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Abstract

Standard definitions of logical consequence for formal languages are atomistic. They
take as their starting point a range of possible assignments of semantic values to the
extralogical atomic constituents of the language, each of which generates a unique
truth value for each sentence. In modal logic, these possible assignments of semantic
values are generated by Kripke-style models involving possible worlds and an accessi-
bility relation. In first-order logic, they involve the standard structures of model theory,
as sets of objects from which the extralogical symbols of the language receive their
denotations. I argue that there is an alternative, holistic, approach to the task of defin-
ing logical consequence for a formal language. It specifies necessary and sufficient
conditions for an assignment of truth values to all the sentences of the language to
be compatible with the intended interpretation of its logical constants. It achieves this
without invoking possible assignments of semantic values to the extralogical atomic
constituents of the language, or the formal resources that are employed to generate
these. I show how this approach can be successfully applied to modal propositional
logic and to first-order logic, modal as well as nonmodal. I show that the holistic def-
initions of logical consequence that I supply for these languages are equivalent to the
standard atomistic definitions.

Keywords Modality - Necessity - Logical consequence - Formal semantics -
Substitutional quantification - Possible worlds - Modal semantics

1 Atomism and holism in formal semantics

The subject matter of this paper is the contrast between two approaches to the task of
defining the relation of logical consequence in a formal language. I am going to use
for these approaches the labels afomistic and holistic. Logical consequence in a formal
language is a binary relation pairing sets of sentences of the language (the premises)
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with sentences of the language (the conclusion). It is intended to model the relation
that obtains between a set of premises and a conclusion when the forms of premises
and conclusion make it impossible for the conclusion to be false if the premises are all
true. The atomistic approach and the holistic approach are two alternative strategies
for the task of defining this relation.

Standard semantic definitions of logical consequence for formal languages follow
the atomistic approach.! Their starting point is a range of possible assignments of
semantic values to the extralogical atomic constituents of the sentences of the language.
I am going to refer to the items that play this role in the atomistic approach as ASAs
(Atomic Semantic Assignments). In propositional logic, the role of ASAs is played
by atomic valuations—functions from the set of atoms to the set {7', F}. In modal
propositional logic, ASAs are possible worlds in Kripke-style modal models. In first-
order logic, ASAs are the usual structures of model theory, consisting of a set of
objects and an assignment of extensions over this set to the extralogical symbols of
the language. In modal first-order logic, ASAs are items that combine the features of
modal propositional ASAs and nonmodal first-order ASAs.

In each case, ASAs are so chosen that for every ASA and every sentence of the
language, there will be a unique truth value for the sentence that’s compatible with the
ASA and with the intended interpretations of the logical constants that figure in the
sentence. The next step in the implementation of the atomistic approach is to specify,
for each ASA and each sentence of the language, the truth value that the sentence will
receive from the ASA. This is usually presented as a definition of truth for the language.
Once this has been achieved, we are in a position to define logical consequence, saying
that a sentence ¢ of the language is a logical consequence of a set I" of sentences of
the language just in case every ASA is such that if it gives the value True to every
element of I, then it also gives the value True to ¢.

The atomistic approach is almost universally employed. But is it compulsory? The
main thesis of this paper is that it isn’t: for propositional and first-order logic, modal as
well as nonmodal, there is a viable alternative—the holistic approach. In the holistic
approach, ASAs don’t play any role. Its starting point is the set of valuations for the lan-
guage in question—functions from the set of sentences of the language (all sentences,
molecular as well as atomic) to the set {7, F'}. Some valuations will be compatible
with the intended interpretations of the logical constants of the language, while other
valuations will be incompatible with these interpretations. This contrast is the central
concept of the holistic approach. It proceeds by specifying necessary and sufficient
conditions for a valuation to be compatible with the intended interpretations of the
logical constants of the language. I shall refer to valuations that satisfy this condition
as admissible. The holistic approach seeks to specify which valuations are admissible
without invoking ASAs—by looking directly at how the intended interpretations of

! Semantic definitions are those that take as their starting point the thought that ¢ is a logical consequence
of I" just in case structural features of ¢ and of the elements of I” are incompatible with assigning to ¢ the
value False if all the elements of I" receive the value True. In the present paper I'm restricting my attention
to semantic definitions. The model-theoretic approach to logical consequence produces atomistic semantic
definitions. The holistic definitions that I'm going to provide are also semantic. Proof-theoretic approaches
produce non-semantic definitions of logical consequence, and fall outside the scope of this paper. It could
be argued, although I won’t do it here, that the holistic semantic approach that I'm going to present has
some of the advantages claimed for the proof-theoretic approach.
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the logical constants rule out some combinations of truth values for the sentences of
the language. Once we have specified which valuations are admissible, logical con-
sequence can be defined directly, saying that a sentence ¢ is a logical consequence
of a set of sentences I” just in case every admissible valuation is such that if all the
elements of I" receive the value True from it, then ¢ also receives the value True.

My main goal in this paper is to show how the holistic approach can be successfully
applied to the task of defining logical consequence for propositional and first-order
languages, modal as well as nonmodal. In Sect. 2 I shall introduce the contrast between
the two approaches in the context of (nonmodal) propositional logic, where they are
virtually interchangeable. In Sect. 3, I provide a holistic definition of logical con-
sequence for modal propositional logic. In Sect. 4, I apply the holistic approach to
first-order logic. And in Sect. 5, I present a holistic treatment of modal first-order logic,
combining the ideas deployed for modal propositional logic and nonmodal first-order
logic. In each case I will start by providing a detailed presentation of the atomistic
treatment of the language in question. These will be familiar to the reader, but they are
offered for comparison and to facilitate the proofs of the equivalence of the holistic
definitions I provide with the standard atomistic alternatives. Proving these results
is the business of Sect. 7. Section 6 provides a brief discussion of the philosophical
relevance of these formal results.

2 Propositional logic

In nonmodal propositional logic, the contrast between the atomistic approach and the
holistic approach is of no great consequence and can easily go unnoticed. Nevertheless,
both approaches have a clear application to this case. My goal in this section is to
present how both the atomistic approach and the holistic approach can be used to
define logical consequence in nonmodal propositional logic.

Let the language of propositional logic be the set PL of sentences defined inductively
in the usual way, with a denumerable set of atoms as the base and inductive clauses
for the sentential connectives, say — and A.

2.1 The atomistic approach

Let’s consider first how to apply the atomistic approach to the task of defining logical
consequence for PL-sentences. In this case, the role of ASAs is played by atomic
valuations—functions from the set of atoms to the set {7', F'}. Having identified atomic
valuations as ASAs, our next goal is to specify, for each atomic valuation and PL-
sentence, the truth value that the sentence receives from the atomic valuation. To
achieve this we define, for every atomic valuation a, the P L-valuation v, pairing
each P L-sentence with the truth value that it will receive from a, given the intended
interpretations of the logical constants that figure in it. We define v, by recursion, as
the unique PL-valuation satisfying the following conditions:

(Atoms) For every atom «, v, (o) = a().
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(—) For every PL-sentence of the form —¢,

T ifva(®) = F;
v - =
a(>9) {F otherwise.
(A) For every PL-sentence of the form ¢ A ¥,

T ifve(@) =va(¥)=T;
Va(p A1) =
a(@ A Y) { F  otherwise.
This definition specifies the truth conditions of any given PL-sentence ¢, as the set of
atomic valuations from which ¢ receives the value T.

We can now use this notion to define logical consequence in the following way:

A PL-sentence ¢ is a logical consequence of a set of PL-sentences I" (I" £ ¢)
just in case for every atomic valuation a, if v,(y) = T for every y € I', then

va () =T.

2.2 The holistic approach

Let’s consider now how the holistic approach could be used to define logical conse-
quence in P L. On this approach, atomic valuations don’t play any role. We consider
all the possible PL-valuations and proceed by specifying necessary and sufficient con-
ditions for a PL-valuation to count as admissible—to be compatible with the intended
interpretations of the logical constants of the language. We achieve this with the con-
cept of a Boolean PL-valuation, where a PL-valuation is Boolean justin case it satisfies
the following conditions:

(—) For every PL-sentence ¢, v(¢p) # v(—¢).
(A) For all PL-sentences ¢, v, v(¢p A ) = T iffv(¢p) = v(y) =T.

In spite of the obvious correlation between the definition of Boolean PL-valuation
and the connective-clauses of the definition of v,, it is important to keep in mind the
difference between the roles that they play. The connective-clauses of the definition
of v, are part of a recursive definition of a function from PL to {T, F'} (one function
for each atomic valuation). For each inductive clause of the definition of PL, they
specify the image of the output of the clause as a function of the image of the input
of the clause. The clauses of the definition of Boolean PL-valuation play a different
role. They simply rule out PL-valuations in which certain combinations of values are
present.

If we take the admissible PL-valuations to be the Boolean ones, we can now provide
a holistic definition of logical consequence for PL:

A PL-sentence ¢ is a logical consequence of a set of PL-sentences I (I" F ¢)
just in case for every Boolean valuation v, if v(y) = T for every y € I', then

v(g)=T.
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The atomistic and holistic definitions of logical consequence for PL are clearly
equivalent. This follows directly from the following trivial result:

Proposition 1 A PL-valuation v is Boolean just in case for some atomic valuation a,
V= g,

Generally, there isn’t much to choose between the two definitions. By bypassing
ASAs, the holistic approach has the potential for greater parsimony. However, this
potential is not realised in nonmodal propositional logic, since invoking atomic val-
uations doesn’t seem to bring about a substantial increase in the complexity of the
resulting definition of logical consequence. We shall see in the remainder that for
other formal languages the situation is very different in this regard.

3 Modal propositional logic

Modal propositional logic extends propositional logic with a sentential connective
whose intended interpretation models the behaviour of the expression necessarily.

The language of modal propositional logic is the set MPL of sentences defined
inductively in the same way as PL, with an additional inductive clause for the necessity
operator, L. An MPL-valuation is a function from MPL to {T, F}.

Our goal in the present section is to present the contrast between the atomistic
approach and the holistic approach as it applies to modal propositional logic. Here
the atomistic approach reigns supreme. Logical consequence for modal propositional
languages is only ever defined along the lines of the atomistic approach. Hence it might
come as a surprise that the holistic approach is also applicable in this case. My main
goal will be to present a holistic definition of logical consequence for MPL which will
be shown in Sect. 7 to be equivalent to the standard atomistic definition.

3.1 The atomistic approach

In order to apply the atomistic approach to MPL, our first task is to identify the items
that we are going to use as ASAs in this case. Here atomic valuations won’t do. The
necessity operator is not truth-functional. Therefore there isn’t aunique MPL-valuation
extending a given atomic valuation that is compatible with the intended interpretations
of the logical constants of MPL.

The standard strategy for overcoming this obstacle, due to Kripke (1963), is to
invoke at this point the notion of a (modal) model. A (modal) model is a triple M =
(Wuy, Ry, Apr), where Wy is a nonempty set (the possible worlds), Ry, is a binary
relation on W), (accessibility) and Ay, is a function pairing each atom and possible
world with a unique truth value.

An ASA, on this implementation of the atomistic approach, is a model and a world
in this model. Each world in each model will assign a unique truth value to each
MPL-sentence, and the next item of business for the atomistic approach is to define,
for each model, the function that pairs each world and MPL-sentence with the value
that the sentence receives at the world.
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If M is the model (Wys, Ry, Ay), the modal valuation function for M is the
function V) pairing each MPL-sentence and element of W), with a truth value that
satisfies the following conditions:

(Atoms) For every atom o« and w € Wy, Vi (o, w) = Ay (o, w).
The truth-functional connectives are handled in the same way as in PL. For [] we have:

(d) For every MPL-sentence ¢ and w € Wy,

T  if forevery w' € Wy, such that wRyw', Vy (¢, w') =T
Var (O, w) = : Y

F otherwise.

Using the notion of the modal valuation function for a model we can provide an
atomistic definition of logical consequence for MPL:

An MPL-sentence ¢ is a K-logical consequence of a set of MPL-sentences I”
(I Ex ¢) just in case for every model M and every w € Wy, if Vyy(y,w) =T
forevery y € I', then Vy (¢, w) =T.

This definition corresponds to the weakest normal modal system K. Definitions
corresponding to stronger modal systems can be easily provided by imposing condi-
tions on the accessibility relation of the models in terms of which logical consequence
is defined.

3.2 The holistic approach

In a strict application of the holistic template to this case, our starting point would
have to be a specification of necessary and sufficient conditions for an MPL-valuation
to be compatible with the intended interpretations of the logical constants of MPL.
But this approach faces a serious obstacle. The problem is that we want the following
principle to hold for the relation of logical consequence that we are seeking to define:

(K) For every MPL-sentence ¢ and every set I" of MPL-sentences, if I" F ¢, then
{dy :y e I'} E Q.

A condition on admissible MPL-valuations that secured this result would have to rule
out an MPL-valuation v such that v(Oy) = T forevery y € I' and v(d¢) = F if
I' F ¢. But the condition cannot be formulated in this way on pain of circularity, since
we are hoping to define F in terms of the notion of an admissible MPL-valuation. A
direct application of the holistic approach to MPL would require finding a formulation
of the relevant constraint that doesn’t exhibit this kind of circularity.

Here I'm going to present a different strategy for overcoming the obstacle.” A
minor adjustment to the holistic template will suffice to obtain the intended result. The
proposal is to impose necessary and sufficient conditions, not directly on individual
MPL-valuations, but on sets of MPL-valuations. Then we’ll be able to say that an
MPL-valuation is compatible with the intended interpretations of the logical constants
of MPL just in case it is an element of a set that satisfies these conditions.

2 1 sketch this strategy in Zalabardo (2018).
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The sets we are after will have to contain nothing but Boolean MPL-valuations.
Otherwise the valuations in the set won’t be compatible with the intended interpre-
tations of the truth-functional connectives. In order to ensure that the valuations are
also compatible with the intended interpretation of the necessity operator we need to
impose a condition on the set as a whole. The crucial concept for formulating this
condition is the relation of actualization between MPL-valuations:

An MPL-valuation v actualizes an MPL-valuation v just in case, for every MPL-
sentence ¢, if v((¢p) = T then v'(¢) = T.

Thus v’ actualizes v just in case all the necessities of v are true in v’. Using the
notion of actualization we can define necessary and sufficient conditions on a set of
MPL-valuations that will ensure that an MPL-valuation will be compatible with the
intended interpretations of the logical constants of MPL just in case it is an element
of one of these sets. I shall refer to sets of MPL-valuations satisfying these conditions
as m-Boolean.

A nonempty set V of Boolean MPL-valuations is m-Boolean just in case it satisfies
the following condition:

For every MPL-sentence ¢ and every v € V, if for every v’ € V such that v/
actualizes v, v'(¢) = T, then v({g) = T.

Notice that we don’t need to require, in addition, that [l¢ is false in v if ¢ is false in
some valuation that actualizes v. If (¢ is true in v and ¢ is false in v/, then v’ doesn’t
actualize v. This means that a set of Boolean valuations can fail to be m-Boolean only
if it contains a valuation that fails to treat as necessary what’s true in every valuation
that actualizes it.

I’d like to emphasize that an m-Boolean set does not consist in a set of Boolean
MPL-valuations and a binary relation on this set (actualization) that satisfy certain
conditions.> We are not making covert appeal to the relation of accessibility used by
the atomistic approach. An m-Boolean set is simply a set of Boolean MPL-valuations
that satisfies a certain condition. We have introduced the notion of actualization in
order to provide a perspicuous formulation of the condition that a set of Boolean
MPL-valuations needs to satisfy in order to be m-Boolean. But the notion is entirely
dispensable. The condition that we’ve used to define m-Boolean sets can be easily
formulated without its help (¢ and ¥ range over MPL-sentences and v and v’ over
elements of V):

Vo VoW IV (v@yY) =T — v'(Y) =T) — v'(¢) = T1 — v(¢) = T)

Using the notion of m-Boolean sets of MPL-valuations we can provide a holistic
definition of logical consequence for MPL corresponding to the weakest normal system
K:

An MPL-sentence ¢ is a K-logical consequence of a set of MPL-sentences I’
(I" Fx ¢) just in case for every m-Boolean set of MPL-valuations V and every
veV,ifv(y)=T forevery y € I',thenv(¢p) =T.

3 My proposal differs in this respect from Hughes Leblanc’s truth-functional semantics for modal logic
(Leblanc 1976), which invokes a set of (atomic) valuations and a binary relation on this set.

@ Springer



S5512 Synthese (2021) 198 (Suppl 22):S5505-S5532

And we can produce definitions corresponding to stronger modal systems in terms
of suitably restricted classes of m-Boolean sets, by imposing the same conditions on
actualization that are used with accessibility in the atomistic approach.

Here, however, a different strategy is also possible. For T, for example, we can
use sets of MPL-valuations which, in addition to being Boolean, satisfy the following
condition:

(T) For every MPL-sentence ¢, if v((J¢p) = T then v(¢p) = T.
Likewise for S4 we can focus on sets of Boolean valuations that satisfy (7) and:
(4) For every MPL-sentence ¢, if v(d¢) = T then v(00¢p) = T.

Other normal systems can be treated in the same way.
The holistic definition of K-logical consequence presented in this section is equiv-
alent to the atomstic definition. This is expressed by the following result:

Theorem 1 For every MPL-sentence ¢ and every set of MPL-sentences I', the follow-
ing are equivalent:

1. For every modal model M and every w € Wy, if Vi (y, w) =T foreveryy € I,
then Vy (¢, w) =T.

2. For every m-Boolean set V of MPL-valuations and every v € V, ifv(y) = T for
everyy € I', thenv(¢p) =T.

In Sect. 7.1, below, I offer a proof of this result.

4 First-order logic

In this section I present the contrast between the atomistic and the holistic approach for
(nonmodal) first-order logic. We consider first-order languages whose logical vocab-
ulary consists of the connectives and brackets of PL, the universal quantifier V, the
identity sign, =, and denumerably many variables. The extralogical vocabulary of a
first-order language may contain n-place predicates, for any positive integer n, and
individual constants. For any extralogical vocabulary the terms of the language are
the variables and the individual constants of the vocabulary. The set of formulas of
the language is defined by induction in the usual way. Then the set of sentences of the
language is defined as the set of formulas with no free variables.

Our goal in this section is to present the application of the atomistic approach
and the holistic approach to the task of defining logical consequence as a relation
between sets of sentences of a first-order language L and sentences of L. The holistic
definition of logical consequence presented in this section will be shown in Sect. 7.2
to be equivalent to the standard atomistic definition.

4.1 The atomistic approach

In the standard application of the atomistic approach to the task of defining logical
consequence for a first-order language L, the role of ASAs is played by L-structures.
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An L-structure 2 consists in a non-empty set A, known as the universe of 2, and an
interpretation in A for every extralogical symbol s of L, sg(, as follows:

— For every individual constant ¢ of L, cg € A.
— For every n-place predicate P of L, Py € Z(A").

The next step in the implementation of the atomistic approach is to specify, for each
L-structure and each L-sentence, the truth value that the sentence receives from the
structure. This has to be done indirectly, defining in the first instance the value that each
L-formula receives from an L-structure relative to an interpretation of the variables
in the universe of the structure. If 2 is an L-structure, a variable-interpretation in 2|
is a function from the set of variables to the universe of 2.

The denotation in 2 of an L-term ¢ relative to a variable-interpretation s in 2,
deng((t, s), can be defined as follows:

(IC) For every individual constant ¢ of L, deng((c, s) = cg.
(Var) For every variable x, deng(x, s) = s(x).

We now define by recursion the truth value in 2 of an L-formula ¢ relative to a
variable-interpretation s in 2, vy (¢, s). If s is a variable-interpretation in 2, then, for
all variables x, y and every a € A,

a ifx = y;

Sx/a)(Y) = {

s(y)  otherwise.

vy (¢, s) is the unique function satisfying the following conditions:

(Pred) For every L-formula of the form Pt .. .1,

T if (deng(ty,s),...,dengy(t,,s)) € Py;

vy (Pt ... t,;,5) =
u (P s 5) {F otherwise.

(=) For every L-formula of the form ¢t = u,

T ifdeny(t,s) =dengy(u,s);
F  otherwise.

v (t =u,s) = {

The sentential connectives are handled in the same way as in PL. For the universal
quantifier we have:

(V) For every L-formula of the form Vx¢,

va (¥, 5) = {T ifforevery a € 4, vau(9, Swja) =T

F otherwise.

Now, in general, the value that s gives to variables that are free in an L-formula ¢
could affect the value of vy (¢, ). Hence it’s not the case for every L-formula ¢ and all
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variable-interpretations s, s” in 2l that v (¢, s) = v (¢, s”). However for L-sentences,
L-formulas with no free variables, this does hold in general: For every L-sentence ¢ and
all variable-interpretations s, s’ in 2/, we have that vy (¢, s) = vg (¢, s'). This means
that in defining the binary function vy pairing L-formulas and variable-interpretations
with truth values, we have defined a unary function, call it vsg(, pairing each L-sentence
with a unique truth value, as required by the atomistic approach. vsg gives the truth
conditions of each L-sentence ¢, by specifying the truth value that ¢ receives from
each L-structure.

Now we can define the relation of logical consequence for sentences of a first-order
language L as follows:

An L-sentence ¢ is a logical consequence of a set of L-sentences I" (I" F ¢) justin
case for every L-structure 2, if vsg(y) = T forevery y € I', then vsg(¢) = T.*

4.2 The holistic approach

In the holistic approach ASAs play no role. Hence in the case of first-order logic,
L-structures have no role to play in a holistic definition of logical consequence for
a first-order language L. The starting point of the holistic approach is the set of L-
valuations—functions from the set of L-sentences to the set {7', F'}. The holistic
approach proceeds by specifying necessary and sufficient conditions for an L-valuation
to count as admissible—as compatible with the intended interpretations of the logical
symbols of a first-order language. To achieve this, we need the concept of substitution:

For every L-formula ¢, individual constant ¢ of L and variable x, the ¢/x-substitu-
tion of ¢, (¢)[c/x], is the formula that we obtain by replacing x with ¢ wherever
it occurs in free ¢.

We are now in a position to specify necessary and sufficient conditions for an L-
valuation to count as admissible—as compatible with the intended interpretations of
the logical constants of a first-order language. Our proposal will fall somewhat short
of this goal, but we will then be able to overcome this shortcoming with our definition
of logical consequence.

We are going to use for this purpose the notion of a g-Boolean L-valuation, defined,
as with Boolean P L-valuations, with a list of individually necessary and jointly
sufficient conditions, specifying which L-valuations are ruled out by the intended
interpretation of each logical constant. For the connectives we use the same condi-
tions as in propositional logic. We just need to add to these one for the universal
quantifier and two for the identity sign.

An L-valuation v is g-Boolean just in case it satisfies the following conditions:

(=) For every L-sentence ¢, v(¢) 7# v(—¢).

(A) For all L-sentences ¢, ¥, v(p A ) =T iff v(gp) =v(y¥) =T.

(V) For every L-formula ¢ in which no variable other than x is free, v(Vx¢) = T
iff for every individual constant ¢ of L, v((¢)[c/x]) = T.

4 Instandard applications of the atomistic approach, logical consequence is defined for all L-formulas. Here
I've restricted the definition to L-sentences in order to facilitate comparisons with the holistic approach.
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(= a) For every individual constant c of L, v(c =¢) =T.

(= b) For all individual constants c, ¢’ of L, if v(c = ¢’) = T, then for every
L-formula ¢ in which no variable other than x is free, v((¢)[c/x]) =
v((@)[c'/xD).

Clause (V) clearly takes the approach of the substitutional interpretation of the quanti-
fiers. Notice, though, that interpreting the quantifiers substitutionally doesn’t by itself
result in a version of the holistic approach. Substitutional quantification is standardly
presented in the context of an atomistic semantics for first-order logic, which dif-
fers from the standard objectual approach only in treating as ASAs, not first-order
structures, but atomic valuations.’

Treating g-Boolean L-valuations as admissible, a straightforward application of the
holistic template would produce the following definition of logical consequence:

An L-sentence ¢ is an L-logical consequence of a set I" of L-sentences (I" EL ¢)
just in case for every g-Boolean L-valuation v, if v(y) = T forevery y € I', then
v(ip)=T.
However, L-logical consequence doesn’t quite grasp the intuitive notion of logical
consequence. To see this, notice that every instance of the following schema, where ¢
is an L-formula in which only x is free, is a true L-logical consequence claim:

{(¢)[c/x] : c is an individual constant of L} EL Vx¢

The definition of g-Boolean L-valuation entails directly that every q-Boolean L-
valuation making all the premises in an instance of this schema true will also make
the conclusion true. But intuitively this set of premises should not logically entail
this conclusion. The universal conclusion can have a counterexample in an object for
which the language doesn’t have a name. Then the conclusion should be false even if
all the premises are true. The premises say that all the objects for which the language
has names satisfy the condition expressed by ¢.° But on the intuitive understanding of
the universal quantifier the conclusion says more—that every object, whether or not
the language has a name for it, satisfies the condition expressed by ¢. Logical relations
should not be affected by which objects the language is capable of naming.

This has been traditionally a major objection to the substitutional interpretation of
the quantifiers. However, the problem has a very simple solution, outlined by Dunn
and Belnap (1968, p. 183).7 Let’s say that first-order language L’ is an onomastic
expansion of first-order language L just in case their vocabularies are identical except
that the vocabulary of L’ contains individual constants that are not in the vocabulary
of L. Using this concept we can formulate a definition of logical consequence for L
that overcomes the obstacle we’ve encountered:

5 Dunnand Belnap’s (1968) presentation of substitutional quantification follows this atomistic template (p.
179). The same goes for Leblanc (1976). Leblanc (1983, pp. 213-214) briefly mentions a holistic version
of substitutional semantics that is essentially the one developed here. Holistic ideas can also be found in
the work of Smullyan (1968, p. 47) and Hintikka (1955).

6 In the limiting case, for first-order languages with no individual constants, a q-Boolean valuation will
give the value T to every universal sentence.

7 Hughes Leblanc has provided a detailed development of this idea (see Leblanc 1983). Bonevac (1984)
uses onomastic expansions in the quantifier-clauses of the definition of admissible valuations.
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An L-sentence ¢ is a logical consequence of a set I' of L-sentences (I" = ¢) just
in case for every onomastic expansion L’ of L, I' L ¢.

The claim that this holistic definition of first-order logical consequence is equivalent
to the atomistic definition provided above can be expressed as follows:

Theorem 2 For every sentence ¢ of a first-order language L and every set I' of L-
sentences the following are equivalent:

1. For every onomastic expansion L' of L, for every q-Boolean L'-valuation v, if
v(y) =T foreveryy € I', thenv(¢p) = T.
2. For every L-structure 2, if vsg(y) = T foreveryy € I', then vsg (¢p) = T.

In Sect. 7.2, below, I provide a proof of this result.

5 Modal first-order logic

We consider now modal first-order languages whose logical vocabulary contains the
connectives and brackets of PL, the necessity operator [J, the universal quantifier V,
the identity sign =, and denumerably many variables. The extralogical vocabulary of
a modal first-order language may contain n-place predicates, for any positive integer
n, and individual constants.

As in nonmodal first-order languages, the terms of a modal first-order language
are the variables and the individual constants. The set of formulas is also defined
with the usual induction, including this time inductive clauses for both V and []. As
with nonmodal first-order logic, the sentences of a modal first-order language are the
formulas with no free variables.

5.1 The atomistic approach

Standard definitions of logical consequence for modal first-order languages follow
the atomistic approach. The role of ASAs is played by items that combine the ideas
of first-order structures and modal models. There are several important decisions one
needs to make in order to effect this combination. Here we are going to present a
particularly simple version of the idea.’

If L is a modal first-order language, an L-model M is a quadruple

(Wum, Dy, Ry, I,

where:

— Wy is a nonempty set (the possible worlds).

Dyy is a nonempty set (the universe).

— Ry is a binary relation on Wy, (accessibility).

I is an interpretation of each extralogical symbol of L, as follows:

8 On the approach discussed here, see Linsky and Zalta (1994). For other options see Garson (1984).
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— For every individual constant ¢ of L, cyy € Dy. Le. c is interpreted with an
object in the universe.

— For every n-place predicate P of L, Py € WM?(DX,I). Le. P is interpreted
with a function pairing each element of W), with a set of n-tuples of elements
of Djy;—its extension at that world. We shall refer to the set of n-tuples of
elements of Dy that Py, pairs with w as Ppj.

A variable-interpretation in M is a function from the set of variables to Dyy.
The denotation in M of an L-term ¢ at a world w relative to a variable-interpretation
sin M, deny(t, w,s), is defined as follows:

(IC) For every individual constant ¢ of L, denp(c, w,s) = cpy.
(Var) For every variable x, denp(x, w, s) = s(x).

We now define by recursion the truth value in M of an L-formula ¢ at a world
w relative to a variable-interpretation s in M, Vs (¢, w, s), as the unique function
satisfying the following conditions:

(Pred) For every L-formula of the form Pt ... 1,,

T if{deny(t1,w,s),...,deny(ty, w,s)) € Py;

Vu(Pt... ty,w,s) = .
u(Ph " ) {F otherwise.

(=) For every L-formula of the form t = u,

T ifdeny(t,w,s) =deny(u,w,s);

Vult =u,w,s) =
m ) { F otherwise.

The truth-functional connectives are handled in the same way as previously. For the
universal quantifier and the necessity operator we have:

(V) For every L-formula of the form Vx¢,

Vi (Vap. w. 5) = {T if foreverya € Dy, Vm (¢, w, 5x/a) = T';

F  otherwise.
() For every L-formula of the form U,

T  if for every w' € Wy, such that wRyw’,
Vu (e, w,s) = Vg, w',s)=T;
F  otherwise.

As in nonmodal first-order logic, variable-interpretations won’t affect the truth value
of sentences: For every L-sentence ¢, w € Wy, and all variable-interpretations s, s’
in Dy, we have that Vi (¢, w,s) = Vy (¢, w, s’). This means that in defining the
three-place function V), pairing L-formulas, worlds and variable-interpretations with
truth values, we have defined a binary function, call it VS, pairing each L-sentence
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and element of W), with a unique truth value, as required by the atomistic approach.
For every w € Wy, let’s say that the sentential valuation generated by M for w is the
function vsy, defined as follows: For every L-sentence ¢, vsy;(¢) = VSy (¢, w).

Now we can define, like in nonmodal first-order logic, a relation of logical conse-
quence for sentences of a modal first-order language, corresponding to the weakest
normal modal system:

An L-sentence ¢ is a K-logical consequence of a set of L-sentences I' (I" Fg ¢)
justin case for every L-model M and every w € Wy, if VSy(y, w) = T forevery
y € I',then VSy (¢, w) =T.

As in modal propositional logic, we can now define stronger relations of logical con-
sequence by imposing conditions on the accessibility relation of the models that figure
in the definition.

5.2 The holistic approach

The application of the holistic approach to modal first-order logic draws on the ideas
that we developed to adapt the holistic template to nonmodal first-order logic and to
modal propositional logic. As in nonmodal first-order logic, we start with a language-
relative definition of logical consequence and then define the relation that will do the
job in terms of the language-relative relations on the onomastic expansions of the
target language. As in modal propositional logic, we don’t formulate necessary and
sufficient conditions for a valuation to be admissible. We formulate necessary and
sufficient conditions on sets of valuations. Admissible valuations are elements of sets
that satisfy these conditions.

If L is a modal first-order language, a set V of g-Boolean L-valuations is mg-
Boolean just in case it satisfies the following conditions:

(O) For every L-sentence ¢ and every v € V, v(d¢) = T if for every v’ € V such
that v’ actualizes v, v'(¢) = T.
(=) For all individual constants ¢, ¢’ of L and all v, v" € V, v(c = ¢') = v/ (c = ).

Condition (0J) is the same as in modal propositional logic. Condition (=) reflects
the fact that in the atomistic semantics that we are seeking to replicate, individual
constants have the same denotation in every possible world. Notice, though, that (=)
is not needed to show that if v(c = ¢’) = T, then v((c = ¢’) = T. We have that
Oc = cis (e = x)[c¢/x] and Oc = ¢’ is (Oc = x)[¢'/x]. Hence, if v(c =) =T,
then, since o (Oc = ¢) = T for every o, (= b) gives us v({c = ¢’) = T. However,
(=) is needed to establish that if v(—c = ¢’) = T, then v((O—c = ¢’) = T. If a set of
g-Boolean valuations satisfying ((J) contains valuations v, v’ such that v(c = ¢’) =
T,V (c = ¢’) = F, the argument we’ve just given shows that v’ cannot actualize v,
but v may well actualize v', so that v/ (—c = ¢’) = T, v'(O—c = ¢') = F.°

We can now define a language-relative relation of logical consequence correspond-
ing to the weakest normal modal system:

9 Instead of (=) we could require that for every valuation v in an mg-Boolean set, if v(=¢c = ¢’) = T,
then v(O—c = ¢’) = T. However, having (=) will facilitate the proof of the equivalence of holistic and
atomistic logical consequence.
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An L-sentence ¢ is an L-K-logical consequence of a set of L-sentences I” (I |:§< b)
just in case for every mqg-Boolean set of L-valuations V and every v € V, if
v(y) =T forevery y € I',thenv(¢p) =T.

For the same reasons given in connection with nonmodal first-order languages, this
won’t do as a definition of logical consequence for L. We overcome the difficulty in
the same way:

An L-sentence ¢ is a K-logical consequence of a set of L-sentences I" (I" Fg ¢)
just in case for every onomastic expansion L’ of L, I I=§{ ¢.

As we did with modal propositional logic, we can define relations of logical con-
sequence corresponding to stronger modal systems, either by imposing restrictions
on the actualization relation of the mg-Boolean sets in the definiens, or by imposing
conditions on the L-valuations in an mqg-Boolean set.

In Sect. 7.3, below, we show that this holistic definition of logical consequence for
modal first-order languages is equivalent to the atomistic definition provided above.
The claim can be expressed as follows:

Theorem 3 Let ¢ be a sentence of a modal first-order language L and let I" be a set
of L-sentences. The following are equivalent:

1. For every onomastic expansion L' of L, for every mq-Boolean set V of L'-valua-
tions and everyv € V, ifv(y) =T foreveryy € I', thenv(¢) =T.

2. For every L-model M and every w € Wy, if VSy(y, w) = T foreveryy € I,
then VSy (¢, w) =T.

6 Atomism or holism?

The atomistic approach and the holistic approach correspond to two different concep-
tions of the source of logical properties and relations, such as logical consequence. It
is widely accepted that language makes contact with reality at the level of its atomic
constituents. Compound sentences obtain their semantic properties from their compo-
nents, and ultimately from the atomic constituents that figure in them. The definitions of
truth for formal languages provide us with the tools for investigating this phenomenon.

By using these same tools for explicating logical consequence, the atomistic
approach presents the concept as arising from the mechanisms by which language
comes to represent the world. A sentence ¢ follows from a set of sentences I, on this
approach, when the possible ways in which ¢ and the elements of I" might represent
the world don’t include any in which ¢ comes out false and all the elements of 1" come
out true.

On the holistic approach, by contrast, logical properties and relations are not con-
nected with the mechanisms through which language makes contact with the world.

In systems at least as strong as B, (=) is not needed to establish that if v(—c = ¢) = T, then v(O—c =
¢’) = T either. In these systems, every valuation v in an mg-Boolean set V is such that if v(—¢) = T, then
v(0-0¢) = T. Hence, if v(—c = ¢’) = T, then for every valuation v’ € V that actualizes v we have that
v/(0c = ¢) = F. But we have seen that if v/(c = ¢’) = T, then v/(c = ¢) = T. Therefore, for every
v/ € V that actualizes v we have that v/(c = ¢’) = F,and v(O—c =¢/) = T.
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They arise instead from factors internal to language—from the fact that some combi-
nations of truth values for sentences are incompatible with structural features of these
sentences. Atomic components play no special role in the account, and the ways in
which these make contact with the world play no role whatsoever.

This is not the place to adjudicate the contest between these conceptions of the
source of logical properties and relations. My goal is to show that the second con-
ception can produce workable definitions of logical consequence for standard formal
languages. This result, established in the next section, will block what some may have
seen as a powerful argument for the atomistic approach. The premise of this argument
is the thought that what makes ¢ a logical consequence of I is the fact that structural
features of ¢ and the elements of I make it impossible for ¢ to be false if all the ele-
ments of I are true.'” This premise would render the atomistic approach unavoidable
if the explanation of how the structures of propositions rule out certain truth-value
combinations needed to invoke how their truth values are determined by the semantic
values of their atomic components. The availability of the holistic approach shows that
this isn’t the case. We can explain how the structures of propositions rule out certain
truth-value combinations without considering how their truth values are determined by
the semantic values of their atomic components. Hence the holistic approach deprives
the atomistic approach of this line of support.

Notice, in addition, that the resources deployed by the atomistic approach for
explaining logical consequence go well beyond what is required for the task. I'm
going to illustrate the point with the case of nonmodal first-order logic, although it
applies in the same way to modal first-order logic. In order to define logical conse-
quence for a first-order language L, all we need to do is specify which L-valuations are
compatible with the intended interpretations of the logical constants. Hence the value
of L-structures for the task of defining logical consequence is restricted to the fact that
each L-structure singles out a unique L-valuation. But L-structures do much more
than this, as can be seen by the fact that (infinitely) many different non-isomorphic
L-structures single out the same L-valuation. This is a direct consequence of what
is usually presented as the expressive limitations of first-order logic. Thus it follows
from the Lowenheim—Skolem results that if 2 is an L-structure with an infinite uni-
verse, then for every infinite cardinality « greater than or equal to the cardinality of
L there is an L-structure ‘B with a universe of cardinality « that singles out the same
L-valuation as 2.!! Le., in the symbolism introduced in Sect. 4, vsg = vsgs.'2 The
ways in which 2 might differ from 5 are of the greatest importance in the study of
the representational properties of L, but they are completely irrelevant for the task
of defining logical consequence.!? From the point of view of parsimony, the holistic
approach has a clear advantage over the atomistic approach.

10 Thjs premise will be rejected by those who endorse proof-theoretic accounts of logical consequence.
11" See Zalabardo (2000, pp. 263-271).
12 Of course there are also cases in which vsg = vsgy and 2 is not isomorphic to B although their

universes are of the same cardinality. This is the situation, for example, with non-standard models of
first-order arithmetic. See Zalabardo (2000, pp. 272-282).

13 1n Zalabardo (2018) I argue that we encounter a similar phenomenon in the atomistic treatment of modal
propositional logic—different non-isomorphic models that generate the same m-Boolean set of M P L-
valuations.
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7 Equivalence results

In this section I establish the results stated above, to the effect that the holistic def-
initions of logical consequence I have provided for modal propositional logic and
nonmodal and modal first-order logic are equivalent to the atomistic alternatives.

7.1 Modal propositional logic

If M is a modal model, the set of MPL-valuations generated by M is the following
set:

{v : for some w € Wy, for every MPL—sentence ¢, Vi (¢, w) = v(¢)}

Lemma 1 A set of MPL-valuations is m-Boolean just in case it is generated by some
modal model.

Proof Let M be a modal model, and let V be the set of MPL-valuations it generates.
We need to show that V' is m-Boolean.

We can easily check that every element of V satisfies the clauses of the definition
of Boolean valuation. We need to show, in addition, that for every v € V/, if for every
v/ € V that actualizes v, v'(¢) = T, then v((¢) = T.

Let v € V and let w be such that for every MPL-sentence ¢, v(¢) = Vi (p, w).
Assume that for every v’ € V that actualizes v, v'(¢) = T. We need to show that
v(U¢) = T. We argue as follows:

For every v’ € V that actualizes v, v'(¢) =T
| (since if wRw’ and v’ is such that for every MPL-sentence ¢, v'(¢) =
Vi (¢, w’), then v’ actualizes v)

For every w’ € Wy, such that wRw', Vi (¢, w') =T

| (definition of V)
VO, w) =T

U
v@p) =T

Let V now be an m-Boolean set of MPL-valuations. Let M be the modal model
defined as follows:

- Wy=V.
— For all v, v' € Wy, vRy v just in case v’ actualizes v.
— For every atom « and every v € Wy, Ay (o, v) = v(@).

We show that M is a modal model that generates V. For this we show by induction on
MPL-sentences that for every MPL-sentence ¢ and every v € V, Vy (¢, v) = v(¢).

For the inductive clause for [J we assume (IH) that for every v’ € V, Vy (¢, v') =
v/(¢p). We need to show that for every v € V, Vi (O¢, v) = v((Op). We argue as
follows:

Vu@eg,v) =T
¢ (definition of Vyy)
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For every v’ € V such that vRy V', Vyy(¢p,v') =T
¢ (IH)
For every v’ € V such that vRy v/, v/ (¢p) =T
¢ (definition of Ryy)
For every v’ € V that actualizes v, v'(¢) = T
¢ (U since V is m-Boolean; 1 by the definition of actualization)
(@) =T O

The equivalence of the atomistic and holistic definitions of K-logical consequence
expresssed by Theorem 1 is a straightforward corollary of Lemma 1.

7.2 First-order logic

We show first that holistic logical consequence entails atomistic logical consequence.
For this purpose we’ll need to invoke some preliminary results.

Lemma 2 If % is an L-structure, s a variable-interpretation in 2, x a variable and c
an individual constant of L, then for every L-formula ¢,

V(@ S(x/eq)) = v ((P)[c/x], 5).

Proof By induction on L-formulas. See, e.g., Zalabardo (2000, pp. 155-157). O

We show next that the sentential valuations generated by certain structures are g-
Boolean. If L is a first-order language, 2{ is an L-structure, and C is a set of individual
constants not in L of the same cardinality as the universe A of 2, let L™ be the
onomastic expansion of L that we obtain by adding the elements of C to the set
of individual constants of L. And let A" be the L™ -structure that we get from 2 by
adding: forevery c € C, cqi+ = f(c), for some one-to-one correspondence f between
C and A.

Lemma3 If L is a first-order language and A is an L-structure, then vsy+ is a q-
Boolean L*-valuation.

Proof We need to show that vsg+ satisfies the clauses of the definition of q-Boolean
L*-valuation. We provide the arguments for (V) and (= b).
For (V) we argue as follows:

vsg+ (Vx¢p) =T
¢ (definition of vsg+)
vo+ (Vx¢, s) = T, for any variable-interpretation s in 2
¢ (definition of vg+)
For every a € A, vo+ (@, S(x/a)) = T, for any variable-interpretation s in 2
¢ (since every individual constant of L™ denotes an element of A and every
element of A is denoted by some individual constant of L)
For every individual constant ¢ of L™, vg+ (¢, s(x Jeg+)) = T, for any variable-inter-
pretation s in 2l
¢ (Lemma 2)
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For every individual constant ¢ of L™, vg+ ((¢)[c/x], s) = T, for any variable-inter-
pretation s in 2L

¢ (definition of vsg+)
For every individual constant ¢ of L™, vsg+ (@)[c/x]) = T

For (= b) we argue as follows:

vsgqt (c =) =T
U (definition of vsg+)
vg+(c = ¢, s) = T, for any variable-interpretation s in 2l
U (definition of vg+)
deng+(c, s) = deng+(c, s), for any variable-interpretation s in 2l
U (definition of deng+)
ct = Copp
U
Vor+ (@, S(x/eg)) = Vaut (@, 8, /‘Jw))’ for any variable-interpretation s in 2l and every
L*-formula ¢ in which only x is free
|} (Lemma 2)
v+ ((P)[e/x],s) = v+ ((P)[c’/x], s), for any variable-interpretation s in 2 and
every L*-formula ¢ in which only x is free
U (definition of vsg+)
vso+ (@) [c/x]) = vsg+ (@)’ /x]), for every LT -formula ¢ in which only x is free
O

Lemma4 Let L be a first-order language and let L’ be an onomastic expansion of L.
Let A be an L'-structure, and let 2 be the L-structure that we obtain by removing
from U the interpretations of the new constants of of L.

1. For every L-term t and every variable-interpretation s in 2,
deng((t,s) =deng(t,s)

2. For every L-formula ¢ and every variable-interpretation s in 2,

v (9. s) = v (9, s)
Proof 2 by induction on L-formulas. O

We are now in a position to show that holistic logical consequence entails atomistic
logical consequence.

Theorem 4 Let ¢ be a sentence of a first-order language L and let I" be a set of
L-sentences. 1 entails 2:

1. For every onomastic expansion L' of L, for every g-Boolean L'-valuation v, if
v(y) =T foreveryy € I', then v(¢p) = T.
2. For every L-structure 2, if vsg(y) = T forevery y € I', then vsgy(¢p) = T.
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Proof Assume 1, and let 2( be an L-structure such that vsg(y) = T forevery y € I'.
We need to prove that vsg (¢) = T. We argue as follows:

vsg(y) =T forevery y € I’
| (Lemma 4)
vso+(y) =T foreveryy € I
|} (from 1 and Lemma 3, since L™ is an onomastic expansion of L)

vsg+ (@) =T
 (Lemma 4)
vso(¢) =T o
We turn now to showing that atomistic logical consequence entails holistic logical
consequence.

Let L be a first-order language with at least one individual constant, and let v be
a g-Boolean L-valuation. Let E be the relation on the set of individual constants of
L defined as follows: For all individual constants c1, c2, c1 Ec if and only if v(c; =
cp) = T. It follows directly from the following result that E is an equivalence relation.

Lemma5 If L is a first-order language and v a q-Boolean L-valuation, then, for all
individual constants c, d, e the following hold:

1. vic=c)=T
2. v(c=d)=v(d =c)
3. Ifvc=d)=vd=¢e)=T,thenv(c=e)=T

Proof 1 follows directly from the definition of g-Boolean valuation.
For 2 we argue as follows:

vic=d)=T
U (since v is g-Boolean)

For every L-formula ¢ in which only x is free, v((¢)[c/x]) = v((¢)[d/x])
U (since x = c is an L-formula in which only x is free, v((x = c)[c/x]) =T
andd = cis (x = ¢)[d/x])

vd=c)=T

For 3 we argue as follows:

vic=d)=vd=e)=T
U (since v is g-Boolean)
For every L-formula ¢ in which only x is free,
v((@®)le/x]) = v((P)ld/xD, v((P)ld/x]) = v((p)le/x])
4
For every L-formula ¢ in which only x is free, v((¢)[c/x]) = v((¢)[e/x])
U (since ¢ = x is an L-formula in which only x is free, v((c = x)[c/x]) =T
andc = eis (c = x)[e/x])
vic=e)=T O

Let [c]g denote the equivalence class generated by ¢ with E. Now, if v is a g-
Boolean L-valuation, the Henkin structure generated by v is the L-structure 2(,, defined
as follows:
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— The universe A, of 2, is the set of equivalence classes generated by E.

— For every individual constant ¢ of L, ¢y, = [c]g.

— For every n-place predicate P of L, ([ci]g,...,[c,]g) € Py, if and only if
v(Pci...cp) =T.

Lemma 6 If L is a first-order language with at least one individual constant and v a
g-Boolean L-valuation, then for every L-sentence ¢ and every variable-interpretation

s ln lel U(¢) = lev (¢? S)'
Proof We define the rank of an L-formula ¢, r(¢), by the following recursion:

— For every atomic L-formula ¢, r(¢) = 1.
— For every L-formula ¢, r(—¢) = r(Vx¢) = r(¢) + 1.
— For all L-formulas ¢, ¥, r(¢ A ) = Max(r(¢), r(y)) + 1.

We can establish the result by strong induction on the rank of a formula in the following
form: for every L-formula ¢ and every variable-interpretation s in 2, if ¢ is an L-
sentence, then v(¢) = vy, (¢, 5). For the inductive step, we assume (IH) that the result
holds for every formula of rank no greater than n. We show that it holds for formulas
of rank n 4 1. We provide the argument for V.

Let Vx¢ be an L-sentence of rank n + 1. By the definition of rank, for every
individual constant ¢ of L, (¢)[c/x] is an L-sentence of rank n and by IH the result
holds for (¢)[c/x]. We argue as follows:

v, (Vx¢,s) =T
¢ (definition of vg()
For every a € Ay, v, (¢, sxjay)) =T
¢ (since for every individual constant c, cg, € A,, and every a € A, is ¢y,
for some individual constant c)
For every individual constant ¢ of L, vy, (¢, S(x/cq,)) = T
¢ (Lemma 2)
For every individual constant ¢ of L, vy, (($)[c/x],s) =T
¢ (IH)
For every individual constant ¢ of L, v((¢)[c/x]) =T
¢ (since v is g-Boolean)
v(Vx¢) =T O

We can now prove that atomistic logical consequence entails holistic logical con-
sequence.

Theorem 5 Let ¢ be a sentence of a first-order language L and let I be a set of
sentences of L. 2 entails 1:

1. For every onomastic expansion L' of L, for every q-Boolean L'-valuation v, if
v(y) =T foreveryy € I', thenv(¢p) = T.
2. For every L-structure 2, if vsg(y) = T foreveryy € I', then vsg (¢p) = T.

Proof Assume 2. Let L’ be an onomastic expansion of L, let v be a g-Boolean L’-
valuation such that v(y) = T for every y € I'. We need to prove that v(¢) = T. Let
QllL, be the restriction to L of the Henkin structure generated by v, 2.
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We argue as follows:

v(y) =T foreveryy € I'

| (Lemma 6)
v, (v, s) =T forevery y € I" and every variable interpretation s in 2,
|} (Lemma 4)
vy (y,s) =T forevery y € I" and every variable interpretation s in AL
' U (from 2)
vy (¢, s) = T for every variable interpretation s in Qlﬁ
! | (Lemma 4)
v, (¢, s) = T for every variable interpretation s in 2,
|} (Lemma 6)
v(@)=T o

We have now attained our goal for the present section. It follows from Theorems 4
and 5 that atomistic logical consequence and holistic logical consequence are one and
the same relation, as expressed by Theorem 2.

7.3 Modal first-order logic

Our first goal is to show that holistic logical consequence entails atomistic logical
consequence. We proceed in the same way as with nonmodal first-order logic.

Lemma?7 Let L be a modal first-order language. If M is an L-model , w € Wy,
s a variable-interpretation in M and c an individual constant of L, then for every
L-formula ¢,

VM(¢7 wa s(x/cM)) = VM((¢)[C/X]’ w? S)'

Proof By induction on L-formulas. The base and the inductive clauses for —, A and
V are handled in the same way as in the proof of Lemma 2. We provide the clause for
0.

Let ¢ be an L-formula. Assume (IH) that for every w € W), and every variable-
interpretation s in M, Vs (¢, w, S(x/ey) = Vu ((@)[c/x], w, s). We need to show that
for every w € W)y, and every variable-interpretation s in M, Vy (U, w, S(x/cpp)) =
Vi (O¢)[c/x], w, 5). We argue as follows:

VM(D¢1 w, S(X/CM)) = T
¢ (definition of V)
For every w’ € Wy such that wRyw', Vi (¢, w', s¢ejeyy) = T
¢ (IH)
For every w’ € Wy such that wRyw', Vay ((¢)[c/x], w',s) =T
¢ (definition of V)
Vi (L(@)le/x], w, s)
¢ (definition of substitution)
Vi (@P)le/x], w, s) O
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We show next that the sets of sentential valuations generated by certain structures
are mqg-Boolean. If L is a modal first-order language, M is an L-structure, and C is a
set of individual constants not in L of the same cardinality as the universe D, of M, let
L™ be the the onomastic expansion of L that we obtain by adding the elements of C to
the set of individual constants of L. And let M be the L™ -structure that we get from
M by adding, for every ¢ € C, ¢+ = f(c), for some one-to-one correspondence f
between C and Dyy.

Lemma 8 If L is a modal first-order language and M is an L-structure, then {vs),, :
w € Wy+} is a mg-Boolean set of L -valuations.

Proof We first need to show that, for every w € Wy+, vs},, is g-Boolean. Let w €

Was+. We provide the arguments for clauses (V) and (= b) of the definition.
For (V) we argue as follows:

vsy (Vx¢) =T
¢ (definition of vsj; )

VSyu+(Vxp,w) =T
¢ (definition of VSy+)

Vy+(¥x¢, w, s) = T, for any variable-interpretation s in M ™
¢ (definition of Vj;+)

For every a € Dys+, Vy+(d, w, Sxja)) = T, for any variable-interpretation s in M +
¢ (since every individual constant of L™ denotes an element of D+ and every
element of D+ is denoted by some individual constant of L™)

For every individual constant ¢ of L, Vy;+(¢, w, s Jey+)) = T, for any variable-

interpretation s in M
¢ (Lemma 7)

For every individual constant ¢ of LT, Ve ((@)le/x], w,s) = T, for any variable-

interpretation s in M
¢ (definition of VSy+)

For every individual constant ¢ of L™, VSy+ ((9)[c/x], w) =T
¢ (definition of vsy . )

For every individual constant ¢ of L™, vsﬂu/’l+ (D)c/x]) =T

For (= b) we argue as follows:

vsy (c=c)=T
U (definition of vs}, ;)

VSy+(c=c,w)=T
| (definition of VSy+)

Vy+(c =c', w,s) = T, for any variable-interpretation s in M ™
U (definition of Vy;+)

deny+(c, w, s) = deny+(c’, w, s), for any variable-interpretation s in M +
U (definition of den y;+)

CM+ = Chv
U

Viy+ (@, w, S(X/CM+)) = Vy+(¢, w, s(x/c;w)), for any variable-interpretation s in M+

and every LT -formula ¢ in which only x is free
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| (Lemma 7)
Vi+((@)[c/x], w,s) = Vy+((¢)[c'/x], w, s), for any variable-interpretation s in
M™ and every L™ -formula ¢ in which only x is free

U (definition of VSy;+)
VSy+((@)c/x], w) = VSy+((¢)[c'/x], w), for every LT-formula ¢ in which only
x is free

| (definition of vsy )
vy ((P)e/x]) = vsy . (()[c’/x]), for every LT -formula ¢ in which only x is free

Now we need to show that {vs},, : w € Wy+} satisfies the conditions for a set of
g-Boolean L-valuations to be mg-Boolean.
() Let ¢ be an L-sentence and let w € Wy, +. We argue as follows:

For every w’ € Wy,+ such that vs}‘"l:r actualizes vsy ., vs}“},+ p)=T
| (definition of vsy, )

For every w’ € Wy,+ such that vs}“ji,:r actualizes vsy ., VSy+(¢p, w') =T
U (definition of VSy;+)
For every w’ € Wy,+ such that vs
variable-interpretation s in M
| (since accessibility entails actualization)
For every w' € Wj+ such that wRy+w’, Viy+ (¢, w’,s) = T for any variable-
interpretation s in M+
U (definition of Vj+)
Vy+¢, w, s) = T for any variable-interpretation s in M +
| (definition of VSy+)
VSy+Op,w) =T
| (definition of vsy )
Usﬁujﬁ Uo)=T

w’

s Vy+ (¢, w',s) = T for any

1 w
actualizes US s

(=) Let ¢, ¢’ be individual constants of LT and let w, w’ € Wy+. We argue as
follows:

vsy (c=c)=T
¢ (definition of vs}; )
VSy+(c=c,w)=T
¢ (definition of VSy+)
Vy+(c =c', w,s) = T, for any variable-interpretation s in M ™
¢ (definition of Vj+)
deny+(c, w, s) = deny+(c’, w, s), for any variable-interpretation s in M+
¢ (definition of den y;+)
cpu+ = Chypp
¢ (definition of den y;+)
deny+(c,w', s) = deny+(c’, w', s), for any variable-interpretation s in M ™
¢ (definition of Vj;+)
Vit (c =c’,w’,s) = T, for any variable-interpretation s in M ™
¢ (definition of VSy,+)
VSy+(c=c,w)=T
¢ (definition of vs}‘%)
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vsﬂujll+(cic/):T O

Lemma9 Let L be a modal first-order language and let L' be an onomastic expansion
of L. Let M' be an L’ structure, and let M be the L-structure that we obtain by removing
from M’ the interpretations of the symbols of L' not in L.

1. For every L-term t, every w € Wy and every variable-interpretation s in M,
deny(t, w,s) =denyy(t, w,s).

2. For every L-formula ¢, every w € Wy and every variable-interpretation s in M,
vm (P, w,s) = vy (@, w,s).

Proof 2 by induction on L-formulas. O

We can now establish that holistic K-logical consequence entails atomistic K -
logical consequence.

Theorem 6 Let ¢ be a sentence of a modal first-order language L and let I" be a set
of sentences of L. I entails 2:

1. For every onomastic expansion L' of L, for every mg-Boolean set V of L'-
valuations and every v € V, ifv(y) =T foreveryy € I', then v(¢p) = T.

2. For every L-model M and every w € Wy, if VSy(y,w) = T foreveryy € T,
then VSy (o, w) =T.

Proof Assume 1, and let M be an L-model and w € Wy, such that VSy(y, w) =T
for every y € I'. We need to prove that VSy; (¢, w) = T. We argue as follows:

VSu(y,w) =T forevery y € I’
| (Lemma 9)
VSy+(y,w) =T forevery y € I'
|l (from 1 and Lemma 8, since L™ is an onomastic expansion of L)
VSy+(@,w) =T
|} (Lemma 9)
VSy(p,w)y=T O

We turn now to our final task of establishing that atomistic K -logical consequence
entails holistic K -logical consequence.

Let L be a modal first-order language with at least one individual constant, and let
V be an mg-Boolean set of L-valuations. Let E be the relation on the set of individual
constants of L defined as follows: For all individual constants c1, ¢, ¢; Ecp if and
only if v(c; = ¢2) = T, for any v in V. We can easily prove, as we did for nonmodal
first-order logic, that E is an equivalence relation. Let [c]g denote the equivalence
class generated by ¢ with E.

Now, if V is an mqg-Boolean set of L-valuations, the Henkin model generated by V
is the L-model My defined as follows:

- Wy, =V.

— Dy, is the set of equivalence classes generated by E.
Ry, 1s the actualization relation on V.

For every individual constant ¢ of L, ¢y, = [c]E.
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— For every n-place predicate P of L and every v € V, ([c1]E, ..., [cn]lE) € P]}ilv
if and only if v(Pcy...cy) =T.

Lemma 10 If L is a modal first-order language with at least one individual constant
and V is an mg-Boolean set of L-valuations, then for every L-sentence ¢ and every
veV,v@) = Vy, (¢, v,s), for any variable-interpretation s in My .

Proof By strong induction on the rank of a formula (see proof of Lemma 6; add:
r(d¢) = r(¢) + 1), in the following form: for every L-formula ¢, every v € V and
every variable-interpretation s in My, if ¢ is a sentence, then v(¢) = vy, (¢, v, 5).
The argument is the same as in the proof of Lemma 6. We provide the inductive clauses
for V and (.

Let Vx¢ be an L-sentence of rank n + 1. By the definition of rank, for every
individual constant ¢, (¢)[c/x] is an L-sentence of rank n and by IH the result holds
for (¢)[c/x]. We argue as follows:

Vi, Vxp,v,8) =T
¢ (definition of V)

For every a € DMV, VMV (¢, v, S(x/a)) =T
¢ (since every individual constant has an element of the universe as its deno-
tation and every element of the universe is the denotation of some individual

constant)

For every individual constant ¢ of L, Vi, (¢, v, S(xjep, ) =T
¢ (Lemma 7)

For every individual constant ¢ of L, Vy, ((¢)[c/x], v, 5) =T
¢ (dH)

For every individual constant ¢ of L, v((¢)[c/x]) =T
¢ (since v is g-Boolean)
v(Vx¢) =T
Let U¢ be an L-sentence of rank n + 1. By the definition of rank, ¢ is an L-
sentence of rank n and by IH the result holds for ¢: for every v € V and every
variable-interpretation s in My, v(¢) = Vi, (¢, v, 5). We argue as follows:

Vi, O¢,v,8) =T
¢ (definition of V)
For every v’ € V such that Ry, V', Vi, (9, V', 5) =T
¢ (definition of Ry, )
For every v’ € V such that v’ actualizes v, Vi, (¢, V', s) =T
¢ (IH)
For every v’ € V such that v" actualizes v, v'(¢p) = T
¢ (since V is mg-Boolean)
v(@¢) =T o

We can now establish that atomistic K -logical consequence entails holistic K -logical
consequence.

Theorem 7 Let ¢ be a sentence of a modal first-order language L and let I" be a set
of sentences of L. 2 entails I:
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1. For every onomastic expansion L' of L, for every mq-Boolean set V of L'-valua-
tions and everyv € V, ifv(y) =T foreveryy € I', thenv(¢) = T.

2. For every L-model M and every w € Wy, if VSy(y,w) = T foreveryy € T,
then VSy (o, w) =T.

Proof Assume 2. Let L’ be an onomastic expansion of L, let V be an mg-Boolean
set of L’-valuations, and let v be an L’-valuation in V such that v(y) = T for every
y € I'. We need to prove that v(¢) = T. Let M ‘e be the restriction to L of My, the
Henkin model generated by V.

We argue as follows:

v(y) =T foreveryy € I'
| (Lemma 10)
Vmy (v, v, s) =T forevery y € I', for any variable-interpretation s in My
| (definition of VSyy,,)
VSmy, (y,v) =T forevery y € I’
|} (Lemma 9)
VSM‘ﬁ (y,v) =T foreveryy € I
{ (from 2)
VS ML (p,v)=T
| (Lemma 9)
VSu, (¢, v) = T
| (definition of VSyy,,)
Vmy (¢, v,s) = T, for any variable-interpretation s in My
|} (Lemma 10)
v()=T o

It follows from Theorems 6 and 7 that the holistic definition of logical consequence
for modal first-order logic is equivalent to the atomistic definition, as expressed by
Theorem 3.

8 Conclusion

I have shown that the holistic approach can be successfully applied to the task of
defining logical consequence in propositional and first-order logic, modal as well as
nonmodal. [ have shown that the resulting definitions are equivalent to the standard def-
initions based on the atomistic template. One salient feature of the holistic definitions
I’ve provided is that they make no use of the technical apparatus of first-order, modal
and first-order modal models, employed by the atomistic approach for this purpose.
This technical apparatus is a fascinating subject of study in its own right and nothing
I’ve said detracts from the interest of this study. What does follow from the results I’ve
presented is that modal, first-order and modal first-order models are not required for
defining logical consequence. In general, we can maintain that logical properties and
relations arise from the fact that some combinations of truth values are incompatible
with formal features of sentences, while rejecting the link between logical properties
and relations and the mechanisms by which sentences come to represent the world.
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