large role for innovations in explaining top income

inequality, while at the same time measured GDP growth has been timid. With these param-

eters, the economy is in “case 2” of Section 2, where the top 1% includes all innovators and

some incumbent entrepreneurs who failed at innovating. Moreover, with these parameters,

an increase in ηL increases the top 1% share but reduces innovation.

We now use our calibrated model to reproduce the regressions of the paper. We consider

that there are 51 states over a 28-year time span. In each state i, and in each year t, we

assume that the innovation costs for entrants and incumbents are:

θE,i,t = θE exp (εθ,i,t + εθ,i) and θI,s,t = θI exp (εθ,i,t + εθ,i) ,

where the shocks εθ,i,t and εθ,i are respectively state-year and state specific i.i.d shocks. We

assume that the markup of non-innovators is given by

ηL,i,t = ηL + εη,i,t + εη,i

where εη,i,t and εη,i are respectively state-year and state specific i.i.d shocks. The parameters

ηH and L are constant across states and years.

We now compute for each year and state, the innovation rates and the top income shares

( ̂Top 1% sharei,t) as predicted by our model. We then add “measurement errors” on the

top income share, so that

Top 1% sharei,t = ̂Top 1% sharei,t × exp (εδ,i + εδ,t + εδ,i,t) ,

where εδ,i, εδ,t and εδ,i,t are respectively state, year and state-year specific shocks.

We consider that the number of citations in a state i at a year t is given by

Cit5i,t = Cµi,t exp (εµ,i,t)

where µi,t is the number of innovations, C is a constant and εµ,i,t represent measurement

errors. We then run the following regression:

log Top 1% sharei,t = A+Bi +Bt + β1 logCit5i,t + εi,t,

first in a simple OLS regression and then in an IV regression where we instrument Cit5i,t by
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εθ,i,t + εθ,i (which corresponds to a shock to the innovation technology akin to our appropri-

ation committee instrument).

We set the standard deviations of the different shocks to match second order moments in

the data as explained in Appendix C. The OLS and IV coefficients averaged over 500 draws

on the simulated data give a coefficient of 0.184 for the IV (close to the target coefficient

0.185 from column 2 of Table 14) and of 0.051 for the OLS, close to the 0.049 figure reported

in column 2 of Table 6.54 Figure 8 in Appendix C plots the whole distribution of the IV

coefficients and Table 18 shows the average value for the targeted moments in the simulated

data. Therefore overall we get a close mapping between its quantitative predictions and our

empirical results.

Finally, this exercise makes it easier to understand the difference between the OLS and

the IV coefficients in our regressions. The IV coefficient captures the effect of a shock to

innovation costs and therefore the positive impact of innovation on top income inequality.

The OLS coefficient captures the overall correlation between innovation and top income

inequality, which is less strongly positive if only because the variation in ηL creates a negative

relationship between innovation and top income inequality. Moreover, the noise on the

citation variable further attenuates the OLS coefficient but that effect is small (without it,

the OLS coefficient would be on average equal to 0.070).

8 Innovation and social mobility

In this section we consider the relationship between innovation and social mobility

8.1 From cross-state to CZ-level analysis

State-level panel data on social mobility in the United States are not (yet) available. There-

fore, to study the impact of innovation on social mobility without reducing the number of

observations too much, we move from cross-state to cross-commuting zones (CZ) analysis

and use the measures of social mobility from Chetty et al. (2014). A commuting zone (CZ)

is a group of neighboring counties that share the same commuting pattern. There are 741

commuting zones which cover the whole territory of the United States.

Before we look at social mobility, we check whether the effect of innovation on inequality

measures at the CZ level is consistent with our cross-state panel findings. At the CZ level,

we do not have direct access to data on top income shares for the whole population. We

54The IV coefficient is quite stable as long as the standard errors are not too large. The OLS coefficient
depends on how much variation there is in ηL at the state-year level relative to θ.
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use the census data from 2000 and 2005-2011 to obtain individual earnings information, but

unfortunately the publicly available data are censored for income levels above a threshold.

To circumvent this problem, we follow Clemens et al. (2017) and assume a Pareto shape

distribution for large incomes, which allows us to *compute* top income shares for 726 CZs

(details in Appendix D).

We use the county of the inventor of each patent to associate it with a CZ, we obtained

this information from the USPTO from 1998 onwards. Finally, we aggregate county level

data on total income, financial and government sectors size, unemployment and population

from the BEA and the BLS to compute our control variables.

Regressing top income inequality on innovation at the CZ level allows us to introduce both

CZ fixed effects and state×year fixed effects, thereby absorbing any variation in innovation

at the state-year level. We add controls for the log of total income per capita, for the growth

of total population, for the size of financial and local government sectors compared to the

US average and for unemployment. These controls have been selected to match our cross-

state analysis as closely as possible given the available data. Standard errors are clustered

by state, and CZs are weighted by population to account for potential correlation across

neighboring CZs and also to give more weight to urban areas.

We present the results in Table 19, where innovation is measured by the number of patents

per capita (we run the regressions over the years 2000 and 2005-2011). We find a positive

and significant coefficient for innovation, slightly smaller than in the state-level case.55

Yet, there are several limits to this exercise: first, at the CZ level we do not have direct

access to top income share data and must instead rely on an estimate based on censored

data; second, the time interval for the cross-CZ panel is much shorter than for the cross-state

panel;56 third, since CZs are smaller than states, innovation rents are more likely than before

to accrue to individuals who do not reside in the geographical unit where the innovation takes

place; fourth, and most importantly, we cannot use the Appropriation Committee instrument

at the CZ level since Senators are elected to represent a state, not a CZ.

8.2 The effect of innovation on social mobility

Having moved from cross-state to cross-CZ analysis allows us to look at how innovation

affects social mobility, using the various measures of social mobility in Chetty et al. (2014)

55There are several CZ with 0 patent and interestingly, the coefficient capturing the extensive margin
of innovation (as measured by the index taking the value 1 for CZ with no innovations) is negative and
significant, so that CZ with no innovation exhibit less top income inequality.

56As a matter of fact, when we measure innovation by the number of citations per capita, the panel is
even shorter (only includes years 2000 and 2005-2008), and the coefficient ceases to be significant.
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combined with our local measures of innovation and with the various controls mentioned

above. There, absolute upward mobility is defined as the expected percentile or “rank” (from

0 to 100) for a child whose parents belonged to some P percentile of the income distribution.

Percentiles are computed from the national income distribution. The ranks are computed

over the period 2011-2012 when the child is around 30 year old whereas the percentile P of

parents income is calculated over the period 1996-2000 when the child was around 15 year

old. The intensity of innovation in each CZ is measured by the average number of citations

per capita, but this time, we take the averages over the period 1998-2008.

A potential concern with these data, is that social mobility is based on the location of

the parents not the children, so that the data do not account for children who move to and

then innovate in a different location from that of their parents. However, this should bias

our results downwards: if many individuals migrate out of a specific CZ to innovate in San

Francisco or New York, this CZ will exhibit high social mobility but low innovation.

We thus conduct the following regression:

log(Mobk) = A+ β1log(innovk) + β2Xk + εk,

whereMobk is our measure of upward social mobility, and innovk is our measure of innovation

for CZ k. We cluster standard errors by state and weight CZ by population as previously.

Table 20 presents our results for this cross-section OLS regression, using the number

of citations as a measure of innovation and the same set of control variables as in the

previous subsection to which we add school expenditures per student and the manufacturing

employment share of the manufacturing sector (both from Chetty et al., 2014) and the

average marginal tax rate. Columns 1 and 4 look at the effect of innovation on upward

mobility as measured by the child expected percentile in the income distribution at 30

when parent income belongs to the 25th percentile. The effect of innovation is positive and

significant. Columns 2, 3, 5 and 6 show the effects of innovation on the probability for a child

to belong to the highest quintile in income distribution at age 30 when her parent belonged

to one of the two lowest quintiles. The correlation between innovation and social mobility

is more positive and significant for the lowest quintile than for the second lowest one. In

fact it becomes insignificant for the third and forth quintiles. Finally, column 7 shows the

overall effect of innovation on upward mobility measured by the probability to reach the

highest quintile when parent belonged to any lower quintile: the correlation is positive but

insignificant at the usual thresholds.

The correlation between innovation and social mobility is economically significant. Col-

umn 5 shows that moving from the median CZ to the 75th percentile CZ in innovation
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intensity (which corresponds to an increase in the number of citations per capita by a factor

of 2.5) is associated with an increase of 1.2 percentage points in social mobility at the mean

level (namely from 9.6% to 10.8%)—where social mobility is measured by the probability of

reaching the top quintile when parents belong to the bottom quintile.

One concern is worth mentioning here: quintiles are defined at the national level and

in some CZs, the size of the top quintile is very small, reflecting the fact that it is almost

impossible to reach this quintile while staying in this CZ. This case often occurs in rural

areas: for example, in Greenville, a CZ in Mississippi, only 7.5% of children in 2011-2012

(when they are 30) belong to the highest quintile in the national income distribution. To

address this concern, we conduct the same regressions as above but we remove CZs where

the top quintile has a size below 10% and below 15% (this exclude respectively 7 and 100

CZs). All our results remain consistent with the previous regressions.

All the results presented in this section are consistent with the prediction of our model

that innovation increases mobility at the top. Yet, we should bear in mind that these are

just cross-sectional OLS correlations.

8.3 Lobbying, entrant and incumbent innovation

Our empirical results have highlighted the positive association between innovation and social

mobility. Yet, our model suggests that the effect of innovation on social mobility should

operate mainly through entrant innovation, and that entry barriers should dampen it.

To test these predictions, we conduct the same regression as in the previous section

but considering separately entrant and incumbent innovations on the right hand side of the

regression equation, where entrants and incumbents are defined as in the cross state case.

Table 21 presents our results. Columns 1 to 3 regress our three measures of social mobility

on the number of citations received by entrant patents, whereas columns 4 to 6 regress the

three measures of social mobility on the number of incumbent citations. The positive and

significant coefficients in the first three columns, as compared to columns 4 to 6, suggest

that the positive effect of innovation on social mobility is mainly driven by new entrants.

This conjecture is confirmed by the horse race regression in column 7 in which both entrant

and incumbent innovations are included as right-hand side variables. There, we clearly see

that all the effect of innovation on social mobility is associated with entrant innovation.

We next look at how lobbying intensity interacts with the effect of innovation on social

mobility using the same cross-CZ data. We construct lobbying intensity as in the cross

state case, building from industry share at the county level. Overall, we are left with 662

CZs which can be separated in two groups of equal size, respectively with high and low
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lobbying activities. Column 1 (respectively 2) of Table 22 shows the effect of innovation as

measured by the number of entrant citations (in log) on the logarithm of absolute upward

mobility in CZs above (respectively below) median in terms of lobbying activities. Similarly,

columns 3 and 4 include both entrant and incumbent innovation separately. The effect of

entrant innovation on social mobility is positive and significant only for CZs that are below

median in terms of lobbying intensity. Incumbent innovation has no effect on social mobility,

whether we look at CZs above or below the median in terms of lobbying intensity. These

results confirm the idea that lobbying dampens the impact of innovation on social mobility

by reducing the effect of entrant innovation.

9 Conclusion

In this paper we have looked at the relationship between top income inequality and innova-

tion. First, we found positive and significant correlations between measures of innovation on

the one hand, and top income inequality on the other hand. We also showed that the cor-

relations between innovation and broad measures of inequality are not significant, and that

top income inequality is not correlated with highly lagged innovation. Second, we argued

that these correlations at least partly reflect a causal effect from innovation to top income

shares. Third, we showed that innovation is positively associated with social mobility.

Our approach has been to look at the aggregate effect of innovation on top income

inequality. This is an essential first step to assess the overall quantitative importance of

innovation in top income inequality. Thus our analysis complements more microeconomics

studies which explore the relationship between innovation, top income inequality and social

mobility using individual data on revenues and patenting.57

Our findings also suggest interesting avenues for further research on innovation-led growth,

inequality and social mobility. A first extension would be to contrast innovation with other

sources of top income inequality, for example from financial and lobbying activities, and look

at the effects of these other sources on other measures of inequality and social mobility. Our

conjecture is that, unlike innovation, lobbying should be positively correlated with broad

measures of inequality, and negatively correlated with social mobility.

Second, our calibration results suggest that our simple model, once enriched to better

account for firms’ heterogeneity, could be a building block toward a full quantitative model of

innovation, firm size distribution and top income inequality. Such a model would be useful to

57See Aghion et al. (2016) for such a study using Finnish individual data over the period 1990-2000. See
also Toivanen and Väänänen (2012) and Bell et al. (2016) for studies based on individual US data.
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assess the contribution of innovation in the rise of market power (De Loecker and Eeckhout,

2017) and also to assess the impact of tax policy, innovation policy (R&D subsidies, patent

policy) or competition and entry policy on innovation-led growth and top income inequality.

These and other extensions of our analysis in this paper, are left for future research.
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Tables and Figures for
“Innovation and Top Income Inequality”

Figures

Figure 1: Innovation and Top 1% income share in the US. 1963-2010

Notes: This figure plots the number of granted patent distributed by their year of application against the top 1% income share
for the USA as a whole. Observations span the years 1963-2009. Top 1% income shares come from Frank (2009) and patent
data come from the USPTO.
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Figure 2: Evolution of innovation and inequality 1980-2005

Notes: This figure plots the difference of the log of the number of citations per capita against the difference of the log of the
top 1% income share in 1980 and 2005. Observations are computed at the US state level.

Figure 3: Top 1% income share and Gini coefficient against innovation

Notes: This figure plots the average top-1% income share and the bottom 99% Gini index as a function of their corresponding
innovation quantile measured from the number of citations per capita. The bottom 99% Gini is the Gini coefficient when the
top 1% of the income distribution is removed. Innovation quantiles are computed using the US state-year pairs from 1976 to
2009. Each series is normalized by its value in the lowest innovation quantiles.
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Figure 4: Innovation and social mobility

Notes: This figures plots the percentile in the number of patent per capita (x-axis) against the level of social mobility (y-axis).
Social mobility is computed as the probability to belong to the highest quintile of the income distribution in 2010 (when aged
circa 30) when parents belonged to the lowest quintile in 1996 (when aged circa 16) and is taken in log. Observations are
computed at the Commuting Zones level (677 observations). The number of patents is averaged from 2005 to 2009.
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(a) University patents

(b) All citations

Figure 6: Synthetic cohort analysis

Notes: This figure plots the number of citations received within a 5 year window by all patents (left-hand side figure) and
restricting to university patents (right-hand side figure) for the Kentucky and a synthetic Kentucky built by minimizing the
distance in terms of size of financial sector, size of public sector, size of the manufacturing sector, GDP growth rate and user
cost of R&D taken from Moretti and Wilson (2017). Minimization has been conducted from 1983 to 1991. Treatment year,
corresponding to the arrival of senator McConnell in the appropriation committee is 1993. The list of university patents has
been received directly from the USPTO.

60



(a) Earmarks (b) Citations to university patents

(c) Citations to all patents

Figure 7: Event studies

Notes: This figure plots the average share of earmarks, citations to university patents and all citations at different time around
the appointment of a senator in the appropriation committee. All measures have been residualized on a state specific time
trend. Sample is restricted to years 1991-2008 for the top-left panel, 1980-2006 for the top-right panel and 1976-2006 for the
bottom panel and to states which experienced one and only one positive change in their representation in the committee. The
vertical solid line corresponds to the arrival of a new senator in the committee, the dash line corresponds to 3 years after this
event. The list of university patents has been received directly from the USPTO. The list of earmarks has been received from
Cohen et al. (2011).
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Tables

Table 1: Variable description and notation

Variable names Description

Measures of inequality

Top i% Share of income own by the top i% (i being equal to 1, 5, 10, 0.01, 0.1...) of the income distribution.

Avgtop Average income share for the percentiles 10 to 2 in the income distribution.

Gini Gini index of inequality. The Gini index measures the dispersion of the income distribution.

G99 Gini index restricted to the bottom 99% of income distribution.

Atkinson Atkinson index of inequality with an inequality aversion parameter of 0.5. The Atkinson index is a

measure of the gain in terms of utility that would be gained if a total redistribution of the income

distribution were to be done.

Measures of innovation

Patent Number of patents granted by the USPTO per capita.

Cit5 Total number of citation received no longer than 5 years after applications per capita.

Claims Total number of claims associated with patents per capita.

Generality Total number of patents weighted by the generality index per capita.

Top5 Number of patents in the top 5% most cited per capita.

Top1 Number of patents in the top 1% most cited per capita.

Measures of social mobility

AM25 Expected percentile of a child at 30 whose parents belonged to the 25th percentile of income distri-

bution in 2000.

AM50 Expected percentile of a child at 30 whose parents belonged to the 50th percentile of income distri-

bution in 2000.

P5-i Probability for a child at 30 to belong to the 5th quintile of income distribution if parent belonged

to the ith quintile, i ∈ {1, 2}.
P5 Probability for a child at 30 to belong to the 5th quintile of income distribution if parent belonged

to lower quintiles.

Control variables

Gdppc Real GDP per capita in US $ (in log).

Popgrowth Growth of total population.

Sharefinance Share of GDP accounted for by the financial sector divided by the same share at the country level.

Unemployment Unemployment rate. Between 0 and 1.

Gvtsize Share of GDP accounted for by the government sector divided by the same share at the country

level.

TaxK State maximal marginal tax rate for realized capital gains.

TaxL State maximal marginal tax rate for labor income.

Additional control variables at the CZ level

Tax Total tax revenue per capita divided by mean household income per capita for working age adults.

School Expenditure Average expenditures per student in public schools (in log).

Employment Manuf Share of employed persons 16 and older working in manufacturing.

Notes: Description of relevant variables used in the next tables regressions. Additional variables may be used in specific analysis, in this case they will be explained in the

corresponding table description.
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Table 2: Descriptive statistics by state in two distinctive years

1980 2005 1980 2005

Top 1% Innovation Top 1% Innovation Top 1% Innovation Top 1% Innovation

AK 5.33 29 12.47 44 MT 8.02 46 16.35 144

AL 10.01 40 18.48 138 NC 9.03 68 17.04 428

AR 10.05 37 16.68 69 ND 9.62 58 13.23 303

AZ 8.56 174 22.66 511 NE 9.33 46 15.24 192

CA 9.91 252 24.20 1571 NH 8.48 229 18.01 853

CO 9.31 209 19.56 855 NJ 9.83 475 20.77 618

CT 12.24 417 31.02 1051 NM 8.90 55 15.63 310

DC 14.48 100 23.94 160 NV 11.09 118 33.30 574

DE 10.19 588 21.38 406 NY 12.08 229 30.25 549

FL 12.23 104 31.78 246 OH 8.98 208 15.86 582

GA 8.95 64 19.11 310 OK 11.44 228 17.74 357

HI 7.52 29 16.47 125 OR 8.25 109 16.91 1251

IA 8.24 113 12.92 318 PA 9.37 218 18.71 373

ID 7.68 86 18.08 1483 RI 10.25 133 17.36 389

IL 9.63 220 21.67 462 SC 8.16 76 17.74 162

IN 8.44 179 15.52 346 SD 8.58 32 16.94 113

KS 10.17 74 16.09 410 TN 10.09 75 18.76 219

KY 9.69 83 15.76 129 TX 12.18 169 21.90 562

LA 11.22 63 17.65 82 UT 7.79 124 18.49 768

MA 10.03 324 23.79 1392 VA 7.97 119 17.12 295

MD 8.13 183 17.34 441 VT 7.97 180 16.31 1614

ME 8.55 73 15.66 140 WA 8.37 134 19.69 1689

MI 8.91 233 16.12 678 WI 8.21 167 16.48 529

MN 9.31 260 18.24 1154 WV 9.54 81 14.97 49

MO 9.96 85 17.11 228 WY 9.00 27 28.52 161

MS 10.48 21 15.81 52

Notes: Number of citations within a five-year window per million of inhabitants and top 1% income share for all 51 states in 1980 and 2005.
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Table 3: Descriptive statistics by measures of innovation
and for the top 1% income share in two distinctive years

1980 Mean p25 p50 p75 Min Max

Top 1% 9.45 8.37 9.31 10.09 5.33 14.48

Patents 140 71 113 186 27 501

Cit5 146 64 113 209 21 588

Claims 1347 655 1,039 2,005 222 5,423

Generality 27 12 20 36 3 132

Top5 8 3 5 12 0 41

Top1 3 1 2 4 0 13

2005 Mean p25 p50 p75 Min Max

Top 1% 19.07 16.12 17.65 20.77 12.47 33.30

Patents 296 131 230 403 47 904

Cit5 508 161 373 618 44 1,89

Claims 4,67 1,14 3,45 5,06 630 24,64

Generality 104 50 82 152 19 366

Top5 10 2 7 12 0 36

Top1 2 1 1 3 0 9

Notes: Summary statistics includes mean, quartiles’ thresholds, minimum and

maximum for our six measures of innovation and the top 1% income share (rel-

evant variables are defined in Table 1). All innovation measures are taken per

million of inhabitants.
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Table 4: Mean and Standard Deviation of the
main variables

Mean Standard Deviation

Top 1% (log) 2.591 0.267

Patent (log) 5.105 0.764

Cit5 (log) 5.678 1.074

Gdppc (log) 10.49 0.319

Popgrowth 0.010 0.011

Finance 0.920 0.237

Government 1.033 0.273

Unemployment 5.940 2.051

TaxK 4.386 2.948

TaxL 5.297 3.267

Notes: Mean value and standard deviation for the main vari-

ables calculated over the period 1980-2005 (relevant variables are

defined in Table 1). GDP per capita is calculated in $ per capita

and the innovation measures are taken per million of inhabitants.
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Table 5: Top 1% income share and innovation

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.039*** 0.036*** 0.043*** 0.045*** 0.049***

(0.009) (0.009) (0.009) (0.009) (0.009)

Gdppc 0.075 0.055 0.052 0.063

(0.054) (0.053) (0.052) (0.044)

Popgrowth 1.146 1.255* 0.864 1.089

(0.720) (0.731) (0.739) (0.700)

Finance 0.110*** 0.118*** 0.109***

(0.041) (0.043) (0.036)

Government -0.007 -0.010 -0.019*

(0.013) (0.013) (0.011)

Unemployment -0.006* -0.006*

(0.004) (0.003)

TaxK -0.039***

(0.004)

TaxL 0.014**

(0.006)

R2 0.880 0.882 0.884 0.884 0.896

Observations 1581 1581 1581 1581 1581

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. The

dependent variable is the log of the top 1% income share. Panel data OLS regressions with state and year fixed

effects. Time span for innovation: 1976-2006. Autocorrelation and heteroskedasticity robust standard errors

using the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01,

0.05 and 0.1 levels of significance.
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Table 6: Top 1% income share and innovation

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.031*** 0.049*** 0.018** 0.023** 0.024*** 0.019***

(0.011) (0.009) (0.009) (0.010) (0.005) (0.004)

Gdppc 0.089** 0.063 0.095** 0.094** 0.076* 0.087**

(0.043) (0.044) (0.045) (0.043) (0.043) (0.043)

Popgrowth 0.943 1.089 0.944 0.916 0.990 1.072

(0.654) (0.700) (0.652) (0.649) (0.689) (0.686)

Finance 0.080** 0.109*** 0.072** 0.077** 0.096*** 0.091***

(0.035) (0.036) (0.035) (0.035) (0.035) (0.035)

Government -0.018 -0.019* -0.017 -0.018 -0.018 -0.016

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Unemployment -0.006** -0.006* -0.005* -0.006* -0.006* -0.005

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

TaxK -0.038*** -0.039*** -0.038*** -0.038*** -0.038*** -0.037***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

TaxL 0.017*** 0.014** 0.017*** 0.017*** 0.013** 0.012**

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

R2 0.889 0.896 0.889 0.889 0.895 0.895

Observations 1734 1581 1734 1734 1581 1581

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. The dependent variable is the

log of the top 1% income share. Panel data OLS regressions with state and year fixed effects. Time span for innovation: 1976-2009

(columns 1, 3 and 4) and 1976-2006 (columns 2, 5 and 6). Autocorrelation and heteroskedasticity robust standard errors using

the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of

significance.
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Table 7: Innovation and various measures of inequality

Dependent variable Top 1% Top 10 % Avgtop Overall Gini G99 Atkinson

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.049*** 0.022*** 0.007 -0.001 -0.010** 0.017***

(0.009) (0.006) (0.005) (0.003) (0.005) (0.004)

Gdppc 0.063 0.032 0.002 0.004 -0.021 0.131***

(0.044) (0.028) (0.030) (0.024) (0.028) (0.029)

Popgrowth 1.089 0.553 0.265 -0.382** -0.553** 0.402

(0.700) (0.424) (0.381) (0.184) (0.240) (0.276)

Finance 0.109*** 0.066*** 0.021 0.011 -0.018 0.037**

(0.036) (0.020) (0.017) (0.012) (0.015) (0.018)

Government -0.019* -0.005 0.013* -0.004 0.001 -0.029***

(0.011) (0.007) (0.007) (0.004) (0.005) (0.006)

Unemployment -0.006* -0.001 0.002 -0.000 0.002 -0.001

(0.003) (0.002) (0.002) (0.001) (0.002) (0.001)

TaxK -0.039*** -0.018*** -0.002 -0.007*** -0.001 -0.018***

(0.004) (0.003) (0.002) (0.001) (0.002) (0.002)

TaxL 0.014** 0.007* -0.001 0.004** 0.001 0.011***

(0.006) (0.004) (0.003) (0.002) (0.003) (0.003)

R2 0.896 0.818 0.420 0.865 0.730 0.942

Observations 1581 1581 1581 1581 1581 1581

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. Panel data OLS regressions

with state and year fixed effects. Time span for innovation: 1976-2006. Autocorrelation and heteroskedasticity robust standard

errors using the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1

levels of significance.
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Table 8: Innovation and various measures of inequality based on different income shares

Dependent variable Top 10% Top 5% Top 1% Top 0.5% Top 0.1% Top 0.01%

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.022*** 0.026*** 0.049*** 0.060*** 0.076*** 0.094***

(0.006) (0.006) (0.009) (0.010) (0.013) (0.019)

Gdppc 0.032 0.050 0.063 0.055 0.060 0.046

(0.028) (0.036) (0.044) (0.055) (0.068) (0.095)

Popgrowth 0.553 0.618 1.089 1.595* 2.289** 3.307**

(0.424) (0.466) (0.700) (0.829) (1.120) (1.567)

Finance 0.066*** 0.063** 0.109*** 0.124*** 0.079 0.021

(0.020) (0.025) (0.036) (0.046) (0.072) (0.106)

Government -0.005 -0.009 -0.019* -0.020* -0.014 0.014

(0.007) (0.008) (0.011) (0.011) (0.013) (0.018)

Unemployment -0.001 -0.005** -0.006* -0.008** -0.010* -0.014**

(0.002) (0.002) (0.003) (0.004) (0.005) (0.007)

TaxK -0.018*** -0.023*** -0.039*** -0.047*** -0.061*** -0.084***

(0.003) (0.003) (0.004) (0.005) (0.006) (0.009)

TaxL 0.007* 0.012*** 0.014** 0.018*** 0.024*** 0.031**

(0.004) (0.004) (0.006) (0.007) (0.009) (0.012)

R2 0.818 0.877 0.896 0.893 0.891 0.864

Observations 1581 1581 1581 1581 1581 1581

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. The dependent variables are

taken in log. Panel data OLS regressions with state and year fixed effects. Time span for innovation: 1976-2006. Autocorrelation

and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in parentheses. ***, ** and *

respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 9: Top 1% income share and innovation by entrants and incumbents

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Patents Patents Cit5 Cit5 Cit5

Innovation by entrants 0.022*** 0.018** 0.017*** 0.014**

(0.008) (0.008) (0.006) (0.006)

Innovation by incumbents 0.018*** 0.014** 0.025*** 0.022***

(0.007) (0.007) (0.006) (0.006)

Gdppc 0.104** 0.082 0.089* 0.080 0.054 0.056

(0.052) (0.055) (0.052) (0.059) (0.060) (0.058)

Popgrowth 2.109*** 1.997*** 2.150*** 2.287*** 2.133*** 2.208***

(0.751) (0.749) (0.756) (0.833) (0.816) (0.832)

Finance 0.096*** 0.112*** 0.104*** 0.110*** 0.135*** 0.131***

(0.032) (0.032) (0.032) (0.033) (0.033) (0.033)

Government -0.018 -0.024 -0.017 -0.023 -0.027 -0.020

(0.021) (0.021) (0.021) (0.020) (0.021) (0.021)

Unemployment -0.002 -0.003 -0.003 -0.001 -0.003 -0.003

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

TaxK -0.038*** -0.038*** -0.038*** -0.038*** -0.039*** -0.039***

(0.005) (0.005) (0.004) (0.005) (0.005) (0.005)

TaxL 0.026*** 0.026*** 0.027*** 0.022*** 0.023*** 0.024***

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

R2 0.852 0.851 0.853 0.859 0.860 0.862

Observations 1530 1530 1530 1377 1377 1377

Notes: Variable description is given in Table 1. Innovation by entrants is a count of innovation that restricts to patents whose assignee

first patented less than 3 years ago. Other patents enter in the count of Innovation by incumbents. Both these measures of innovation are

taken in log and lagged by two years. Panel data OLS regressions with state and year fixed effects. Time span for innovation: 1980-2009

(columns 1 to 3) and 1980-2006 (columns 4 to 6). Autocorrelation and heteroskedasticity robust standard errors using the Newey-West

variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 10: Top 1% income share, innovation and the role of lobbying intensity

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Patents Cit5 Claims

Innovation 0.905*** 0.527** 0.837*** 0.246 0.196 0.307*

(0.000) (0.014) (0.000) (0.172) (0.312) (0.091)

Innovation×Lobbying -0.051*** -0.030** -0.048*** -0.016 -0.011 -0.019*

(0.000) (0.015) (0.000) (0.132) (0.320) (0.073)

Lobbying -0.305 -0.151 -0.095 0.053 -0.100 0.079

(0.245) (0.468) (0.683) (0.813) (0.631) (0.707)

Gdppc 0.107 0.014 0.105 0.095 -0.013 0.091

(0.384) (0.924) (0.397) (0.473) (0.929) (0.482)

Popgrowth 0.401 -0.146 0.379 0.640 0.150 0.622

(0.738) (0.897) (0.754) (0.613) (0.902) (0.622)

Finance -0.021 -0.062 -0.027 -0.019 -0.057 -0.018

(0.726) (0.326) (0.663) (0.749) (0.348) (0.754)

Government -0.107* -0.189*** -0.108* -0.117* -0.221*** -0.115*

(0.085) (0.006) (0.086) (0.066) (0.001) (0.064)

Unemployment -0.010** -0.022*** -0.010** -0.011** -0.023*** -0.011**

(0.026) (0.000) (0.023) (0.016) (0.000) (0.015)

TaxK -0.013** -0.014** -0.012** -0.013** -0.015*** -0.013**

(0.025) (0.012) (0.028) (0.023) (0.010) (0.022)

TaxL -0.002 0.003 -0.003 -0.002 0.003 -0.002

(0.840) (0.815) (0.815) (0.844) (0.811) (0.884)

R2 0.684 0.739 0.685 0.678 0.734 0.677

Observations 714 561 714 714 561 714

Notes: Lobbying is measured as explained in subsection 4.4. Other variable description is given in Table 1. Innovation is

taken in log and lagged by two years. Columns 1 to 3 consider entrant innovation whether columns 4 to 6 consider incumbent

innovations. The dependent variable is taken in log. Panel data OLS regressions with state and year fixed effects. Time span for

innovation: 1996-2009 (columns 1, 3, 4 and 6) and 1996-2005 (columns 2 and 5). Autocorrelation and heteroskedasticity robust

standard errors using the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01,

0.05 and 0.1 levels of significance.
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Table 11: Top 1% income share and innovation at different lags

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Lag of innovation 2 years 3 years 4 years 5 years 6 years All lags

Innovation at t− 2 0.043*** 0.028

(0.010) (0.017)

Innovation at t− 3 0.040*** 0.017

(0.009) (0.015)

Innovation at t− 4 0.039*** 0.023

(0.009) (0.017)

Innovation at t− 5 0.030*** -0.000

(0.009) (0.015)

Innovation at t− 6 0.021** -0.023

(0.010) (0.016)

Gdppc 0.035 0.035 0.033 0.044 0.057 0.029

(0.062) (0.062) (0.062) (0.062) (0.061) (0.063)

Popgrowth 2.212*** 2.266*** 2.305*** 2.282*** 2.283*** 2.207***

(0.840) (0.839) (0.827) (0.829) (0.828) (0.847)

Finance 0.138*** 0.134*** 0.133*** 0.126*** 0.121*** 0.140***

(0.034) (0.033) (0.033) (0.033) (0.034) (0.035)

Government -0.025 -0.027 -0.028 -0.029 -0.030 -0.024

(0.019) (0.019) (0.019) (0.020) (0.020) (0.019)

Unemployment -0.003 -0.003 -0.003 -0.002 -0.002 -0.003

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

TaxK -0.039*** -0.039*** -0.038*** -0.039*** -0.038*** -0.038***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

TaxL 0.022*** 0.022*** 0.022*** 0.022*** 0.021*** 0.022***

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

R2 0.860 0.860 0.860 0.859 0.858 0.861

Observations 1377 1377 1377 1377 1377 1377

Notes: Variable description is given in Table 1. Innovation is taken in log. The lag between the dependent variable and the

innovation measures ranges from 2 years to 6 years. Panel data OLS regressions with state and year fixed effects. Time span for

innovation: 1980-2006. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator are

presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 12: Descriptive statistics on the Senate appropriation
committee composition.

Number of years with Number of years with

1 Senator 2 Senators 1 Senator 2 Senators

AK 28 0 MT 22 0

AL 14 0 NC 2 0

AR 29 0 ND 25 10

AZ 20 0 NE 17 0

CA 14 0 NH 32 0

CO 17 0 NJ 27 0

CT 12 0 NM 37 0

DE 3 0 NV 32 1

FL 21 0 NY 14 0

GA 10 0 OH 6 0

HI 33 6 OK 16 0

IA 20 2 OR 25 0

ID 24 0 PA 36 0

IL 12 0 RI 11 0

IN 9 0 SC 34 0

KS 7 0 SD 17 0

KY 26 0 TN 20 0

LA 33 0 TX 20 0

MA 8 0 UT 27 0

MD 29 1 VA 0 0

ME 3 0 VT 30 2

MI 1 0 WA 21 10

MN 0 0 WI 31 8

MO 30 0 WV 39 0

MS 31 8 WY 7 0

Notes: The table gives the number of years between 1970 and 2008 with exactly one

(resp. 2) senator seating in the appropriation committee. The exact composition can be

found in the appropriation committee official website.
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Table 13: Senate Appropriation Committee composition and earmarks

Dependent variable Log of earmarks Cit5 univ

All earmarks Research earmarks

(1) (2) (3) (4) (5) (6)

SenateMember 0.401*** 0.331*** 0.330*** 0.310*** 0.096** 0.089**

(0.076) (0.074) (0.113) (0.103) (0.048) (0.037)

Gdppc -1.003 -0.327 -4.092*** -3.182*** 0.746** 0.448

(0.708) (0.703) (1.002) (0.988) (0.367) (0.283)

Ppgrowth -0.805 -2.825 2.623 1.949 -4.337 -2.851

(5.519) (5.111) (8.062) (7.659) (3.411) (2.726)

Finance 0.651 0.213 0.292 0.290 -1.018*** -0.606***

(0.479) (0.422) (0.601) (0.524) (0.253) (0.203)

Government -0.144 0.228 0.333 0.059 0.169 0.134

(0.518) (0.522) (0.532) (0.559) (0.103) (0.095)

Unemployment -0.016 -0.016 -0.101* -0.050 -0.052** -0.030

(0.037) (0.031) (0.055) (0.054) (0.022) (0.018)

TaxK 0.050 0.085* 0.052 0.038 -0.025 -0.013

(0.047) (0.047) (0.062) (0.056) (0.030) (0.024)

TaxL -0.062 -0.174* -0.287** -0.127 0.133*** 0.083**

(0.089) (0.101) (0.142) (0.131) (0.046) (0.036)

Yi,t−1 0.160*** 0.201*** 0.338***

(0.039) (0.040) (0.031)

R2 0.636 0.637 0.426 0.449 0.588 0.637

Observations 918 867 918 867 1428 1428

Notes: The dependent variable in columns 1 to 4 is the log of total earmarks received per capita in the state and comes

from Cohen et al. (2011). Research earmarks have been selected based on the title on the appropriation bill. Columns 5

and 6 used the citations received within a 5 year window to patent assigned to universities. Panel data OLS regressions with

state and year fixed effects. Yi,t−1 denotes the lagged value of the dependent variable. Other variables description is given in

Table 1. Autocorrelation and heteroskedasticity robust standard errors computed using the Newey-West variance estimator

are reported in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 14: Regression of innovation on top 1% income share using instrument based on Ap-
propriation Committee composition in the Senate

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innova-

tion

Patents Cit5 Claims Generality Top5 Top1

Innovation 0.220** 0.185** 0.196** 0.218** 0.139** 0.144**

(0.100) (0.077) (0.097) (0.106) (0.064) (0.068)

Gdppc -0.103 -0.079 -0.139 -0.122 -0.099 -0.071

(0.107) (0.091) (0.133) (0.123) (0.105) (0.098)

Popgrowth 1.960** 1.663* 2.223** 1.991** 1.553* 1.837*

(0.923) (0.953) (1.014) (0.928) (0.937) (0.950)

Finance 0.179*** 0.213*** 0.174*** 0.192*** 0.202*** 0.210***

(0.061) (0.067) (0.065) (0.071) (0.070) (0.076)

Government -0.097*** -0.078*** -0.089*** -0.091*** -0.038 -0.018

(0.024) (0.023) (0.023) (0.027) (0.030) (0.039)

Unemployment -0.012** -0.012** -0.013** -0.013** -0.012** -0.008*

(0.005) (0.005) (0.006) (0.006) (0.005) (0.004)

TaxK -0.040*** -0.039*** -0.040*** -0.042*** -0.040*** -0.035***

(0.005) (0.005) (0.005) (0.006) (0.005) (0.005)

TaxL 0.022*** 0.016** 0.024*** 0.025*** 0.014** 0.013

(0.008) (0.007) (0.009) (0.010) (0.007) (0.008)

Highways 0.398 0.511 0.459 0.328 0.347 0.582

(0.441) (0.457) (0.495) (0.471) (0.434) (0.502)

Military -0.002 -0.004 -0.002 -0.004 -0.008 -0.004

(0.007) (0.007) (0.008) (0.008) (0.008) (0.008)

R2 0.906 0.910 0.854 0.851 0.844 0.823

F-stat on the ex-

cluded instruments

15.5 14.2 12.5 11.3 11.1 9.0

Observations 1700 1550 1700 1700 1550 1550

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. Panel data IV 2SLS regressions

with state and year fixed effects. Innovation is instrumented by the number of senators that seat on the appropriation committee.

The lag between the instrument and the endogenous variable is set to 3 years. Time span for innovation: 1976-2009 for columns

1, 3 and 4 and 1976-2006 for columns 2, 5 and 6. DC is removed from the sample because it has no senators. Autocorrelation

and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in parentheses. ***, ** and

* respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 15: First stage and reduced form regressions

Dependent variable Cit5 Top 1% Cit5 Top 1% Cit5 Top 1%

(1) (2) (3) (4) (5) (6)

Appropriation Committee 0.089*** 0.016** 0.083*** 0.018***

(0.023) (0.006) (0.023) (0.007)

Spillover 5.266*** 0.735*** 5.181*** 0.754***

(0.871) (0.167) (0.849) (0.168)

Gdppc 1.039*** 0.115** 0.911*** 0.097 1.004*** 0.088

(0.160) (0.046) (0.181) (0.061) (0.171) (0.067)

Popgrowth -2.692 1.231* -0.519 2.691*** 0.601 2.688***

(2.659) (0.706) (2.852) (0.893) (2.623) (0.906)

Finance -0.801*** 0.072** -0.666*** 0.139*** -0.678*** 0.133***

(0.126) (0.033) (0.136) (0.033) (0.129) (0.034)

Government -0.037 -0.082*** -0.051 -0.102*** -0.031 -0.094***

(0.064) (0.024) (0.082) (0.029) (0.077) (0.028)

Unemployment 0.045*** -0.004 0.054*** 0.000 0.059*** -0.001

(0.012) (0.003) (0.011) (0.004) (0.011) (0.004)

TaxK 0.016 -0.033*** 0.013 -0.032*** 0.006 -0.033***

(0.014) (0.004) (0.017) (0.005) (0.017) (0.005)

TaxL -0.023** 0.005* -0.023** 0.009** -0.016 0.010***

(0.009) (0.003) (0.011) (0.004) (0.011) (0.003)

Highways -2.546* 0.012 -5.553*** 0.888**

(1.433) (0.317) (1.325) (0.382)

Military 0.003 -0.004 -0.006 -0.010

(0.020) (0.007) (0.021) (0.008)

R2 0.926 0.927 0.852 0.867 0.858 0.869

F-stat 14.2 - 27.4 - 27.3 -

Observations 1550 1550 1350 1350 1350 1350

Notes: The table presents the regressions results of our instruments on the innovation variable (measured by the number of citations

received within a five-year window) (columns 1, 3 and 5) and the results of our instruments directly on the dependent variable (the

share of income held by the richest 1%) in other columns. Columns 1 and 2 use the state number of senators with a seat on the Senate

appropriation committee, columns 3 and 4 use the spillover instrument and columns 5 and 6 use all instruments. The lags between the

dependent variable and the instruments are set to match the corresponding second stage regressions: 3 years for column 1, 5 years for

column 2, 1 year for columns 3, 3 years for column 4, 3 and 1 years for column 5 and 5 and 3 years for column 6. DC is removed from

the sample in columns 1, 2, 5 and 6 because it has no senators. Two additional controls for demand shocks are included, as explained

in subsection 6.3, in columns 3 to 6. Time Span: 1976-2006 for columns 1 and 2 and 1981-2006 for columns 3 to 6. Variable description

is given in Table 1. Panel data OLS regressions with state and year fixed effects. Innovation as well as the top 1% income share are

taken in log. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in

parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 16: Robustness 1: regression of innovation on top 1% income share using two instruments

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of Innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.189*** 0.156*** 0.117*** 0.116*** 0.103*** 0.139***

(0.052) (0.033) (0.033) (0.030) (0.023) (0.037)

Gdppc -0.099 -0.074 -0.067 -0.045 -0.081 -0.080

(0.089) (0.076) (0.083) (0.076) (0.081) (0.082)

Popgrowth 2.923*** 2.616*** 2.971*** 2.761*** 2.598*** 2.917***

(1.001) (1.004) (0.947) (0.904) (0.981) (1.011)

Finance 0.203*** 0.243*** 0.163*** 0.167*** 0.208*** 0.255***

(0.045) (0.044) (0.038) (0.038) (0.042) (0.058)

Government -0.110*** -0.089*** -0.111*** -0.116*** -0.051 -0.030

(0.027) (0.028) (0.026) (0.026) (0.032) (0.037)

Unemployment -0.010*** -0.010*** -0.007** -0.007** -0.008** -0.006

(0.004) (0.004) (0.004) (0.003) (0.004) (0.004)

TaxK -0.034*** -0.033*** -0.032*** -0.032*** -0.034*** -0.030***

(0.004) (0.005) (0.004) (0.004) (0.005) (0.005)

TaxL 0.015*** 0.012*** 0.013*** 0.013*** 0.010*** 0.011***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Highways 1.471*** 1.757*** 1.191*** 1.165*** 1.520*** 1.847***

(0.439) (0.443) (0.409) (0.402) (0.435) (0.512)

Military -0.006 -0.010 -0.007 -0.009 -0.013 -0.005

(0.007) (0.008) (0.007) (0.007) (0.008) (0.009)

R2 0.836 0.851 0.844 0.850 0.831 0.765

F-stat on excluded in-

struments

19.3 27.3 33.7 47.0 28.6 14.8

Sargan-Hansen J-stat

(p-value)

0.290 0.447 0.168 0.171 0.398 0.979

Observations 1500 1350 1500 1500 1350 1350

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. Panel data IV 2SLS regressions

with state and year fixed effects. Innovation is instrumented by the number of senators that seat on the appropriation committee

and by a measure of spillover as described in section6.3. The lag between the first instrument and the endogenous variable is set to 3

years while the lag between the second instrument and the endogenous variable is 1 year. Two additional controls for demand shocks

are included, as explained in subsection 6.3. Time span: 1983-2011 for columns 1 1983-2008 for columns 2 to 6. DC is removed from

the sample because it has no senators. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance

estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 17: Robustness 2: financial sector and natural resources

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.058*** 0.057*** 0.049*** 0.031*** 0.053*** 0.049***

(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Gdppc -0.107** 0.026 0.067 0.058 0.148*** 0.068

(0.014) (0.545) (0.130) (0.163) (0.000) (0.123)

Popgrowth 1.072 1.107 1.117 1.064 1.266* 1.116

(0.139) (0.121) (0.109) (0.121) (0.053) (0.109)

Finance 0.050 0.153*** 0.114*** 0.110*** 0.143*** 0.113***

(0.132) (0.001) (0.001) (0.001) (0.000) (0.002)

Government 0.017 -0.015 -0.021* -0.014 -0.015 -0.020*

(0.140) (0.151) (0.060) (0.188) (0.147) (0.077)

Unemployment -0.012*** -0.010*** -0.007** -0.008*** -0.006* -0.007**

(0.000) (0.003) (0.041) (0.009) (0.088) (0.043)

TaxK -0.035*** -0.031*** -0.036*** -0.037*** -0.029*** -0.036***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

TaxL 0.006** 0.003 0.007** 0.008** 0.010*** 0.007**

(0.049) (0.344) (0.023) (0.014) (0.001) (0.024)

RemunFinance 0.339***

(0.000)

EFD 0.661***

(0.000)

Mining+Oil 0.036***

(0.000)

R2 0.905 0.896 0.897 0.900 0.903 0.896

Observations 1581 1457 1581 1581 1581 1581

Notes: Variable Mining+oil measure the share of oil related and natural resources extraction activities in GDP, variable Remu-

nFinance measures the compensation per employee in the financial sector and variable EFD measures the financial dependence of

innovation. Other variables description is given in Table 1. Innovation is taken in log and lagged by two years. Column 1 controls

for average compensation in the financial sector, column 2 drops NY, CT, DE and MA (the state with the largest financial sectors),

column 3 removes finance-related patents, column 4 controls for financial dependence in the state as explained in section 6.1, column

5 controls for the size of oil and mining sectors and column 6 removes oil-related patents from the count of citations. Time Span:

1976-2008. Panel data OLS regressions with state and year fixed effects. Innovation as well as the top 1% income share are taken

in log. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in

parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 18: Simulation results

Moments Parameters

Definition and source Target Simulations

M1Average top 1% share (own data) 0.130 0.13 ηL= 1.16

M2 Ratio of entrant to incumbent citations (own data) 0.2 0.25 ηH= 1.35

M3 Elasticity of top 1% w.r.t innovation (Garcia-

Macia et al., 2016)

0.185 0.184 θI= 0.7

M4 Average mark-up (Jaimovich and Floetotto,

2008)

1.2 1.20 θE= 7.3

M5 Entrant share of employment (own data) 0.03 0.031 L = 74.8

M6 Growth rate 0.02 0.020 φ = 0.196

Notes: Definition and value of the targeted moments, average value for the targeted moments in 500 draws of simulated

data and parameters
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Table 19: Top 1% income share and innovation - CZ level panel

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5)

Measure of innovation Patents Patents Patents Patents Patents

Innovation 0.021* 0.019* 0.019* 0.019* 0.018*

(0.012) (0.011) (0.011) (0.011) (0.010)

Gdppc -0.352 -0.359 -0.540** -0.596**

(0.217) (0.217) (0.260) (0.288)

Popgrowth 0.333 0.277 0.011

(0.561) (0.508) (0.428)

Finance 0.002 0.007

(0.086) (0.088)

Government -0.187** -0.166**

(0.088) (0.078)

Unemployment -1.814

(1.452)

R2 0.816 0.818 0.812 0.813 0.814

Observations 5599 5599 5571 5570 5570

Notes: Variable description is given in Table 1. A dummy equal to one if the CZ belongs to an urban

area is included but not reported. Panel fixed effect regression with CZs weighted by population and

state×year dummies. Time span for innovation: 1998 and 2003-2009. Regressions also include a dummy

for being an urban CZ. Heteroskedasticity robust standard errors clustered at the state level are reported

in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

80



Table 20: Innovation and social mobility at the Commuting Zone level

Dependent variable AM25 P1-5 P2-5 AM25 P1-5 P2-5 P5

(1) (2) (3) (4) (5) (6) (7)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.015 0.076* 0.028 0.023** 0.112** 0.053** 0.012

(0.010) (0.042) (0.025) (0.010) (0.042) (0.025) (0.017)

Gdppc 0.025 0.416* 0.158 -0.074 0.007 -0.144 -0.051

(0.054) (0.235) (0.136) (0.062) (0.255) (0.148) (0.106)

Popgrowth -1.156 -1.322 -5.852** -1.944** -4.976 -8.218*** -7.210***

(0.850) (3.667) (2.539) (0.838) (3.628) (2.288) (1.600)

Government 0.047 0.263* 0.119 0.038 0.227 0.088 0.051

(0.032) (0.133) (0.090) (0.033) (0.138) (0.093) (0.066)

Finance 0.032 0.035 0.093* 0.016 -0.023 0.045 0.046

(0.021) (0.083) (0.054) (0.019) (0.073) (0.054) (0.039)

Unemployment -0.025 0.720 -0.202 -0.201 -0.026 -0.740 -0.723*

(0.212) (0.908) (0.604) (0.211) (0.872) (0.550) (0.398)

Tax 0.000 0.001 0.001 -0.001 -0.004 -0.003 -0.001

(0.001) (0.006) (0.004) (0.002) (0.006) (0.005) (0.004)

School Expenditure 0.008 0.027 0.024 0.016

(0.009) (0.034) (0.024) (0.019)

Employment Manuf -0.391*** -1.682*** -1.177*** -0.720***

(0.110) (0.401) (0.332) (0.247)

R2 0.146 0.180 0.168 0.197 0.225 0.218 0.264

Observations 666 674 674 662 670 670 670

Notes: Variable description is given in Table 1. The number of citations per inhabitants is averaged over the period 1998-2008 and social

mobility measures are taken when the child is 30 between 2011 and 2012 compared to his parents during the period 1996-2000, all these

measures are taken in logs. A dummy equal to one if the CZ belongs to an urban area is included but not reported. Cross section OLS

regressions with CZs weighted by population. Regressions also include a dummy for being an urban CZ. Heteroskedasticity robust standard

errors clustered at the state level are reported in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 21: Innovation and social mobility at the Commuting Zone level. Entrants and incumbents innovation

Dependent variable AM25 P1-5 P2-5 AM25 P1-5 P2-5 AM25

(1) (2) (3) (4) (5) (6) (7)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation by entrants 0.023** 0.111*** 0.048** 0.019*

(0.009) (0.039) (0.022) (0.010)

Innovation by incumbents 0.016** 0.075** 0.034* 0.006

(0.008) (0.033) (0.020) (0.007)

Gdppc -0.081 -0.021 -0.137 -0.048 0.145 -0.072 -0.086

(0.057) (0.235) (0.143) (0.064) (0.270) (0.146) (0.058)

Popgrowth -1.770** -4.074 -7.770*** -1.849** -4.476 -7.948*** -1.825**

(0.821) (3.550) (2.222) (0.838) (3.670) (2.301) (0.863)

Finance 0.018 -0.015 0.049 0.017 -0.021 0.046 0.018

(0.018) (0.070) (0.053) (0.019) (0.073) (0.054) (0.019)

Government 0.035 0.210 0.081 0.039 0.231 0.090 0.035

(0.033) (0.136) (0.094) (0.034) (0.145) (0.096) (0.033)

Unemployment -0.225 -0.141 -0.805 -0.199 -0.028 -0.747 -0.203

(0.208) (0.866) (0.549) (0.217) (0.900) (0.564) (0.210)

Tax -0.001 -0.003 -0.003 -0.001 -0.004 -0.003 -0.001

(0.002) (0.006) (0.005) (0.002) (0.006) (0.005) (0.002)

School Expenditure 0.009 0.035 0.028 0.007 0.024 0.023 0.009

(0.009) (0.033) (0.024) (0.009) (0.036) (0.025) (0.009)

Employment Manuf -0.334*** -1.400*** -1.037*** -0.385*** -1.640*** -1.146*** -0.358***

(0.109) (0.394) (0.323) (0.113) (0.413) (0.339) (0.113)

R2 0.197 0.225 0.214 0.185 0.207 0.209 0.201

Observations 662 670 670 662 670 670 662

Notes: Variable description is given in Table 1. The number of citations per inhabitants is averaged over the period 1998-2008 and social mobility

measures are taken when the child is 30 between 2011 and 2012 compared to his parents during the period 1996-2000, all these measures are taken in

logs. A dummy equal to one if the CZ belongs to an urban area is included but not reported. Cross section OLS regressions with CZs weighted by

population. Regressions also include a dummy for being an urban CZs. Heteroskedasticity robust standard errors clustered at the state level are reported

in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 22: Innovation and social mobility at the CZ level. Entrants and
incumbents innovation and the role of lobbying

Dependent variable AM25

(1) (2) (3) (4)

Innovation by entrants 0.001 0.038*** 0.001 0.035***

(0.008) (0.009) (0.007) (0.012)

Innovation by incumbents 0.001 0.005

(0.006) (0.008)

Gdppc -0.055 -0.085 -0.056 -0.087

(0.108) (0.053) (0.107) (0.053)

Popgrowth -3.423** -0.836 -3.431** -0.885

(1.289) (0.924) (1.301) (0.968)

Finance 0.031 0.015 0.031 0.014

(0.025) (0.020) (0.025) (0.021)

Government -0.020 0.037 -0.020 0.037

(0.022) (0.040) (0.023) (0.040)

Unemployment -0.899** 7-0.045 -0.891** 0.056

(0.333) (0.217) (0.337) (0.217)

Tax 0.001 -0.001 0.001 -0.001

(0.002) (0.001) (0.002) (0.001)

School Expenditure 0.015 0.013 0.015 0.013

(0.009) (0.009) (0.010) (0.009)

Employment Manuf -0.298*** -0.283** -0.302*** -0.303**

(0.105) (0.123) (0.111) (0.126)

R2 0.408 0.268 0.408 0.271

Observations 331 331 331 331

Notes: Variable description is given in Table 1. The number of citations per inhabitants is averaged

over the period 1998-2008 and social mobility measures are taken when the child is 30 between 2011

and 2012 compared to his parents during the period 1996-2000, all these measures are taken in logs.

A dummy equal to one if the CZ belongs to an urban area is included but not reported. Columns

1 and 3 restrict to CZs above median in terms of lobbying intensity, where lobbying is measured as

explained in subsection 8.2 while columns 2 and 4 restrict to CZs below median. Cross section OLS

regressions with CZs weighted by population. Regressions also include a dummy for being an urban

CZ. Heteroskedasticity robust standard errors clustered at the state level are reported in parentheses.

***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Online Appendix for

“Innovation and Top Income Inequality ”
Not for publication unless requested

A Theoretical appendix

A.1 Proofs of Proposition 2

The only claim we have not formally proved in the text is that ∂2

∂θK∂z
(1− z)x∗E > 0 (which

immediately implies that the positive impact of an increase in R&D productivity on growth,

entrepreneurial share and social mobility is attenuated when barriers to entry are high).

Differentiating first with respect to θE, we get:

∂ (1− z)x∗E
∂θE

= − (1− z)x∗E

θE − 1
L

(1− z)2
(

1
ηL
− 1

ηH

) ,
which is increasing in z since x∗E and (1− z) both decrease in z and the denominator θE +
1
L

(1− z)2
[

1
ηH
− 1

ηL

]
increases in z (recall that 1

ηL
− 1

ηH
> 0). Similarly, differentiating with

respect to θI gives:

∂ (1− z)x∗E
∂θI

=

1
L

(
1
ηL
− 1

ηH

)
(1− z)2

θE − 1
L

(1− z)2
(

1
ηL
− 1

ηH

) ∂x∗I
∂θI

,

which is increasing in z since
∂x∗I
∂θI

< 0, and 1 − z and the denominator both decrease in z.

This establishes the proposition.

A.2 Entrepreneurial share of income net of innovation costs

So far we computed gross shares of income, ignoring innovation expenditures. If we now

discount these expenditures, the ratio between net entrepreneurial income and labor income

can be written as:

rel net share (16)

=

(
Entrepreneur sharet − θE

x2
E

2
− θI

x2
I

2

)
/

(
wtM

Yt(1 + L)
L

)
=

(
πL +

πH − πL
2

x∗I +

(
πH
2

+
wtM

2Yt(1 + L)
− πL

)
(1− z)x∗E

)
/

(
wtML

Yt(1 + L)

)
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where we used (5), (7), the equilibrium values (9) and (10) and took into account the fact that

there are M/(1 + L) product lines. This expression shows that a higher rate of incumbent

innovation will raise the net entrepreneur share of income, whereas a higher rate of entrant

innovation will only raise the net entrepreneurial share of income if 1
2

1+L
M
πH+ 1

2
wt
Yt
− 1+L

M
πL > 0

(which occurs in particular if πH > 2πL). This in turn relates to the creative destruction

nature of entrant’s innovation: a successful entrant gains 1+L
M
πHYt − wt by innovating but

she destroys the rents 1+L
M
πLYt of the incumbent. Formally, we can show:

Proposition 3 An increase in incumbent R&D productivity (lower θI) leads to an increase

in the relative shares of net entrepreneurial income over labor income. An increase in en-

trant R&D productivity (lower θE) also leads to an increase in the relative shares of net

entrepreneurial income over labor income whenever 1
2
πH + 1

2
wt
Yt
− πL > 0.

On the other hand, we find that when L is large and πH is close enough to πL, then an

increase in the productivity of entrant R&D will shift income towards workers instead of

entrepreneurs, and therefore will contribute to a reduction in inequality. This result is in the

vein of Jones and Kim (2014).

Proof of Proposition 3 Using (6), we rewrite:

wtM

Yt(1 + L)
=

1

L
(1− πL − (πH − πL) (x∗I + (1− z)x∗E))

We then obtain

∂ (wtM/ ((1 + L)Yt))

∂x∗I
= − 1

L
(πH − πL) and

∂ (wtM/ ((1 + L)Yt))

∂x∗E
= −1− z

L
(πH − πL) .

Using (16), we get:

∂rel net share

∂x∗I
=

(
1

2
(πH − πL)

wtM

Yt(1 + L)
+
πH − πL

L

(
πL + 1

2 (πH − πL)x∗I
+
(
1
2πH − πL

)
(1− z)x∗E

))(
Yt(1 + L)

wtM

)2
1

Lt

∂rel net share

∂x∗E
=


(

1
2
πH + 1

2
wtM

Yt(1+L)
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(1− z) wtM
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(1−z)(πH−πL)
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2
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Note that

A = πL +
1

2
(πH − πL)x∗I +

(
1

2
πH − πL

)
(1− z)x∗E

= πL

(
1− 1

2
(1− z)x∗E

)
+

1

2
(πH − πL) (x∗I + (1− z)x∗E)

is positive since (1− z)x∗E < 1. Therefore ∂rel net share
∂x∗I

> 0 and ∂rel net share
∂x∗E

> 0 if 1
2
πH +

1
2

wtM
Yt(1+L)

− πL > 0.

We know that an increase in θE has no impact on x∗I but decreases x∗E, therefore we get

that it reduces the relative net shares whenever 1
2
πH + 1

2
wtM

Yt(1+L)
− πL > 0. An increase in θI

affects both x∗I but also x∗E, as we have:

∂x∗E
∂θI

=
1
L

(πH − πL)

θE − 1
L

(1− z)2 (πH − πL)

∂x∗I
∂θI

,

We can then write

∂rel net share

∂θ∗I

=
∂rel net share

∂x∗I

∂xI
∂θI

+
∂rel net share

∂x∗E

∂xE
∂θE

=
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Yt(1+L)

1
2
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wtM
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wtM
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1

Lt

∂x∗I
∂θI

Note that x∗E < 1, requires
(
πH − wtM

Yt(1+L)

)
(1− z) < θE. Moreover as L > 1, we must have

θE −
1

L
(1− z)2

(
πL −

wtM

Yt(1 + L)

)
>

1

L
(1− z)2 (πH − πL) .

Hence the relative net share is always decreasing in θI .

Finally consider the case where L is large such that wtM
Yt(1+L)

is small then we have

wtM

Yt(1 + L)
≈ 1

L

(
1− πL − (πH − πL)

(
πH − πL

θI
+ (1− z)

πH
θE

))
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therefore

∂rel net share
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Then
(

1
2
πH − πL

)
(1− πL) + (πH − πL)πL + 1

2
πL(πH−πL)2

θI
> 0 is a necessary and sufficient

condition when L is arbitrarily large under which a decrease in θE increases the relative net

share.

A.3 Proofs for subsection 2.3.2

From (9), we have:
∂x∗I
∂ηL

= − 1
η2L

1
θI
< 0, whereas:

∂x∗E
∂ηL

= (1− z)

[(1− 2x∗I)
(
θE − (1− z)2

(
1
ηL
− 1

ηH

))
−
(
πH − 1

ηL
(1− x∗I)− 1

ηH
x∗I

)
(1− z)2]

η2
L

(
θE − (1− z)2

(
1
ηL
− 1

ηH

))2 ,

the sign of which is ambiguous—intuitively a higher ηL decreases incumbent’s rate which

increases wages but also has a direct negative impact on wages and higher wages in turn

lower entrant innovation.

However, when θE = θI , the overall effect of a higher ηL on the aggregate innovation rate
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is negative; more formally:
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< 0.

Overall, we therefore have:

∂entrepreneur sharet
∂ηL

=
1

η2
L

(1− (1− z)x∗E − x∗I) +

(
1

ηL
− 1

ηH

)
∂

∂ηL
((1− z)x∗E + x∗I) ,

where the second term is dominated by the first term for θ large enough.

A.4 Shared rents

A.4.1 Profit sharing between inventor and developer

Here, we assume that once an innovation has been researched, it still needs to be implemented

and that this development phase depends on a CEO’s effort. Since we are separating the

firm owner from the firm manager, we now consider that a firm’s owner does not have the

outside option of working as a production worker in case her firm does not produce. For

simplicity we assume that M = 1 + L, so that the economy is populated by a mass L of

workers and a mass 1 of firm owners (who own both the incumbent firm but also the potential

entrant firm). For simplicity, the CEO is assumed to be a worker who gets the opportunity

to be CEO for a potential entrant or the incumbent in addition to his work as a production

workers.

Hence for the owner of an incumbent firm, expected income (net of research spending
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and CEO wages) is given by:

Π̃inc (xI , eI , RI,H , RI,L) = eIxI (πH −RI,H)Yt + (1− eIxI − (1− z) e∗Ex
∗
E) πLYt

− (1− eI)xIRI,LYt − θI
x2
I

2
Yt,

where eI denotes the likelihood that the CEO succeeds in ensuring that the company im-

plements the new technology—and similarly e∗E is the equilibrium likelihood that the CEO

of an entrant company manages to set-up a new firm. RI,HYt is the income that the CEO

obtains in case of a success, and RI,LYt, his income if he fails.

To obtain a success rate eI , a CEO has to incur a utility effort cost ψ
e2I
2
Yt. The CEOs

outside option is 0 (we assume that he can always reject a negative payment). A CEO of an

incumbent firm will then solve the following program:

Max
eI

{
eIRI,HYt + (1− eI)RI,L − ψ

e2
I

2
Yt

}
.

We then obtain that the constraint RI,L ≥ 0 will bind. As a result the CEO will choose a

success probability:

e∗I = R∗I,H/ψ.

This implies that the firm’s owner will decide on a payment

R∗I,H = (πH − πL) /2.

Therefore, in case of a success, the CEO obtains half of the gains from innovation.

Similarly for an entrant firm owner, we find that her expected income is given by:

Π̃ent (xE, eE, RE,H , RE.L) = (1− z) eExE (πH −RE,H)Yt−(1− z)xE (1− eE)RE,LYt−θE
x2
E

2
Yt.

eE is now the likelihood that the CEO succeeds in setting up a new firm (here we assumed

that the CEO effort is undertaken after the innovation has been potentially blocked, this is

without loss of generality). As above the constraint that RE,L = 0 binds must be satisfied.

We then obtain that e∗E = R∗E,H/ψ as before, which now leads to

R∗E,H = πH/2.

Here as well the CEO gets half of the gains from innovation in case of success.58

58The gains from an innovation for the owner of an entrant firm is πHYt, while it was πHYt−wt when she
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We obtain that as a share of gross output, CEOs income is given by

CEO share = x∗Ie
∗
IRI,H + (1− z)x∗Ee

∗
ER
∗
E.H =

1

θI

(πH − πL)4

16ψ2
+

(1− z)2

θE

π4
H

16ψ2
.

Therefore it decreases with both entrant and incumbent innovation costs. As long as the

labor force is large enough, top income earners will be the owners and the CEO. As a share

of gross output, their joint income (net of innovation costs) will be given by:

Top share = πHµ
∗ + πL (1− µ∗)− θEx

2
E

2
− θIx

2
I

2
, (17)

where the share of high-mark up sectors satisfies:

µ∗ = x∗Ie
∗
I + (1− z)x∗Ee

∗
E.

It is then straightforward to show that this top share decreases with the incumbent innovation

costs θI , whereas the labor share increases with both entrant and incumbent innovation

costs. Furthermore, a decrease in entrant innovation cost θE shifts income towards top

earners relative to workers (i.e. it increases Top share/wage share) if and only if 3πH −
4πL+πLπH +πL

(πH−πL)4

8θIψ2 > 0, which is satisfied if profits of innovative firms are large enough

relative to the non-innovative ones. Indeed, entrant innovation can potentially reduce the

owner share for the same reasons as above. This establishes:

Proposition 4 A reduction in incumbents innovation costs favors top income earners. A

reduction in entrant’s innovation costs favors top income earners if and only if 3πH − 4πL +

πLπH + πL
(πH−πL)4

8θIψ2 > 0.

Proof. Solving for the innovation decision we obtain that incumbents invest:

x∗I =
1

θI

(πH − πL)2

4ψ
=

1

4ψθI

(
1

ηL
− 1

ηH

)2

.

Entrants invest

x∗E =
1− z
4ψθE

π2
H =

1− z
4ψθE

(
1− 1

ηH

)2

.

We can then express the share of high mark-up sector as:

µ∗ =
1

θI

(πH − πL)3

8ψ2
+

(1− z)2

8ψ2θE
π3
H .

had the outside option of becoming a worker.
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Since the wage share is given by

wtL

Yt
= 1− πL − (πH − πL)µ∗

= 1− πL − (πH − πL)

(
1

θI

(πH − πL)3

8ψ2
+

(1− z)2

8ψ2θE
π3
H

)
,

both innovation costs increase the labor share of gross output. The top earners share (using

(17) and the values for the innovation rates) can then be expressed as:

Top share = 1− wtL

Yt
−

(
(πH − πL)4

32θIψ2
+

(1− z)2 π4
H

32θEψ2

)
,

= πL +
3 (πH − πL)4

32θIψ2
+

(1− z)2 π3
H (3πH − 4πL)

32ψ2θE
.

Hence we get that Top share is decreasing in θI . Further, we get that

∂

∂θE

(
Top share

(wtL/Yt)

)
= −(1− z)2 π3

H

32ψ2θ2
E

(
Yt
wtL

)2
(

3πH − 4πL + πLπH + πL
(πH − πL)4

8θIψ2

)

Hence an increase in θE shifts income towards workers to the detriment of the top earners if

3πH − 4πL + πLπH + πL
(πH−πL)4

8θIψ2 > 0 (which is satisfied if πH/πL is large enough).

A.4.2 Profit sharing between firm owner and inventor

To distinguish between the firm owner and the innovator we now consider that the set of

potential firm owners is given. For simplicity we assume that M = 1 + L. There is a

mass 1 of capitalists who inherit incumbent firms and can each set up an entrant firm,

while innovators are drawn from the population, and there is a mass L of potential workers.

Workers are identical when in production but differ in the quantity of human capital they

can produce in innovation (each worker can produce h units of human capital and h is

distributed uniformly over
[
0, h
]
).

To innovate with probability x an incumbent firm needs to hire θe2/2 units of human

capital. Similarly an entrant firm needs to hire θe2/2 units of human capital.59 Denoting by

v the price of 1 unit of innovative human capital normalized by Yt, we obtain that there will

be a threshold ĥ, such that individuals whose h is below ĥ will be production workers and

59We assume that the innovation cost is the same for entrants and incumbents. Without this assumption
a reduction in entrant’s cost could lead to a reduction in overall innovation through its impact on the price
of human capital for some extreme parameter assumptions.
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those above will be innovators. That threshold obeys

w

Y
= vĥ. (18)

Solving for the profit maximization problem, we find the optimal innovation rates as:

x∗I =
πH − πL
θv

and x∗E = πH
1− z
θv

, (19)

for the incumbent and the entrant respectively. These rates are similar to those in the

baseline model, except that they depend on the wage rate v and that the entrant rate does

not depend on w (since a firm owner does not have the possibility to become a worker if he

fails).

Market clearing for human capital implies:

θ

(
x∗2I
2

+
x∗2E
2

)
= L

∫ h

ĥ

hdh⇔

(πH − πL)2 + π2
H (1− z)2 = θv2L

h
2 − ĥ2

h
. (20)

This equation establishes the demand for innovative human capital as a function of the wage

rate and the cost of innovation.

The supply-side equation can be determined by combining (18) with the production labor

share equation:

wLĥ

Y h
=

µ

ηH
+

1− µ
ηL

,

as Lĥ is the labor force in production. We then obtain:

vL
ĥ2

h
= 1− πL +

πL − πH
θv

(
πH − πL + πH (1− z)2) . (21)

Plugging (21) into (20), we obtain that the wage rate for innovative human capital is

uniquely defined by:

vLh = 1− πL + πLπH
(1− z)2

θv
. (22)

Hence v is decreasing in θ (i.e. the lower is the cost of innovation, the higher is the level of

wage per unit of human capital).

As shown below, a decrease in the innovation cost boosts innovation both by entrants

and incumbents. In addition, the threshold ĥ decreases, so that when innovation costs go
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down, more workers end up working as innovators.

Two measures of inequality can be derived here: the share of income going to the firm

owners (here we implicitly assume that firm ownership is concentrated at the top of the

income distribution) and a measure of top labor income inequality.

The income share of innovators can be derived as:

Innov share =

∫ h

ĥ

vLhdh = vL
(
h

2 − ĥ2
)
/
(
2h
)
. (23)

One can show that this expression is decreasing in θ (hence lower innovation costs increase

the share of income going to innovators).

We show below that the owner share of GDP must satisfy:

Owner share = πL (1− µ) + πHµ− Innov share (24)

= πL +
1

2θv

(
(πH − πL)2 + (πH − 2πL) πH (1− z)2) .

Hence a reduction in innovation costs will increase the owner share of income as long as

(πH − πL)2 + (πH − 2πL) πH (1− z)2 > 0 (the intuition is still that entrant innovations may

decrease overall owner’s net share of income by suppressing the rents of an incumbent). If

firms’ owner are disproportionately concentrated in the top of the income distribution, this

predicts that a reduction in innovation will increase top income inequality.

The share of labor income going to the individuals above some ratio h̃/h can be expressed

as

TopLincome(h̃) =

∫ h
h̃
vhdh

w
Y
ĥ
h

+
∫ h
ĥ
vhdh

=
h

2 − h̃2

ĥ2 + h
2 if h̃ ≥ ĥ

= 1−
w
Y
h̃
h

w
Y
ĥ
h

+
∫ h
ĥ
vhdh

= 1− 2ĥh̃

ĥ2 + h
2 if h̃ ≤ ĥ.

In both cases, TopLincome is decreasing in ĥ and therefore also in innovation costs. One

can then prove the following proposition.

Proposition 5 A reduction in innovation costs leads to an increase in innovation, an in-

crease in top labor income inequality and an increase in the owners’ share of income if

(πH − πL)2 + (πH − 2πL) πH (1− z)2 > 0.
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Proof: Using (22) we have:

dv

dθ
=
v

θ

−πLπH (1−z)2
θv2

Lh+ πLπH
(1−z)2
θv2

.

Hence we get:
d (θv)

dθ
= v

Lh

Lh+ πLπH
(1−z)2
θv2

> 0.

Using (19) we then obtain that both entrant innovation x∗ and incumbent innovation x∗I
decrease with θ. Differentiating (20) we get:

dĥ

dθ
=

h
2 − ĥ2

2θ

(
1 + 2

θ

v

dv

dθ

)
=

h
2 − ĥ2

2θ

Lh− πLπH (1−z)2
θv2

Lh+ πLπH
(1−z)2
θv2

=
h

2 − ĥ2

Lh+ πLπH
(1−z)2
θv2

1− πL
2θv

> 0,

where we used (22) to obtain the latter equality.

Using (20) in (23), we obtain that the share of income that goes to innovators is given

by:

Innov share =
(πH − πL)2 + π2

H (1− z)2

2θv
,

which is decreasing in θ since θv is increasing in θ.

To compute the owner share we use the previous equation and (19) in (24) to obtain:

Owner share = πL + (πH − πL) (x∗I + (1− z)x∗E)− Innov share

= πL + (πH − πL)

(
πH − πL
θv

+ (1− z) πH
1− z
θv

)
− (πH − πL)2 + π2

H (1− z)2

2θv

= πL +
1

2θv

(
(πH − πL)2 + (πH − 2πL) πH (1− z)2) .

Therefore the owner share is increasing in θ if and only if (πH − πL)2+(πH − 2πL)πH (1− z)2 >

0, which establishes the Proposition.
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A.5 CES production technology

For simplicity we assume that M = 1 + L, and we change the production function to:

Yt =

(∫ 1

0

y
σ−1
σ

it di

) σ
σ−1

, (25)

with yit = qitlit and σ > 1. A competitive fringe has access (at the beginning of the period)

to productivity level qit/ηL. We focus only on productive innovations here, so that an when

a firm innovates, qit increases by a factor ηH and the fringe gets access to (the previous) qit.

We assume that ηH is small enough that the firm is forced to limit pricing.

We take the final good as the numeraire. Then we get that the equilibrium prices are:

pLit = ηL
wt
qit

in sectors without innovation (26)

pHit = ηH
wt
qit

in sectors with innovation (27)

Moreover yit = p−σit Yt so that πit =
(
pit − wt

qit

)
p−σit Yt. Hence:

πLit =
ηL − 1

ησL

(
wt
qit

)1−σ

Yt =
ηL − 1

ησL

(
wt
q0
it

)1−σ

Yt,

πHit =
ηH − 1

ησH

(
wt
qit

)1−σ

Yt =
ηH − 1

ηH

(
wt
q0
it

)1−σ

Yt.

Here the superscript ”0” indicates productivities pre-innovation.

A natural assumption to make (e.g. see Aghion and Howitt, 1998, Chapter 9) is that pre-

innovation, all agents in the economy have access to the technology q0
it =

∫ 1

0
qi(t−1)di = Qt−1.

Then

ΠL
t =

ηL − 1

ησL

(
wt
Qt−1

)1−σ

Yt and ΠH
t =

ηH − 1

ηH

(
wt
Qt−1

)1−σ

Yt

so that ΠH
t > ΠL

t .

Note that ΠH
t /Π

L
t = ηH−1

ηH
/ηL−1

ησL
is bigger than in the Cobb-Douglas case. Another differ-

ence with the Cobb-Douglas case is the term
(

wt
Qt−1

)1−σ
which reflects a competition effect

whereby innovation by others increases the wage and therefore raises the price of my own

good because the production cost has increased.

To express the entrepreneur share of income, we need to solve for the equilibrium wage
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wt. (26), (27) and the dynamics of qit give

pLt = ηL
wt
qt−1

and pHt =
wt
qt−1

,

which together with the price normalization

µtp
1−σ
t,H + (1− µt) p1−σ

t,L = 1,

immediately yields:

µt

(
wt
qt−1

)1−σ

+ (1− µt)
(
ηL

wt
qt−1

)1−σ

= 1,

so that: (
wt
qt−1

)1−σ

=
1

µt + (1− µt) η1−σ
L

. (28)

The entrepreneur share of income can then be written as:

entrepreneur sharet =
µtΠH,t + (1− µt) ΠL,t

Yt
(29)

= 1− 1

ηL
+

(
1

ηL
− 1

ηH

)
µt

µt + (1− µt) η1−σ
L

This expression is increasing in µt, which is still given by µt = xIt + (1− z)xEt. In addition,

we know that social mobility is still equal to Ψt = xEt (1− z) /L. Therefore, we still get:

Proposition 6 (i) A higher rate of innovation by a potential entrant, xEt, is associated

with a higher entrepreneur share of income and a higher rate of social mobility, but less so

the higher the entry barriers z are; (ii) A higher rate of innovation by an incumbent, xIt,

is associated with a higher entrepreneur share of income but has no direct impact on social

mobility.

We now turn to the endogenous determination of the innovation rates of entrants and in-

cumbents. We use the same innovation function as in the baseline model. The maximization

problem of the incumbent is:

max
xI

{
xI
ηH − 1

ηH

(
wt
qt−1

)1−σ

Yt + (1− xI − (1− z)x∗E)
ηH − 1

ηH

(
wt
qt−1

)1−σ

Yt + (1− z)x∗Ewt − θI
x2
I

2
Yt

}
.
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We then obtain that the optimal innovation decision is simply

xI,t = x∗I =
1

θI

(
1− 1

ηH
− η1−σ

L

(
1− 1

ηL

))(
wt
qt−1

)1−σ

. (30)

A potential entrant in sector i solves the following maximization problem:

max
xE

{
(1− z)xE

ηH − 1

ηH

(
wt
qt−1

)1−σ

Yt + (1− xE (1− z))wt − θE
x2
E

2
Yt

}
,

Therefore, we get

xE,t = x∗E =

(
ηH − 1

ηH

(
wt
qt−1

)1−σ

− wt
Yt

)
(1− z)

θE
. (31)

Using (29), we get:

wt
Yt

=
1− entrepreneur sharet

L
=

1

L

µt
1
ηH

+ (1− µt) η1−σ
L

1
ηL

µt + (1− µt) η1−σ
L

.

Plugging this expression and (28) into (30) and (31) we obtain:

xI,t =
1

θI

1− 1
ηH
− η1−σ

L

(
1− 1

ηL

)
µt
(
1− η1−σ

L

)
+ η1−σ

L

, (32)

xE,t = x∗E =
1− 1

ηH
− 1

L

[
µt

1
ηH

+ (1− µt) η1−σ
L

1
ηL

]
µt + (1− µt) η1−σ

L

1− z
θE

. (33)

The above expression shows that a change in µt (for instance because of a change in

incumbent innovation xI) has an ambiguous effect on entrant innovation xEt. On the one

hand as in the Cobb-Douglas case, an increase in µt reduces wt/Yt and therefore makes the

outside option of the entrant less appealing, which leads to higher innovation by the entrant.

On the other hand, an increase in µt also increases wt/qt−1. This is the competition effect

mentioned above which decreases entrant innovation. As a result, a reduction in incumbent

innovation costs (θI), which increases incumbent innovation may reduces entrant innovation

and thereby social mobility. Overall, we obtain:

Proposition 7 An increase in entrant innovation costs θE reduces entrant innovation xE,

incumbent innovation xI and social mobility. An increase in incumbent innovation costs θI

reduces incumbent innovation xI and total innovation µ but has an ambiguous impact on
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entrant innovation and social mobility.

Proof. To solve for the the total number of innovations, combine (32) and (33) to get:

µt =
1

θI

1− 1
ηH
− η1−σ

L

(
1− 1

ηL

)
µt
(
1− η1−σ

L

)
+ η1−σ

L

+
1− 1

ηH
− 1

L

[
µt

1
ηH

+ (1− µt) η1−σ
L

1
ηL

]
µt + (1− µt) η1−σ

L

(1− z)2

θE
.

This expression can be rewritten as:

1

θI

1− 1
ηH
− η1−σ

L

(
1− 1

ηL

)
(
µt
(
1− η1−σ

L

)
+ η1−σ

L

)
µt

+

(
1− 1

ηH
− 1

L
1
ησL

)
1
µt
− 1

L

[
1
ηH
− 1

ησL

]
µt + (1− µt) η1−σ

L

(1− z)2

θE
= 1 (34)

As 1 − 1
ηH
− 1

L
1
ησL

> 0 (which results from assuming that for any µt, ΠH > w), the LHS

is decreasing in µt. Therefore this expression defines µt uniquely, and we get that total

innovation µt decreases in the entrant and incumbent innovation costs θE and θI .

Since µ is decreasing in θE and xI is decreasing in µ, we have that xI is increasing in θE.

Assume by contradiction that xE is also increasing in θE, then µ is increasing in θE which is

impossible. Therefore xEt and so Ψ (social mobility) are decreasing in θE.

Rewrite (34) as:

xIt
µt

+

(
1− 1

ηH
− 1

L
1
ησL

)
1
µt
− 1

L

[
1
ηH
− 1

ησL

]
µt + (1− µt) η1−σ

L

(1− z)2

θE
= 1, (35)

an increase in θI decreases µt which increases the LHS therefore it must decrease xIt. Hence

xIt is decreasing in θI . Yet, since xEt is ambiguous in µ, it is also ambiguous in θI , and so

is Ψt.
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B Additional empirical results

Table B1: Top 0.1% and Top 0.01% income share and innovation from incumbents and entrants

Dependent variable Log of Top 0.1% Income Share Log of Top 0.01% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation by en-

trants

0.030*** 0.025** 0.037*** 0.030**

(0.010) (0.010) (0.014) (0.014)

Innovation by incum-

bents

0.041*** 0.036*** 0.059*** 0.053***

(0.009) (0.009) (0.012) (0.012)

Gdppc 0.063 0.024 0.025 0.048 -0.010 -0.008

(0.094) (0.097) (0.095) (0.131) (0.133) (0.131)

Popgrowth 4.047*** 3.823*** 3.920*** 5.491*** 5.169*** 5.305***

(1.382) (1.361) (1.378) (1.923) (1.895) (1.916)

Finance 0.139*** 0.178*** 0.173*** 0.139** 0.195*** 0.189***

(0.048) (0.050) (0.050) (0.064) (0.068) (0.067)

Government -0.017 -0.025 -0.014 0.011 0.002 0.016

(0.032) (0.032) (0.032) (0.041) (0.041) (0.041)

Unemployment -0.007 -0.010* -0.009* -0.011 -0.016** -0.015*

(0.006) (0.006) (0.006) (0.008) (0.008) (0.008)

TaxK -0.057*** -0.058*** -0.059*** -0.074*** -0.076*** -0.076***

(0.008) (0.007) (0.007) (0.010) (0.010) (0.010)

TaxL 0.026*** 0.027*** 0.029*** 0.028** 0.029** 0.032**

(0.010) (0.010) (0.010) (0.013) (0.013) (0.013)

R2 0.826 0.827 0.829 0.785 0.787 0.789

Observations 1377 1377 1377 1377 1377 1377

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. Panel data OLS regressions

with state and year fixed effects. Time span for innovation: 1980-2006. Autocorrelation and heteroskedasticity robust standard

errors using the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1

levels of significance.
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Table B2: Distribution of patents located by inventors and assignees

State Inventors Assignees State Inventors Assignees

AK 0.1% 0.0% MT 0.1% 0.1%

AL 0.4% 0.3% NC 2.3% 1.4%

AR 0.2% 0.1% ND 0.1% 0.0%

AZ 1.8% 0.7% NE 0.2% 0.2%

CA 22.8% 24.0% NH 0.7% 0.4%

CO 2.2% 1.1% NJ 4.1% 5.1%

CT 2.0% 2.9% NM 0.4% 0.3%

DC 0.1% 1.2% NV 0.4% 0.6%

DE 0.4% 1.9% NY 7.1% 11.6%

FL 2.8% 1.9% OH 3.5% 3.8%

GA 1.7% 1.0% OK 0.5% 0.3%

HI 0.1% 0.0% OR 1.8% 0.7%

IA 0.7% 0.7% PA 3.5% 2.9%

ID 1.8% 2.2% RI 0.3% 0.2%

IL 3.9% 5.0% SC 0.6% 0.4%

IN 1.5% 0.9% SD 0.1% 0.0%

KS 0.5% 0.3% TN 0.8% 0.6%

KY 0.5% 0.4% TX 7.0% 6.6%

LA 0.5% 0.2% UT 0.8% 0.6%

MA 4.4% 4.1% VA 1.4% 0.9%

MD 1.7% 1.1% VT 0.4% 0.1%

ME 0.2% 0.1% WA 2.9% 2.6%

MI 4.2% 4.8% WI 2.0% 1.8%

MN 3.0% 3.0% WV 0.1% 0.0%

MO 1.0% 0.8% WY 0.1% 0.0%

MS 0.2% 0.1%

Notes: Distribution granted patent with an application year equal to 2000 by state whether

the allocation is based on the address of the inventors or the address of the assignees.
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Table B3: Top 1% income share and innovation allocation by assignee

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.048*** 0.031*** 0.024*** 0.023*** 0.021*** 0.023***

(0.010) (0.006) (0.006) (0.006) (0.005) (0.004)

Gdppc 0.062 0.081* 0.094** 0.093** 0.072 0.077*

(0.042) (0.047) (0.042) (0.045) (0.044) (0.044)

Popgrowth 1.138* 0.977 0.964 0.963 0.962 0.985

(0.673) (0.697) (0.654) (0.672) (0.690) (0.677)

Finance 0.088** 0.089*** 0.074** 0.075** 0.086** 0.087**

(0.034) (0.034) (0.034) (0.034) (0.035) (0.035)

Government -0.019* -0.027** -0.022** -0.023** -0.024** -0.025**

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Unemployment -0.007** -0.006* -0.006* -0.006* -0.006* -0.006*

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

TaxK -0.024*** -0.024*** -0.024*** -0.024*** -0.024*** -0.025***

(0.002) (0.003) (0.002) (0.002) (0.003) (0.002)

TaxL 0.013*** 0.012*** 0.013*** 0.013*** 0.011*** 0.011***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

R2 0.892 0.897 0.891 0.891 0.896 0.896

Observations 1734 1581 1734 1734 1581 1581

Notes: Innovation is taken in log and lagged by two years and is assigned to a state using the assignee location. Panel data OLS

regressions with state and year fixed effects. Time span for innovation: 1976-2009 (columns 1, 3 and 4) and 1976-2006 (columns 2,

5 and 6). Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in

parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B4: Top 1% income share and innovation with clustered standard errors

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.032 0.049*** 0.018 0.023 0.024*** 0.019***

(0.020) (0.015) (0.014) (0.016) (0.007) (0.006)

Gdppc 0.078 0.051 0.086 0.085 0.064 0.075

(0.086) (0.085) (0.087) (0.087) (0.084) (0.089)

Popgrowth 0.893 1.042 0.885 0.867 0.937 1.022

(0.627) (0.650) (0.619) (0.623) (0.631) (0.629)

Finance 0.082 0.113* 0.074 0.079 0.097* 0.093

(0.061) (0.060) (0.062) (0.061) (0.058) (0.059)

Government -0.018 -0.020 -0.018 -0.019 -0.018 -0.017

(0.027) (0.025) (0.027) (0.027) (0.025) (0.025)

Unemployment -0.006 -0.007 -0.006 -0.006 -0.006 -0.005

(0.004) (0.005) (0.004) (0.004) (0.005) (0.005)

Tax K -0.024*** -0.025*** -0.024*** -0.024*** -0.025*** -0.024***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Tax L 0.013** 0.011* 0.012* 0.012* 0.011* 0.010*

(0.006) (0.006) (0.007) (0.007) (0.006) (0.006)

R2 0.890 0.897 0.890 0.890 0.896 0.895

Observations 1734 1581 1734 1734 1581 1581

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. The dependent variable is the

log of the top 1% income share. Panel data OLS regressions with state and year fixed effects. Time span for innovation: 1976-2009

(columns 1, 3 and 4) and 1976-2006 (columns 2, 5 and 6). Heteroskedasticity robust standard errors clustered at the state level are

presented in parenthesis. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B5: Top 1% income share and innovation by entrants and incumbents - alternative
definition of entrants

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Patents Patents Cit5 Cit5 Cit5

Innovation by en-

trants

0.013 0.006 0.020*** 0.016**

(0.009) (0.009) (0.007) (0.007)

Innovation by incum-

bents

0.021*** 0.020*** 0.026*** 0.023***

(0.007) (0.007) (0.005) (0.006)

Gdppc 0.124** 0.076 0.100* 0.085 0.048 0.055

(0.053) (0.055) (0.053) (0.059) (0.060) (0.059)

popgrowth 2.094*** 2.025*** 2.167*** 2.246*** 2.197*** 2.203***

(0.746) (0.748) (0.756) (0.829) (0.819) (0.838)

Finance 0.095*** 0.116*** 0.109*** 0.107*** 0.136*** 0.131***

(0.031) (0.032) (0.032) (0.033) (0.033) (0.033)

Government -0.022 -0.024 -0.021 -0.021 -0.028 -0.021

(0.020) (0.021) (0.021) (0.020) (0.021) (0.020)

Unemployment -0.002 -0.004 -0.003 -0.001 -0.003 -0.003

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

TaxK -0.024*** -0.025*** -0.024*** -0.025*** -0.025*** -0.025***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

TaxL 0.016*** 0.017*** 0.017*** 0.015*** 0.015*** 0.015***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

R2 0.853 0.853 0.854 0.860 0.862 0.863

Observations 1530 1530 1530 1377 1377 1377

Notes: Variable description is given in Table 1. Innovation by entrants is a count of innovation that restricts to patents whose

assignee first patented less than 5 years ago. Other patents enter in the count of Innovation by incumbents. Both these measures

of innovation are taken in log and lagged by two years. Panel data OLS regressions with state and year fixed effects. Time span

for innovation: 1980-2009 (columns 1 to 3) and 1980-2006 (columns 4 to 6). Autocorrelation and heteroskedasticity robust standard

errors using the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1

levels of significance.

103



Table B6: Top 1% income share and innovation for single state inventors

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.020* 0.040*** 0.025** 0.023** 0.020*** 0.020***

(0.012) (0.009) (0.010) (0.011) (0.005) (0.004)

Gdppc 0.089** 0.059 0.077* 0.085* 0.077* 0.084*

(0.043) (0.045) (0.044) (0.044) (0.044) (0.044)

Popgrowth 0.862 1.026 0.906 0.898 0.850 0.848

(0.653) (0.706) (0.651) (0.652) (0.705) (0.685)

Finance 0.076** 0.104*** 0.082** 0.081** 0.094*** 0.094***

(0.035) (0.036) (0.035) (0.035) (0.036) (0.036)

Government -0.019 -0.020* -0.019* -0.019* -0.016 -0.018

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Unemployment -0.006** -0.006** -0.006** -0.006** -0.006* -0.006*

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

TaxK -0.024*** -0.025*** -0.024*** -0.024*** -0.024*** -0.025***

(0.002) (0.003) (0.002) (0.002) (0.003) (0.003)

TaxL 0.012*** 0.011*** 0.013*** 0.013*** 0.010*** 0.010***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

R2 0.890 0.895 0.890 0.890 0.895 0.895

Observations 1734 1581 1734 1734 1581 1581

Notes: This table shows similar results as the one from Table 6 but patents from inventors that have changed its state of residence

over the period are removed. All the innovation measures as well as the dependent variable are taken in log. Time span for innovation:

1976-2009 (columns 1, 3 and 4) and 1976-2008 (columns 2, 5 and 6). Variable description is given in Table 1. Autocorrelation and

heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in parentheses. ***, ** and *

respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B7: Regression of innovation on top 1% income share using instrument based on Appro-
priation Committee composition in the Senate. Single state inventors

Dependent variable Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.213* 0.167** 0.157** 0.201** 0.127** 0.117**

(0.111) (0.067) (0.069) (0.093) (0.051) (0.048)

Gdppc -0.093 -0.060 -0.104 -0.115 -0.011 0.048

(0.116) (0.084) (0.103) (0.114) (0.082) (0.059)

Popgrowth 1.897** 1.689* 2.017** 2.236** 0.624 0.369

(0.944) (0.952) (0.899) (1.049) (0.938) (0.729)

Finance 0.178** 0.196*** 0.160*** 0.184*** 0.199*** 0.192***

(0.072) (0.060) (0.052) (0.063) (0.064) (0.060)

Government -0.098*** -0.079*** -0.087*** -0.103*** -0.036 -0.041*

(0.025) (0.024) (0.024) (0.027) (0.026) (0.025)

Unemployment -0.013** -0.010** -0.011** -0.011** -0.012*** -0.014***

(0.006) (0.004) (0.005) (0.005) (0.005) (0.004)

TaxK -0.043*** -0.040*** -0.039*** -0.039*** -0.037*** -0.039***

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

TaxL 0.021** 0.016** 0.019*** 0.021*** 0.013* 0.016**

(0.009) (0.007) (0.007) (0.007) (0.007) (0.007)

Highways 0.202 0.359 0.326 0.435 0.376 0.683

(0.401) (0.401) (0.410) (0.448) (0.431) (0.436)

Military -0.005 -0.005 -0.007 -0.007 -0.007 -0.003

(0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

R2 0.904 0.913 0.876 0.862 0.864 0.870

F-stat on the excluded

instruments

11.5 18.2 26.0 15.1 16.2 14.5

Observations 1700 1550 1700 1700 1550 1550

Notes: This table shows similar results as the one from Table 14 but patents from inventors that have changed its state of residence

over the period are removed. Time span for innovation: 1976-2009 (columns 1, 3 and 4) and 1976-2006 (columns 2, 5 and 6).

Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in parentheses.

***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B8: Innovation and various measures of inequality - IV results

Dependent Variable Top 1% Avgtop Top 10 % Overall Gini G99 Atkinson

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.192** 0.077* 0.031 -0.018 -0.048 0.072*

(0.078) (0.046) (0.034) (0.028) (0.036) (0.037)

Gdppc -0.098 -0.035 -0.031 0.002 -0.002 0.062

(0.094) (0.054) (0.046) (0.035) (0.045) (0.047)

popgrowth 1.691* 0.812 0.442 -0.288 -0.492* 0.607

(0.997) (0.587) (0.451) (0.204) (0.285) (0.375)

Finance 0.226*** 0.111*** 0.042 -0.003 -0.049 0.084**

(0.070) (0.041) (0.032) (0.024) (0.032) (0.033)

Government -0.077*** -0.046*** -0.022* -0.003 0.014 -0.037***

(0.023) (0.014) (0.012) (0.010) (0.012) (0.010)

Unemployment -0.013** -0.004 -0.000 -0.000 0.003 -0.005**

(0.005) (0.003) (0.002) (0.002) (0.003) (0.002)

TaxK -0.025*** -0.010*** -0.000 -0.004*** -0.001 -0.011***

(0.003) (0.002) (0.001) (0.001) (0.001) (0.001)

TaxL 0.014*** 0.005** -0.001 0.002 -0.001 0.009***

(0.004) (0.002) (0.002) (0.001) (0.002) (0.002)

Highways 0.386 0.153 -0.035 -0.014 -0.110 0.144

(0.470) (0.263) (0.176) (0.128) (0.168) (0.242)

Military -0.006 -0.008* -0.010** -0.009** -0.009** -0.008**

(0.007) (0.005) (0.004) (0.004) (0.004) (0.003)

R2 0.872 0.806 0.430 0.864 0.712 0.934

F-stat on excluded in-

struments

14.2 14.2 14.2 14.2 14.2 14.2

Observations 1550 1550 1550 1550 1550 1550

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by two years. The dependent variables are also

taken in log. Panel data IV 2SLS regressions with state and year fixed effects. Innovation is instrumented by the number of senators

that seat on the appropriation committee. The lag between the instrument and the endogenous variable is set to 3 years. Time span

for innovation: 1976-2009 for columns 1, 3 and 4 and 1976-2006 for columns 2, 5 and 6. DC is removed from the sample because it has

no senators. Autocorrelation and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in

parentheses. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B9: Top 1% income share and innovation at different lags - IV results

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5

Lag of innovation 2 years 3 years 4 years 5 years 6 years

Innovation at t− 2 0.253**

(0.112)

Innovation at t− 3 0.180**

(0.083)

Innovation at t− 4 0.176**

(0.078)

Innovation at t− 5 0.071

(0.065)

Innovation at t− 6 0.057

(0.065)

Gdppc -0.190 -0.097 -0.077 0.033 0.059

(0.163) (0.133) (0.121) (0.102) (0.097)

popgrowth 2.300* 3.005** 3.072** 2.806*** 2.641***

(1.263) (1.289) (1.194) (1.061) (1.006)

Finance 0.292*** 0.220*** 0.187*** 0.115** 0.097**

(0.108) (0.078) (0.064) (0.048) (0.042)

Government -0.088** -0.088** -0.083** -0.110*** -0.116***

(0.036) (0.035) (0.036) (0.033) (0.032)

Unemployment -0.022** -0.014** -0.012** -0.008* -0.007*

(0.009) (0.006) (0.005) (0.004) (0.004)

TaxK -0.034*** -0.032*** -0.031*** -0.031*** -0.031***

(0.006) (0.005) (0.005) (0.005) (0.005)

TaxL 0.022** 0.022*** 0.021** 0.016** 0.014**

(0.009) (0.009) (0.008) (0.007) (0.007)

Highways 2.302*** 1.889*** 1.883*** 1.537*** 1.503***

(0.648) (0.476) (0.474) (0.430) (0.433)

Military -0.009 -0.008 -0.007 -0.004 -0.003

(0.009) (0.009) (0.009) (0.008) (0.008)

R2 0.856 0.868 0.843 0.842 0.839

F-stat on excluded in-

struments

17.8 17.8 17.8 17.8 17.8

Observations 1450 1450 1450 1450 1450

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by 2 to 6 years. Panel data

IV 2SLS regressions with state and year fixed effects. Innovation is instrumented by the number of senators that

seat on the appropriation committee. The lag between the instrument and the endogenous variable is set to 3 years.

Time span for innovation: 1979-2006. DC is removed from the sample because it has no senators. Autocorrelation

and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in parentheses.

***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B10: Regression of innovation on Top 1% income share using only the spillover instrument

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Patents Cit5 Claims Generality Top5 Top1

Innovation 0.183*** 0.153*** 0.112*** 0.113*** 0.099*** 0.147***

(0.057) (0.037) (0.034) (0.032) (0.024) (0.048)

Gdppc -0.071 -0.045 -0.038 -0.016 -0.035 -0.071

(0.085) (0.069) (0.077) (0.070) (0.070) (0.079)

Popgrowth 2.385*** 2.403** 2.400*** 2.184*** 2.149** 2.937***

(0.899) (0.954) (0.843) (0.800) (0.913) (1.014)

Finance 0.197*** 0.239*** 0.157*** 0.161*** 0.205*** 0.266***

(0.045) (0.045) (0.037) (0.037) (0.042) (0.067)

Government -0.028 -0.020 -0.034* -0.033 0.001 0.030

(0.020) (0.019) (0.020) (0.020) (0.020) (0.028)

Unemployment -0.011*** -0.009** -0.008** -0.008** -0.008** -0.006

(0.004) (0.004) (0.004) (0.003) (0.004) (0.004)

TaxK -0.026*** -0.025*** -0.024*** -0.025*** -0.026*** -0.024***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.004)

TaxL 0.021*** 0.017*** 0.018*** 0.019*** 0.015*** 0.017***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005)

R2 0.828 0.843 0.837 0.842 0.826 0.743

F-stat on excluded in-

struments

29.3 36.0 52.3 73.9 46.2 17.0

Observations 1530 1377 1530 1530 1377 1377

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by 2 years. Panel data IV 2SLS regressions

with state and year fixed effects. Innovation is instrumented by a measure of spillover as described in section 6.3. The lags between

the instruments and the endogenous variable is set to 1 year. Control for spatial correlation involves adding two additional controls for

demand shocks as explained in subsection 6.3. Time span for innovation: 1981-2006. Autocorrelation and heteroskedasticity robust

standard errors using the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05

and 0.1 levels of significance.
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Table B11: Robustness 2: financial sector and natural resources - IV results

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.197*** 0.265*** 0.196** 0.200* 0.157** 0.195**

(0.009) (0.006) (0.016) (0.051) (0.024) (0.015)

Gdppc -0.258** -0.180 -0.097 -0.099 0.032 -0.093

(0.011) (0.112) (0.311) (0.322) (0.696) (0.320)

popgrowth 1.637 1.778 1.635 1.725* 1.698* 1.694*

(0.107) (0.117) (0.104) (0.097) (0.051) (0.090)

Finance 0.151** 0.221*** 0.231*** 0.230*** 0.226*** 0.228***

(0.016) (0.001) (0.001) (0.004) (0.000) (0.001)

Government -0.031 -0.066*** -0.079*** -0.079*** -0.069*** -0.078***

(0.149) (0.006) (0.001) (0.001) (0.001) (0.001)

Unemployment -0.018*** -0.020*** -0.013** -0.013*** -0.010** -0.013**

(0.001) (0.002) (0.014) (0.008) (0.036) (0.013)

TaxK -0.023*** -0.022*** -0.025*** -0.025*** -0.020*** -0.025***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

TaxL 0.012*** 0.013** 0.014*** 0.014*** 0.014*** 0.014***

(0.001) (0.016) (0.001) (0.001) (0.000) (0.001)

Highways -0.284 0.169 0.410 0.414 0.577 0.378

(0.526) (0.749) (0.395) (0.431) (0.133) (0.423)

Military 0.006 -0.007 -0.006 -0.006 -0.004 -0.006

(0.362) (0.386) (0.436) (0.449) (0.586) (0.435)

RemunFinance 0.396***

(0.000)

EFD -0.177

(0.730)

Mining+Oil 0.041***

(0.000)

R2 0.885 0.834 0.873 0.870 0.894 0.874

F-stat on excluded in-

struments

14.1 10.8 13.5 10.5 15.2 13.8

Observations 1550 1426 1550 1550 1550 1550

Notes: Variable Mining+oil measure the share of oil related and natural resources extraction activities in GDP, variable Remu-

nFinance measures the compensation per employee in the financial sector and variable EFD measures the financial dependence of

innovation. Other variables description is given in Table 1. Innovation is taken in log and lagged by two years. Column 1 controls

for average compensation in the financial sector, column 2 drops NY, CT, DE and MA (the state with the largest financial sectors),

column 3 removes finance-related patents, column 4 controls for financial dependence in the state as explained in section 6.1, column

5 controls for the size of oil and mining sectors and column 6 removes oil-related patents from the count of citations. Time Span

for innovation: 1976-2008. Panel data IV 2SLS regressions with state and year fixed effects. Innovation is instrumented by the

number of senators that seat on the appropriation committee. The lag between the instrument and the endogenous variable is set

to 3 years. Time span for innovation: 1979-2006. DC is removed from the sample because it has no senators. Autocorrelation

and heteroskedasticity robust standard errors using the Newey-West variance estimator are presented in parentheses. ***, ** and *

respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table B12: Robustness 3: controlling for industry composition - OLS results

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.036*** 0.050*** 0.049*** 0.050*** 0.048***

(0.010) (0.009) (0.009) (0.009) (0.008)

Gdppc 0.075* 0.049 0.051 0.058 0.045

(0.045) (0.044) (0.044) (0.043) (0.044)

popgrowth 1.027 1.047 1.041 1.197* 1.039

(0.704) (0.706) (0.706) (0.707) (0.704)

Finance 0.091** 0.113*** 0.112*** 0.132*** 0.116***

(0.036) (0.036) (0.036) (0.044) (0.036)

Government -0.022* -0.019* -0.020* -0.023** -0.020*

(0.011) (0.011) (0.011) (0.011) (0.011)

Unemployment -0.005* -0.007** -0.007** -0.007** -0.007**

(0.003) (0.003) (0.003) (0.003) (0.003)

TaxK -0.024*** -0.025*** -0.025*** -0.024*** -0.025***

(0.003) (0.003) (0.003) (0.002) (0.002)

TaxL 0.011*** 0.011*** 0.011*** 0.011*** 0.011***

(0.003) (0.003) (0.003) (0.003) (0.003)

Size of Sector:

Computer and Elec-

tronic

0.429

(0.485)

Chemistry -0.608***

(0.184)

Electrical Component 4.380**

(2.036)

R2 0.895 0.897 0.897 0.898 0.897

Observations 1581 1581 1581 1578 1581

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by 2 years. Column 1

excludes patents from the computer sectors (NAICS: 334), column 2 excludes patents from the pharmaceutical

sectors (NAICS: 3254) and column 3 excludes patents from the electrical equipment sectors (NAICS: 335), column 4

adds the share of three sectors as additional controls and column (5) excludes citations to patents belonging to three

highly exporting sectors: Transportation, Machinery and Electrical Machinery. The size of a sector (see column 4)

is defined as the share of GDP from the corresponding sector. Panel data OLS regressions with state and year fixed

effects. Time span for innovation: 1979-2006. Autocorrelation and heteroskedasticity robust standard errors using

the Newey-West variance estimator are presented in parentheses. ***, ** and * respectively indicate 0.01, 0.05 and

0.1 levels of significance.
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Table B13: Robustness 4: controlling for agglomeration effect - OLS and IV results.

Dependent variable Log of Top 1% Income Share

(1) (2) (3) (4) (5) (6)

Measure of innovation Cit5 Cit5 Cit5 Cit5 Cit5 Cit5

Innovation 0.047*** 0.048*** 0.047*** 0.200*** 0.199*** 0.200***

(0.008) (0.008) (0.008) (0.077) (0.077) (0.077)

Gdppc 0.036 0.035 0.033 -0.114 -0.113 -0.116

(0.044) (0.045) (0.044) (0.094) (0.094) (0.094)

Popgrowth 1.124 1.122 1.122 1.749* 1.745* 1.749*

(0.719) (0.720) (0.719) (1.027) (1.025) (1.025)

Finance 0.104*** 0.108*** 0.107*** 0.227*** 0.229*** 0.229***

(0.035) (0.035) (0.035) (0.069) (0.069) (0.069)

Government -0.055*** -0.054*** -0.054*** -0.071*** -0.072*** -0.072***

(0.012) (0.012) (0.012) (0.023) (0.023) (0.023)

Unemployment -0.009*** -0.008*** -0.009*** -0.015*** -0.015*** -0.015***

(0.003) (0.003) (0.003) (0.005) (0.005) (0.005)

TaxK -0.023*** -0.023*** -0.023*** -0.024*** -0.024*** -0.024***

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)

TaxL 0.013*** 0.013*** 0.013*** 0.016*** 0.016*** 0.016***

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Agglomeration 0.185*** 0.174*** 0.178*** 0.153*** 0.144*** 0.145***

(0.019) (0.018) (0.018) (0.021) (0.021) (0.022)

Highways 0.207 0.211 0.207

(0.483) (0.479) (0.483)

Military -0.005 -0.006 -0.006

(0.007) (0.007) (0.007)

R2 0.903 0.903 0.903 0.872 0.873 0.872

F-stat on excluded in-

struments

14.3 14.2 14.2

Observations 1581 1581 1581 1550 1550 1550

Notes: Variable description is given in Table 1. Innovation is taken in log and lagged by 2 years. We look at the effect of

agglomeration as captured by the variable Agglo. Agglo is the log of the number of firms in the most (columns 1 and 4), the two

most (columns 2 and 5), and the three most (columns 3 and 6) innovative sectors for each state and year. Time span: 1976-2008.

Variable description is given in Table 1. Panel data OLS (columns 1 to 3) and IV 2SLS (columns 4 to 6) regressions with state and

year fixed effects. DC is removed from the sample in columns 4, 5 and 6 because it has no senators. Innovation is instrumented by

the number of senators that seat on the appropriation committee. The lag between the instrument and the endogenous variable is

set to 3 years. t/z statistics in parentheses, computed with autocorrelation and heteroskedasticity robust standard errors using the

Newey-West variance estimator. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.
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C Details on the calibration

In this section we explain how the 6 moments in the data determine the 6 parameters of

the model (θI , θE, φ, L, ηH , ηL). For convenience, we introduce the following notations:

t = M1denotes the top 1% income share, R = M2 denotes the ratio of entrant to incumbent

innovations, e = M3 denotes the elasticity of the top 1% share with respect to innovation,

η̃ = M4 denotes the average mark-up, E = M5 denotes the entrants’ employment share and

g = M6 denotes the growth rate. By definition the innovation ratio obeys xE = RxI ,the

growth rate of the economy is given by:

(φxI + xE) ln ηH = g, (36)

and the average mark-up by:

µηH + (1− µ) ηL = η̃. (37)

Provided that µ/ (1 + L) < 1/100 < 1/ (1 + L) (which ex-post ends up being the relevant

range), (12) implies that the top 1% share obeys:

µ

(
1

ηL
− 1

ηH

)
+

1 + L

100

(
1− 1

ηL

)
= t, (38)

and, using (13), the semi-elasticity of the top 1% share with respect to innovation is given

by:

µ

(
1

ηL
− 1

ηH

)
= et. (39)

The semi-elasticity of innovation with respect to the top 1 % share depends on the innovation

rate µ and on the extra-profit share made by innovating entrepreneurs, namely 1/ηL−1/ηH .

Finally, using that labor costs equal revenues divided by the mark-up, we obtain that

the entrant employment share is given by:

E =
xE

1
ηH

µ 1
ηH

+ (1− µ) 1
ηL

. (40)

In the above equations, we have that µ = xI +xE (since z = 0), xI is given by (9) and, using

(11), xE is given by:

xE =
1− 1

ηH
− 1

L
1
ηL

+ 1
L

(
1
ηL
− 1

ηH

)2
1
θI

θE − 1
L

(
1
ηL
− 1

ηH

) . (41)
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Assume that one knows µ, ηL and ηH . Then one obtains xE = R
1+R

µ and xI = 1
1+R

µ.

Given the innovation rates and the innovation step-size, the rate of productive incumbent

innovations, φ, is identified by the measured growth rate in the economy, following (36).

Given the extra profits made by innovative entrepreneurs (µ
(

1
ηL
− 1

ηH

)
), the top 1% share

in (38) determines the number of non-innovative entrepreneurs that are in the top 1% share

and thereby identifies the ratio of workers to entrepreneurs L. Given xI , xE, ηL and ηH , the

R&D parameters θI and then θE are directly given by (9) and (41).

In return, the innovation rate µ and the mark-ups ηL and ηH are determined solely by

3 equations. Equation (37) gives the average mark-up. Equation (39) gives a relationship

between the innovation rate and the difference in inverse mark-ups. (40) can be rewritten as

R

1 +R
µ

1

ηH
= E

(
µ

1

ηH
+ (1− µ)

1

ηL

)
. (42)

Given the harmonic average of mark-ups, a high innovation rate increases the entrant em-

ployment share but a high innovation step reduces it.

In fact, we can go a bit further, combining (39) and (37), we get:

ηL = η̃/ (etηH + 1) . (43)

Using this equation and (39), in (42), we get:(
etηH + 1

η̃
− et

)(
ηH (etηH + 1)

η̃
− 1

)
=

R

1 +R

et

E
(44)

The left-hand side is an increasing function of ηH for ηH ≥ η̃ and for ηH = η̃, it is equal to

et, which is lower than the righ-hand side since R
1+R

> E. Therefore this equation identifies

ηH uniquely. And everything else equal, a higher E and a higher R lead to a lower ηH .

It is then easy to obtain ηL through (43), where a higher η̃ and lower et and ηH lead to

a higher ηL. Finally given ηL and ηH , the innovation rate is determined by (39): a higher

semi-elasticity of innovation et, leads to a higher innovation rate e. All parameters can then

be indentified as explained above and it can be checked that we are indeed in the case where

µ/ (1 + L) < 1/100 < 1/ (1 + L).

Calibrating the shocks for the regression. We assume that the shocks to innova-

tion are normally distributed with εθ,i,t ∼ N (0.722/2, 0.722) and εθ,i ∼ N (0.622/2, 0.622)

(this implies that the R&D shock to xI,i,t = 1
θI,i,t

(
1

ηL,i,t
− 1

ηH

)
has mean 0). The shocks to

non-innovator mark-ups are uniformly distributed with εη,i,t ∼ U (−0.6g, 0.6g) and εη,i,t ∼
U (−0.4g, 0.4g) where g = min (ηL − 1, ηH − 1) (so that we always have ηH > ηL,i,t > 1).
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With the different shocks it is possible that xI,i,t or xE,i,t are greater than 1 which, within the

model, makes no sense, therefore we censor the two variables at 1. The “measurement error

shocks” on top income inequality are normally distributed with εδ,t ∼ N (−0.3252/2, 0.3252),

εδ,i,t ∼ N (−0.072/2, 0.072) and εδ,i = 0 in the specific regressions we report on. The measure-

ment error to innovation εµ,i,t is also normally distributed with εµ,i,t ∼ N (−0.472/2, 0.472).

The standard deviations are chosen so that the simulated data (an average of 500 draws) are

in line with the actual data regarding the empirical moments reported in Table C1 below.60

Table C1: l

Moment Empirics Simulation Affected by the s.d. of:

s.d. of the state fixed effects 0.173 0.163 εδ,i, εθ,i and εη,i

s.d. of the year fixed effects 0.325 0.319 εδ,t

s.d. of log Cit5 1.348 1.107 εθ,i,t, εθ,i, εη,i,t, εη,i and εµ.i,t

s.d.of log Cit5 controlling for

state fixed effects

0.744 0.889 εθ,i,t, εη,i,t and εµ.i,t

s.d. of predicted log Cit5 1.057 0.959 εθ,i,t, εθ,i, and εη,i

s.d.of predicted log Cit5 control-

ling for state fixed effects

0.702 0.697 εθ,i,t

s.d. of top income inequality 0.046 0.056 all except εµ,i,t

OLS coefficient 0.049 0.051 ↗ with the s.d. of εθ,i,t

↙ with the s.d. of εη,i,t and εµ,i,t

Notes: Standard deviation of various variables in the data and on average in 500 draws of our simulated data.

This shows that “realistic” shocks in terms of the deviations observed in the data can

reproduce the gap between the OLS and IV coefficient. The major deviation in the table

above is that in our simulations, the standard deviation of the (unpredicted) innovation

variable (log Cit5) is too large when one controls for state fixed effects and too small when

one does not. This could be corrected for instance by introducing state-specific measurement

errors on innovation.

60We do not try to identify what the standard deviations of the shocks are and therefore did not try
to choose standard deviations so as to minimize the distance between empirical moments and simulated
moments here.
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Figure 8: Distribution of the IV coefficients

Notes: This figure plots the whole distribution of the IV coefficient of innovation obtained with 1000 draws. Average value is
0.183 and standard deviation is 0.0178.

D Computing top income shares at the CZ level

To compute top income shares at the CZ level, we need to estimate what is the expected

income for individuals whose income is censored. To do that we expend on the methodology

of Clemens et al. (2017) (see also Armour et al., 2016). The census reports separately

individuals’ labor income, capital income and business income and each income source is

censored separately. We assume that above a certain total income level x, income is Pareto

distributed.

Denote by l, c and b the levels above which the census data are censored. Then for an

individual i, denote by li her labor income, ci her capital income, and bi her business income

as reported in the data with li = l if labor income is censored and similarly bi = b or ci = c if

another source of income is censored. Denote xi the true total income of individual i. Then

there are two cases. First, if li < l, ci < c and bi < b, then we know that her total income is

xi = li+ bi+ ci. Conditional on having xi >x, the conditional probability density function of

observing an income xi is given by αxα/xα+1
i where α is the shape parameter of the Pareto

distribution of income. Denote by Nunc the corresponding set of observations for which no

information is censored and where xi >x, and by Nunc the cardinal of that set.

On the other hand, if one observation or more are censored, then we only know that her

total income xi ≥ xi ≡ li + bi + ci. Conditional on having xi ≥ x, then the probability of

observing xi ≥ xi is given by (x/xi)
α. Denote by Ncens the corresponding set of observations

for which at least one source of income is censored and with xi ≥ x (we choose x low enough

so that this is always the case when an observation is censored).
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We can then write the likelihood function as

P =
∏

i∈Nunc

α

(
x

xi

)α
1

xi

∏
i∈Ncens

(
x

xi

)α
.

The resulting maximum log-likelihood estimate is given by

1

α̂
=

1

Nunc

( ∑
i∈Nunc

ln

(
xi
x

)
+
∑

i∈Ncens

ln

(
xi
x

))
.

We can then computing top income shares by assuming that for any observation i ∈ Ncens,
we have that xi = α̂

α̂−1
xi.
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