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Abstract—Weather and atmospheric patterns are often per-
sistent. The simplest weather forecasting method is the so-called
persistence model, which assumes that the future state of a system
will be similar (or equal) to the present state. Machine learning
(ML) models are widely used in different weather forecasting
applications, but they need to be compared to the persistence
model to analyse whether they provide a competitive solution to
the problem at hand. In this paper, we devise a new model for
predicting low-visibility in airports using the concepts of mixture
of experts. Visibility level is coded as two different ordered
categorical variables: cloud height and runway visual height. The
underlying system in this application is stagnant approximately in
90% of the cases, and standard ML models fail to improve on the
performance of the persistence model. Because of this, instead of
trying to simply beat the persistence model using ML, we use this
persistence as a baseline and learn an ordinal neural network
model that refines its results by focusing on learning weather
fluctuations. The results show that the proposal outperforms
persistence and other ordinal autoregressive models, especially
for longer time horizon predictions and for the runway visual
height variable.

Index Terms—mixture of experts, persistence model, dynamic
systems, ordinal classification, ordinal regression, autoregressive
models, neural networks, low-visibility

I. INTRODUCTION

The persistence model, commonly used for weather fore-
casting, assumes that the conditions at the time of the forecast
will remain unchanged, i.e. if it is rainy today, the persistence
model will predict that it will be rainy tomorrow as well.
This method works well when weather patterns change slowly
or weather is in a steady state, such as during the summer
season in the tropics. This not only applies to short-term
forecasting, but also for long range weather conditions (e.g.
monthly predictions). In the last years, rapid Artic warming
and uncommonly stationary waves of the jet stream have been
seen to favour these persistent weather patterns [1].

In some cases, persistence models are “hard to beat” by
more sophisticated weather forecasting methods because of
the stagnant dynamic of the system. This can happen even
when information about the previous states is included in the
prediction model. As an alternative to this problem, this paper
proposes the use of a strategy referred to in the literature as
mixture of experts (ME), based on the divide and conquer

principle. ME approaches assign different regions of the
problem space to different experts, which are then supervised
and managed by a gating function. Usually, the experts and
the gating function are learnt together in an optimisation
framework. The first expert that we consider is the persistence
model, which already successfully predicts the next state of
the system for most cases. The second expert is a machine
learning model that predicts the output of the system when the
persistence model is not accurate. Our model does not attempt
to simply beat the persistence model, but rather assumes
this persistent behaviour as a baseline and complement its
performance when more drastic changes occur.

The problem considered in this paper is that of predicting
low-visibility events at airports. Air transportation is probably
the most affected sector by foggy and misty periods, since
these events can dramatically restrict airport use and cause
flight delays, diversions and cancellations [2], or accidents in
the worst cases [3]. The meteorological services that support
air navigation systems prepare and disseminate terminal aero-
drome forecasts to support the aeronautical community when
dealing with airport low-visibility conditions. These forecasts
are used for pre and intra-flight planning and can help air
traffic managers to activate procedures to ensure safe air oper-
ations during these events. However, forecasting low-visibility
conditions is not an easy task, mainly because fog formation
is very sensitive to small-scale variations of atmospheric vari-
ables. For this reason, aeronautical meteorological forecasters
need normally to integrate different sources of information to
provide a robust prediction of low-visibility events. Recently,
machine learning methods are gaining popularity for this
task and they are being used to help forecasters improve the
prediction of reduced visibility events at airports facilities [4],
[5], [6].

We evaluate the performance of our ME machine-learning
model to forecast the runway visual range and cloud height at
the airport, both of which are crucial variables to determine
low-visibility conditions. Contrary to previous approaches, the
problem is tackled as an ordinal classification problem by
discretising the time series in different categories. Given that
four categories or ranges are enough for obtaining practical
information, the main advantage of using this discretisation



is the corresponding simplification of the prediction problem.
The order of the categories implies the use of ordinal classi-
fiers [7], which are specifically designed for minimising the
deviation of the predicted categories from the actual ones.

The methodology is tested with data collected at the
Valladolid airport (Spain), which shows a persistence of
approximately 90% for hourly prediction. We evaluate the
performance of our models at different time spans and with
different window sizes. The prediction is performed using
7 atmospheric variables. Our results show that persistence
model can be successfully complemented by machine learning,
leading to a superior performance, specifically for long-term
prediction, which is indeed necessary for successful airport
managing.

The rest of the paper is structured as follows: Section
II introduces the proposed mixture of experts, Section III
describes the datasets used, the experiments performed and
the results obtained, and finally, Section IV outlines some
conclusions and future work.

II. METHODOLOGY

This section presents the mixture of experts model proposed.

A. Previous notions

Our dataset D is composed of a set of weather-related
exogenous variables x and an output label y which con-
tains information about airport visibility, so that D =
{(x1, y1), . . . , (xN , yN )}. We study the prediction of runway
visual range (RVR) and cloud height (CH), both of which
are further described in Section III-A. These variables are
discretised in classes, given that the application at hand
might only requires a coarse-grain prediction and this greatly
simplifies the prediction task. A common way of discretising
a variable is:

yt =


C1, if −∞ < rt < R1,

C2, if R1 ≤ rt < R2,

...

CQ, if RQ−1 ≤ rt < −∞,

(1)

where rt is the real value being observed, and R1, . . . , RQ−1

are a set of thresholds defined by the experts. The classes
then are known to follow a specific order of the form
C1 ≺ C2 ≺ . . . ≺ Cq , which can be tackled by a machine
learning paradigm know as ordinal classification. This order
derives a corresponding misclassification cost, since one aims
to minimise the misclassification between classes further apart
in the scale.

B. Proposed mixture of experts

Our aim is to learn a model that complements the persis-
tence in the cases when weather patterns are not stationary.
Although we propose a probabilistic model, with a different
probability equation for each class, we will start defining it as
a regression model to ease its understanding. The mixture of
experts that we look for takes the following the form:

yt+k = α(zt) · f1(zt) + (1− α(zt)) · f2(zt), k ≥ 1 (2)

where the function α is a probabilistic gating function that
decides whether we want to use f1 or f2 (i.e. the experts) to
predict the output at yt+k, and k is the prediction horizon.
The prediction is made based on zt, which we define as
{xt−∆, yt−∆, . . . ,xt, yt}, where ∆ is the window size, i.e.
the number of instants we use for the prediction.

In our case, since we know that the underlying dynamic of
our system is mostly stationary, we define f1 as the persistence
model, i.e. ŷt+k = f1(zt) = yt. f2 is then defined as an
expert on the patterns that f1 fails to predict. Eq. 2 can be
thus rewritten as:

yt+k = α(zt) · yt + (1− α(zt)) · f2(zt), (3)

where yt is known and α and f2 needs to be optimised. We
define f2 as an autoregressive neural network and α as an
autoregressive logistic regression function. Both functions can
be optimised together through gradient descent.

Given that we are dealing with a classification problem, we
need to adapt Eq. 3 and separately estimate the probability
that a pattern yt+k belongs to Cq:

P (yt+k = Cq|zt,ν,κ) = α(zt,ν) · [[yt = Cq]] + . . . (4)
+(1− α(zt,ν)) · Pnet(yt+k = Cq|z,κ),

where [[·]] is a boolean test returning 1 if the condition is true
(0 otherwise) and represents the persistence for each individual
probability, Pnet(yt+k = Cq|zt,κ) is a probabilistic autore-
gressive neural network (which will be further detailed in
Section II-D) with parameters κ, and α(zt,ν) is a probabilistic
autoregressive logistic regression model with parameters ν,
i.e.:

α(zt,ν) =
1

1 + exp(−νT · (1, zt))
= σ(νT · (1, zt)),

where σ(x) is the sigmoid function. The class predicted will
be given the maximum a posteriori probability:

ŷt+k = arg max
Cq

P (yt+k = Cq|zt,ν,κ).

C. Learning the free parameters

We propose two schemes for optimising the parameters κ
and ν, which are detailed below.

1) Independent training: The most simple strategy for
optimising these parameters is to train them independently
following these steps:

1) Run ŷt+k = yt (i.e. compute f1) through D.
2) Identify problematic cases Z = {zn1

, . . . , znp
}, i.e.

patterns for which the persistence model does not predict
the result accurately such that yt+k 6= yt.

3) Define C = {(z1, c1), . . . , (zN , cN )}, where ci is de-
fined as 0 if the pattern is problematic, and 1 otherwise.

4) Learn α(zt,ν) using C, which is a binary problem. We
consider a standard logistic regression learner.

5) Train f2 only on problematic cases, P =
{(zn1

, yn1+k), . . . , (zn1
, ynp+k)}. The error function

and the neural network model used are similar to the
ones explained in the next subsection.



This strategy focuses the neural network component only on
problematic cases and does not consider potential interactions
between both the logistic regression model and the network.

2) Simultaneous training: To obtain the best potential of
this mixture of experts, it is desirable to optimise both models
α and f2 together. A convenient strategy is thus to apply
gradient descent over the whole parameter vector s = {ν,κ}
with the training set D.

The cross-entropy function can be minimised for this pur-
pose:

LO(s, D) = − 1

N

N∑
t=1

Q∑
q=1

[[yt+k = Cq]] log ptq,

where ptq = P (yt+k = Cq|zt,ν,κ) is the estimation of
probability given by Eq. 4. The gradient descent technique
used is the iRprop+ algorithm, which usually provides robust
performance [8].

Given that the datasets are moderately imbalanced (see
Section III-A), we also include different costs for the classes
of the problem, according to their a priori probability:

LW(s, D) = − 1

N

N∑
t=1

Q∑
q=1

oq[[yt+k = Cq]] log ptq,

where oq = 1− Nq

N , and Nq is the number of patterns of class
Cq . We also include L2 regularisation in the error function to
avoid overfitting, so that the final cost is:

L(s, D) = LW(s, D) + λ ·
S∑

i=1

s2
i , (5)

where S is the total number of parameters and λ is the
regularisation parameter.

Now we detail the derivatives of the error function with
respect to the network parameters. The gradient vector is given
by:

∇L(s, D) =

(
∂L(s, D)

∂s1
,
∂L(s, D)

∂s2
, . . . ,

∂L(s, D)

∂sS

)
.

Considering Eq. 5, each of the components can be defined
as:

∂L

∂si
= − 1

N

N∑
t=1

Q∑
q=1

oq[[yt+k = Cq]]

ptq
· ∂ptq
∂si

+ 2si,

where i = 1, . . . , S. For the logistic regression parameters,
these derivatives are given by:

∂ptq
∂νi

= σ′(h)[[yt = Cq]]− σ′(h)pnetnq,

where h = νT · (1, z), σ′(x) = σ(x)(1− σ(x)), and pnetnq =
Pnet(yt+k = Cq|zt,κ). The specific model for pnetnq and the
corresponding derivatives will be detailed in next subsection.

D. Proportional Odds Model Neural Network (NNPOM)
This section defines the neural network component in our

model (f2). As stated before, labels are ordered, which en-
courages the use of an ordinal classification model [9]. In
this paper, we adopt a probabilistic framework and consider
the Proportional Odds Model Neural Network (NNPOM) pre-
sented in previous research [10], [11]. NNPOM is a threshold
model, i.e. it approaches ordinal classification by trying to
estimate the latent variable originating the different ordinal
categories and learning a set of thresholds discretising this
variable. Threshold models have been seen to perform well
when categories come from a discretised variable [7].

NNPOM extends the Proportion Odds Model (POM) [12],
which, at the same time, is an extension of binary logistic re-
gression. NNPOM predicts cumulative probabilities P (yt+k �
Cj |zt), which can be used to obtain direct probability estima-
tions as:

P (yt+k � Cq|zt) =

q∑
j=1

P (yt+k = Cj |zt),

P (yt+k = Cq|zt) = P (yt+k � Cq|zt)− (6)
− P (yt+k � Cq−1|zt),

with q = 2, . . . , Q, and considering by definition that
P (yt+k = C1|zt) = P (yt+k � C1|zt) and P (yt+k �
CQ|zt) = 1. NNPOM assumes a logistic function for the
distribution of the random error component of the latent
variable, giving rise to:

P (yt+k � Cq|zt) = σ(f(zt,θ)− bq), (7)

where q = 2, . . . , Q− 1, bq is the threshold for class Cq , and
f(zt,θ) is the projection of the model for pattern zt. The
following constraints must be satisfied: b1 ≤ . . . ≤ bQ−1,
in order to ensure the monotonicity of the cumulative proba-
bilities. However, we can apply unconstrained optimisers by
defining the thresholds as:

bq = b1 +

q∑
j=2

a2
j

with padding variables aj , which are squared to make them
positive, and b1, aj ∈ R.

Considering Eq. 6 and 7, the probabilities estimated by
POM and NNPOM are defined in the following way:

P (yt+k = C1|zt) =σ(f(zt,θ)− b1),

P (yt+k = Cq|zt) =σ(f(zt,θ)− bq)− σ(f(zt,θ)− bq−1),

q ∈ {2, . . . , Q− 1},
P (yt+k = CQ|zt) =1− σ(f(zt,θ)− bQ−1).

The main difference between POM and NNPOM is found
in f(zt,θ): POM estimates the latent variable as a linear
model of the inputs, f(zt,θ) = θT · (1, zt), while a linear
combination of nonlinear basis functions (hidden neurons) is
assumed for NNPOM:

f(zt,θ) =

M∑
j=1

βjBj(zt,wj),



Fig. 1: Structure of the NNPOM model, including one output
node with different biases, M hidden nodes and k input nodes

where M is the number of hidden units, θ = {β,W},
β = {β1, . . . , βM}, W = {w1, . . . ,wM}, and Bj(zt,wj)
can be any type of basis functions, in our case, sig-
moidal units, Bj(zt,wj) = σ(wT

j · (1, zt)), where wj =
{wj0, wj1, . . . , wjI}, I is the number of inputs and w0 is
the bias. The final parameter vector of NNPOM is defined as
κ = {β,W, b1, a2, . . . , aQ−1}. The structure of the NNPOM
model is detailed in Fig. 1.

To ease the notation, we define ptq = Pnet(yt+k =
Cq|zt,κ), gtq = g(xt,κ) = σ(ft − bq) and ft = f(xt,β,W).
According to Eq. 6, the derivatives of the probability function
can be specified by:

∂pt1
∂si

= σ′(gt1)
∂gt1
∂si

,

∂ptq|1<q<Q

∂si
= σ′(gtq)

∂gtq
∂si
− σ′(gt(q−1))

∂gt(q−1)

∂si
,

∂ptQ
∂si

= −σ′(gt(Q−1))
∂gt(Q−1)

∂si
,

where si ∈ κ.
The derivatives for gtq (i.e. si ∈ {β,W}) are the standard

ones for multilayer perceptrons:
∂gtq
∂βj

=
∂ft
∂βj

= Bj(zt,wj),

∂gtq
∂wji

=
∂ft
∂wji

= βjσ
′(wT

j · (1, zt))zti,

where i ∈ {1, . . . , I}, j ∈ {1, . . . ,M}, and I is the number
of input variables.

For the threshold and padding parameters, the derivatives
are:

∂gtq
∂b1

= −1,
∂gtq
∂aj

=

{
0, if q < j,

−2aj , otherwise.

where j ∈ {2, . . . , Q− 1}.

TABLE I: Number of patterns and class distribution of the
datasets for different time horizons (k) and window sizes (∆).

Dataset: CH

# Patterns Distribution

∆ = 1, k = 1 5974 [4178, 1170, 626]
∆ = 1, k = 3 5261 [3749, 1017, 495]
∆ = 1, k = 6 4200 [3156, 747, 297]
∆ = 3, k = 1 5258 [3746, 1017, 495]
∆ = 3, k = 3 4549 [3350, 848, 351]
∆ = 3, k = 6 3489 [2751, 520, 218]
∆ = 5, k = 1 4546 [3347, 848, 351]
∆ = 5, k = 3 3837 [2957, 628, 252]
∆ = 5, k = 6 2779 [2254, 351, 174]

Dataset: RVR

# Patterns Distribution

∆ = 1, k = 1 8520 [7199, 903, 312, 106]
∆ = 1, k = 3 8518 [7197, 903, 312, 106]
∆ = 1, k = 6 8515 [7194, 903, 312, 106]
∆ = 3, k = 1 8518 [7197, 903, 312, 106]
∆ = 3, k = 3 8516 [7195, 903, 312, 106]
∆ = 3, k = 6 8513 [7192, 903, 312, 106]
∆ = 5, k = 1 8516 [7195, 903, 312, 106]
∆ = 5, k = 3 8514 [7193, 903, 312, 106]
∆ = 5, k = 6 8511 [7190, 903, 312, 106]

III. EXPERIMENTS

This section presents the performance of the previously
presented approaches for low-visibility events prediction and
analyses the results obtained.

A. Data description

The datasets used consider the prediction of low-visibility
events at Valladolid airport, Spain (41.70 N, 4.88 W). This
airport is well-known for its foggy days. Due to its geograph-
ical and climatological characteristics, radiation fog is very
frequent [13]. A detailed Valladolid airport climatology can
be found in [14].

In order to have in-situ information about the most basic
parameters involved in radiation fog events at the airport,
we used meteorological data obtained from the two runway
thresholds. Landing operating minima are usually expressed
in terms of a minimum decision height and a minimum
runway visual range (RVR) value. RVR is a meteorological
parameter measured at the aerodrome, but decision height is
not a meteorological variable that can be estimated, as it is
a reference for the pilots to decide whether or not continue
with the landing. The closer meteorological variable is cloud
height (CH), which can be generally found in aerodrome
METAR reports. Consequently, we consider the prediction of
RVR and CH at the airport. These two variables are critical to
determine the acceptable minima for landing operations under
different categories of Instrument Landing System (so-called
CAT I, CAT II and CAT III). They are also crucial to help
airport managers activate low visibility procedures. To obtain
the values of these variables, we use direct measurements
from three visibilimeters deployed along the airport runway
(touchdown zone, the mid-point and stop-end of the runway).



TABLE II: Mean test results obtained by the different methods compared for CH and RVR and different time horizons (k) and
window size (∆).

Dataset: CH Method Acc AMAE MMAE GM Dataset: RVR Method Acc AMAE MMAE GM

∆ = 1, k = 1 Persist 87 .36 0.2087 0 .2866 81.54 ∆ = 1, k = 1 Persist 89.80 0.3776 0.5711 63.34
POM 87.16 0.2323 0.3307 78.79 POM 90.76 0 .3808 0 .5746 62 .73

NNPOM 86.52 0.2519 0.3817 76.81 NNPOM 90.55 0.4489 0.7927 52.66
ITME 87.32 0 .2091 0 .2866 81 .52 ITME 89.64 0.4643 0.9227 55.35
STME 87.41 0.2340 0.3475 79.63 STME 90 .66 0.4185 0.6444 58.76

STMEIC 85.93 0.2130 0.2832 81.31 STMEIC 86.98 0.3939 0.6149 61.77

∆ = 1, k = 3 Persist 77.44 0.3759 0.5141 67.22 ∆ = 1, k = 3 Persist 83.74 0 .7239 1 .2927 37 .68
POM 77.02 0.5181 0.9767 35.63 POM 85.88 0.9250 1.8635 7.42

NNPOM 74.98 0.5719 1.0173 43.82 NNPOM 85.29 0.8594 1.5876 31.44
ITME 77.17 0 .4168 0 .6290 64 .51 ITME 84.29 0.9178 1.8055 21.04
STME 77 .32 0.5055 0.8392 55.45 STME 85 .49 0.8583 1.6031 32.30

STMEIC 77.00 0.4222 0.7143 61.43 STMEIC 80.56 0.6849 1.2764 38.19

∆ = 1, k = 6 Persist 67.95 0.5000 0.6588 55.04 ∆ = 1, k = 6 Persist 79.94 0.9796 1.8381 23.13
POM 75 .36 0.7517 1.4683 0.00 POM 84.46 1.1937 2.4438 0.00

NNPOM 75.45 0.6630 1.2531 34.94 NNPOM 84.12 0 .9296 1.7808 27.93
ITME 72.31 0.7285 1.4201 27.70 ITME 84.09 1.0603 1.8855 19.51
STME 73.86 0.6302 1.1380 42 .75 STME 84 .18 0.9332 1 .7448 28 .02

STMEIC 70.48 0 .5895 1 .0624 41.58 STMEIC 78.55 0.8049 1.5195 32.02

∆ = 3, k = 1 Persist 87.36 0.2087 0.2866 81.54 ∆ = 3, k = 1 Persist 89.80 0.3776 0.5711 63.33
POM 87.02 0.2370 0.3395 78.26 POM 91.10 0 .3882 0 .5870 62 .66

NNPOM 86.64 0.2453 0.3775 76.45 NNPOM 90.46 0.4753 0.8415 51.10
ITME 87.53 0 .1959 0 .2728 82 .11 ITME 89.40 0.5015 1.0448 50.03
STME 87 .48 0.2216 0.3355 79.72 STME 90 .84 0.4345 0.7053 57.23

STMEIC 86.03 0.1939 0.2469 82.28 STMEIC 86.43 0.4159 0.6864 60.11

∆ = 3, k = 3 Persist 77.43 0 .3760 0.5141 67.22 ∆ = 3, k = 3 Persist 83.74 0.7240 1.2927 37.68
POM 77.41 0.5041 0.9228 45.94 POM 86.25 0.8956 1.8254 7.74

NNPOM 79 .28 0.4653 0.8050 54.68 NNPOM 86 .27 0 .6771 1 .2622 44.30
ITME 76.71 0.4810 0.8944 52.07 ITME 84.75 0.8585 1.6475 24.33
STME 79.81 0.4339 0.7271 60.38 STME 86.60 0.6890 1.3021 41.70

STMEIC 77.16 0.3556 0 .5476 67 .21 STMEIC 81.39 0.6002 1.1624 42 .08

∆ = 3, k = 6 Persist 67.95 0 .5000 0.6588 55.04 ∆ = 3, k = 6 Persist 79.94 0.9797 1.8381 23.13
POM 75.73 0.7147 1.3994 12.45 POM 84.47 1.1285 2.3229 0.00

NNPOM 80.40 0.5284 0.9666 50.90 NNPOM 84.31 0.7569 1.3973 41.15
ITME 76.02 0.6622 1.2550 32.95 ITME 84 .52 0.9720 1.7125 27.03
STME 79 .51 0.5535 0.9893 47.64 STME 85.14 0 .7347 1 .3259 43.41

STMEIC 71.93 0.4798 0 .7766 52 .74 STMEIC 78.29 0.6632 1.2319 43 .16

∆ = 5, k = 1 Persist 87 .35 0.2088 0.2866 81.53 ∆ = 5, k = 1 Persist 89.80 0.3776 0.5711 63.33
POM 86.73 0.2417 0.3448 77.79 POM 90.81 0 .4040 0 .6278 60 .64

NNPOM 86.77 0.2724 0.4476 72.89 NNPOM 90.16 0.4843 0.8467 51.15
ITME 87.92 0 .2139 0 .3076 80 .97 ITME 89.35 0.5316 1.1571 46.47
STME 87.35 0.2741 0.4578 75.13 STME 90 .74 0.4398 0.7318 56.88

STMEIC 85.37 0.2268 0.3314 78.97 STMEIC 86.26 0.4309 0.7244 58.19

∆ = 5, k = 3 Persist 77.42 0.3760 0.5141 67.21 ∆ = 5, k = 3 Persist 83.73 0.7240 1.2927 37.68
POM 77.71 0.5023 0.8952 48.51 POM 86.28 0.8737 1.7775 8.04

NNPOM 81.80 0.4801 0.8773 54.26 NNPOM 87 .10 0 .6217 1 .1599 50.13
ITME 78.02 0.5554 1.1021 39.50 ITME 85.10 0.8498 1.6264 26.04
STME 81 .36 0.4795 0.8542 53.76 STME 87.26 0.6247 1.1571 48 .72

STMEIC 77.33 0 .3786 0 .6406 63 .38 STMEIC 81.50 0.6129 1.2036 41.11

∆ = 5, k = 6 Persist 67.95 0.5000 0.6588 55 .04 ∆ = 5, k = 6 Persist 79.93 0.9796 1.8381 23.13
POM 75.47 0.7307 1.4406 12.41 POM 84.90 1.1021 2.2790 0.00

NNPOM 82 .78 0.5035 0.9189 52.64 NNPOM 85 .10 0.7345 1.3738 43 .22
ITME 77.46 0.6819 1.2438 34.67 ITME 84.40 0.9835 1.7932 27.56
STME 83.53 0 .4818 0.8678 54.80 STME 85.58 0 .7204 1 .3403 45.40

STMEIC 75.38 0.4630 0 .7646 55.44 STMEIC 78.15 0.6650 1.2552 42.72

These instruments are part of the Meteorological State Agency
of the Spanish aeronautical observation network. The complete
list of input variables considered in this study are the same for
both datasets: hour, temperature in Celsius, relative humidity
(%), wind speed (in KT) and direction (in sexagesimal degrees
true) in both runway thresholds (23 and 5 respectively),

and atmospheric pressure in hPa. We consider data at the
Valladolid airport from winter months (November, December,
January and February) of three periods (2009-2010, 2010-
2011 and 2011-2012). Hourly values of all the variables are
subsequently analysed in this study.

The discretisation of both variables (RVR and CH) follows



the simple scheme of Eq. 1, where the thresholds used for
RVR are R1 = 300m, R2 = 550m and R3 = 2000m,
resulting in four categories. On the other hand, for CH, the
discretisation thresholds are R1 = 200m and R2 = 1500m,
which results in three categories. Note that visibilimeters only
deliver precise RVR values when this parameter falls under
2000m. Otherwise the system codifies RVR values as 2000m.
This further motivated the use of ordinal classifiers, as the
corresponding regression problem would be ill-posed.

According with this discretisation, the number of patterns
for the two datasets is included in Table I along with the
class distribution. RVR data are measured with visibilimeters
located along the runway, while, for the estimation of CH,
human intervention is needed. This means that RVR is fully
available every hour, but the CH information is only available
when the airport is open (Valladolid airport is not a 24h
airport). That is the reason why the number of available data
is different for every variable.

B. Methods tested

The experimental validation of the methodologies presented
in this paper includes the following methods:
• Persistence model (Persist), i.e. predicting the label ob-

served in t for time t+ k.
• A probabilistic autoregressive ordinal model (POM) con-

sidering different time windows, which include the pre-
viously discussed variables (see Section III-A) from time
t−∆ to time t.

• The NNPOM method described in Section II-D with the
same autoregressive structure. All the methods proposed
with Mixture of Experts make use of this classification
algorithm for the neural network component.

• Independently Trained Mixture of Experts (ITME), as
detailed in Section II-C1.

• Simultaneously Trained Mixture of Experts (STME), as
described in Section II-C2, without including specific
costs for giving more weight to less frequent classes (i.e.
oq = 1,∀q).

• The same STME model but including imbalanced costs
(STMEIC).

C. Experimental setup

The time series evaluated includes data from 3 consecutive
winters. In order to better validate the methodologies and avoid
the dependence of the results on the specific training/test split,
we have performed 3 different splits. For each split, the data
from one winter forms the test set, while the other two winters
are used for training. Average and standard deviation results
are provided.

Different problems were derived according to the prediction
time horizon (parameter k in Eq. 2, where we set k = 1,
k = 3 and k = 6). Moreover, different input windows were
compared, depending on the number of steps before included
in the independent variables (∆ = 1, ∆ = 3 and ∆ = 5).
Consequently, a total of 18 different datasets were included
in our experiments (9 datasets for each variable). Note that

depending on the specific setup some data is not available
(for example, given that the CH data is available from 5am, a
∆ = 5 window means that the first prediction can be done at
10am).

All the models trained by gradient descent methods are
stochastic, because the results depend on the initialisation of
the parameter vector. Because of this, NNPOM, ITME, STME
and STMEIC were run 10 times, and the results reported are
the average performance values of the 10 final models.

The architecture and training parameters of the neural
network models (number of hidden nodes M , regularisation
parameter λ and maximum number of iterations iter) have
a decisive impact on the performance of the model. Opti-
mal values can vary for each dataset and even for different
training/test splits. The most reliable way of fitting these
parameters without favouring any method is applying a nested
cross-validation procedure and repeating the training process
using the value resulting in the best validation performance.
In this way, for NNPOM, ITME, STME and STMEIC, a
5-fold cross-validation model selection was applied, where
the ranges explored were: M ∈ {5, 10, 25, 50, 75}, iter ∈
{100, 250, 500, 1000}, λ ∈ {0, 0.001} (preliminary experi-
ments concluded that, for all datasets, higher regularisation
rates always led to worse results).

D. Performance evaluation

The following performance metrics have been considered in
the comparison of models:

• The accuracy (Acc) is defined by:

Acc =
100

N

N∑
i=1

[[ŷi = yi]],

where yi is the desired output for time instant i, ŷi is
the prediction of the model and N is the total number of
patterns in the dataset.

• The Mean Absolute Error (MAE) is a common metric
for ordinal classification problems which represents the
average deviation in absolute value of the predicted class
from the true class (considering the order of the classes
in the scale). According to [15], this measure should
modified in imbalanced datasets, by taking the relative
frequency of the classes into account. In this way, we have
evaluated the Average MAE (AMAE) and Maximum
MAE (MMAE) :

AMAE =
1

Q

Q∑
q=1

MAEq =
1

Q

Q∑
q=1

1

Nq

Nq∑
i=1

ei,

MMAE =
1

Q

Q
max
q=1

MAEq,

where ei = |O(yi) − O(ŷi)| is the distance between
the true and the predicted ranks, and O(Cq) = q is the
position of the q-th label. AMAE values range from 0
to Q− 1, and so do MMAE values.



• Finally, the geometric mean of the sensitivities of each
class (GMS) is a summary of the percentages of correct
classification individually obtained for each class:

GMS = Q

√√√√ Q∏
q=1

Sq,

where the sensitivities, Sq , are obtained as:

Sq =
100

Nq

Nq∑
i=1

[[ŷi = yi]], q ∈ {1, . . . , Q},

where Nq represents the number of patterns of class Cq .
This metric is also a standard for imbalanced problems.

TABLE III: Ranking results according to the predictive vari-
able considered (both, CH or RVR). The results for all
prediction horizons are averaged.

CH and RVR

Method Acc AMAE MMAE GM

Persist 4.22 2 .28 2 .14 2.17
POM 2 .89 4.94 4.94 5.06

NNPOM 2 .89 4.06 4.06 3.94
ITME 3.56 4.50 4.47 4.39
STME 1.72 3.44 3.44 3.17

STMEIC 5.72 1.78 1.94 2 .28

CH

Method Acc AMAE MMAE GM

Persist 3.78 1.67 1.39 1.33
POM 3.89 5.22 5.22 5.44

NNPOM 3 .00 4.67 4.67 4.56
ITME 3 .00 3.78 3.83 3.78
STME 1.89 3.78 3.89 3.67

STMEIC 5.44 1 .89 2 .00 2 .22

RVR

Method Acc AMAE MMAE GM

Persist 4.67 2 .89 2 .89 3.00
POM 1 .89 4.67 4.67 4.67

NNPOM 2.78 3.44 3.44 3.33
ITME 4.11 5.22 5.11 5.00
STME 1.56 3.11 3.00 2 .67

STMEIC 6.00 1.67 1.89 2.33

E. Results and discussion

The mean test results obtained by all the methods compared
in this paper can be found in Table II. Moreover, in order to
better summarise these results, Tables III and IV show the
test mean rankings in terms of all metrics for all the methods
considered in the experiments. For each dataset, a ranking of
1 is given to the best method and a 6 is given to the worst one.
More specifically, Table III shows the ranking for the different
problems, CH and RVR, and Table IV shows the results for
the considered prediction horizons.

Several conclusions can be drawn from these results:
• Table II shows how stagnant these variables are for the

two considered datasets (e.g. RVR being steady 90% of
the time for k=1). Moreover, it can be seen how the

prediction of these variables using the persistence model
deteriorates for larger time horizons.

• Both Tables III and IV show the difficulty in getting a
trade-off between all considered metrics, specifically Acc
and the rest of metrics.

• The obtained results in Table II can be said to be generally
satisfactory. For both datasets, we obtain relatively low
error in ordinal metrics, such as AMAE and MMAE,
and good performance both in Acc and GM . The perfor-
mance is usually better for CH than for RVR, which may
be because the prediction problem is simpler as there is
one class less and the dataset is less imbalanced. Even
although both datasets are imbalanced, in most cases no
class is completely misclassified (GM = 0.00).

• Note that the performance gain for larger window sizes
is not very high (comparing different ∆ values). This
is crucial for CH, given that, the unavailability of results
until airport is open limits the first hour when predictions
can be obtained, specially for large window sizes.

• Comparing POM and NNPOM to Persist in Table III,
it can be seen that in some cases ML models struggle
to reach the performance of the persistence. However,
NNPOM generally outperforms POM, as expected.

• The mixture of models using an independent optimisation
of the free parameters (ITME) does not achieve satis-
factory results, since in most cases it deteriorates the
performance of the persistence model. This can be due
to the imbalanced nature of the binary problem solved
by the logistic regression (predicting problematic cases),
which biases the final model towards the persistence.

• The mixture of models that use a simultaneous training
shows, however, outstanding performance, being compet-
itive against the persistence model, specially for larger
time horizons. The model that includes the imbalanced
costs generally presents the best results for AMAE,
MMAE and GM , while the model without costs is
competitive in Acc. In general, the differences favouring
them are higher for the RVR variable, as it is a more
difficult problem and there is more room for improvement
(see Table III). Larger prediction horizons (k = 3 and
k = 6) are also the best scenarios for our proposals (see
Table IV), as the persistence obtains worse results in these
cases.

The RVR labels obtained by the STMEIC are presented in
Fig. 2, compared with target ones and those obtained by POM.
As can be seen, the predictions follow the general tendency of
the real values, resulting in an acceptably accurate notion of
the visibility. STMEIC presents a better prediction than POM
for extreme values (C4) and small fluctuations of visibility.

IV. CONCLUSIONS

This paper presents a mixture of experts model for predict-
ing ordinal categories associated to low-visibility atmospheric
events. Given that these patterns are often persistent in time,
the model combines an expert predicting the previous category
with an autoregressive neural network expert correcting the



Fig. 2: Test target labels for a range of the RVR time series
(time horizon k = 3) and labels predicted by STMEIC and
POM (window width ∆ = 3).

TABLE IV: Ranking results according to the prediction hori-
zon (k). Both variables (CH and RVR) are averaged.

k = 1

Method Acc AMAE MMAE GM

Persist 3.17 1.33 1.58 1.33
POM 2 .67 3.17 3.17 3.33

NNPOM 3.83 5.33 5.33 5.67
ITME 3.33 4.00 4.08 3.83
STME 2.00 4.50 4.50 4.17

STMEIC 6.00 2 .67 2 .33 2 .67

k = 3

Method Acc AMAE MMAE GM

Persist 4.00 2 .33 2.00 2.17
POM 3.17 5.67 5.67 5.83

NNPOM 2 .67 3.67 3.50 3.00
ITME 4.00 4.67 4.67 4.67
STME 1.50 3.17 3.17 3.17

STMEIC 5.67 1.50 2.00 2.17

k = 6

Method Acc AMAE MMAE GM

Persist 5.50 3.17 2.83 3.00
POM 2.83 6.00 6.00 6.00

NNPOM 2 .17 3.17 3.33 3.17
ITME 3.33 4.83 4.67 4.67
STME 1.67 2 .67 2 .67 2 .17

STMEIC 5.50 1.17 1.50 2.00

persistence when changes are detected. The model is designed
from a probabilistic perspective, where the neural network
component is based on the proportional odds structure. A gat-
ing function, implemented through an autoregressive logistic
regression model, assigns the importance of each component.

The model is tested for the task of predicting low-visibility
in airports, where the visibility level is represented by two dif-
ferent ordinal categorical variables (cloud height and runway
visual height). A battery of experiments is considered, where

each variable is evaluated with three different time horizons
and three different window widths. Our results are promising,
showing very good performance for larger time horizons.

As future research lines, we plan to use more complex
neural network models with a recurrent structure to better
uncover the dynamics of the time series. Moreover, the training
algorithm could be redesigned to alternatively optimise the
logistic regression component and the neural network compo-
nent, in order to accelerate the convergence.
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