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9 Evidence surveillance to keep up to date with new research 
 
James Thomas, Anna Noel-Storr and Steve McDonald 
 
9.1 Overview of the topic 
Research is being published at an ever-increasing rate and it is becoming 
more and more difficult for systematic reviewers to find research in a timely 
way and keep existing reviews updated as new studies are published.[1] This 
is a particular problem for organizations which maintain libraries of systematic 
reviews, such as the Cochrane and Campbell Collaborations, as the more 
systematic reviews they publish, the greater the burden of maintenance. It is 
also a challenge for guideline-producing organizations which, for pragmatic 
reasons, typically invest significant resources and effort in one-off periodic 
updates without knowing whether the evidence base has changed or has 
actually changed so rapidly that more frequent updating would have been 
warranted. Previous work has shown that systematic reviews can date very 
quickly – with some out of date as soon as they are published [2] – and it is 
becoming clear that our current methods of research curation are wasteful of 
societal investment in research, and risk resulting in suboptimal outcomes.[3] 
 
This chapter is concerned with this problem of 'data deluge' and the need to 
maintain a better surveillance of research in order to keep abreast of new 
developments. It is thus related to work on Living Systematic Reviews (LSRs), 
that are 'continually updated, incorporating relevant new evidence as it 
becomes available'.[4, 5] The chapter outlines developments in automation 
technologies that are already making the systematic review process more 
efficient and then focuses on the way that global research curation systems 
are organized. The chapter suggests that new approaches are needed in 
order to support the production of evidence syntheses in efficient and timely 
ways. Case studies 9.1 and 9.2 explain how these new developments are 
being put into practice to realise these benefits. 
 
9.2 Discussion 
New ways of working that integrate and capitalize on automation are 
necessary to tackle the growing burden of identifying and synthesizing 
research. New technologies – which range from the mundane (such as 
identifying duplicates in bibliographic records) to full Artificial Intelligence (AI) 
systems – are under constant development and are already assisting various 
aspects of the evidence curation (see box) and discovery process. It is 
possible to break these new tools down into two broad categories: 

1. Tools which can make existing manual processes more efficient. 
2. Tools which aim to change the way systematic reviews are carried out 

in more fundamental ways by linking tools together and changing the 
sequencing of activities.  

 
The following section examines the potential for automation to assist in 
existing processes, and the section after that considers the potential for linking 
these tools into integrated surveillance systems for LSRs and other types of 
living evidence, such as guidelines. 
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What is 'curation'? 
A key concept in this chapter is 'evidence curation'. 'Curation' as an idea 
has been around a long time, and concerns the activities necessary to 
manage, sort and arrange information. We see current methods for finding 
and processing evidence as inadequate, since they result in so much 
repetitive and avoidable work in systematic reviews. We will therefore use 
the word 'curation' throughout to denote the work necessary to organize 
research information in a way that facilitates its easy discovery and reuse. 
In this sense, 'curation' also involves an acknowledgement that research 
data has value, and this value needs to be protected through fit-for-purpose 
management. 

 
9.3 How automation can make existing processes more efficient 
The systematic review process follows what is now a well-trodden path which, 
once the research questions have been agreed and the review team 
established, usually includes the following steps: 

 Developing the search strategy  

 Searching databases and other sources, and downloading the results  

 De-duplication of records 

 Screening records for eligibility 

 Retrieving the full text of potentially eligible records 

 Screening full text reports 

 Checking bibliographies and citation indexes 

 Data extraction and quality assessment 

 Synthesis 

 Write-up of final reports. 
 
This list emphasizes the retrieval and curation tasks that occur early in the 
review process. The development of enabling tools has tended to focus on 
these tasks since many are repetitive and time-consuming (e.g. reference 
screening) and also more amenable to machine assistance. We will now 
consider each of the stages in terms of the available tools and their readiness 
for use in reviews. 
 
9.3.1 Developing the search strategy 
As Chapter 7 shows, there has been a proliferation of tools to help with 
developing search strategies. Previous work has shown that the way that 
search strategies are developed can impact on the recall of the search (e.g. 
[6]), and in a case-study, Stansfield and colleagues [7] describe how text 
analytic software is able to assist in five ways: 

1. improving the precision of the search and so reducing manual effort in 
screening results. 

2. identifying search terms which can improve the sensitivity and reliability 
of the search. 

3. assisting with the way that searches can be translated between 
databases (for example the Polyglot Search Translator http://crebp-
sra.com/#/polyglot). 

http://crebp-sra.com/#/polyglot
http://crebp-sra.com/#/polyglot
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4. searching and screening within an integrated system [8]. 
5. developing search strategies objectively (see also [9]). 

 
There is interest in using relationships between citations for identifying other 
relevant studies (e.g. [10]), and tools such as Google Scholar 
(https://scholar.google.co.uk), Microsoft Academic 
(https://academic.microsoft.com), Scopus (https://www.scopus.com) and Web 
of Science (http://wokinfo.com) all offer tools to support this. An important 
issue to bear in mind – which can be highlighted using new technology – is 
the care required when following citation trails. Research is often carried out 
by communities of researchers and if they fail to cite the work of other groups 
working in the same field, then this kind of pearl growing will not find all 
relevant pockets of research. A heat map of a citation network of systematic 
reviews in psychology (Figure 9.1) shows graphically how related research 
does not always connect. Information specialists should be mindful of this, 
utilizing tools to help visualize and identify these kinds of disconnect to ensure 
that search methods do not rely exclusively on specific sources and 
approaches. 
 
Figure 9.1 Vosviewer heat map of co-citation relationships in psychology 

 
 
9.3.2 Searching databases and other sources, and downloading the 

results 
New technologies for searching databases are emerging all the time, and 
Chapter 7 has highlighted some of the main tools being developed for 
searching PubMed and MEDLINE (e.g. PubReMiner). Tool development for 
this dataset is particularly common because of its size and the fact that it is 
freely accessible. Automation tools rely on Application Programming 
Interfaces (APIs) which can enable systematic review tools to access 
databases 'behind the scenes’. For example, users can search PubMed from 
within EPPI-Reviewer without needing to visit PubMed directly, and 
Cochrane’s Central Register of Studies (which sits behind the public 
CENTRAL database) also searches sources such as Embase and 
ClinicalTrials.gov at the programming, rather than user, interface level. 
Although API access to commercial databases is more complicated because 
of the issues involved in retaining and reusing references it is becoming more 
commonplace. 
 

https://scholar.google.co.uk/
https://academic.microsoft.com/
https://www.scopus.com/
http://wokinfo.com/


5 

 

Being able to search databases from within systematic review tools can save 
the user having to download multiple text files and then reload them for 
screening. The process of ensuring compatible formats (e.g. RIS) can also be 
more reliable using this route. However, it is when we consider the need for 
automated searches to facilitate surveillance that API access to databases 
becomes particularly important. Here, we need regular searches to be run, 
and relevant references retrieved, automatically with minimal user interaction. 
While some sources, such as PubMed, are relatively unproblematic, others do 
not offer API access at all, limiting the scope for full implementation of an 
automated surveillance process at this time. 
 
9.3.3 De-duplication of records 
Searching multiple sources inevitably results in the retrieval of duplicate 
references. Although bibliographic software tools like EndNote can minimize 
much of the workload in identifying duplicates, eliminating them altogether is 
not a simple task. Records entered manually by different providers can 
contain slightly different information. Some research has been carried out into 
developing and evaluating de-duplication algorithms (e.g. [11, 12]), but it 
would be fair to say that further evaluations are required, including increasing 
the availability of 'gold standard' datasets on which to evaluate new 
algorithms. 
 
9.3.4 Screening records for eligibility 
The ability of text mining and machine learning tools to assist in the screening 
of records for eligibility has been outlined in Chapter 7. There are two 
approaches to highlight here in the context of evidence surveillance. First, the 
use of 'active learning' – whereby the machine learns the review’s inclusion 
criteria in an iterative fashion alongside human screening [13] – is still of 
relevance when we are updating an existing review. We naturally already 
have all the screening data generated when the review was originally written 
and from any subsequent updates. This means that it is possible to build a 
machine learning classifier to rank the relevance of newly retrieved references 
at the outset of an update and, because it can utilize more data than are 
typically available when a new review is conducted, it is likely to perform 
better too.  
 
Second, the use of study-type machine learning classifiers is now becoming 
more widespread. These are classifiers which have been trained from large 
quantities of data (and so are highly accurate) that are able to classify papers 
according to the type of study they describe. While not all study types are yet 
covered, there are some high-performing classifiers now which can distinguish 
between records which do, and do not, describe randomized controlled trials 
(RCTs) with a high degree of confidence [14, 15]. Since many systematic 
reviews I the health sector only include RCTs, being able to eliminate the 
records which are very unlikely to be describing RCTs can be an efficient way 
of reducing manual effort. 
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9.3.5 Full-text document retrieval and screening 
Many tools, including generic bibliographic software such as EndNote, now 
offer the facility to identify and download full-text reports based on citation 
records. The Digital Object Identifier (DOI) system has transformed this task, 
and the main barrier to full automation is the fact that many documents lie 
behind journal subscription paywalls. Services such as CrossRef are making 
the identification of these documents more efficient, even if the last phase of 
document recovery needs to be undertaken manually. 
 
9.3.6 Checking bibliographies and citation indexes 
Current tools that allow reviewers to undertake citation searching – and 
examine both the references cited in a given paper, and those that cite it – 
have two main weaknesses. First, since no tool is truly comprehensive it may 
be necessary to use multiple services such as Web of Science, Scopus and 
Google Scholar. Second, extracting the bibliography from a paper and the 
automated linking of references to one another is challenging; tools often fail 
to list, for example, all the papers in a given bibliography. That said, the 
OpenCitation (http://opencitations.net) and CrossRef 
(https://www.crossref.org) initiatives are gaining ground, and these systems 
are becoming increasingly comprehensive. If major publishers, such as 
Elsevier (https://opencitations.wordpress.com/2017/11/24/elsevier-references-
dominate-those-that-are-not-open-at-crossref), sign up to the consortium, then 
the case for making increased use of citation networks will become even more 
compelling [16] (the warning above about relying too heavily on citation trails 
notwithstanding). 
 
9.3.7 Data extraction and quality assessment 
As we move through the review process, the number and maturity of tools for 
deployment decreases. There is still significant potential to reduce manual 
workload but it is much more difficult to build an automated data extraction 
system than it is to build one for screening search results. Every report of a 
study is unique and identifying even apparently simple information, such as 
the number of study participants, is quite a challenge. The ExaCT tool aims to 
extract information from clinical trial reports [17], and the RobotReviewer tool 
can automate the risk of bias assessment for RCTs [18]. 
 
9.3.8 Synthesis and write-up of final reports 
While writing the report is currently beyond the capacity of even the most 
advanced systematic review AI system, some tools do aim to write text around 
the results of a statistical meta-analysis. Slightly more prosaically, it is 
recognized that many sections of a systematic review report standard 
processes; and standardized wording might be entirely appropriate. Currently, 
support for the needs of LSRs, where information about new studies 
automatically appear in the right part of the report, is scant, with few 
alternatives available beyond those for standard systematic reviews. 
 
9.4 Creating surveillance systems with how automation tools 
Until now, this chapter has considered how individual automation technologies 
can improve the efficiency of existing tasks and support an LSR workflow. 

http://opencitations.net/
https://www.crossref.org/
https://opencitations.wordpress.com/2017/11/24/elsevier-references-dominate-those-that-are-not-open-at-crossref
https://opencitations.wordpress.com/2017/11/24/elsevier-references-dominate-those-that-are-not-open-at-crossref
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However, the real potential of these technologies, and the promise to bring 
about fundamental changes to the way is evidence is identified, lies in joining 
them together. 
 
Consider the workflow depicted in Figure 9.2. This shows the key steps 
involved in the information retrieval and curation aspects of the review in a 
continuous process from a 'federated search' through to 'synthesis'. Outlined 
here is a 'living' process which maintains and enables a constant surveillance 
of the evidence as it becomes available whether as, for example, published 
papers or registrations in trials registries. One critical difference between the 
'micro' systems described above and the workflow in Figure 9.2 is that a full 
surveillance system operates across wide areas of research, rather than 
individual reviews; it is concerned with the up-front identification of evidence at 
scale, rather than the one-off processes which accompany the traditional 
systematic review process. Instead of reviewers having to periodically 
interrogate multiple sources to identify whether any relevant evidence has 
been published, there is now the promise of a system that can prospectively 
signal when new evidence is available. 
 
Conceptualizing evidence discovery as an up-front process across a domain 
brings economies of scale. For example, the need for sensitive searches 
leads to the same studies being examined multiple times by people doing 
different but related systematic reviews across the globe; for reviews aiming to 
find RCTs, the same assessments are being made numerous times. 
Currently, there is no system for ensuring that these assessments do not need 
to be made the next time a given study is retrieved, and so systematic 
reviewers frequently duplicate one another’s work. If however, knowledge 
generated about a study (whether automated or manual) contributed to a 
domain-wide map of the evidence base, we would know that if a study is 
relevant for a particular review then it is also not relevant for many other 
reviews. Thus, a full surveillance system uses information about a study’s 
relevance to answer one question to know simultaneously that it is not 
relevant for others. 
 
Figure 9.2 Living Systematic Review and evidence surveillance workflow 
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One vision for an integrated system is that it involves automated:  

 searches of major databases  

 de-duplication 

 full text retrieval 

 assignment of new research to appropriate reviews 

 data extraction 

 synthesis.  
 
While the synthesis is unlikely to be as reliable as a human-controlled 
process, it may be sufficient to indicate whether the 'new' study is likely to 
change the review’s conclusions. For example, if an automated system is able 
to estimate the size of a study – and the direction of its effect – it might be 
able to alert authors as to the likely impact of the new study in a given review. 
As the description of tools above has indicated though, the current state of 
tool development, the limited availability of APIs and the difficulty of obtaining 
full-text content held behind paywalls, means that a fully automated system is 
currently unachievable. 
 
Full automation may not be a necessary, or even desirable, goal for an 
effective evidence surveillance system, if moving towards an integrated 
process (that minimizes the duplication of effort and identifies relevant studies 
up-front) brings significant efficiencies on its own. Critical to the success of 
such a system are effective tools to ensure knowledge is shared between 
reviews and not lost; and a good interaction between human and machine 
effort to maximize the benefit that is gained from human input and minimize 
the expenditure of human effort on tasks which can be automated. Case 
studies 9.1 and 9.2 describe how two evidence surveillance systems are 
being created to put these innovative ideas into practice. 
 

Case study 9.1 Cochrane Evidence Pipeline 
 

Federated 
search

De-duplication
Classification 

(eligibility 
assessment)

Full text retrieval

Full text parsing
Identification of 
segments of text

Classification 
(e.g. PICO)

Key information 
extraction (e.g. # 

participants)

Structured data 
extraction (e.g. 

tables)
Synthesis

Alert: this review 
/ guideline may 
need updating
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Introduction 
The Cochrane Collaboration is an international collaboration of clinicians, 
researchers, patients, policymakers and others who are concerned with 
evidence-based decision-making to improve people’s health. Central to the 
work of the collaboration is the production of rigorous systematic reviews 
which are published in an online library. There are over 7,500 systematic 
reviews, a significant effort on the part of Cochrane’s many thousands of 
volunteer contributors. Ensuring these reviews are up-to-date so they 
continue to be useful for decision makers is an even more formidable 
challenge.  
 
Duplication of effort is a problem across Cochrane, with individual reviewers 
and review teams using different systems for their reviews. Cumulatively, 
they have probably screened more than 40 million references over the past 
20 years to find RCTs (mostly) for inclusion in Cochrane reviews; yet there 
have probably been little more than 1 million RCTs conducted so far in 
human history. It would be much more efficient to find and collate all RCTs 
and for reviewers to look in this limited pool, than to continually pour over 
the same records, making the same decisions about a reference’s eligibility. 
 
This is the problem that the Cochrane Evidence Pipeline has been designed 
to solve. As Figure 9.3 shows, research enters the pipeline at the top of the 
graphic and ends in the Cochrane Register of Studies (CRS) ready for 
inclusion in systematic reviews. In between are a number of stages which 
enrich the study record with additional information. Critically though, this is a 
mixture of human and machine effort: no part of the process is expected to 
be fully automated. 
 
At the start of the process, research reports enter the Pipeline, typically 
these are references to articles indexed in bibliographic databases. Of 
increasing importance is Cochrane’s centralized search service, in which 
monthly searches of key databases feed a constant stream of new research 
into the system. Not all databases have an API though, so research enters 
the pipeline through a mixture of automated and manual searches. 
Importantly though, the aim is for sensitive searches to be carried out up-
front, outside the process of any individual review. 
 
What type of study is this? 
The first piece of data enrichment to be applied is the type of study that the 
report describes. Systematic reviews commonly rely on particular study 
types to answer specific questions, so identifying the right types of study is 
more important for a database like the Cochrane Register of Studies than a 
more generic database, such as MEDLINE. The Pipeline is currently 
focused on the identification of RCTs and has a machine learning classifier 
which is able to distinguish between RCTs and non-RCTs accurately.[15, 
19] This classifier was built with data from Cochrane Crowd 
(http://crowd.cochrane.org/index.html), a citizen-science platform where 
volunteers help with specific data curation activities (called 'micro-tasks'), 
including classifying abstracts according to whether they describe RCTs or 

http://crowd.cochrane.org/index.html
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not. An agreement algorithm ensures a high degree of collective accuracy 
with sensitivity and precision both exceeding 99%. Research is first 
classified by the machine; those records that the machine classifier rates as 
possibly describing RCTs are then examined by Cochrane Crowd, and a 
final determination made as to their eligibility. There is a pleasing symbiosis 
to this machine-Crowd interaction: the initial machine algorithm that was 
derived from the efforts of the Crowd is now deployed to reduce the number 
of abstracts that the Crowd needs to assess. As the dataset examined by 
the Crowd grows, so the accuracy of the machine algorithm improves in a 
virtuous circle that is freeing up Crowd resource for other tasks. Other 
machine classifiers include one to identify systematic reviews and economic 
evaluations. 
 
This work in identifying RCTs is already saving reviewers' time and reducing 
duplication of effort. An increasingly large dataset of previously assessed 
records is being accumulated against which new search results can be 
checked. A Cochrane Information Specialist can upload their search results 
to the database and have them automatically matched against existing 
records. A record already assessed as not describing an RCT can be 
discarded without further manual checks. Remaining records can then be 
assessed by the machine-Crowd service, leaving very few for review 
authors to examine.[20] 
 
What is this study about? 
While identifying the study type is already saving significant reviewer effort, 
the LSR process depends on identifying studies relevant to specific reviews. 
The next item in the pipeline – the enrichment of data by identifying PICO 
(Population, Intervention, Comparison, and Outcome) characteristics – aims 
to achieve this. PICO precisely describes the scope of a review and is often 
used as the organizing framework for search strategies. If it were possible 
to classify research studies according to their PICO, it would be possible to 
pre-allocate them to reviews, thus not only facilitating the updating of 
existing reviews, but identifying where there might be gaps in the 
synthesized evidence. As described in Chapter 8, the Cochrane 'linked data' 
project has developed a model which encapsulates the PICO structure of 
clinical trials and a standardized vocabulary to describe their elements in 
detail.[21] Developing the standardized vocabulary is a significant effort and 
an ongoing task: it is linked to terms used in other major thesauri (e.g. 
SNOMED CT, MedRA and RxNorm) and contains many hundreds of 
thousands of terms. 
 
Figure 9.3 Cochrane Evidence Pipeline 
See the final published chapter for a copy of Figure 9.3. 
 
It is already possible to automate the identification of the broad area of a 
study (e.g. the article is about treatments for heart disease or injuries) but 
being able to detect the detailed PICO terms (e.g. the article is about men 
aged over 65 at high risk of heart attack) is a challenging task for 
automation alone, and so human and machine are again working together 
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on this problem. At the time of writing, many thousands of Cochrane 
reviews and their included studies have had their PICO manually classified 
by Cochrane information specialists, thus providing valuable training 
material for machine learning. In addition, Cochrane Crowd has recently 
launched a new task which involves identifying specific concepts in 
abstracts and associating them with PICO elements. Alongside this, 
machine learning work is analysing the training data and attempting to 
automate the PICO predictions. Overall accuracy is approaching 50%, 
which may not yet be sufficient for global roll-out, but does represent good 
progress, considering how challenging this classification task is (bearing in 
mind there are hundreds of thousands of terms for the machine to learn 
from very little training data).[22] 
 
What are the data? 
The final piece of metadata enrichment in the Evidence Pipeline is related to 
data extraction. Here we have focused mainly on one of the most time-
consuming and error-prone aspects of the process, namely the extraction of 
numeric data. There are two tools under development: one for extracting 
structured data from tables in PDF documents, and the other for extracting 
numeric data from graphs. Neither tool aims to be completely automated, 
but both aim to reduce manual effort by providing some automation, for 
example by having users check results of the machine automation and 
undertake aspects of the process which would be unreliable if left fully 
automated. 
 
After the various machine and human processes have enhanced the study 
record, it is saved in the CRS database and is ready for use in reviews. The 
ultimate aim is for authors to receive automated alerts when new content is 
available in their area. 

 

Case study 9.2 The Human Behaviour-Change Project 
 
The Human Behaviour-Change Project 
(http://www.humanbehaviourchange.org) shares some characteristics with 
the Cochrane Evidence Pipeline but aims to take the automation one stage 
further into the synthesis itself. It is funded by a grant from the Wellcome 
Trust, and is being carried out by a consortium of behaviour change experts 
from UCL (principal investigator: Professor Susan Michie), and computer 
scientists from IBM Research, Dublin and UCL.[23] 
 
The project is concerned with the discipline of behaviour change, since 
changing people’s behaviour is key across a range of social, health and 
environmental challenges. It is asking the overarching question: which 
interventions are effective (for whom, in which circumstances) for achieving 
behaviour change? In order to help researchers and decision-makers to 
answer this question it is developing a system that will produce 
recommendations for potentially useful interventions based on the extant 
behaviour change literature. 
 

http://www.humanbehaviourchange.org/
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The system thus requires some of the same components as the above 
Cochrane Evidence Pipeline: it needs a system for locating and keeping up 
to date with research evidence, processes to organize the research, and a 
system for synthesizing the evidence and making recommendations to 
users. The first component for locating research is similar to that employed 
in the Cochrane Evidence Pipeline: a continuous feed of research. Again, in 
common with the previous example, an ontology is needed to organize the 
literature and in this case, an ontology of behaviour change interventions is 
being developed and widely consulted upon. Research papers are being 
annotated according to this ontology in order to provide training data for 
machine learning systems.  
 
This annotation work is designed with future automation in mind and 
involves selecting specific pieces of text in research reports and associating 
these snippets of text with a given classification in the ontology (e.g. a 
section in the description of the intervention which communicates to the 
reader which type of behaviour change intervention is being used). As an 
example, one behaviour change technique involves the 'self-monitoring of 
behaviour'. This classification has been applied to the following text from 
three studies:  

 'messages are interactive and prompt users to track smoking, report 
on cravings, and provide smoking status'. 

 'examples of behavioural treatment strategies used include providing 
personalized feedback about use of alcohol including comparison of 
personal level of use to peer norms'. 

 'participants learned about their smoking habit by writing down time 
of day, situation, and perceived need for every cigarette smoked 
before smoking cessation'.  

 
Based on these snippets of text (among many others), machine learning 
systems can then learn to recognize similar pieces of text and make the 
association with, in this case, the type of behaviour change intervention 
being described. The project also aims to automate the process of 
recognizing and extracting results from tables in documents. This is 
necessary to automate the extraction of accurate statistics describing study 
findings. 
 
The final component of the project is the system for generating inferences 
and recommendations for users which are generated by the system reading 
across the entire field of literature. In order to automate the synthesis of 
research in this way, the system will need to have achieved a very high 
level of reliability in terms of the detailed classification and extraction of 
results from studies. It will then synthesize the results across studies in 
order to generate recommendations using methods which are similar to 
those employed in existing methods for network meta-analysis (e.g. [24]). 
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9.5 Future directions 
Case studies 9.1 and 9.2 are both part of a vision for a future of evidence 
curation and synthesis workflow, which changes the current process of 
evidence discovery in quite fundamental ways. 
 
First, the task of locating evidence is taken outside the process of individual 
reviews. Instead, research is identified as soon as it is published (or registered 
in registries of trials) and the record enhanced with sufficient information to 
know in which systematic review(s) it might be relevant. 
 
Second, the classification systems being developed and applied go beyond 
the usual indexing that takes place in some databases (e.g. MeSH and 
Emtree tagging) because they are more structured and use orientated i.e. the 
domain models for PICO and behaviour change allow the research to be 
described in ways which precisely describe the characteristics required for 
synthesis. In the Cochrane Evidence Pipeline, the aim is for the search for 
relevant studies to start and end with the specification of a PICO question. 
When the PICO for a given review has been searched for, the system should 
locate a small number of studies with high precision and recall, greatly 
truncating the current lengthy search and screen process. 
 
The case studies also point to changes in working practices necessary to 
make them a reality. Both systems rely on the up-front identification of 
research and seek to eliminate (or at least reduce) the current duplication of 
effort across review teams. Implementing systems that will achieve these 
gains in productivity requires both technical interoperability and organizational 
willingness to invest in systems which facilitate data sharing. At an 
organizational (and inter-organizational) level there needs to be investment in 
the up-front organization of research. If the systems are to be sustainable, and 
not require more human effort than can reasonably be made available, tasks 
which are amenable to automation will need to be automated. If automation 
efficiencies are to be realized, then specific training data sets will also need to 
be created, requiring both a commitment to this model of research curation, 
and investment in human annotation. The term 'evidence ecosystem' is 
quickly gaining currency, as it aims to encapsulate this new dynamic of a 
global system of linked data which has been organized to facilitate its reuse. 
 
The most obvious gains in efficiency appear to come from improving the 
global discovery and curation of research for use in systematic reviews and 
decision-making. However, case study 9.2 also points to a world where the 
synthesis of research itself may also change in the future. AI systems, which 
digest vast quantities of information and make recommendations for practice, 
are becoming commonplace and systems which digest data and suggest 
treatments, diagnoses and prognoses (e.g. IBM Watson Oncology 
(https://www.ibm.com/watson/health/oncology-and-genomics/oncology)) are 
being deployed in practice settings. Despite their possible pivotal and game-
changing role, these systems are rarely evaluated in traditional RCTs, and 
one important issue for future research is to develop methodologies and 
regulatory expectations for this new generation of decision aids. 

https://www.ibm.com/watson/health/oncology-and-genomics/oncology
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9.6 Conclusion  
This chapter has examined moves towards the automation of systematic 
reviews and the developments underway to support living systematic reviews 
and guidelines. These processes can be seen as strategic shifts towards 
evidence surveillance systems which change traditional systematic review 
methods, moving some elements of study identification outside the processes 
of any individual review. Few automation systems operate entirely 
autonomously, and most require human intervention in order to achieve 
acceptable levels of performance. Realizing a new dynamic ‘ecosystem’ of 
research evidence will require organizational investment, a willingness to 
share data, and a more strategic and use-orientated way of understanding 
evidence curation. 
 
9.7 Suggestions for further reading 
Akl EA, Meerpohl JJ, Elliott J, et al. (2017) Living systematic reviews: 4. Living 
guideline recommendations. Journal of Clinical Epidemiology 91. 
 
Elliott JH, Synnot A, Turner T, et al. (2017) Living systematic review: 1. 
Introduction—the why, what, when, and how. Journal of Clinical Epidemiology. 
 
Jonnalagadda SR, Goyal P and Huffman MD (2015) Automating data 
extraction in systematic reviews: a systematic review. Systematic Reviews, 
Systematic Reviews 4(1): 78. 
 
Michie S, Thomas J, Johnston M, et al. (2017) The Human Behaviour-Change 
Project: harnessing the power of artificial intelligence and machine learning for 
evidence synthesis and interpretation. Implementation Science, 
Implementation Science 12(1): 121. 
 
O’Mara-Eves A, Thomas J, McNaught J, et al. (2015) Using text mining for 
study identification in systematic reviews: a systematic review of current 
approaches. Systematic Reviews 4(1): 5. 
 
Simmonds M, Salanti G, McKenzie J, et al. (2017) Living systematic reviews: 
3. Statistical methods for updating meta-analyses. Journal of Clinical 
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Thomas J, Noel-Storr A, Marshall I, et al. (2017) Living systematic reviews: 2. 
Combining human and machine effort. Journal of Clinical Epidemiology 91: 
31–37. 
 
Tsafnat G, Dunn A, Glasziou P, et al. (2013) The automation of systematic 
reviews. Bmj 346(jan10 1): f139–f139. 
 
Tsafnat G, Glasziou P, Choong MK, et al. (2014) Systematic review 
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Wallace BC, Trikalinos TA, Lau J, et al. (2010) Semi-automated screening of 
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