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Abstract
The Hawkes process is a widely used statistical model for point processes which produce clustered event times. A specific
version known as the ETAS model is used in seismology to forecast earthquake arrival times under the assumption that
mainshocks follow a Poisson process, with aftershocks triggered via a parametric kernel function. However, this Poissonian
assumption contradicts several aspects of seismological theory which suggest that the arrival time of mainshocks instead
follows alternative renewal distributions such as the Gamma or Brownian Passage Time. We hence show how the standard
ETAS/Hawkes process can be extended to allow for non-Poissonian distributions by introducing a dependence based on the
underlying process’ behaviour. Direct maximum likelihood estimation of the resulting models is not computationally feasible
in the general case, so we also present a novel Bayesian MCMC algorithm for efficient estimation using a latent variable
representation.

Keywords ETAS · Stress release · Renewal process · Hawkes process · Brownian passage times · RHawkes

1 Introduction

The Epidemic Type Aftershock Sequence (ETAS) model
is commonly used for studying and forecasting the occur-
rence of earthquakes in a geographical region of interest
(Ogata 1988). It assumes that earthquakes follow a self-
exciting marked point process governed by a conditional
intensity function λ(t |Ht ) which defines the instantaneous
probability of an earthquake occurring at each time point
t based on the historical earthquake sequence Ht =
{(t1,m1), (t2,m2), . . . : ti < t}, where ti and mi , respec-
tively, denote the time and magnitude of the i th previous
earthquake.

The ETAS model can be viewed as a branching pro-
cess where a sequence of so-called immigrant (also known
as ‘mainshock’) earthquakes occurs according to a Pois-
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son process with constant intensity μ, with their magni-
tudes following a Gutenberg–Richter distribution. Each of
these immigrant earthquakes then produces aftershocks (also
known as ‘offspring’ or ‘children’) which can then produce
further aftershocks, and so on. A visual example of a possible
branching structure is shown in Fig. 1. Here events t1, t6 and
t10 are the immigrants which initiated the other events. The
events t2, t3 and t5 are children of t1, while t4 is a child of
t3. Similarly t7 and t9 are offsprings of t6, while t11 is caused
by t8, which is a child of t7. There are no detected children
events for t10, although some might occur in the future.

Since the ETAS model assumes that the immigrant earth-
quakes follow a Poisson process with constant intensity
μ, this implies that they occur completely at random, i.e.
that an immigrant event is equally likely to occur at each
point in time, and that the time between each pair of immi-
grant events (known as the ‘inter-arrival times’) follows a
time-independent Exponential(μ) distribution.However, this
conflictswith findings elsewhere in the seismology literature,
where there is substantial doubt over whether the occur-
rence times of mainshock earthquakes is really Poissonian
(Tahernia et al. 2014; Ordaz and Arroyo 2016; Marzocchi
and Taroni 2014). Although ETAS immigrant events are not
strictly equivalent to mainshocks as defined elsewhere in the
seismology literature (since there is no requirement that an
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Fig. 1 Example of a branching
structure

ETAS immigrant should have larger magnitude than its off-
spring), this still seems to cast some doubt on the Poissonian
assumption.

The concept of stress release (SR) suggests that the
mainshock arrival times instead follow a renewal process
that has a time-dependent hazard function, with inter-event
times following a distribution such as the Gamma, Weibull,
or Brownian Passage Times (BPT). Stress release models
(SRM)were a representation of Reid’s elastic rebound theory
(Reid 1910) and were fully described by Isham andWestcott
(1979) as a self-correcting point process which is updated
after every event occurrence. They were introduced to seis-
mologybyVere-Jones (1978)whodeveloped them in order to
address Reid’s theory that earthquakes occur due to a release
of energy which was previously accumulated strain energy
along faults. SRMs were used in many locations to imple-
ment the elastic rebound theory due to their solid physical
background. As outlined in Varini and Rotondi (2015), some
of the examples of such implementations are present for the
following countries: China (Yang et al. 2000; Liu et al. 1998;
Xiaogu and Vere-Jones 1994), Greece (Rotondi and Varini
2006), Iran (Xiaogu andVere-Jones 1994), Italy (Rotondi and
Varini 2007; Varini and Rotondi 2015), Japan (Imoto 2001;
Lu et al. 1999; Xiaogu and Vere-Jones 1994), New Zealand
(Yang et al. 2000) and Taiwan (Zhu and Shi 2002).

SRMs are primarily applied to declustered sequences
of mainshock events with large magnitudes, rather than to
the full seismic sequences that are commonly used to fit
ETAS models. In this paper we will develop a new class of
ETASmodels which we call SR-ETAS (stress release ETAS)
which improve on standard ETAS models by incorporating
time-dependent inter-arrival distributions. We explore two
different formulations of SR-ETAS, which differ based on
how they handle the inter-event time that is taken into account
when calculating the immigrant event intensity. The first for-
mulation is simpler to estimate but harder to simulate from,
and addresses the Reid’s elasticity rebound theory directly
for all events in the catalogue. The second one is harder to
estimate as it depends entirely on the branching structure as

it assumes that Reid’s theory is applicable only for immi-
grant events, making direct maximum likelihood estimation
impossible.

A model which is closely related to our SR-ETAS was
proposed by Wheatley et al. (2016), who considered a
Hawkes process with a renewal immigration process, which
they call Renewal Hawkes (RHawkes). The authors pro-
posed an Expectation Maximisation (EM) algorithm for
parameter estimation. However, as pointed out by Wheatley
(2017), Wheatley (2016) their approach crucially exploited
the Markovian properties used by the Exponential offspring
density g(·) that they considered, which leads to instabil-
ity when this is replaced by a heavy-tailed alternative such
as the Omori law used in the ETAS model (Oakes 1975; Fil-
imonov andSornette 2015). Tomitigate this, they suggest that
such heavy-tailed densities should be approximated by a sum
of weighted exponential kernels. Further, simulation studies
were found that their EM algorithm performs poorly even for
the more simplistic Renewal Immigration Hawkes process
in the case where the offspring clusters are heavily over-
lapping, which is inevitably the case of seismic sequences.
To correct this, (Chen and Stindl 2018) provided a direct
maximum likelihood optimisation, as well as some concep-
tional corrections to the method proposed by Wheatley et.
al. However, both methods fail to address two fundamen-
tal issues. The first one is the potential multimodality of the
ETAS mode likelihood. As discussed in Rasmussen (2013),
Veen and Schoenberg (2008), Ross (2018a), such numerical
instabilities can be tackled using an MCMC sampler. The
second, and probably more important problem, is the lack
of discussion regarding the numerical stability of the evalu-
ation of Eq. 2. This approach is used if the intensity cannot
be factorised into a single equation, i.e. it has to be evaluated
as a ratio of two functions. The problem occurs since the
denominator of Eq. 2 is approaching zero for large time lag.

Since the existing Expectation Maximisation (EM) and
Direct Maximum Likelihood Estimation algorithms lead to
either poor or limited estimation of the SR-ETAS model, we
instead propose a novel Bayesian inference algorithm which
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uses latent variables to allow for computationally efficient
inference using aGibbs sampler, which is an extension of that
proposed for the standard Hawkes process by Ross (2018a).

The remainder of this paper proceeds as follows. In Sect. 2
we review the standard ETAS model in more detail. The SR-
ETAS models are fully introduced in Sect. 3, and we discuss
different choices for the immigrant process in Sect. 4. The
methods for parameter estimation are present in Sect. 5. In
Sect. 6, we introduce the goodness-of-fit tests which will
be used to compare performance of SR-ETAS to standard
ETASmodels. Finally, in Sect. 7, we study the application of
SR-ETAS models and compare its performance to standard
ETAS using real earthquake data from the New Madrid and
the North California seismic sequences.

2 Standard ETASmodel

The standard ETAS model was firstly introduced by Ogata
(Ogata 1988) and assumes earthquakes follow amarked point
process with conditional intensity function:

λ(t |Ht ) = μ +
∑

ti<t

g(t − ti )κ(mi ) (1)

where ti andmi denote the occurrence time andmagnitude of
earthquake i . All magnitudes are assumed to independently
follow the Gutenberg–Richter law, which corresponds to a
shifted Exponential(β) distribution with lower bound M0.
The μ parameter specifies the intensity of the homogeneous
point process governing the immigrant events, while g(·) is a
kernel function specifying how the effect of each earthquake
on the intensity decays over time. It is usually taken to be the
Omori law:

g(z) = k

(z + c)p

where c and p are parameters controlling the decay rate,
while k controls the average productivity. The magnitude
kernel κ(mi ) determines how the magnitude of each earth-
quake affects the intensity and is usually defined as:

κ(mi ) = eα(mi−M0)

whereα provides similar functionality to those of k, andM0 is
the catalogue’smagnitude of completeness, i.e. theminimum
magnitude abovewhich is considered that no events aremiss-
ing due to physical limitations in the earthquake detection
system. The unknown parameter set of the standard ETAS
model is hence: θ = {μ, α, c, p, k}.

Note that the form of the conditional intensity function
in Eq. 1 is equivalent to a branching process, as discussed
in the previous section. Suppose that at some time point

t there have been nt previous earthquakes. Then, the pro-
cess intensity at t can be viewed as a linear superposition of
the immigrant process with intensity μ and the nt processes
associated with each previous event, each contributing an
intensity of g(t − ti ). It can hence be seen this formulation
is equivalent to assuming that the immigrant events follow
a homogeneous Poisson process with intensity μ, and hence
have exponentially distributed inter-event times.

The standard ETAS model can be generalised to include
a space component, giving the spatiotemporal ETAS model
(Ogata 1998). For simplicity and ease of both simulation and
computation, we only consider the original temporal ETAS
model in this paper rather than its spatiotemporal extension,
although our model could be extended to the spatial version
without difficulty.

3 SR-ETASmodels

The theory of stress release (SR) provides a possible solution
to the largely discussed concept of “crustal strain budget”
by addressing the seismic elasticity as introduced by Reid
in his elasticity rebound theory (Reid 1910). In it, earth-
quake inter-arrival times are described as a ratio of tectonic
strain accumulation and strain release, without any statistical
association of factors such as size, time, duration and space
of the seismicity. We will use a stress release distribution
for modelling immigration mainshock events rather than the
typically used Exponential distribution implied by the homo-
geneous Poisson process assumption of the standard ETAS
model. In other words, SR-ETAS models provide an alter-
native for modelling the structure of the immigrant arrival
process. Specifically, we will assume that the intensity is
time-varying and hence specify a time-dependentμ(t), lead-
ing to the following specification of the conditional intensity:

λ(t |Ht ) = μ(t) +
∑

ti<t

g(t − ti )κ(mi )

While such time-varying specifications of μ(t) have been
considered before in the literature (Johnson et al. 2005; Imoto
2001; Varini and Rotondi 2015), they typically try to cap-
ture structural changes in the long-term earthquake rate, for
example modelling μ(t) as a piece-wise constant function.
Instead, following stress release concepts, we assume that
the probability of a mainshock earthquake occurring at time
t depends on the time at which the last mainshock occurred.
To make this clearer, we introduce the following notation.
For each earthquake i , let Bi denote the index of its parent
earthquake in the branching structure, with Bi = 0 if it has
no parent (i.e. if earthquake i is an immigrant). We hence
have the branching vector B = (B1, . . . , Bn). For example,
in Fig. 1, B = (0, 1, 1, 3, 1, 0, 6, 7, 6, 0, 8).
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Using this notation, at each time t wewrite the occurrence
time of the last previous immigrant event prior to ti is tI[i]
where I[i] = max j { j |t j < ti and Bj = 0}. Similarly, the
amount of time which has elapsed since the last previous
immigrant event—known as the waiting time—is given by:

wti = ti − tI[i]

Based on the usual point process theory, μ(t) can then be
defined as the hazard function:

μ(t) = μ(t |wt ) = fw(wt )

1 − Fw(wt )
(2)

where Fw(wt ) is the waiting time distribution and fw(wt ) is
its corresponding density. The above expression can be sim-
plified for some choices of distribution although for more
complex ones such as the BPT it has to be numerically eval-
uated since no explicit form is present. As the CDF goes
closer to 1, the expression becomes unstable due to numer-
ical underflow caused by the numerator being effectively 0,
which cannot be avoided by transforming into the space of
logarithms, Since the proposed EM and MLE algorithms
depend on estimating this quantity for every time lag, they
will not work for general seismological-based stress release
distributions (Wheatley et al. 2016; Chen and Stindl 2018).
However, we will show that our Bayesian updates do not
need a full exploration of all possible inheritance structures,
thus the waiting times that are taken into account are much
smaller. As such, there is no numerical instability for any rea-
sonable parametrisation of the uncaused events’ distribution
and we can evaluate numerically the above function as part
of our MCMC sampler.

Under the definition provided by Eq. 2, the probabil-
ity of an immigrant event occurring depends on the time
which has elapsed since the previous immigrant event, in a
manner which is consistent with SR theory since it can be
interpreted with respect to Reid rebound theory where the
ground state level is reached only for immigrant events and
all other events are causing smaller impact on the strain accu-
mulation/reduction. Since the branching structure is used
to determine the time of the last immigrant event, we will
refer to this model as the B-SR-ETAS model (Branched-SR-
ETAS).

However, in practice when working with real earthquake
catalogues, we do not knowwhich events in the sequence are
mainshocks sincewe do not have access to the true branching
structure. Indeed, the branching structure is usually estimated
as a by-product of the standard algorithms used to estimate
the ETAS model (Ross 2018a; Rasmussen 2013; Veen and
Schoenberg 2008). However, we cannot use this idea directly
since we are caught in a vicious circle: our parameter esti-
mation requires access to the branching structure in order

to define the mainshock earthquakes, but we cannot get the
branching structurewithout first estimating themodel param-
eters!One approach is tomarginalise the branching structures
out of the joint distribution by summing over all 2n−1 unique
branching structures, for a catalogue with length n. How-
ever, this is computationally intractable for even a moderate
value of n. As such, we will instead introduce a Monte Carlo
approach for performing this inference in a computationally
tractable way.

Since defining waiting times based on the previous immi-
grant hence leads to computationally difficult parameter
inference, we could instead define the waiting time wt based
on the occurrence time of the last earthquake prior to t ,
regardless of whether it was an immigrant or an offspring.
At time t , the time of the last event is given by tE where
E = max{i |ti < t}. The waiting time in this case is hence:

wt = t − tE

with μ(t) defined according to Eq. 2 as before. Under an SR
interpretation, this implies that the strain accumulated with
respect to the immigrant events causation can be assumed
to reduce to a ground level after every earthquake in the
sequence, which corresponds to Reid’s elasticity rebound
theory in which an event occurs when a specific intensity
threshold is reached (Reid 1910). We denote this model by
F-SR-ETAS (Full SR-ETAS).

The previously introduced concept of parameter set
θ can be adapted for both SR-ETAS models as θ =
{θSR, α, c, p, k}, where θSR is taking the parameters of the
waiting time distribution Fw(·).

4 Waiting time distributions

Regardless of which of the two approaches (B-SR-ETAS
or F-SR-ETAS) we take when defining the waiting times
wt , we must specify a probability model Fw which governs
their distribution. In standard ETAS, the Poisson assumption
results in a memoryless Exponential distribution. In con-
trast, the SR approach implies other forms of distributions
with nonconstant hazard rate. There is some controversy in
the seismological literature over the appropriate waiting time
distribution for modelling the time between mainshocks. As
such, we will consider two different distributions which have
been found to have strong empirical support: the Brownian
Passage Time, and the Gamma.

4.1 Brownian passage times (BPT) immigration

The Brownian Passage Times concept was introduced to
describe the inter-arrival times of earthquake events by
Ellsworth et al. (1999) and Matthews et al. (2002). It is a
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probabilistic physically based approach for addressing event
recurrence based on long-term, load-state process assuming
behaviour similar to those of the Brownian relaxation oscil-
lator (BRO). In it, earthquakes are assumed to be an energy
release of a tectonic system that accumulates strain. This
approximates the event inter-arrival time probability density
function as:

f (wt ; λ, ν) =
[

λ

2πν2w3
t

] 1
2

e
− (wt−λ)2

2λν2wt .

The cumulative distribution function of the BPT has a
close form which is the following:

F(wt ) = P(T ≤ wt ) =
∫ wt

0
f (u)du

= 	[u1(wt )] + e
2

α̃2 	[−u2(wt )],

where

	(wt ) = 1√
2π

∫ wt

−∞
e− u2

2 du, (3)

for

u1(wt ) = ν−1
[
w

1/2
t λ−1/2 − w

−1/2
t λ1/2

]
,

u2(wt ) = ν−1
[
w

1/2
t λ−1/2 + w

−1/2
t λ1/2

]
.

The main attributes of BPT compared to other SR distri-
butional alternatives are the following:

1. The mean waiting time of the (immigrant) events in
the catalogue of interest, λ, provides a threshold until
which the probability of event occurrence is continu-
ously increasing. After reaching the mean waiting time,
the conditional probability of occurrence is time inde-
pendent and depends only on the aperiodicity parameter,
ν, which is associated with the scaling of the Brownian
motion.

2. Earthquake occurrence corresponds to immediate stress
release to ground base level. Thus, the probability of
immediate events recurrence is zero.

From here after, the BPT-based SR-ETAS models will be
referred as F-B-ETAS for the Full Stress Release Brownian
Passage Time Epidemic After Shock Sequence model and
B-B-ETAS for the branched one.

4.2 Gamma process immigration

TheGammadistribution is an exponential family distribution
with two parameters, namely shape parameter a > 0 and

scale parameter s > 0. It has been found by Kagan and
Knopoff (1984), Chen et al. (2013), Wang et al. (2012) to
provide a good model for main shock inter-arrival times. The
Gamma distribution probability density function is:

f (wt ) = 1

sa
(a)
wa−1
t e−wt/s

where 
(a) = ∫ ∞
0 ua−1e−udu is the Gamma function. The

corresponding cumulative distribution function is:

F(wt ) = 1

sa
(a)

∫ wt

0
ua−1e−u/sdu.

From here after, the Gamma-based SR-ETAS models will
be referred to as F-G-ETAS for the Full-SR Gamma ETAS
model and B-G-ETAS for the branched one.

5 Estimation

We now consider parameter estimation for the SR-ETAS
models. This includes estimating the ETAS model param-
eters θ	 = (α, c, p, k), as well as θSR, the parameters of the
waiting time distribution Fw. Let θ = (θSR, θ	) denote the
full set of unknown parameters. We perform Bayesian infer-
ence for themodel parameters by developing a latent variable
MCMC scheme that allows sampling from the full posterior.

5.1 Likelihood function

The general likelihood function of an ETAS-based model is
(Ross 2018a):

p(Ht |θ) =
n∏

i=1

λ(ti |Ht )e
− ∫ ∞

0 λ(z|Ht )dz (4)

with corresponding log-likelihood:

log(p(Ht |θ, Z)) =
n∑

i=1

log(λ(ti |Ht )) −
∫ tn

0
μ(s)ds

−
n−1∑

i=1

κ(mi )

∫ tn−ti

0
g(s)ds (5)

Plugging in the specific parametric choices for the kernel
functions κ(·) and g(·) in the ETAS model gives:
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log(p(Ht |θ, Z)) =
n∑

i=1

log

⎡

⎣μ(t) +
i−1∑

j=1

keα(m j−M0)

(ti − t j + c)p

⎤

⎦

−
∫ tn

0
μ(s)ds −

n∑

i=1

keα(mi−M0)

(
1 − cp−1

(tn − ti + c)p−1

)
(6)

where θ is the set of all parameters in the model, Z1:n ∈
{0, 1}n is a vector with length n indicating whether each
event is immigrant (1) or not (0). As of the branching
structure introduced in Fig. 1, the immigrant information is
Z = {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0}.

Note that μ(·) depends on the branching vector Z for
B-SR-ETAS since the intensity of the background process
depends on the time at which the last immigrant event
occurred. However since the true branching structure is not
known in practice, it must be marginalised out by summing
over all 2n−1 possible values. Therefore, the log-likelihood
of the B-SR-ETAS model is:

p(Ht |θ) =
2n−1∑

j=1

p(Ht |θ, Z = z j )p(Z = z j |θ).

In practice, this summation is likely to be intractable for
evenmoderaten.As such,wewill instead use a latent variable
formulationwhere the unknownbranching vector Z is treated
as a parameter to be learned. In order to evaluate this quantity,
we can either use a single “best” quantity or to provide a
Monte Carlo approximation of it based on sampling multiple
branching structures based on the true/optimised parameters
θ .

While the proposed by Wheatley et al. (2016) log-
likelihood function is conceptually the same as the one shown
above, (Chen and Stindl 2018) Sect. 3, Remark 1, claims that
the log-likelihood form iswrongwith respect to the examined
by them RHawkes process. The full algorithm that is pro-
posed for the calculation of the (log-)likelihood of RHawkes
by Chen and Stindl (2018) is provided in “Appendix A”. This
method requires the calculation of probabilities associated
with all possible inheritance structures. In other words, the
immigrant intensity Eq. 2 has to be evaluated for all possible
temporal lags when in the calculation of Eqs. 6–8, Sect. 3 of
Chen and Stindl (2018). As discussed before, such expres-
sion cannot be evaluated for immigrant distributions that do
not have explicit intensity function (Eq. 2). However, from
a Bayesian prospective, the branching structure is a feature
that we learn. Rather than being an unknown quantity, it is a
data characteristics that we evaluate based on our inheritance
believes. Thus, the provided log-likelihood function in Eq. 5
is feasible for the scope of a Bayesian algorithm.

5.2 Bayesian analysis

We will use Monte Carlo Markov Chain techniques for
obtaining samples from theposterior distributionof theETAS
parameters θ . The main aim of Bayesian analysis is to fully
explore the parameter’s distribution rather than trying to
obtain a single best value. A prior distribution π(θ) is set
based on our prior knowledge of the parameters’ distribution.
Then, using the Bayes theorem, the posterior distribution of
the parameter θ can be represented as follows:

π(θ |Ht ) = p(Ht |θ)π(θ)∫
�
p(Ht |θ)π(θ)dθ

(7)

The multi-dimensional integral in Eq. 7 is extremely hard
to be rearranged in order to obtain a closed form. For this
reason, we use the well-known Metropolis–Hastings (MH)
algorithm for sampling the Markov Chain of interest (Chib
and Greenberg 1995; Hamra et al. 2013; Rotondi and Varini
2007). According to this method, we firstly initialise the
parameter set with some reasonable values θ(0). At step i we
would like to propose a new sampled value of θ(i) based on
θ(i−1). For example we might consider a White Noise trans-
formation such as θ(i) = θ(i−1) + ε were ε ∼ N (0, σ 2).
The acceptance probability of the proposed value θ(i) is
π(θ(i)|Ht )/π(θ(i−1)|Ht ). If the value is rejected, we fail
to obtain a new sample at this step and assign the (i − 1)st
sample to the i th (i.e. θ(i) = θ(i−1)) and repeat the procedure
for the next step.

As shown byRoss (2018b), the efficiency ofMCMC algo-
rithms for ETAS type models can be drastically improved by
including the branching structure as a latent variable. What
is more, the full conditional MCMCMH techniques are only
applicable for the ETAS and F-SR-ETAS, while the B-SR-
ETAS is only feasible to be implemented based on the latent
variable approach since the branching structure is needed
to obtain the last immigrant event time used in the evalua-
tion of μ(·). To introduce this latent variable approach, we
first make some small reparameterisations of the(SR-)ETAS
intensity function:

	(t |Ht )) =
∑

t>ti

g(t − ti )κ(mi )

=
∑

t>ti

k

(t − ti + c)p
eα(mi−M0)

=
∑

t>ti

(p − 1)cp−1

(t − ti + c)p
Keα(mi−M0)

=
∑

t>ti

h(t − ti )ι(mi )
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where ι(mi ) = Keα(mi−M0), K = k
(p−1)cp−1 , and h(z) =

(p − 1)cp−1 1
(z+c)p is a reparameterisation of g() that now

integrates to 1. The log-likelihood function as of Eq. 6 is
then:

log(p(Ht |θ, Z))

=
n∑

i=1

log

⎡

⎣μ(t) +
i−1∑

j=1

K (p − 1)cp−1eα(m j−M0)

(ti − t j + c)p

⎤

⎦

−
∫ tn

0
μ(s)ds −

n∑

i=1

Keα(mi−M0)

(
1 − cp−1

(tn − ti + c)p−1

)
(8)

Performing MCMC directly is difficult due to the high
correlation of all the parameters in this likelihood. The goal
of including the latent branching variables is to break this
dependence and decouple the parameters. For this to be done,
we need to be able to sample from the posterior distribution
of the full branching structure, which requires extending the
approach used in Ross (2018b).

5.2.1 Branching procedure

Let B denote the branching structure vector where Bi = j
indicates that the i-th event in the sequence is caused by
the j-th event ( j < i). Immigrant events are notated as
uncaused, i.e. caused by an event with index 0. If we refer
again to the branching structure, that was introduced on
Fig. 1, we can visually assign corresponding values for
our branching inheritance measure Bi as follows B =
{0, 1, 1, 3, 1, 0, 6, 7, 6, 0, 8}. The immigrant events are com-
ing from a in-homogeneous Poisson process with intensity
function μ(·) while the offspring events of the j-th event are
generated from in-homogeneous Poisson process with inten-
sity h(ti−t j )ι(m j ). Assuming that each event in the sequence
is generated by a single process, we can assign probabili-
ties distribution to each event with respect to its branching
pedigree and therefore sample a branching structure from its
conditional posterior as follows:

1. Initiate the branching by setting B1 = 0 as we assume
that always the first term is immigrant.

2. Sample each Bi in turn from P(Bi |Ht , θ, B1:(i−1))

3. Return the sequence of generated Bi s

As pointed out by an anonymous reviewer, the form of
P(Bi |Ht , θ, B1:(i−1)) in the general SR-ETAS model is
substantially more complex than for the standard ETAS,
since using a general renewal process for the mainshocks
introduces substantial dependence in the process. It was pre-

viously shown in Ross (2018a) that for a standard ETAS
model, the conditional posterior for each Bi is independent
of all other Bj for i �= j and can be written as:

−P(Bi = 0|Ht , θ, B1:(i−1)) = μ(ti − tI[i])

μ(ti − tI[i]) + 	(ti |Hti ))

−P(Bi = j |Ht , θ, B1:(i−1)) = h(ti − t j )ι(m j )

μ(ti − tI[i]) + 	(ti |Hti ))

for j in 1 to i − 1

where I[i] takes the last immigrant event index before the
i-th event in order to obtain branching for B-SR-ETAS, and
I[i] = i − 1 for F-SR-ETAS and ETAS models.

However, for our more general SR-ETAS models with
renewal process immigration, this independence no longer
holds. Instead, as we show in “Appendix B”, the conditional
posteriors are:

−P(Bi = 0|Ht , θ, B) ∝ μ(ti − tI[i])

× e− ∫ tI∗[i]
ti

μ(t |Bi=0)dt
μ(tI ∗[i] − ti ) (9)

−P(Bi = j |Ht , θ, B) ∝ 	(ti |Hti ))

× e− ∫ tI∗[i]
ti

μ(t |Bi �=0)dt
μ

(
tI ∗[i] − tI[i]

)

for j in 1 to i − 1 (10)

where at each time ti wewrite the occurrence time of the first
immigrant event after ti as tI ∗[i] where I ∗[i] = min j { j |t j >

ti and Bj = 0}.

5.2.2 Log-likelihood latent variable transformations

The (log-)likelihood function of the process can be rewritten
conditional on the branching structure. From Eq. 1 the pro-
cess intensity at time t is a sum of the contribution of μ(t)
from the background process, and a contribution of h(t − ti )
for each of the previous event ti . Let us define S0 to be the set
of all immigrant events (conditional on the branching struc-
ture), and SI to be the set of all events triggered by each event
ti . We write |Si | to denote the number of events in each set.
For a given branching structure, the likelihood function can
then be rewritten as:

p(Ht |θ, B) = e−∑
ti∈S0

∫ ti−ti−1
0 μ(u)du

∏

s∈S0
μ(s)

×
n∏

j=1

(
e−ι(m j )

∫ tn−ti−1
0 h(u)duι(m j )

|S j |

∏

ti∈S j
h(ti − t j )

)
. (11)
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In this notation B is a full branching structure realisa-
tion, and the integrals are summed over all immigrant events
except the first one since there is no waiting time for the first
event. The permutation overμ(s) is a permutation of the spot
values of μ(·) at the triggering times of all immigrant events
in the catalogue and θSR represents the parameter set of the
chosen SR distribution. Note thatμ(t) in this case is actually
μ(t |wt ) = fw(wt )

1−Fw(wt )
, where wt is the waiting time from the

last immigration for the B-SR-ETAS model and the waiting
time between every event for the F-SR-ETAS. The fw(·) and
Fw(·) are the corresponding PDF and CDF of the candidate
immigration distribution (SR).Additional approximation can
be obtained based on the previously mentioned infinite time
assumption, namely that the end time of the catalogue is very
large and as such the integral over the Modified Omori law
(h(·)) for the range of values in the catalogue converges to 1,
or in other words

lim
tn→∞

∫ tn−ti−1

0
h(u)du = 1. (12)

Based on the branching structure, the likelihood function
(and hence the posterior, given independent priors) in Eq. 11
is separable into three functions that can update separately
the following parameters’ sets θSR, {K , α} and {c, p}. They
have the following posterior probabilities that will be used
for the Metropolis–Hastings accept–reject ratios:

log(π(θSR|Ht , θ, B)) ∝ log(π(θSR))

+
∑

ti∈S0

(
log(μ(ti )) −

∫ ti−ti−1

0
μ(u)du

)
(13)

log(π(K , α|Ht , θ, B)) ∝ log(π(K , α))

−
n∑

j=1

(
ι(m j )

(
1 − cp−1

(tn − t j + c)p−1

)
− |S j | log(ι(m j ))

)

(14)

log(π(c, p|Ht , θ, B)) ∝ log(π(c, p))

−
n∑

j=1

(
ι(m j )

(
1 − cp−1

(tn − t j + c)p−1

)

−
∑

ti∈S j
log(h(ti − t j ))

)
(15)

Note that based on the infinite time assumption, as defined
in Eq. 12, the term cp−1

(tn−t j+c)p−1 is effectively zero and as such

the above expressions can be simplified so that every poste-
rior probability to be independent from the other parameters’
behaviour. In other words, based on the infinite time assump-
tion are achieved three independently updated chains that
have interaction only when a new full branching structure is
sampled. The conducted analysis was carried out without the
infinite time assumption for all datasets because it appeared

that there are large differences for the North California cata-
logue.

5.2.3 Choice of prior and proposal distributions

The (SR-ETAS) parameter estimates in this paper were
obtained by running a latent variable MCMC for each of the
5 proposed models—ETAS, B-B-ETAS, F-B-ETAS, B-G-
ETAS and F-G-ETAS. We use noninformative priors for all
(SR-) ETAS parameters. For the standard ETAS model there
exists a conjugate Gamma prior for the fixed ground inten-
sity μ (Ross 2018a). We used a flat Uniform prior for θSR,
α, log(c), log(p) and log(K ) with bounds α ∈ [0, 10], c ∈
[0, 10], p ∈ [1, 30], K ∈ [0,∞], althoughmore informative
priors could be used if desired. For a infinite time catalogue,
the overall productivity of the offspring decay, i.e. the mean
number of offsprings by every event is K thus wemight want
to reduce it to be smaller than 1 for simulation purposes. Since
in reality the time is not infinite, the overall productivity is
not K anymore. It is catalogue dependent and as such we
decided to use a higher upper bound for K . The support for
the other parameters is greatly influenced by the potential
multimodality and were taken to be identical to those used
in the Bayesian ETAS R package (Ross 2018a).

We use as a proposal distribution a Normal with standard
deviation of 0.1 for all parameters that require Metropolis–
Hastings updates. The New Madrid catalogue parameters’
sequences are with overall length of 15,000 after burn-in of
5, 100 and 100 for the θSR, {K , α} and {c, p}, respectively.
The branching structure was sampled from its conditional
posterior at every iteration. The North California catalogue
is much larger, thus we updated the branching structure less
frequently at every 20 iterations of the Gibbs sampler, overall
12,000 parameter sets were obtained after burn-in of 4, 100,
20 for the θSR, {K , α} and {c, p}, respectively.

6 Model comparison: diagnostic tests

In order to compare the performance of the two SR-ETAS
models to the standard ETAS model for the purpose of mod-
elling real earthquake data, we require model comparison
metrics. In this section, we discuss the various tests which
we will use for the comparison.

6.1 Bayesian information criterion (BIC)

The Bayesian Information Criterion (BIC) is a popular
penalised likelihood technique which incorporates a penalty
based on the number of parameters in order to reduce the
risk of overfitting (Schwarz 1978). In a Bayesian framework,
it functions as an asymptotic approximation to the model
marginal likelihood in situations where the marginal likeli-
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hood is intractable to compute.Given amodelwith parameter
vector θ , the model’s BIC is defined as:

BIC(θ) = −l(θ) + d

2
· log(n),

where d is the number of free model parameters, i.e. d = |θ |,
l(θ) is the log-likelihood value evaluated at the MLE θ̂ and n
is the number of observations. The best model is associated
with the lowest value of BIC coefficient.

6.1.1 Deviance information criterion (DIC)

TheDIC is a fully Bayesian alternative to the AIC. It replaces
the maximum likelihood parameter estimates of θ with their
posterior mean θ̄ . The number of parameters correction is
replaced with a measure of parameter adequacy based on the
goodness of sample of θ in terms of log-likelihood (Gelman
et al. 2014). For every set of model parameters θ the model’s
DIC value is:

DIC(θ) = −2l(θ̄ ) + 2 · pDIC,

where l(·) is the log-likelihood function and pDIC is the effec-
tive number of parameters. It is defined as:

pDIC = 2l(θ̄) − 2E(l(data|θ) ∼= 2l(θ̄) − 2
1

S

S∑

s=1

l(θs),

where θs indicates the specific obtained value of the parame-
ter(s) in the chain.Alternatively,we can compute the effective
sample size as the variance of the obtained log-likelihood
values for all sampled parameters as follows:

pDICalt = 2var(l(data|θ)

This method is not as numerically stable as the other one
but it is easier to compute and it is guaranteed to provide
positive values. There are many different alternatives of DIC.
There are a number of limitations of all alternatives of DIC
that the reader can consider while interpreting the results
(Spiegelhalter et al. 2014).

6.2 Time rescaling residuals

The time rescaling concept aims to rescale the observa-
tions from a point process based on its conditional intensity
function, in order to produce residuals which follow a homo-
geneous Poisson process (Brown et al. 2002; Lallouache and
Challet 2016). For a given temporal point process sequence
0 ≤ t1 <, . . . , < tn ≤ T with corresponding conditional

intensityλ(t |Ht ) > 0 for t ∈ (0, T ], the residuals are defined
as:

�(tk) =
∫ tk

0
λ(u|θ,Hu)du.

Assuming that the cumulative intensity is finite, i.e.λ(·) <

∞, then all �(·)s are a realisation from a Poisson process
with rate 1. The inter-arrival times δk = �(tk) − �(tk−1)

are hence independent Exponentially distributed with mean
and standard deviation of 1. As such, testing these residuals
to check they follow an Exponential distribution is equiva-
lent to testing whether the conditional intensity function has
the form specified (SR-ETAS vs ETAS, in our formulation).
This test can be carried out using a goodness-of-fit test such
as The Cramér-Von Mises (CVM) or Engle Russell Excess
Dispersion test.

6.2.1 Cramér-Von Mises test

The Cramér-Von Mises (CVM) test (Stephens 1970) com-
pares a set of observations to a hypothesised distribution
function by computing the average distance between the
empirical and hypothesised distributions. In other words,
for an ordered data X = (x1, . . . , xn) we are interested to
examine, whether the sample cumulative distribution func-
tion (CDF) F(·) is close to a specific CDF F0(·). The CVM
test statistics is:

CVM = n
∫ ∞

−∞

(
F(x) − F0(x)

)2
w(x)dF0(x)

wherew(x) is aweight functionwhich is assumed to be equal
to 1 in the standard CVM test.

6.2.2 Ljung–Box test

The Ljung–Box (LB) test was introduced by Ljung and Box
(1978) in order to checkwhether a sequence is an independent
realisation from a target distribution of interest. This is done
by examining m autocorrelations of the residuals. The test
statistic is:

Q = n(n + 2)
m∑

k=1

ρ̂k
2

n − k

where n is the length of the data, ρ̂k is the estimated autocor-
relation at the lag of interest k with respect to the number of
lags (m) that are taken into account. The choice of appropri-
ate number of lags m is critical for obtaining adequate test
results (Hyndman 2014). Given that the data is expected to
be nonseasonal and always havemore than 200 observations,
we always use 10 lags, i.e. m = 10.
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Fig. 2 Log-likelihood of the MCMC sequences based on the used full branching structures for the New Madrid catalogue with respect to ETAS/F-
G-ETAS/B-G-ETAS/F-B-ETAS/B-B-ETAS

6.2.3 Engle Russell excess dispersion test

Excessive dispersion of the exponentially distributed resid-
uals can be examined using the Engle Russell Excess
Dispersion (ER) test (Lallouache and Challet 2016; Engle
and Russell 1998). It takes into account only the sample vari-
ance σ̂ 2 and has the following test statistics:

ER = √
n
σ̂ 2 − 1√

8
.

Under the null hypothesis of lack of excess dispersion, σ̂ is
distributed as a standard Normal random variable.

7 Applications

In this section, we discuss and compare the model fit across
ETAS-based models on two seismic catalogue of interest.
The first one is the New Madrid catalogue which is much
smaller but of great interest for underwriting community
while the second one, the North California, is more dense
and should behave similarly to a typical single fault cata-
logue.

7.1 NewMadrid seismic sequence

We first compare the performance of the ETAS and SR-
ETAS models on the catalogue of New Madrid earthquakes
obtained from The University of Memphis website http://
www.memphis.edu/ceri/seismic/catalog.php.This catalogue
starts on 29/06/1974 and ends on 23/02/2017. Only earth-
quakes of magnitude greater than 3 are considered since
smaller ones are typically considered harmless. The result-
ing catalogue contains 308 events. We fit the ETAS model
and BPT and Gamma-based SR-ETAS models to this
catalogue.

Figure 2 shows how the sequence of log-likelihoods for
each model evolves over each iteration of the Gibbs sampler
(after convergence). It is clearly observable that there is a
difference between the overall fitting capabilities between the
5 models. What is more, the overall mixing for branched-SR
models is greater and relatively more symmetric. Figure 3
plots the posterior distribution of the model parameters for
the B-B-ETAS, which is the most difficult model to estimate
due to the need to estimate the unknown branching structure.
The posterior distributions for the parameters in the other
models are similar. As expected, the obtained parameters’
distributions are smooth, symmetric and not very different
from a bell-shaped-base form.

The Goodness-of-fit and model comparison results are
shown on Table 1. Amongst all ETAS-based models it
appears that SR-ETAS models are superior to the stan-
dard ETAS model according to both BIC and DIC. BPT-
based models are supreme to their corresponding Gamma
alternatives and B-SR-ETAS models are supreme to the F-
SR-ETAS. The best model within all examined models is
evidently the B-B-ETAS.

Figure 4 presents the informal diagnostic plots of the time
residuals. On the left are the raw time residuals for all 5
models versus a diagonal line. Ideally, these should overlap.
The overall pattern is very similar for all models. They all
experience a bias towards the middle of the catalogue which
might indicate a potential minor nonstationarity in the data
(Kumazawa and Ogata 2013). The right part of Fig. 4 shows
a Q–Q plot for the residuals of all 5 models versus Expo-
nential(1) distribution. All 5 models behave similarly, with
minor spread from the expected results for large quantiles.

The time rescaling diagnostic tests conclude that the CVM
and ER tests were passed by all 5 models at the 5% signifi-
cance level. The LB test is passed only by F-B-ETAS at 5%
significance level, while all other models pass it at 1% sig-
nificance level. Thus, there might be minor dependence in
the residuals which we believe is negligible.
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Fig. 3 B-B-ETAS MCMC parameters’ density for the New Madrid catalogue

Table 1 Goodness-of-fit
summary—New Madrid; ETAS,
BPT and Gamma-based
SR-ETAS

ETAS F-G-ETAS B-G-ETAS F-B-ETAS B-B-ETAS

Log-likelihood −260.75 −256.44 −250.13a −251.28 −245.01a

Number of parameters 5 6 6 6 6

BIC 275.05 273.23 −267.32a 268.47 −262.20a

DIC 519.82 515.47 484.28a 507.60 483.80a

Lower values of the BIC/DIC indicate superior fit
aThe value is approximate

7.2 North California seismic sequence

The previous analysis was repeated using a North Califor-
nia seismic sequence. The historical catalogue of earthquake
events can be obtained from http://www.ncedc.org/ncedc/
catalog-search.html. We took into account all events from
01/01/1987 until 31/12/2015, with magnitude of complete-
ness of 3.5. This created a catalogue consisting of 3442
events.

The full sequences of the log-likelihood calculated using
the Gibbs sampler are shown in Fig. 5. As before, all the SR-

ETAS models appear to give substantial improvements over
the basic ETAS model. Again we decided to report the pos-
terior density only for B-B-ETAS which are shown in Fig. 6.
The heavy tails that appeared for the New Madrid catalogue
are not present. Overall the shapes of all 6 parameters appear
to be roughly symmetric. The goodness-of-fit results of the
un-simplified (finite time) runs are shown on Table 2.

According to the BIC, the F-B-ETAS is the worst model
while all other SRmodels are slightly better than the standard
ETAS. Due to the larger number of observations in this cata-
logue, we decided to examine the DICalt that depends on the
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Fig. 4 Time rescaling diagnostic plots for the New Madrid catalogue

Fig. 5 Log-likelihood of the MCMC sequences based on the used full branching structures for the North California catalogue with respect to
ETAS/F-G-ETAS/B-G-ETAS/F-B-ETAS/B-B-ETAS

previously defined pDICalt. According to it, the branched-SR
models are providing a considerable performance improve-
ment compared to the full models while the standard ETAS
performs the worst. For this catalogue BPT-based models are
no longer superior to their corresponding Gamma alterna-
tives. Interestingly, F-B-ETAS is currently the worst model.
This is probably attributed to the fact that Gamma-SR-ETAS
models are guaranteed to be at least as good as the ETAS
model since they can reduce to it, since the Exponential inter-
arrival time distribution used in the standard ETAS is nested
inside the Gamma distribution. It is clear that B-B-ETAS has
a great advantage amongst all other models.

Figure 7 presents the time residuals informal diagnostic
plots. On the left are shown the residuals and on the right is
shown the Q–Q plot for all 5 models. The residuals plot indi-
cates that all SR-ETAS models behave very similarly, while
standardETAS indicates a flow from the desired pattern. Sim-

ilarly to the results for the NewMadrid catalogue, all models
experience a bias towards the middle of the catalogue which
might indicate a potential minor nonstationarity in the data
(Kumazawa and Ogata 2013). The Q–Q plot again shows
that SR-ETAS models provide a better realisation to Expo-
nential(1) distribution with minor overestimation for large
quantiles, while standard ETAS underestimates it for a large
proportion of the support.

The time rescaling diagnostic tests conclude that the CVM
test was passed by all models except standard ETAS at
the 5% significance level. All five models failed the LB
test. We believe this was caused by the large sample size
since overall there are no indications for dependence in the
residuals. The ER test was passed by all non-Gamma-based
models at the 5% significance level indicating that Gamma
distributionmight induce an excessive dispersion in the resid-
uals. All things considered, we conclude that ETAS model
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Fig. 6 B-B-ETAS MCMC parameters’ density for the North California catalogue

Table 2 Goodness-of-fit
summary—North California;
ETAS, BPT and Gamma-based
SR-ETAS

ETAS F-G-ETAS B-G-ETAS F-B-ETAS B-B-ETAS

Log-likelihood −109.32 −103.68 −90.61a −110.58 −64.83a

Number of parameters 5 6 6 6 6

BIC 129.68 128.11 115.04a 135.01 89.26a

DICalt 1108.51 799.57 725.33a 553.48 338.07a

Lower values of the BIC/DIC indicate superior fit
aThe value is approximate

is not providing adequate fit to the North California cata-
logue, Gamma-SR-ETAS models are supreme to it but some
researchers might disregard them due to the present exces-
sive dispersion in the residuals. The B-SR-ETAS is providing
the most stable results, with Branched-BPT ETAS being the
supreme model that should be chosen for this dataset.

8 Conclusion

The ETAS model has proved to be one of the most widely
used tools for modelling seismic activity in terms of both
capturing specific features of interest and forecasting future

events. Its estimation can be considered challenging due
to identifiability issues. In this work, we introduced the
concept of temporally variable ground intensity based on
stress release modelling. In this, we specified two families
of SR-ETAS model that depend on either the occurrence
time of the previous event in the sequence (Full-SR-ETAS),
or the elapsed time from the last immigrant (main) event
(Branched-SR-ETAS). Our experimental results suggest that
these models capture observed features of real earthquake
catalogues that the standard ETAS model does not.

Our experimental results suggest that these models cap-
ture features of real earthquake catalogues related to crustal
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Fig. 7 Time rescaling diagnostic plots for the North California catalogue

strain budget that the standard ETAS model does not. Cur-
rently, we examined a single fault, nonspatial occurrence that
is typically used by general seismologist for the analysis of a
seismic fault activity. All concepts are directly applicable to
the Spatial extension of ETAS. There are many alternatives
of the spatial component(s) of the standard ETAS that pro-
vide a great differentiation amongst themwhichmakes direct
comparison of the introduced family of model impractical.
Overall, the nonspatial alternative introduced in this paper
will provide excellent results as long as there are no strong
nonlinear or nonuniform patterns in the spatial distribution
of the earthquakes along the fault of interest.

All methods are introduced for a general distribution, as
such the SR-ETAS family can grow very quickly to accom-
modate the modelling needs of any sort of data. Direct
application to stock daily changes, insurance claims, fraud
and terrorist threats is feasible.
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Appendix A: Maximum likelihood estimation
of RHawkes

The overall scope of the defined by Wheatley et al. (2016),
Chen and Stindl (2018) RHawkes process is very similar to
ETAS and relies on the following intensity function

λRh(t) = μ(t − tI[t]) +
∑

ti<t

ηr(t − ti )

where
∫ ∞
0 r(u)du = 1, I[i] = max j { j |t j < ti and Bj = 0}

and B = {B1, . . . , Bn} is a branching realisation as described
in Sect. 3. The proposed form for the likelihood is the fol-
lowing:

p(Ht |θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(−U (T )), n = 0.

μ(t1 − t0) exp(−U (t1)×
−U (T − t1) − ηR(T − t1)), n = 1.

μ(t1 − t0) exp(−U (t1)×∏n
i=2

∑i−1
j=1 pi j di j×∑n

j=1 sn+1 pn+1, j n ≥ 2.

(16)
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where

di j = (μ(ti − t j ) +
∑

t<ti

ηr(ti − t))

× exp(−U (ti − t j ) +U (ti−1 − t j )

−η
∑

t<ti

R(ti − t) + η
∑

t<ti−1

R(ti−1 − t)) (17)

sn+1, j = exp
{−[

U (T − t j ) −U (tn − t j )
]

−η

[
∑

t<T

R(T − t) −
∑

t<tn

R(tn − t)

]}
(18)

the pi j , i = {2, . . . , n + 1}, j = {1, . . . , i − 1} are obtained
by initiating p21 = 1 and updated recursively as follows

pi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
t<ti−1

ηr(ti−1−t)

μ(ti−1−t j )+∑
t<ti−1

ηr(ti−1−t)

× di−1, j pi−1, j∑i−2
j=1 pi−1, j di−1, j

, j = 1, . . . , i − 2

1 − ∑ j−2
k=1 pik j = i − 1

(19)

for i = 3, . . . , n + 1;

U (t) =
∫ t

0
μ(s)ds and R(t) =

∫ t

0
r(s)ds.

The evaluation of di j is only feasible based on Stress
Release/ Renewal density that has explicit intensity func-
tion. Otherwise, the quantity in Eq. 2 will be numerically
unstable as previously discussed. Thus, the method is not
directly applicable to a general family of renewal process
distributions (e.g. B-B-ETAS).

Appendix B: Branching update probabilities

In order to evaluate the branching probabilities we have to
address the conditional probability of the branching (B) given
the data Y , model parameters θ = {θSR, θ	} and potentially
the previous obtained branching structure(s). The general
likelihood function as introduced in Eq. 4 can be rearranged
to indicate the immigration and offspring process as follows:

p(Ht |θ, B) = e− ∫ T
0 μ(z|Ht ,B)dz

∏

i :Bi=0

μ(ti |Ht , B)

×
n∏

j=1

[
e− ∫ T−t j

0 	(z|Ht )dz

n∏

i :Bi= j

	(ti − t j |Ht , B)

]
(20)

For ETAS and Full-ETASmodels, the branching structure
(B) is not needed for the evaluation of Eq. 2, thus the term∫ T
0 μ(z|Ht )dz is independent of B. The conditional distri-
bution of the branching structure, given a flat prior is then

p(B|Y , θSR, θ	) ∝
∏

i :Bi=0

μ(ti )
n∏

j=1

n∏

i :Bi= j

	(ti − t j )

which lead us, as required, to the following branching
updates:

−P(Bi = 0|Ht , θ, B1:(i−1)) = μ(ti − tI[i])

μ(ti − tI[i]) + 	(ti |Hti ))

−P(Bi = j |Ht , θ, B1:(i−1)) = h(ti − t j )ι(m j )

μ(ti − tI[i]) + 	(ti |Hti ))

for j in 1 to i − 1

where I[i] = max j { j |t j < ti and Bj = 0}. In the case of
Branched-ETAS or Rhawkes, as defined by Wheatley et al.
(2016), Chen and Stindl (2018),

∫ T
0 μ(z|Ht , B) requires a

branching realisation B for the calculation of the ground
intensity as of Eq. 2. Let us define z0, z1, . . . , zm + 1 to be,
z0 = 0, z1, . . . , zm—allm immigrant events’ times that were
estimated to occur in the catalogue and zm+1 = T . Thus, we
can rewrite the full data likelihood components that depend
on μ(·) as follows:

e−
∫ T
0 μ(z|Ht ,B)dz

∏

i :Bi=0

μ(ti |Ht , B)

= e
− ∫ z1

0 μ(z)dz−∫ z2
z1

μ(z)dz−···−∫ zm+1
zm

μ(z)dz
m∏

i=1

μ(zi − zi−1)

∝ e
− ∫ zi

zi−1
μ(z)dz−∫ zi+1

zi μ(z)dz
μ(zi − zi−1)μ(zi+1 − zi ) (21)

Based on the above approximation, the full conditional pos-
terior distribution is:

p(Bi |Y , θ, B)

∝
[
e
− ∫ ti

tI[i]
μ(z)dz−∫ tI∗[i]

ti
μ(z)dz

μ(ti − tI[i])μ(tI ∗[i] − ti )
]1Bi=0

×
[
e
− ∫ tI∗[i]

tI[i]
μ(z)dz

μ(tI ∗[i] − tI[i])
]1Bi �=0

×
n∏

j=1

	(ti − t j )
1Bi= j (22)

where I ∗[i] = min j { j |t j > ti and Bj = 0} and 1x is 1 if x is
True and 0 otherwise.
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Thus, the required branching probability updates are

−P(Bi = 0|Ht , θ, B) ∝ μ(ti − tI[i])

×e
− ∫ ti

tI[i]
μ(z)dz−∫ tI∗[i]

ti
μ(t |Bi=0)dt

μ(tI ∗[i] − ti )

−P(Bi = j |Ht , θ, B) ∝ 	(ti |Hti ))

×e
− ∫ tI∗[i]

tI[i]
μ(t |Bi �=0)dt

μ(tI ∗[i] − tI[i])

for j in 1 to i − 1

which canbe further simplified to those stated inEqs. 9 and10

since e
− ∫ ti

tI[i]
μ(z)dz

has the same value regardless of the state
of the branching assignment of ti .

References

Brown, E.N., Barbieri, R., Ventura, V., Kass, R.E., Frank, L.M.: The
time-rescaling theorem and its application to neural spike train
data analysis. Neural Comput. 14(2), 325–346 (2002)

Chen, C.-H., Wang, J.-P., Wu, Y.-M., Chan, C.-H., Chang, C.-H.: A
study of earthquake inter-occurrence times distribution models in
Taiwan. Nat. Hazards 69(3), 1335–1350 (2013)

Chen, F., Stindl, T.: Direct likelihood evaluation for the renewal hawkes
process. J. Comput. Graph. Stat. 27(1), 119–131 (2018)

Chib, S., Greenberg, E.: Understanding the Metropolis–Hastings algo-
rithm. Am. Stat. 49(4), 327–335 (1995)

Ellsworth, W.L., Matthews, M.V., Nadeau, R.M., Nishenko, S.P.,
Reasenberg, P.A., Simpson, R.W.: A physically based earthquake
recurrence model for estimation of long-term earthquake proba-
bilities. US Geol. Surv. 522, 23 (1999)

Engle, R.F., Russell, J.R.: Autoregressive conditional duration: a new
model for irregularly spaced transaction data. Econometrica 66,
1127–1162 (1998)

Filimonov, V., Sornette, D.: Apparent criticality and calibration issues
in the Hawkes self-excited point process model: application to
high-frequency financial data. Quant. Finance 15(8), 1293–1314
(2015)

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin,
D.B.: Bayesian Data Analysis, vol. 2. CRC Press, Boca Raton
(2014)

Hamra,G.,MacLehose,R., Richardson,D.:Markov chainMonteCarlo:
an introduction for epidemiologists. Int. J. Epidemiol. 42(2), 627–
634 (2013)

Hyndman, R.J.: Thoughts on the Ljung–Box test. (2014) https://
robjhyndman.com/hyndsight/ljung-box-test/. Accessed 4 Aug
2017

Imoto, M.: Application of the stress release model to the Nankai
earthquake sequence, southwest Japan. Tectonophysics 338(3),
287–295 (2001)

Isham,V.,Westcott,M.: A self-correcting point process. Stoch. Process.
Appl. 8(3), 335–347 (1979)

Johnson, N.L., Kemp,A.W., Kotz, S.: UnivariateDiscreteDistributions,
vol. 444. Wiley, Hoboken (2005)

Kagan, Y., Knopoff, L.: A stochastic model of earthquake occurrence.
In: Proceedings of the Eighth International Conference on Earth-
quake Engineering, vol.1, pp. 295–302 (1984)

Kumazawa, T., Ogata, Y.: Quantitative description of induced seismic
activity before and after the 2011 Tohoku–Oki earthquake by non-

stationary ETAS models. J. Geophys. Res. Solid Earth 118(12),
6165–6182 (2013)

Lallouache, M., Challet, D.: The limits of statistical significance of
Hawkes processes fitted to financial data. Quant. Finance 16(1),
1–11 (2016)

Liu, J., Vere-Jones, D., Ma, L., Shi, Y.-L., Zhuang, J.-C.: The principle
of coupled stress release model and its application. Acta Seismo-
logica Sinica 11(3), 273–281 (1998)

Ljung, G.M., Box, G.E.: On a measure of lack of fit in time series
models. Biometrika 65(2), 297–303 (1978)

Lu, C., Harte, D., Bebbington, M.: A linked stress release model for
historical Japanese earthquakes: coupling among major seismic
regions. Earth Planets Space 51(9), 907–916 (1999)

Marzocchi, W., Taroni, M.: Some thoughts on declustering in prob-
abilistic seismic-hazard analysis. Bull. Seismol. Soc. Am. 104,
1838–1845 (2014)

Matthews,M.V., Ellsworth,W.L., Reasenberg, P.A.: ABrownianmodel
for recurrent earthquakes. Bull. Seismol. Soc. Am. 92(6), 2233–
2250 (2002)

Oakes, D.: TheMarkovian self-exciting process. J. Appl. Probab. 12(1),
69–77 (1975)

Ogata, Y.: Statistical models for earthquake occurrences and residual
analysis for point processes. J. Am. Stat. Assoc. 83(401), 9–27
(1988)

Ogata,Y.: Space-timepoint-processmodels for earthquake occurrences.
Ann. Inst. Stat. Math. 50(2), 379–402 (1998)

Ordaz, M., Arroyo, D.: On uncertainties in probabilistic seismic hazard
analysis. Earthq. Spectra 32(3), 1405–1418 (2016)

Rasmussen, J.G.: Bayesian inference for Hawkes processes. Methodol.
Comput. Appl. Probab. 15(3), 623–642 (2013)

Reid, H.F.: The Mechanics of the Earthquake, vol. 2. Carnegie Institu-
tion of Washington, Washington (1910)

Ross, G.: Bayesian estimation of the ETASmodel for earthquake occur-
rences. Preprint (2018a)

Ross, G.: Nonparametric bayesian inference for the Hawkes process
with seasonal event data. Preprint (2018b)

Rotondi, R., Varini, E.: Bayesian analysis of marked stress release mod-
els for time-dependent hazard assessment in the western Gulf of
Corinth. Tectonophysics 423(1), 107–113 (2006)

Rotondi, R., Varini, E.: Bayesian inference of stress release models
applied to some Italian seismogenic zones. Geophys. J. Int. 169(1),
301–314 (2007)

Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat.
6(2), 461–464 (1978)

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Linde, A.: The deviance
information criterion: 12 years on. J. R. Stat. Soc. Ser. B (Stat.
Methodol.) 76(3), 485–493 (2014)

Stephens, M.A.: Use of the Kolmogorov-Smirnov, Cramér-Von Mises
and related statistics without extensive tables. J. R. Stat. Soc. Ser.
B (Methodol.) 32, 115–122 (1970)

Tahernia, N., Khodabin, M., Mirzaei, N.: Non-Poisson probabilistic
seismic hazard assessment. Arab. J. Geosci. 7(8), 3259–3269
(2014)

Varini, E., Rotondi, R.: Probability distribution of the waiting time in
the stress release model: the Gompertz distribution. Environ. Ecol.
Stat. 22(3), 493–511 (2015)

Veen, A., Schoenberg, F.P.: Estimation of space-time branching process
models in seismology using an em-type algorithm. J. Am. Stat.
Assoc. 103(482), 614–624 (2008)

Vere-Jones, D.: Earthquake prediction-a statistician’s view. J. Phys.
Earth 26(2), 129–146 (1978)

Wang, J.-H., Chen, K.-C., Lee, S.-J., Huang, W.-G., Wu, Y.-H., Leu,
P.-L.: The frequency distribution of inter-event times of m ≥ 3
earthquakes in the Taipei metropolitan area: 1973–2010. Terr.
Atmos. Ocean. Sci. 23(3), 269–281 (2012)

123

https://robjhyndman.com/hyndsight/ljung-box-test/
https://robjhyndman.com/hyndsight/ljung-box-test/


Statistics and Computing

Wheatley, S.: Extending the Hawkes Process, A General Outlier Test,
Case Studies in Extreme Risk. Ph.D. Thesis, ETH Zurich, Zurich
(2016)

Wheatley, S.: Personal communication (2017)
Wheatley, S., Filimonov, V., Sornette, D.: The Hawkes process with

renewal immigration and its estimation with an EM algorithm.
Comput. Stat. Data Anal. 94, 120–135 (2016)

Xiaogu, Z., Vere-Jones, D.: Further applications of the stochastic stress
releasemodel to historical earthquakedata. Tectonophysics229(1–
2), 101–121 (1994)

Yang, W.-Z., Vere-Jones, D., Ma, L., Liu, J.: A method for locating the
critical region of a future earthquake using the critical earthquake
concept. Earthquake 20(4), 28–38 (2000)

Zhu, S.-B., Shi, Y.-L.: Improved stress release model: application to the
study of earthquake prediction in Taiwan area. Acta Seismologica
Sinica 15(2), 171–178 (2002)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Inference for ETAS models with non-Poissonian mainshock arrival times
	Abstract
	1 Introduction
	2 Standard ETAS model
	3 SR-ETAS models
	4 Waiting time distributions
	4.1 Brownian passage times (BPT) immigration
	4.2 Gamma process immigration

	5 Estimation
	5.1 Likelihood function
	5.2 Bayesian analysis
	5.2.1 Branching procedure
	5.2.2 Log-likelihood latent variable transformations
	5.2.3 Choice of prior and proposal distributions


	6 Model comparison: diagnostic tests
	6.1 Bayesian information criterion (BIC)
	6.1.1 Deviance information criterion (DIC)

	6.2 Time rescaling residuals
	6.2.1 Cramér-Von Mises test
	6.2.2 Ljung–Box test
	6.2.3 Engle Russell excess dispersion test


	7 Applications
	7.1 New Madrid seismic sequence
	7.2 North California seismic sequence

	8 Conclusion
	Acknowledgements
	Appendix A: Maximum likelihood estimation of RHawkes
	Appendix B: Branching update probabilities
	References




