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Abstract 

The development and commercialisation of a new therapeutic drug is a lengthy and 

expensive process hindered with uncertainties and high attrition rates. Monoclonal 

antibodies are a major contributor to the continuous growth of the global 

biopharmaceutical industry. Chromatography remains the workhorse in antibody 

purification despite its complex process development and the high operating cost. The 

research here presents the establishment of an integrated and data-driven decision-

support framework in early-stage protein chromatography process development. The 

key focus of the research is the development of a systematic and rational methodology 

to automate and accelerate data analysis and decision-making. A novel workflow was 

developed that combined high-throughput experimentation (HTE) at micro-scale with 

design of experiments (DoE), multi-variate data analysis, multi-attribute decision-making 

and a robustness analysis technique to screen and optimise chromatography resins. 

DoE was linked with an advanced chromatogram analysis method to cope with the large 

datasets resulting from HTE by automating raw data manipulation. Additionally, the 

approach offers the ability to correlate the trade-offs between purity and yield with 

process parameters through a regression analysis. High-throughput purification data 

were further leveraged using a decision-support tool for the chromatographic purification 

train linked with a bioprocess economics spreadsheet model. The bioprocess economics 

model was also used to provide insights regarding the cost-effectiveness of pre-packed 

chromatography columns as an alternative to conventional self-packed columns for 

clinical and commercial manufacture. The implementation of the framework 

demonstrated the synergy of different decision-support tools and allowed for the rapid 

evaluation of multiple chromatographic purification trains in order to determine the most 

cost-effective resin sequence and column type considering the whole manufacturing 

process. Additionally, it is demonstrated that chromatography process development 

activities could be accelerated by defining platform purification processes and identifying 

manufacturing bottlenecks fast and with limited feedstock material.
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Research Implementation and Impact 

The overall outcome of this research is an integrated framework in chromatography 

process development linking high-throughput purification data with process economics 

and advanced decision-support tools. The research was performed in collaboration with 

the industrial sponsor, MedImmune. The Department of Biochemical Engineering at 

University College London and MedImmune have established a Centre of Excellence in 

bioprocessing with a number of researchers and industrial and academic supervisors. 

All the experimental and analytical protocols were performed according to MedImmune’s 

specifications in order to enable the direct introduction of the approach into their process 

development strategy. MedImmune has recognised the benefits of high-throughput 

experimentation in bioprocess development. This research provides a framework for the 

systematic generation, manipulation and analysis of high-throughput purification data. 

Through the implementation of a framework it was demonstrated that high-throughput 

data can be further leveraged in decision-support tools to rapidly evaluate different 

purification strategies, identify process bottlenecks and determine cost-effective 

chromatography resins across different products. 

In this research, emphasis was placed on automation and flexibility through a data-driven 

decision-making framework. The proposed framework is the consolidation of different 

tools developed throughout this research: A high-throughput process development 

workflow, a process economics model in bio-manufacturing and a decision-support tool 

for the chromatographic purification train. A key benefit of the framework is the flexibility 

that it provides on different levels. Individual components of the framework can be used 

independently without compromising the function or the structure of the rest of the 

framework. Additionally, all its major components offer to the user the ability to define 

the appropriate inputs and outputs to address a certain purification challenge. 

Outside the research scope of this thesis, the process economics model has been used 

in collaboration with other researchers at UCL. The first example of implementation was 
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performed with another UCL/MedImmune researcher to simulate the cost of bio-

manufacturing in a cash-flow model evaluating the cost of development for new biologics. 

A different example was offered by another UCL researcher that was able to modify the 

process economics spreadsheet to simulate the economics of high throughput vaccine 

manufacturing facilities. Furthermore, UCL has moved forward with the improvement of 

the process economics model and the development of a simulation engine to evaluate 

new and disruptive upstream processing technologies for the manufacture of stratified 

biologics.  

Additionally, other UCL/MedImmune researchers currently focusing of the development 

of scale-down models to mimic and predict the performance of different unit operations 

at large scale, could benefit from using the process economics model. The integration of 

process economics with scale-down models as demonstrated in this thesis could provide 

critical insights for the performance and the cost-effectiveness of a unit operation at 

commercial scales. Since the development of a working version of the bioprocess 

economics engine, new UCL researchers have been offered training on the use of the 

engine and additional training sessions would provide the necessary skills to further 

develop the engine. Through proper training, current and new researchers could benefit 

from previous work and accelerate their research through the mitigation of the model 

development effort. 



8 
 

Table of Contents 

Chapter 1. Introduction and research scope ............................................................ 21 

1.1. Introduction ....................................................................................................... 21 

1.2. New drug development pathway ....................................................................... 23 

1.2.1. From inception to pre-clinical studies ......................................................... 24 

1.2.2. From clinical trials to market approval ........................................................ 25 

Clinical trials, phase I .................................................................................... 25 

Clinical trials, phase II ................................................................................... 25 

Clinical trials, phase III .................................................................................. 25 

Clinical trials, phase IV .................................................................................. 26 

New therapeutic drug development timelines ................................................ 26 

1.2.3 Cost of R&D and attrition rates .................................................................... 27 

1.3. Biopharmaceutical manufacturing ..................................................................... 28 

1.3.1. Manufacturing processes of monoclonal antibodies ................................... 30 

1.3.1.1. Upstream processing of mAbs ............................................................. 30 

Mammalian cell lines..................................................................................... 31 

Large scale production strategies: Fed-batch and perfusion culture .............. 31 

Alternative cell lines ...................................................................................... 33 

1.3.1.2. Downstream processing of mAbs ........................................................ 33 

Harvest and clarification technologies ........................................................... 33 

Purification technologies ............................................................................... 35 

Capture step in the purification sequence .................................................. 36 

Polishing steps in the purification sequence .............................................. 39 



9 
 

 AEX chromatography ..................................................................... 40 

 CEX chromatography ..................................................................... 42 

 Alternatives to IEX chromatography as polishing steps................... 43 

Virus inactivation/removal ......................................................................... 44 

1.3.2. Disposable chromatographic purification of biopharmaceuticals ................ 44 

1.4. Process development approaches in chromatographic purification of 

biopharmaceuticals ................................................................................................. 48 

1.4.1. Knowledge-based methods ........................................................................ 49 

1.4.2. Algorithmic- and model-based methods ..................................................... 50 

Origin of the fractionation diagram approach ................................................ 53 

Examples of implementation of the fractionation diagram approach ............. 53 

1.4.3. High-throughput experimentation and design of experiments ..................... 55 

1.4.3.1. High-throughput screening techniques in chromatography .................. 56 

1.4.3.2. Design of experiments in chromatography ........................................... 58 

1.4.4. Hybrid methods .......................................................................................... 60 

1.5. Process economics modelling in bio-manufacturing ......................................... 63 

1.5.1. Managing risk and uncertainty in bio-manufacturing .................................. 65 

1.5.2. Design, economic evaluation and optimisation of chromatographic separation 

of biopharmaceuticals .......................................................................................... 69 

1.6. Research scope and thesis layout .................................................................... 73 

Chapter 2. Materials and methods .......................................................................... 76 

2.1. Materials, laboratory equipment and software tools .......................................... 76 

2.2. Experimental and data analysis methodology ................................................... 77 

2.2.1. Design of experiments ............................................................................... 77 



10 
 

2.2.2. Experimental set-up ................................................................................... 78 

2.2.3. Data analysis methodology ........................................................................ 79 

2.2.3.1. Dynamic Binding Capacity at 10% breakthrough ................................. 79 

2.2.3.2. Integration of fractionation diagram approach and design of 

experiments ...................................................................................................... 79 

2.2.3.3. A decision-support tool for resin comparison and selection for a single 

chromatography step ........................................................................................ 82 

2.2.3.4. Window of operation and robustness analysis ..................................... 86 

2.2.4. Bench-scale model verification ................................................................... 88 

2.3. A process economics model for antibody bio-manufacturing facilities ............... 88 

2.3.1. Process economics model structure ........................................................... 88 

2.3.2. Design and process economics calculations in the model .......................... 90 

2.4. A decision-support tool for the chromatographic purification train ..................... 95 

2.4.1. Structure and functionality of the tool ......................................................... 95 

Chapter 3. High throughput process development workflow with advanced decision-

support for antibody purification .................................................................................. 98 

3.1. Introduction ....................................................................................................... 98 

3.2. Materials and methods ................................................................................... 100 

3.3. Results and discussion ................................................................................... 103 

3.3.1. Design of experiments ............................................................................. 103 

3.3.2. Resin comparison and selection ............................................................... 105 

3.3.4. Window of operation ................................................................................ 110 

3.3.5. Targeted bench-scale experimentation .................................................... 113 

3.4. Conclusions .................................................................................................... 115 



11 
 

Chapter 4. A process economics evaluation of pre-packed chromatography 

columns in antibody purification ................................................................................ 117 

4.1. Introduction .................................................................................................... 117 

4.2. Materials and methods ................................................................................... 118 

4.3. Results and discussion ................................................................................... 124 

4.4. Conclusions .................................................................................................... 139 

Chapter 5. Integration of high-throughput purification data with process economics 

modelling and decision-support tools ........................................................................ 141 

5.1. Introduction .................................................................................................... 141 

5.2. Materials and methods ................................................................................... 142 

5.3. Results and discussion ................................................................................... 156 

5.3.1. Case study 1: Decision-support tool and process economics model synergy

 .......................................................................................................................... 156 

5.3.2. Case study 2: Integrated framework in chromatography process development

 .......................................................................................................................... 162 

Chapter 6. Process validation ............................................................................... 175 

6.1. Initial approach in process validation .............................................................. 175 

6.2. Quality by design approach in process validation ........................................... 175 

Chapter 7. Concluding remarks and recommendations for future work ................. 179 

7.1. High-throughput process development workflow ............................................ 179 

7.2. Process economics model .............................................................................. 183 

7.3. Integrated framework ..................................................................................... 186 

References ............................................................................................................... 191 

Appendix .................................................................................................................. 209 

Abbreviations ............................................................................................................ 218 



12 
 

List of Tables 

Table 1.1: Top-ten selling biologics for the years 2012 – 2015 (Worldwide sales in 

$billion). ...................................................................................................................... 22 

Table 2.1: A breakdown of the cost of goods for a bio-manufacturing facility .............. 94 

Table 3.1: Design of Experiments used in the HTPD workflow for screening and 

optimisation of CEX chromatographic separation for a bispecific antibody ................ 104 

Table 3.2: Case study formulation of the decision-making components in the HTPD 

workflow .................................................................................................................... 107 

Table 4.1: Range of parameters used to compare the manufacturing costs between pre-

packed and self-packed chromatography columns of the same size and packed with the 

same resin ................................................................................................................ 120 

Table 4.2: Model parameters included in the sensitivity analysis to determine their 

significance in the manufacturing costs of a single chromatography step utilising either a 

self-packed or a pre-packed column ......................................................................... 120 

Table 4.3: Key model assumptions used to evaluate the cost-effectiveness of pre-packed 

chromatography columns considering the complete manufacturing process ............. 121 

Table 4.4: Annual product demand approximation for each phase in the drug 

development pathway ............................................................................................... 122 

Table 4.5: Key model parameters and their distributions that were included in the 

robustness analysis on the decision to introduce pre-packed columns at different 

manufacturing stages ................................................................................................ 123 

Table 4.6: A qualitative comparison of the manufacturing costs associated with self-

packed and pre-packed columns of the same size, packed with the same 

chromatography resin and operated under identical conditions ................................. 124 



13 
 

Table 4.7: Purification train size across increasing annual product demand with 

increasing bioreactor capacity using self-packed and pre-packed (SP / PP) columns139 

Table 5.1: Conceptual chromatography resin library for a hypothetical mAb used for the 

purpose of demonstrating the synergistic functionality of a decision-support tool for the 

purification train and a process economics model (Case study 1) ............................. 147 

Table 5.2: Profile of impurities delivered by the primary recovery and clarification process 

to the first chromatography step (capture) and quality and performance targets as 

received by the decision-support tool for the purification train ................................... 148 

Table 5.3: Scenario inputs in the process economics model used in Case study 2 to 

demonstrate the implementation of the integrated framework ................................... 151 

Table 5.4: Key assumptions regarding the properties and the performance of platform 

resins for the capture and polishing chromatography steps for each mAb involved in 

Case study 2 ............................................................................................................. 154 

Table 5.5: Top-six purification trains and their respective quality and performance profile 

for Case study 1 ....................................................................................................... 160 

Table 5.6: Top-six CEX resins and their respective quality and performance profile for 

Case study 2 ............................................................................................................. 166 

Table A.1: List of process equipment and materials as assumed in the process 

economics model. Base costs are given in USD ($) .................................................. 209 

Table A.2: Key assumptions for each unit operation used in the process economics 

model as identified through discussions with the industrial sponsor (MedImmune) ... 210 

Table A.3: Key design calculations to estimate the size of each unit operation used in 

the process economics model................................................................................... 211 



14 
 

Table A.4: CEX Chromatography resin list for mAb-1 used in Chapter 5, Case study 2

 ................................................................................................................................. 213 

Table A.5: CEX Chromatography resin list for mAb-2 used in Chapter 5, Case study 2

 ................................................................................................................................. 214 

Table A.6: CEX Chromatography resin list for mAb-3 used in Chapter 5, Case study 2

 ................................................................................................................................. 215 

Table A.7: CEX Chromatography resin list for mAb-4 used in Chapter 5, Case study 2

 ................................................................................................................................. 216 



15 
 

List of Figures 

Figure 2.1: Schematic illustration of the Fractionation Diagram methodology. a) Typical 

chromatogram of a complete chromatography cycle, b) Elution part of a chromatogram, 

c) Fractionated elution chromatogram, d) Fractionation diagram plotting the cumulative 

product fraction against the cumulative fraction of the total protein, e) maximum 

purification factor against elution yield graph, f) purity against elution yield graph, g) purity 

against yield graph, h) schematic illustration of the DoE – Fractionation Diagram 

approach integration. Steps a) through f) presented as described by Ngiam et al. (2001) 

and steps g) & h) show the extension to the method as proposed here to account for 

potential product loss and integrate the method with DoE ........................................... 81 

Figure 2.2: Schematic illustration of the decision-making components of the HTPD 

workflow. a) Structure of the resin selection tool used to screen different resin candidates 

and determine the best candidate, b) Robustness analysis methodology to identify a 

window of operation under uncertainty ........................................................................ 84 

Figure 2.3: Schematic of the information flow in the spreadsheet process economics 

model developed to evaluate the economics of pre-packed chromatography columns 89 

Figure 2.4. A schematic illustration of the structure of a decision-support tool for the 

chromatographic purification train ............................................................................... 96 

Figure 3.1: Schematic illustration of the proposed High-Throughput Process 

Development workflow for a chromatography operation in bind-and-elute mode. The 

Design & Execution Cycle consist the central component of the workflow starting with 

the design of the DoE space. High-throughput experimentation follows to investigate the 

suggested DoE space. After sample analysis, DoE responses are estimated and 

imported into the DoE table to initiate regression analysis. Completion of the cycle results 

in regression models estimating DoE responses as functions of DoE factors. Finally the 

regression models are imported into the decision-making components of the workflow 



16 
 

allowing for the screening and selection of the best chromatography resin candidate and 

optimise its operating conditions under uncertainty ................................................... 102 

Figure 3.2: A visualisation of the resin selection tool developed to identify CEX resins 

that meet the desired decision attributes. User specifications define the priority order of 

the decision attributes. Achieved attributes are determined using the satisficing method. 

Each resin candidate is assigned a performance score combining their respective 

attribute normalised values. Ranking is performed considering first the resin candidates 

with the highest number of achieved attributes and then their performance score. The 

set-point of each process parameter is presented in the table. CEX resin in order of 

appearance 1 – 8: Poros XS, Poros HS 50, Toyopearl GigaCap S 650 (S), Toyopearl 

GigaCap CM 650 (M), Capto S Impact, Fractogel COO (M), Eshmuno CPX and 

UNOsphere Rapid S. Regression correlations used by the resin selection tool were 

developed through DoE analysis. Experimentation was performed using 200μL miniature 

pre-packed chromatography columns operated with a Tecan Freedom EVO® 200. . 109 

Figure 3.3: Prediction profilers generated using JMP Pro 11 to visualise each attribute 

(DoE response) as a function of process parameters (DoE factors) for CEX Resin – 7. 

Solid lines represent the average response and dotted lines indicate the confidence 

interval at a 95% confidence level. DoE was executed using 600μL miniature pre-packed 

chromatography columns operated with a Tecan Freedom EVO® 200. .................... 110 

Figure 3.4: Window of operation under uncertainty for CEX Resin – 7. White (blank) 

areas demonstrate the operating space under no process deviations from the set-point. 

Black areas define a window of operation that satisfies the attributes under uncertainty 

by minimising the probability of failing any of the threshold values of the attributes. 

Number of Monte Carlo simulations per iteration = 10000. ........................................ 111 

Figure 3.5: Robustness analysis for CEX Resin – 7. Distribution and sensitivity of 

attributes operating with the identified window of operation under uncertainty. Solid bars 

in the tornado graphs for the sensitivity analysis indicate lower parameter values than 



17 
 

the set-point and hollow bars indicate higher values. Number of Monte Carlo simulations 

= 10000. ................................................................................................................... 113 

Figure 3.6: Actual vs Predicted plots and Statistical tests to visualise and verify the 

proposed window of operation for CEX Resin – 7. Actual refers to the experimental 

values obtained at bench-scale using a 20cm bed height chromatography column 

operated with an AKTA Avant 25. Predicted values were obtained using regression 

correlations developed through analysis of the DoE space. DoE was performed using 

600μL miniature pre-packed chromatography columns and operated with a Tecan 

Freedom EVO® 200. ................................................................................................ 115 

Figure 4.1: A generic manufacturing process flowsheet for mAbs ............................. 119 

Figure 4.2: Cost of a chromatography resin relative to the total cost of a pre-packed 

chromatography column against the price of the resin at different column diameters 126 

Figure 4.3: Cost ratios of pre-packed over self-packed columns ............................... 127 

Figure 4.4: Chromatography cost of goods per batch breakdown for a self-packed and a 

pre-packed chromatography column at different diameters and a) resin price = 500$/L, 

b) resin price = 2000$/L, c) resin price = 8000$/L ..................................................... 128 

Figure 4.5: Tornado graphs visualising key model parameters related to chromatography 

and their impact on the COGCHROM/batch for a) self-packed and b) pre-packed column of 

the same size and packed with the same resin ......................................................... 130 

Figure 4.6: Changes in direct and indirect costs of a complete manufacturing process 

using different configuration of the purification train relative to a full self-packed 

purification train at different manufacturing stages .................................................... 131 

Figure 4.7: Direct over indirect cost ratios for full pre-packed and full self-packed 

purification trains across different manufacturing stages ........................................... 132 



18 
 

Figure 4.8: Changes in COG/g of a complete manufacturing process at different 

configuration of the purification train relative to a full self-packed purification train at 

different manufacturing stages .................................................................................. 133 

Figure 4.9: Direct comparison and cost of goods breakdown of a full self-packed and a 

full pre-packed purification train across different manufacturing stages ..................... 135 

Figure 4.10: Cost of goods breakdown per unit operation across different manufacturing 

stages for a full self-packed and a full pre-packed purification train ........................... 135 

Figure 4.11: COG/g distributions generated through Monte Carlo simulations for a full 

self-packed (Full SP: black coloured histograms) and a full pre-packed (Full PP: green 

coloured histograms) purification train across different manufacturing stages ........... 136 

Figure 4.12: Cost of goods breakdown of a full self-packed and a full pre-packed 

purification train across different commercial annual product demands with increasing 

and fixed the capacity of the production bioreactor ................................................... 137 

Figure 5.1: Integrated framework in chromatography process development. Schematic 

illustration of the consolidation of a process economics model, a decision-support tool 

for the chromatographic purification train and a high-throughput process development 

workflow .................................................................................................................... 145 

Figure 5.2: Schematic illustration of the information flow within the integrated framework. 

HTPD: High-Throughput Process Development, MADM: Multi-Attribute Decision-

Making, COG/g: Cost of goods per gram of product, BLP: Binary Linear Programming

 ................................................................................................................................. 155 

Figure 5.3: Number of successful purification trains for different impurities loads as 

identified using the decision-support tool for the chromatographic purification train .. 157 



19 
 

Figure 5.4: Average change in the COG/g among different loads of impurities for a full 

pre-packed train relative to a full self-packed train across all manufacturing stages. Error 

bars show two standard deviations ........................................................................... 158 

Figure 5.5: Resin cost per gram of product against productivity of the purification train 

considering the top-six purification trains for different loads of impurities .................. 159 

Figure 5.6: Resin cost per gram of product against productivity of the purification train 

graph illustrating the most cost-effective (first option) purification train at different loads 

of impurities. A common purification train option and the platform option are also plotted. 

The resin sequence for each purification train is indicated along with the cumulative COG 

for pre-clinical, clinical and first year of commercial manufacture .............................. 162 

Figure 5.7: Average productivity and resin cost across all successful purification trains 

that have met their respective quality and performance threshold. Error bars indicate two 

standard deviations ................................................................................................... 163 

Figure 5.8: Average percentage change in COG/g for pre-packed purification trains 

relative to self-packed at different manufacturing stages across the top-ranked 

purification trains and across all 4 mAbs ................................................................... 165 

Figure 5.9: Total COG for clinical (phase I, II & III) and first year commercial manufacture 

against product yield of the purification train across different mAbs. Solid shapes indicate 

the CEX resin that demonstrated the lowest cumulative COG for each mAb ............ 167 

Figure 5.10: Frequency of appearance and number of purified mAbs for each CEX resin 

included in Case study 2. Resin-8 was used only for mAb-4 and it was replaced with 

Resin-9 for mAb 1-3 .................................................................................................. 169 

Figure 5.11: COG/g breakdown for the first option (i.e. most cost-effective) for the 

purification train using self-packed and pre-packed chromatography columns across 

clinical and commercial manufacture and for each mAb included in Case study 2 .... 169 



20 
 

Figure 5.12: Total COG for clinical (phase I, II & III) and first year of commercial 

manufacture of the first and the second option for the CEX resin for the intermediate 

chromatography step in the purification train across all mAbs included in Case study 2. 

Pre-packed columns were assumed throughout. ...................................................... 170 

Figure 5.13: Dynamic binding capacity for each CEX chromatography resin across 

different mAbs included in Case study 2. .................................................................. 171 

Figure 5.14: Impurities removal and elution pool volume against yield for each CEX resin 

and each mAb included in Case study 2. Profiles generated through the implementation 

of the HTPD workflow using the resin databases shown in the Appendix (Table A.4 – 

A.7) ........................................................................................................................... 172 

Figure 5.15: A simple decision-tree illustrating the main decision levels and their order 

for the selection of CEX resins for the intermediate chromatography step in the 

purification train for the mAbs included in Case study 2 ............................................ 173 

Figure A.1: Algorithm for sizing chromatography columns used in the process economics 

model ........................................................................................................................ 212 

 



21 
 

Chapter 1. Introduction and research scope 

1.1. Introduction 

The road, from discovery to development and commercialisation of a new therapeutic 

drug, is an extremely time-consuming and expensive process, hindered by high risk 

(Mehta, 2008). There is a continuous effort to develop and establish the necessary 

methods and tools to accelerate research and development (R&D) activities, achieve an 

in-depth level of product and process understanding and provide affordable medicines. 

Monoclonal antibodies (mAbs) have a significant impact on the continuous growth of the 

biopharmaceutical industry (Aggarwal, 2014). Chromatography is still the preferred 

choice in antibody purification despite associated challenges in process development 

and manufacturing (Vunnum et al., 2009). This thesis focuses on the establishment of 

an integrated framework in early-stage protein chromatography process development 

linking high-throughput experimentation with advanced decision-making techniques. The 

overall objective was to provide a data-driven decision-support tool for the rapid 

manipulation and analysis of high-throughput purification data to evaluate different 

chromatographic purification strategies and accelerate process development activities. 

Despite the obstacles and the complexity, the biopharmaceutical sector is a significant 

and fast growing segment of the global pharmaceutical market (Walsh, 2010). Over the 

past decade, the dependence of the pharmaceutical industry on biopharmaceuticals has 

increased substantially and there is a mutually beneficial relationship between biotech 

and pharmaceutical companies, with a significant surge in the negotiating power of the 

former (Thiel 2005; Lawrence & Lahteenmaki, 2014). Global sales of biologics reached 

$289 billion in 2014 with reports projecting the sales to surpass $400 billion by 2019 

(Deloitte Touche Tohmatsu Limited, 2016). Although the total sales are increasing, year 

by year, the biotech industry suffers from low profitability. Profit is not following the same 

rising trend with total sales (Lawrence & Lahteenmaki, 2014). It is the high complexity 
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and the unique level of uncertainty, which govern the biotech industry that inhibit the 

industry from reaching its full potentials (Pisano, 2006). 

Between 2007 and 2012 the best-selling class of biologics, in the US were monoclonal 

antibodies (mAbs) (Aggrawal, 2008; Aggarwal, 2009; Aggarwal, 2010; Aggarwal, 2012; 

Aggarwal, 2014), with total US sales, in 2012, of approximately $25 billion. On a global 

scale the sales of mAbs reached $75 billion in 2013 (Ecker et al., 2015). It is the sales of 

mAbs that are mainly responsible for the continuous growth of the biopharmaceutical 

sector (Aggarwal, 2014). Table 1.1 shows the top-ten selling biologics between 2012 and 

2015. It should be noted that half of the best-selling biologics every year are mAbs with 

Humira® from AbbVie (North Chicago, Illinois) ranked number one consistently that four 

year period (Huggett, 2013; Lawrence & Lahteenmaki, 2014; Morrison & Lahteenmaki, 

2015; Morrison & Lahteenmaki, 2016). 

Table 1.1: Top-ten selling biologics for the years 2012 – 2015 (Worldwide sales in 

$billion).  

Rank 2012 2013 2014 2015 

1 Humira* (9.3) Humira* (10.7) Humira* (12.5) Humira* (13.9) 

2 Enbrel (8.0) Enbrel (8.7) Sovaldi (10.3) Harvoni (13.9) 

3 Rituxan* (7.1) Lantus (7.6) Enbrel (8.9) Enbrel (9.0) 

4 Remicade* (6.6) Rituxan* (7.5) Lantus (8.4) Rituxan* (7.4) 

5 Herceptin* (6.2) Remicade* (7.0) Rituxan* (7.5) Lantus (7.1) 

6 Avastin* (6.1) Avastin* (6.8) Remicade* (7.2) Avastin* (7.0) 

7 Neulasta (4.1) Herceptin* (6.6) Avastin* (7.0) Herceptin* (6.9) 

8 Lucentis* (4.0) Gleevec (4.7) Herceptin* (6.9) Remicade* (6.8) 

9 Avonex (2.9) Neulasta (4.4) Revlimid (5.0) Prevnar 13 (6.3) 

10 Rebif (2.4) Revlimid (4.3) Gleevec (4.8) Revlimid (5.8) 

* Monoclonal Antibodies 

Despite a slow commercial start, mAbs have managed to overcome significant 

challenges to become the most important segment of biologic drugs (Reichert et al., 

2005; Kozlowski & Swann, 2006). Until 2014, the US Food and Drug Administration 

(FDA) had approved over 40 mAbs dominating the biopharmaceutical market with 38.5% 

of the total biologics sales (Aggarwal, 2014). By 2017, the number of mAbs that had been 

approved and were in review reached 75 while 52 new mAbs were in late stage clinical 

trials with 23 and 29 for cancer and non-cancer indications, respectively (Antibody 
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Society, 2017). Although mAbs demonstrate impressive performance in the market in 

terms of sales and growth rates, there is plenty of room for more innovations and 

improvements in their development (Davidson & Farid, 2014). 

This chapter offers an overview of the development pathway for the commercialisation 

of a new therapeutic drug to present the key milestones in R&D along with associated 

costs and timelines (Section 1.2.). Furthermore, Section 1.3., describes the bio-

manufacturing process emphasising on unit operations currently employed in the 

production, harvest, clarification and purification of therapeutic antibodies. Additionally, 

Section 1.3., presents a summary of single-use technologies available in bio-

manufacturing and discusses their benefits, limitations and the major considerations 

associated with their introduction into a biologics’ facility. Subsequently, Section 1.4., 

describes different approaches used in chromatography process development and 

provides examples of implementation demonstrating some of the benefits and 

challenges associated with each method. Finally, Section 1.5., offers an overview of the 

efforts over the past two decades in the development of computer aided tools able to 

capture both process and business aspects and enhance decision-making in bio-

manufacturing. The overview in Section 1.5., starts by describing early work in 

bioprocess economics providing examples on the evaluation of single-use technologies 

in bio-manufacturing. Moreover, published work is presented focusing on different 

methods to identify and manage uncertainties on both process and business level. 

Finally, the section concludes with a summary of published work emphasising on the 

design of cost-effective purification strategies. 

1.2. New drug development pathway 

The pathway to commercialisation of new therapeutic drugs, either small molecules 

(pharmaceuticals) or large molecules (biopharmaceuticals), is extremely challenging and 

highly regulated. In the United States the government authority that regulates and 

approves therapeutic products is the Food and Drug Administration (FDA). In Europe, 

the European Medicines Agency (EMA) is responsible for regulation and approval and 
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in Japan the Pharmaceutical and Medical Devices Agency (PMDA) is the responsible 

government organisation. In 1990, the regulatory authorities of the United States, Europe 

and Japan gathered and formed the International Conference on Harmonisation of 

Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The 

purpose of the ICH is to provide quality, safety and efficacy guidelines and harmonise 

the regulatory authorities of the US, Europe and Japan, in order to promote the discovery 

and commercialisation of new therapeutics and improve global health. 

1.2.1. From inception to pre-clinical studies 

Most commonly, the development of a new therapeutic product is driven by the necessity 

to treat a disease problem, in which either there is no treatment, or the current treatment 

is not deemed to be efficient (Mehta, 2008). The purpose of the pre-clinical studies is to 

specify the pharmacodynamic and pharmacokinetic properties of the candidate drug and 

moreover, identify toxicity levels and determine a preliminary dose (Mehta, 2008; 

Mundae & Ostro, 2010). Initially, such studies are conducted in small animals such as 

rodents and if the results are satisfactory, the studies are continued in larger animals like 

monkeys to prove safety data (Mehta, 2008; Mundae & Ostro, 2010). It is important to 

mention that all the experiments must be implemented under current good laboratory 

practices (cGLP). The guidelines provide an extensive but complex framework on how 

the studies must be planned, conducted, monitored, analysed and reported (Mehta, 

2008; Cevc, 2014). 

Subsequently, it is mandatory to submit an investigational new drug application (IND) to 

the FDA, in order to receive approval to continue the studies in humans (Mehta, 2008; 

Mundae & Ostro, 2010). The subsequent clinical trials are divided into 4 phases. The 

first three phases are conducted in order to prove safety and efficacy and acquire 

regulator’s approval to proceed in commercialisation of the therapeutic product, while the 

fourth phase is conducted after the launch of the product in the market (Mehta, 2008). 

During the clinical trials, current good clinical practices (cGCP) provide the guidelines 
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regarding the design and the execution of the studies, as well as monitoring and control 

of the studies and moreover, in regards with the analysis and report of the data (Mehta, 

2008; Cevc, 2014). 

1.2.2. From clinical trials to market approval 

Clinical trials, phase I 

In Phase I of the clinical trials, healthy subjects (20 – 200 people) between the age of 18 

and 45, receive a single dose and they are monitored very closely to identify any 

undesired reactions (Mehta, 2008; Mundae & Ostro, 2010; Cevc, 2014). The dose the 

subjects receive, is a small portion of the predetermined dose, estimated based on the 

pre-clinical results, and is increasing gradually until the limit is reached or a complication 

occurs. Therefore, Phase I is necessary to prove safety and identify a dosage therapeutic 

window, in which there is a favourable balance between the benefits of the drug and the 

risk associated with its use. It is worth mentioning that in case of anticancer therapeutics, 

usually, the studies are conducted with diseased patients unable to respond successfully 

to other treatments (Mehta, 2008).  

Clinical trials, phase II 

In Phase II, approximately 400 patients are involved in a randomised, double-blind study. 

Randomised, because there is no discrimination among the patients and thus, some of 

them are placed randomly in placebo groups and double-blind because neither the 

physician, the patients or the company, know which patient belongs in each group. The 

overall aim is to determine the optimum dose, prove safety and demonstrate preliminary 

efficacy (Mehta, 2008). 

Clinical trials, phase III 

Phase III involves a significantly larger group of patients, up to 5000 (Cevc, 2014). The 

purpose of this phase is to prove efficacy and identify undesired side-effects that were 

not detected during Phase I & II. The increased number of patients indicates that Phase 
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III intends to test enough patients in order to conduct an accurate statistical analysis of 

the results that can represent adequately the projected market share (Mehta, 2008). It is 

worth to mention that FDA normally requires Phase III to be also a randomised, double-

blind study, while with EMA this is not always the case and one such study could be 

enough to proceed in authorisation (Cevc, 2014). 

Positive and promising results from Phase III provide the green light to proceed in the 

submission of a new drug application (NDA) for small molecules, or a biologics licence 

application (BLA) for large molecules. It is highly recommended that at the end of each 

phase, a meeting between the company and the regulators should take place in order to 

evaluate the results and discuss the progression of the trials, as well as the context and 

the details that must be included in the NDA/BLA (Mehta, 2008). 

Clinical trials, phase IV 

Phase IV takes place after the therapeutic drug has launched the market and the goal is 

to ensure safety and efficacy, as the population under treatment is increasing. Moreover, 

special subpopulations can be studied to identify any malfunctions and the results must 

be analysed and reported regularly to the regulators, in order to be aware of any 

problems with the progression of the treatment (Mehta, 2008). 

New therapeutic drug development timelines 

The time that is required, from research and discovery to final market approval, of a new 

therapeutic drug, is approximately 10 – 15 years (Mehta, 2008; Mundae & Ostro, 2010; 

Cevc, 2014). Discovery and pre-clinical studies are usually extended over a 7 year 

period, while clinical trials require approximately 6 – 8 years. Additionally, the regulatory 

agencies need some time (1 – 2 years), first to evaluate the NDA/BLA application and 

then to inspect the manufacturing facilities in order to ensure that the facility and the 

process align with the guidelines and the specifications (Mehta, 2008; Cevc, 2014). In 

other words, the manufacturers must guarantee that the product meets and will continue 
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to meet the desired and predetermined quality attributes and the regulators must advise 

and inspect to make sure that the product meets the specifications. 

1.2.3 Cost of R&D and attrition rates 

Although the time required to commercialise a new therapeutic drug has remained 

unchanged over the past decade, the same cannot be claimed for the cost of R&D or the 

success rate of getting new therapeutics to market. In 2013 the public biotech industry 

had spent $28.5 billion in R&D, a 13% increase compared with 2012 while revenues 

grew by 7% in the same period (Lawrence & Lahteenmaki, 2014). Several studies have 

addressed the challenge to estimate the total cost of R&D for a new therapeutic drug 

and the transition probabilities for each stage in clinical development and market 

approval. The vast majority of these studies provide an estimate of the capitalised cost 

of R&D per successful therapeutic drug in order to capture the cost of failed drug 

candidates and the development timeframe. Although this approach offers a more 

pragmatic estimate of the total R&D cost, it is subject to the databases used and the 

assumptions made for the analysis. 

For instance, published work from different research teams reported success rates (or 

transition probabilities) from Phase I to commercialisation within a range of 21.5% to 

30.2% (DiMasi et al., 2003; Adams & Brantner, 2006; DiMasi & Grabowski, 2007; Adams 

& Brantner, 2010). Later, Paul et al. (2011) reported a much lower success rate of 11.7%.  

Deviations of this magnitude among key estimates like the attrition rates can lead to 

significant differences in the capitalised cost. Morgan et al. (2011) provided a review 

study assessing published R&D cost estimates. The authors compared the capitalised 

R&D cost from thirteen studies and identified a significant variation in the results starting 

from $160 million and reaching $1.8 billion in 2009 US dollars. Additionally, the authors 

highlighted the implications that arise from the lack of data transparency rendering it 

extremely difficult to reproduce the results and assess their accuracy and validity. It was 
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concluded that despite more than thirty years of research on the subject it is very 

challenging to identify a benchmark estimate (Morgan et al., 2011). 

More recently, new estimates for the capitalised R&D cost and the cumulative success 

rate demonstrate an even higher cost with similar attrition rates compared with previous 

studies. The latest estimate of the total post-approval capitalised R&D cost reaches $2.9 

billion (2013 US dollars) with transition probabilities of approximately 60%, 36%, 62% 

and 90% from Phase I to Phase II to Phase III, to NDA/BLA submission and finally to 

NDA/BLA approval; leading to a success rate of 11.8% (DiMasi et al., 2016). 

1.3. Biopharmaceutical manufacturing 

The production of a specific therapeutic biological drug requires a very specific cell line, 

which will provide the product with the desired conformation, at the optimum productivity 

(Birch & Racher, 2006). The intrinsic variability in bio-manufacturing is observed not only 

among different products but also between different batches of the same product 

(Steinmeyer & McCormick, 2008). Therefore, consistency of the product between 

batches must be ensured and thus, the guidelines from the regulators are extremely 

strict. Additionally, consistency may be an issue when the manufacturing capacity 

changes. As the clinical trials progress, a greater population is treated and therefore 

higher production capacity is necessary to cover the demand. Furthermore, if/when a 

therapeutic product receives the approval from the regulators to be marketed even higher 

demands might be required. Hence, efficient scale-up methods are necessary to 

demonstrate that the product has the same characteristics and the same quality from 

scale to scale (Werner, 2004). 

The long development times and the high costs force biopharmaceutical companies to 

plan and evaluate their strategy from a very early stage. Additionally, they need to 

attempt and predict the circumstances that will occur if/when a product reaches the 

market (Werner, 2004). It is extremely important to determine, from the beginning of a 

project, the criteria that will dictate if the project should be continued to the next phase 
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or to be abandoned (Mehta, 2008). Hence, a risk assessment is mandatory to evaluate 

the potential of the product to reach the market and withstand any competition, determine 

the balance between the benefits and the risks associated with the patients and estimate 

the potential market share and reimbursement (Werner, 2004). 

A very significant consideration in the biopharmaceutical industry is the accurate 

prediction of the desired manufacturing capacity. It is extremely difficult to evaluate 

accurately the market share, especially when it comes to a new type of medicine, for 

which there is no or little indication on how accepted it will become (Kamarck, 2006). An 

example is the unexpected success of the fusion protein, EnbrelTM; an anti-tumour 

necrosis factor that treats autoimmune diseases. As soon as the drug was launched on 

the market in 1998, the demands increased exponentially and within the first 6 months, 

the US sales surpassed the projected annual global sales, leading to a capacity crisis. 

To overcome the challenge, contract manufacturers were called to increase capacity and 

additionally, new facilities had to be acquired to cover demand. Nevertheless, changing 

capacities and/or expanding to new facilities, requires time and the losses from the 

potential sales can be significant (Kamarck, 2006). On the other hand, in 1992, three 

different companies (Deerfield, Bayer and Wyeth now acquired by Pfizer) were 

manufacturing the same product (Recombinant factor VIII) and they all made major 

investments to increase their capacity and meet the demands, but soon they all faced 

overcapacity problems, due to competition (Kamarck, 2006). 

Considering the above examples regarding the manufacturing capacity, it is clear that 

the risks and the uncertainties involved require methodical and precise management in 

order to gain flexibility. Bio-manufacturing is challenging and it is critical to be able to 

establish robust and flexible processes, as well as the predictive tools to make initial 

estimations regarding the facility demands for a portfolio of therapeutic drugs. 
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1.3.1. Manufacturing processes of monoclonal antibodies 

Usually, mAbs are administrated in relatively high doses and the treatment has a 

prolonged duration. Additionally, the success of mAbs, both in the clinic and the market, 

means that they are a major contributor of the continuously increasing biopharmaceutical 

market (Reichert et al., 2005; Shukla & Thommes, 2010). 

Until the early 1990s, bio-manufacturing processes varied significantly across the 

industry (Kelley et al., 2009). The main differences in early bio-manufacturing processes 

can be observed in the purification train with a diverse chromatography sequence. The 

existence of different purification strategies can be explained, partially by the antibodies’ 

nature and how it evolved from murine to humanised and fully human. Despite the high 

degree of homology among the same type of antibodies (in terms of nature), it is 

extremely difficult to establish a generic process, with a generic sequence of unit 

operations that will operate under the same conditions. Nevertheless, platform 

manufacturing processes show significant benefits in terms of process development. 

Essential efforts have been made, both from industry and academia, to develop platform 

processes and to identify operating windows, in which different types of products and 

feed-streams can potentially be operated efficiently with minimum modification and 

adjustment (Kelley et al., 2009). 

1.3.1.1. Upstream processing of mAbs 

The large-scale production of mAbs is dominated by mammalian host cell lines and they 

have been established as the standard production platform, due to their ability to perform 

post-translational modifications (human-like N-glycosylation) and produce proteins 

compatible with the human immune system (Farid, 2009; Shukla & Thommes, 2010; Ho 

et al., 2013). Full length antibodies are glycosylated proteins and although the 

glycosylated domain does not interact directly with the antigens, it promotes stability. 

Incorrect glycosylation can result in undesired immune responses (Ho et al., 2013). 
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Mammalian cell lines 

The most commonly used mammalian cell lines are: the Chinese hamster ovary (CHO), 

murine lymphoid NS0 and Sp2/0, murine hybridoma and human cell lines. Among 

different human cell lines the human embryonic retinoblast derived cell line (Per.C6) is 

considered the most promising (Ho et al., 2013). Nevertheless, CHO cell lines are the 

preferred option since they can produce mAbs with the correct conformation and post-

translational modifications and provide higher biocompatibility with the human immune 

system and, therefore, demonstrate potentially an increased safety and efficacy (Shukla 

& Thommes, 2010; Ho et al., 2013). Modifications and advances have been made also 

with mammalian cell lines, to accelerate cell line development and optimisation and 

increase productivity and yield. Titres of 3 – 5 g/L are considered now typical for mAbs 

(Farid, 2009) with reports in the order of 10g/L being reported for some cases within the 

industry (Li et al., 2010). Production capacity and titre are closely related to cost of goods 

per gram (COG/g). For instance, a 10-fold increase in titre can reduce COG/g by 

approximately 80% (Werner, 2004). Alldread et al. (2014) compiled a data table 

summarising the evolution of COG/g over the past five decades. The authors reported 

an increase in the specific cell line productivity along with an increase in the cell culture 

duration leading to a significant surge in the cell culture titres. Considering also 

improvements in downstream processing with the total process yield reaching 

approximately 70 – 80% compared to 40% reported almost 50 year ago, the COG/g have 

experienced a significant reduction from 1000s to 10s of $/g. The uncertainties and risk 

associated with alternative host cell lines in combination with the advantages and the 

improvements in mammalian cell lines, demonstrate the strong reliance of large-scale 

bio-manufacturing processes on mammalian cell lines, at least for the foreseeable future 

(Farid, 2009; Alldread et al., 2014)). 

Large scale production strategies: Fed-batch and perfusion culture 

Two mammalian cell culture manufacturing strategies dominate the large scale upstream 

processes; fed-batch and perfusion culture (Lim et al., 2006). In fed-batch mode, first the 
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culture goes through a batch phase until the carbon source becomes limited and 

subsequently fresh media is introduced periodically to supplement the required nutrients. 

The duration of the culture is approximately 2 – 3 weeks. Fed-batch is usually the 

preferred mode of operation due to its simplicity in operation and control, its robustness 

and flexibility (Lim et al., 2006). However, large bioreactors are required to meet the 

demands resulting in high capital investment and large facility footprints (Pollock et al., 

2012). 

In perfusion mode, the culture starts with a batch phase and during the exponential 

growth phase, fresh media is added continuously while culture broth containing toxins 

and inhibitors, are removed continuously. Additionally, a cell retention device is 

necessary to maintain (or recycle) the cells in the bioreactor. The duration of the cell 

culture can be prolonged for weeks or even months and the resulted productivity is 

significantly higher compared with the fed-batch mode. Furthermore, perfusion culture 

requires smaller bioreactor capacity and thus the capital investment and the size of the 

facility may be reduced compared with the fed-batch mode (Pollock et al., 2012). 

However, the operational complexity and the increased risk of equipment failure can 

discourage inexperienced manufacturers to make a change from fed-batch to perfusion 

culture (Farid, 2009). 

Lim et al. (2006) evaluated the trade-offs in productivity, cost and uncertainty between 

fed-batch and spin-filter perfusion culture. They concluded the perfusion mode of 

operation was more cost-effective, demonstrating a significant reduction in capital 

investment and higher net present value, relative to the fed-batch mode. Nevertheless, 

when the uncertainties of each mode of operation were considered, perfusion was shown 

to be incapable of meeting demand. It was also commented that a further decrease in 

equipment failure rates would be needed, to increase the reward/risk ratio, if perfusion 

is to become more attractive as an option (Lim et al., 2006). 
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Alternative tangential flow (ATF) perfusion demonstrates advantages compared with 

spin-filter perfusion in terms of equipment failure and reliability. The ATF system utilises 

an external filtration unit to remove the broth and retain the cells, which results in a 

considerable reduction in the filter fouling. Pollock et al. (2012) evaluated the feasibility 

of fed-batch, spin-filter perfusion and ATF perfusion culture strategies under uncertainty. 

They concluded that ATF perfusion was the most cost-effective option even under 

uncertainty, demonstrating approximately a 20% decrease in the COG/g, for all the 

investigated titres and across different scales of production (Pollock et al., 2012) for 

single product facilities. 

Alternative cell lines 

Significant efforts have been made to introduce microbial cell lines for the production of 

mAbs, due to their significant advantages regarding productivity, yield, cell density, as 

well as simpler culturing media requirements (Farid, 2009; Spadiut et al., 2014). 

Currently, microbial cell lines such as yeast and bacteria are utilised for the production 

of antibody fragments (Fabs), which are not glycosylated proteins and thus, do not 

require the advanced post-translational machinery of mammalian cells (Spadiut et al., 

2014). Furthermore, eukaryotic microbial cells like Pichia pastoris have been genetically 

modified in order to perform human-like N-glycosylation (Li et al., 2006). 

1.3.1.2. Downstream processing of mAbs 

Harvest and clarification technologies 

In mammalian cell culture, mAbs are extracellular products, secreted into the cell culture 

broth and the first step in the downstream process is to separate the liquid from the solid 

phase (Shukla et al., 2007). Mammalian cells are sensitive to hydrodynamic forces and 

cell breakage is a common phenomenon. It is desirable to minimise cell disruption and 

prevent the release of impurities like proteases and other host cell proteins (HCPs), 

which can potentially affect the stability of the product. Moreover, holding times play a 
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significant role in product stability and in microbial contamination of the culture media 

(Shukla & Kandula, 2009).  

In large scale production of mAbs, centrifugation is typically the preferred harvest choice. 

Initially, centrifugation was inflexible and scalability was hindered by inadequate 

predictive models that lacked the ability to mimic the shear stresses occurred during 

large scale operations (Shukla & Kandula, 2009). Moreover, it was believed that large 

scale centrifuges require a substantial capital investment and therefore, often 

microfiltration was the preferred option (Low et al., 2007). Microfiltration is an alternative 

that offers a significant advantage over centrifugation by requiring fewer additional 

filtration steps in order to achieve an acceptable clarification level at which product 

purification can proceed. However, membrane fouling is an important consideration 

especially with large culture volumes and high cell concentrations (Zhao et al.,  2000; 

Charcosset, 2006).  

Centrifugation can handle large culture volumes and high cell concentrations and the 

development of scale down models and devices helped to overcome some important 

drawbacks. Continuous disk-stack centrifuges are most commonly utilised for harvest, 

providing the advantage of low residence times. Maybury et al. (1998) developed a scale 

down set-up to evaluate the performance of centrifugation and managed to reduce the 

required separation area and the volume of the centrifuge, enabling the use of less feed 

material. The study demonstrated an experimental set-up with interlocking inserts that 

can provide adequate information in early process development and has the ability to 

reduce substantially pilot-scale studies. Additionally, in another study, Maybury et al. 

(2000) reported a bench-top method to mimic shear stresses in laboratory scale 

centrifuges and predict the performance of large scale centrifuges. Hutchinson et al. 

(2006) developed an ultra scale-down method using a rotating disc device to predict the 

performance of industrial scale centrifuges using millilitre quantities of material. More 

recently, a capillary shear devise first developed by Westoby et al. (2011) was integrated 
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in an automated high-throughput experimental method in order to mimic the shear 

stresses observed at industrial scale disk-stack centrifuges (Joseph et al., 2016). 

The use of centrifugation as the harvesting method implies the use of additional filtration 

units to remove completely cells and cell debris that would compromise the subsequent 

purification steps. Usually, dead-end depth filtration follows centrifugation to achieve the 

desired level of clarification (Shukla et al., 2007; Shukla & Kandula, 2009). Depth-filters 

have the ability to retain particles throughout the filter matrix and not only on the surface 

of the membrane, providing a larger surface area for separation. It is a common practice 

to use filter aids like diatomaceous earth, in order to reduce compressibility of the formed 

cake on the surface of the filter (Shukla et al., 2007; Shukla & Kandula, 2009). 

Furthermore, charged matrices have been evaluated as an efficient primary removal of 

HCPs during mAb purification (Yigzaw et al., 2006). Most commonly depth filters are 

single-use and thus no cleaning is required resulting in less validation requirements and 

faster turnaround times. Process development and filter capacity studies usually take 

place at constant flow requiring a substantial amount of feedstock material and time. 

Joseph et al. (2017) correlated constant flow with constant pressure operation providing 

an alternative approach in filter capacity quantification reducing time and materials 

requirements.   

Dead-end microfiltration membranes with an absolute pore size (0.2 – 1 μm) are utilised 

for final clarification and particle removal prior to chromatographic purification. It is 

possible to combine the depth filter with an absolute filter attached on the bottom. 

Strategies utilising multiple depth filters for harvest and clarification tend not to be so 

robust and cost-effective at large scale and thus not favoured (Shukla & Kandula, 2009). 

Purification technologies 

Purification and polishing steps are major contributors to the COG/g and significant 

efforts have been made to improve productivity and yield. Manil et al. (1986) investigated 

the performance in terms of yield and purity of several purification techniques for mouse 
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mAbs and they concluded that Protein A chromatography was the best performing 

option. Precipitation was one of the first techniques used to purify mAbs and there are 

studies suggesting the re-introduction of such an approach in antibody purification to 

replace traditional chromatography (Alahari, 2009; Ma et al., 2010; Oelmeier et al., 

2013). 

Capture step in the purification sequence  

Nowadays, the majority of the purification schemes employ Protein A affinity 

chromatography as the first purification step (Shukla et al., 2007). Protein A is a 

polypeptide originally found in the cell wall of Staphylococcus aureus, that has a high 

binding specificity for the fragment crystallisable (Fc) domain of antibodies (Vunnum et 

al., 2009). Due to the physicochemical stability of Protein A, the ease of process 

development and the exceptional purification factors that can be achieved, Protein A 

chromatography is considered the workhorse of antibody capture and purification 

processes (Shukla et al., 2007; Vunnum et al., 2009). The duty of Protein A 

chromatography as the capture step in the purification sequence is to remove high 

molecular weight (HMW) species and degradation products (LMW) (product-related 

impurities), HCPs, DNA, potential adventitious viruses and cell culture media 

components (process-related impurities) (Vunnum et al., 2009). Moreover, it offers 

significant reduction in the volume that has to be processed downstream by 

concentrating the product (Kelley et al., 2009; Vunnum et al., 2009). 

Protein A chromatography operates in bind-and-elute (BE) mode, meaning that the target 

mAb interacts strongly and binds to Protein A, during loading, while HCPs and other 

impurities flow through due to their weaker interactions. Initially, the column is 

equilibrated with the loading buffer to achieve the appropriate environment and promote 

product binding. Subsequently, the clarified feed is loaded into the column, typically at a 

constant flow rate. In general the loading step is considered the rate-limiting step as it is 

desired to achieve the greatest possible dynamic binding capacity, which typically varies 



37 
 

among different mAbs (Vunnum et al., 2009). Ghosh et at, (2004) demonstrated a 

loading strategy involving a high flow rate followed by a lower flow rate and they 

concluded that their strategy can offer higher throughput, compared with the typical 

single flow rate strategy, and therefore mitigate the required loading time. 

During loading of the product, nonspecific binding occurs due to electrostatic and/or 

hydrophobic interactions between impurities, ligand and product. Hence, it is favourable 

to introduce a washing step before elution in order to remove weakly bound impurities 

and provide a ‘’cleaner’’ eluate. The pH of the washing buffer has to be between the 

loading pH (neutral) and the elution pH (acidic), to promote impurities removal, while 

keeping the product bound (Vunnum et al., 2009). If a single washing step is incapable 

of reducing the concentration of impurities, then a second step is usually employed, using 

additives such as salt, detergent and/or a solvent. Subsequently, pH is reduced to an 

acceptable level to promote product elution while avoiding aggregation and precipitation 

(Vunnum et al., 2009). Different mAbs have different optimum elution pH values, usually 

between 3 and 4.5. It is critical to maintain the pH at a level sufficient to provide high 

product yield and avoid destabilisation. Additives such as NaCl, urea, ethylene glycol are 

used to minimise interactions between the product and the ligand and permit the 

operation at higher pH and thus avoid the formation of aggregates (Vunnum et al., 2009). 

Then a stripping step usually takes place at pH 2.5 – 3 to remove strongly bound product 

and impurities. Subsequently, regeneration of the column is required to prepare the 

column for further runs. More often, chaotropes like urea and guanidine hydrochloride or 

low concentrations of sodium hydroxide (NaOH) are used for column regeneration 

(Vunnum et al., 2009). Traditionally, Protein A resins are sensitive under strong alkaline 

conditions that, in general, offer better column sanitisation. However, due to the low cost 

of NaOH and its efficiency to clean and regenerate the column and prevent any microbial 

growth, efforts have been made to develop resins resistant to alkaline treatments, such 

as MabSelect SuReTM (GE Healthcare, Uppsala, Sweden). 
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Wang et al. (2013) investigated the performance of MabSelectTM (GE Healthcare, 

Uppsala, Sweden) after cleaning and regenerating the column with NaOH, sodium 

sulphate (Na2SO4) and benzyl alcohol at different concentrations. They reported an 

increase in the number of cycles from 30 to 55 using their cleaning strategy over the 

cleaning strategy proposed by the manufacturer, without compromising the performance 

of the column in terms of dynamic binding capacity (DBC), yield and Protein A leaching. 

In another study, Jiang et al. (2009) compared two Protein A resins under three different 

cleaning strategies, using NaOH and sodium chloride (NaCl) at different concentrations, 

with and without a stripping step before regeneration. They reported that 50mM NaOH 

with 0.5M NaCl, without a striping step, was the most efficient strategy for both resins 

and moreover that the addition of protective additives like sucrose, xylitol and ethylene 

glycol reduced sufficiently the decline in binding capacity and provided greater stability 

against the strong alkaline conditions. 

With increasing titres and bioreactor volumes, the number of chromatography cycles 

needed to process a batch is expected to increase significantly (Lain et al., 2009). 

Therefore, column re-use plays a significant role, especially in Protein A 

chromatography, in which the cost of the resin is substantially higher compared to other 

resins, like ion exchangers. Kelley (2007) demonstrated a two-column very large-scale 

purification process, utilising a Protein A capture step followed by an anion exchange 

chromatography (AEX) column and reported that Protein A unit operation accounts for 

half of the total downstream process cost, with the cost of the resin being the major 

contributor. 

Protein A chromatography is associated with several limitations including the cost of the 

resin, number of cycles, low throughput, Protein A leaching and aggregation and/or 

precipitation due to the low elution pH values (Vunnum et al., 2009). Therefore, 

alternative purification technologies are being developed and evaluated, in order to 

replace Protein A chromatography and mitigate the associated drawbacks. 
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Cation exchange (CEX) chromatography is a key alternative and has been applied as a 

capture step in manufacturing of Synagis® by MedImmune (Gaithersburg, Maryland) 

and Humira® by AbbVie (North Chicago, Illinois) (Chon & Zarbis-Papastroitsis, 2011). 

Miesegaes et al. (2012) investigated the performance of five different CEX resins for the 

capture chromatography step at loading capacities similar to Protein A resins (25g/L and 

40g/L). They demonstrated a significant trade-off between purity and yield leading to 

infeasible windows of operation where high yield results in low purity and vice versa. 

Moreover, they mentioned that the operating conditions must be specified for each mAb 

to obtain optimum efficiency. The authors concluded that CEX chromatography is a 

promising alternative to replace Protein A for the capture chromatography step mainly 

due to the economic benefits it offers. 

More advanced CEX resins have been developed with high DBC values up to 100g 

mAb/L of resin to cope with the increased upstream titres (Chon & Zarbis-Papastroitsis, 

2011). Lain et al., (2009) evaluated two CEX resins for the capture step and reported 

binding capacities of 75 – 100g/L. Further investigation showed high yield (>97%) and 

purity (~99%) and up to 95% removal of HCPs. Other alternatives include mixed-mode 

resins that take advantage of both electrostatic and hydrophobic interactions. Pezzini et 

al. (2011) evaluated four mixed-mode resins and concluded that all of the tested resins 

were capable of replacing Protein A capture step and provide sufficient HCP clearance.    

Polishing steps in the purification sequence  

Downstream the capture chromatography step, two polishing steps are usually employed 

to remove remaining product- and process-related impurities. It is common practice to 

utilise two tandem ion exchange (IEX) chromatography columns post Protein A 

chromatography to achieve the desired level of purity and product quality (Ghose et al., 

2009). IEX chromatography takes advantage of the electrostatic interactions between 

the product and the resin. Antibodies, as all proteins, have a net charge that enables 

them to interact with the charged groups on the IEX resin. The isoelectric point (pI) of 
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the mAb under consideration determines the mode of operation for each type of the IEX 

resin. Anion exchange (AEX) resins are positively charged and thus bind anions while 

CEX resins are negatively charged and hence bind cations (Carta & Jungbauer, 2010) 

 AEX chromatography 

Murine mAbs usually have a more acidic pI than fully human mAbs and therefore, AEX 

chromatography is operated in BE mode. However, human mAbs have higher pIs and 

thus bind very weakly on AEX resins, which promotes a flow-through (FT) mode of 

operation (Gagnon, 2012). The increasing interest in human mAbs due to the low 

likelihood of immunogenicity, has established FT as the selected mode of operation for 

AEX chromatography (Arunakumari & Wang, 2009). The major advantage of operating 

in FT mode is that the AEX resin binds impurities, which constitute the smallest fraction 

of the product stream and therefore, high load challenges can be applied, increasing 

throughput and improving processing time (Kelley et al., 2008). 

Membrane AEX chromatography has attracted much attention as an alternative to AEX 

packed bed chromatography. Although membranes have lower binding capacity, their 

operation in FT mode minimising this drawback, since only trace levels of contaminants 

have to be retained (Zhou & Tressel, 2006). Additionally, conventional packed-bed AEX 

chromatography usually operates at linear velocities of 100 – 150 cm/hr, requiring large 

column diameters to cope with pressure drop limitations of the resin (Lim et al., 2007). 

Moreover, the transport phenomena involved with porous beads are more complex 

compared with membranes, where pore diffusion is not required and thus processing 

time can be mitigated (Lim et al., 2007). Another advantage is that membrane 

chromatography uses disposable single-use membranes and thus no clean-in-place 

(CIP) step is required. This is also beneficial from a validation point of view. Membrane 

chromatography offers significantly reduced buffer consumption, while providing very 

high yields (98 – 99.9%) and acceptable levels of virus removal (Zhou & Tressel, 2005). 
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Knudsen et al. (2001) compared the Q-Sepharose® Fast Flow AEX resin (GE 

Healthcare, Uppsala, Sweden) with Q membranes (Sartorius & Pall Biopharmaceuticals) 

and demonstrated that flow rate had an insignificant effect on the shape of the DNA 

breakthrough curve, providing the advantage of high throughput. Additionally, they 

compared the Sartobind® Q15 membrane (Sartorius, Göttingen, Germany) with the Q-

Sepharose® FF, in terms of HCP clearance and virus removal and concluded that HCP 

clearance was similar while virus removal was lower for the membrane, presumably 

because of membrane fouling. 

Kelley et al. (2008b) established an alternative mode of packed-bed AEX 

chromatography, known as weak partitioning chromatography (WPC). The difference 

stems from the distribution coefficient (Kp), which is the proportion of the amount of 

product bound to the stationary phase (AEX resin) over the amount of product that flows 

through without binding. In BE mode usually Kp is higher than 100 and in FT mode Kp 

is often lower than 0.1, while in WPC the distribution coefficient is between 0.1 and 20 

and preferably between 1 and 3. By manipulating the buffer’s pH and ionic strength, the 

authors identified the optimum Kp, which promotes strong binding of the impurities, while 

providing high product yield. By increasing Kp more product is bound on the resin, 

however once equilibrium is reached, no more product is able to bind. Consequently, 

high load challenges (>250g/L) are preferred in order to minimise product losses and 

increase recovery (Kelley et al., 2008). Additionally, the authors suggest that a wash 

step, after the load phase is completed, is necessary to recover bound product and 

increase yield. WPC demonstrates efficient removal of HCPs, HMW species and leached 

Protein A, while achieving high product recovery (>95%). The major disadvantage is that 

specific tuning is required for each mAb, to identify the optimum operating conditions 

(Kelley et al., 2008). However, the increased performance of WPC makes possible the 

establishment of a two-column purification process and thus offers significant economic 

benefits (Kelley, 2007; Kelley et al., 2008). 
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 CEX chromatography 

Another polishing step, frequently used in the chromatographic purification of mAbs, is 

CEX chromatography, most commonly operated in BE mode. Binding capacity is a major 

factor in the selection of the appropriate CEX resin. CEX chromatography has the ability 

to remove HCPs, HMW species, degradation products and leached Protein A (Ghose et 

al., 2009). Staby et al. (2006) compared the DBC values of several strong and weak CEX 

resins, at the same operating conditions and reported high DBCs, up to 100g/L, for two 

Fractogel® EMD resins from Merck Millipore. In a subsequent study, the same resins 

were compared in terms of HCP clearance and it was reported that both resins were 

capable of achieving a logarithm reduction value for HCPs around 3. Moreover, the 

authors estimated the optimum pH to maximise DBC and concluded that pH 6.0 provide 

the best DBCs for both resins; 76g/L and 86g/L for the Fractogel® EMD SO3
−

  & 

Fractogel® EMD SE Hicap, respectively (Stein & Kiesewetter, 2007). 

In CEX chromatography, two operating parameters that affect significantly the binding 

capacity of the resins are pH and conductivity (Harinarayan et al., 2006; Liu et al., 2010). 

Harinarayan et al. (2006) evaluated the effect of pH and conductivity on two CEX resins 

and reported unprecedented behaviour in which DBC rose with conductivity, at all pH 

values. Initially, as conductivity and/or pH increase, DBC also increases. However, after 

a certain point any additional increase in pH or conductivity has a negative effect on 

DBC. The latter is the anticipated behaviour and the research team explained the initial 

behaviour based on the concept that by increasing pH or conductivity, protein-protein 

exclusion is mitigated and therefore binding capacity is improved. 

CEX membrane chromatography has been evaluated as an alternative column type due 

to the benefits noted earlier regarding membrane columns. Knudsen et al. (2001) 

compared packed-bed and membrane CEX chromatography in BE mode. They reported 

almost constant DBC for the membrane at increasing flow rates, in contrast with packed-

bed, where DBC decreases as flow rate increases. They concluded that the low binding 

capacity of membranes is a major disadvantage compared to packed-bed columns. 
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 Alternatives to IEX chromatography as polishing steps 

Hydrophobic interaction chromatography (HIC) and hydroxyapatite (HA) 

chromatography as well as mixed-mode chromatography have been utilised for the 

purification of mAbs (Liu et al., 2010; Gagnon, 2012). HIC depends on the hydrophobic 

interactions between regions of the antibody and the hydrophobic ligands of the resin. 

The milder conditions applied in HIC make the method more favourable than reverse 

phase chromatography where product denaturation could be an issue. Furthermore, HIC 

is preferred when HCPs and HMW species removal is the major objective. On the other 

hand, IEX chromatography has a superior ability to remove leached Protein A and DNA 

(Ghose et al., 2009). 

HA chromatography offers both positively and negatively charged binding sites and it 

has the ability to remove leached Protein A, HCPs, HMW species and DNA. Charge 

distribution and strength is affected by pH and conductivity and the isoelectric point of 

the mAb has a significant influence on the selection of the operation conditions. 

Therefore, a substantial disadvantage associated with HA chromatography is the need 

to determine the operating conditions specifically for each mAb (Ghose et al., 2009). An 

example of HIC and HA chromatography application is provided by Amgen (Thousand 

Oaks, California), which has adopted a flexible platform, involving HIC, HA and IEX 

chromatography, to process different products (Shukla et al., 2007). 

As described earlier, mixed-mode chromatography employs both electrostatic and 

hydrophobic interactions and provides great selectivity (Liu et al., 2010). Chen et al. 

(2010) compared a multi-modal, strong AEX resin with six conventional AEX resins and 

demonstrated a superior reduction of HMW species with comparable levels of HCP 

reduction. However, product recovery is significantly higher for the conventional AEX 

resins. In another study, Gao et al. (2013) evaluated the ability of the same multi-modal, 

strong AEX resin to remove aggregates, HCPs and DNA and reported that it is possible 

to use the resin as a sole polishing step after Protein A chromatography.  
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Virus inactivation/removal 

The purification sequence in the downstream process is designed to remove product- 

and process-related impurities and provide a stable and potent product that meets 

predetermined quality criteria. Although the commonly used purification sequence 

starting with Protein A chromatography and followed by CEX and AEX chromatography, 

is qualified to provide a pure product, regulators also require two distinct, orthogonal 

virus clearance/inactivation steps (ICH Q5, 1999). The acidic elution conditions in Protein 

A chromatography promotes the inactivation of enveloped viruses. However, normally a 

dedicated virus inactivation step follows Protein A chromatography and the analysis of 

the inactivation efficiency is determined for each step individually (Vunnum et al., 2009). 

Furthermore, a virus removal step is placed after the last polishing step, before final 

concentration and formulation of the product. Typically, a 20nm virus filtration step is 

preferred due to its robustness to remove most of the viral contaminants (Zhou, 2009). 

1.3.2. Disposable chromatographic purification of biopharmaceuticals 

Traditionally, manufacturing facilities for biologics operate in batch mode incorporating 

mainly reusable stainless steel equipment leading to high capital investment and facility 

footprint. Additionally, extensive requirements in terms of time and materials for cleaning 

and preparation of each unit operation along with CIP and sterilisation-in-place (SIP) 

validation are needed. Disposable, single-use technologies (SUT) present an alternative 

approach especially with improvements in cell culture titres that can exceed 5g/L (Shukla 

& Gottschalk, 2013). SUT in bio-manufacturing have been available since the 1970s, 

however they were limited to filters and liquid hold bags for the first couple of decades 

(Laukel et al., 2011; Lopes, 2015). Disposable cell culture flasks have been extensively 

used, however, they have been restricted only to inoculum expansion. The WAVE 

BioreactorTM system (GE Healthcare, Uppsala, Sweden) offered the first single-use 

platform for inoculum preparation suitable for large-scale manufacturing or as a 

replacement of the production bioreactor when cell culture volumes are low enough 

(Haldankar et al., 2006). Single-use stirred-tank bioreactors became available in 2004 
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with relatively low capacity of 250L, which a few years later improved to 2000L (Shukla 

& Gottschalk, 2013; Lopes, 2015). 

Advances in SUT in downstream processing have not fallen behind compared with 

upstream. In early 1990s the first disposable membrane chromatography column was 

introduced by Sartorius. Furthermore, filtration operations utilised disposable filters and 

membranes for many years however, the lack of single-use skids was hindering the 

manufacturers from leveraging their true benefits. Significant milestones in the area have 

been achieved with the commercialisation of disposable depth filtration, tangential flow 

filtration and chromatography skids (Laukel et al., 2011). These single-use skids utilise 

disposable parts that come in contact with buffers and product thus preventing the 

contact with fixed parts of the equipment and avoiding any cleaning activities that 

otherwise would be required (Shukla & Gottschalk, 2013). A unit operation that still poses 

a great challenge to switch to single-use is centrifugation, with only limited examples on 

the market and none of them based on disk-stack centrifuges (Shukla & Gottschalk, 

2013).    

Adopting SUT offers significant benefits: reduction in capital investment, increased 

facility flexibility, reduced turnaround times between batches and campaigns and 

mitigation of cross-contamination risk (Shukla & Gottschalk, 2013; Lopes, 2015). 

Commonly used fixed process equipment in GMP manufacturing require cleaning after 

each batch. These cleaning activities increase the manufacturing cost and require 

validation studies to prove their effectiveness. Additional utilities are necessary to 

support CIP and SIP leading to large facility footprints and high demands in terms of 

capital investment. Multi-product facilities and new-build facilities have the potential to 

benefit the most from adopting SUT. Fewer fixed process equipment would lead to less 

construction and installation work thus accelerating the timeframe for the completion of 

the facility. Moreover, with less fixed equipment in the facility it is possible to address 

capacity changes faster avoiding over- or under-production (Lopes, 2015). 
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On the other hand different challenges arise with the introduction of SUT in bio-

manufacturing. A rather obvious limitation is the manufacturing capacity of SUT with the 

largest available stirred tank bioreactor reaching 2000L (Lopes, 2015) and the biggest 

chromatography column of 60cm in diameter (Grier and Yakubu, 2016). Equipment size 

restrictions such as these could require a large number of batches for a single campaign 

and/or significant improvements in the performance of the process. For instance, 

improvements in cell line development and cell culture performance to increase the titre 

could lead to lower cell culture volumes and potentially to smaller bioreactors thus 

enabling the option of disposables. Additionally, high capacity chromatography resins 

would require smaller columns and the introduction of membrane chromatography that 

could replace the traditional packed-bed column could all make any size limitations 

obsolete. 

Another challenge the biologics manufacturers are facing is the lack of standardisation 

of disposable components rendering it difficult to inter-change parts or even connect 

equipment from different vendors. The absence of regulatory guidelines that could 

provide a level of clarity regarding the materials that could be used by suppliers of 

disposables and the level and the quality of the certification they need to provide 

enhances the complexity of the decision to introduce SUT (Shukla & Gottschalk, 2013; 

Lopes, 2015). A key concern as expressed by manufacturers is the lack of sufficient 

validation studies by the suppliers to determine the level of risk associated with 

leachables and extractables that arise with the use of plastic, disposable equipment. An 

additional consideration could include the increased dependence of manufacturers on 

suppliers not only in terms of quality assurance but also in terms of availability, 

consistency and punctuality (Ding & Martin, 2008). 

Although for the majority of the unit operations used in bio-manufacturing there is an 

SUT option available, the same cannot be claimed for ancillary process control 

instruments like sensors and monitoring devices. This issue is highlighted even more 

when a start to finish single-use process is considered where connectivity issues become 
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more apparent. Furthermore, the lack of single-use process control instruments leads to 

a decrease in automation that requires an increase in trained personnel (Lopes, 2015). 

From an environmental perspective, studies have demonstrated that single-use facilities 

offer a lower CO2 footprint compared with traditional facilities due to the reduction in heat 

consumption that comes with cleaning activities. However, the increased amount of solid 

waste that comes with disposables adds an additional consideration regarding the 

establishment of the appropriate methods and protocols for solid waste management 

(Lopes, 2015).     

As discussed earlier, manufacturing of mAbs and antibody-related products is commonly 

based on a platform process involving 2 – 3 distinct chromatography steps in the 

purification sequence (Kelley et al., 2009). Typically, reusable, self-packed 

chromatography columns are utilised and packed with the appropriate resins that can be 

operated for multiple cycles. The main drawbacks in manufacturing regarding self-

packed columns are the need for a packing/unpacking system, the materials (WFI, 

buffers etc.) and the personnel to prepare the column for operation and storage as well 

as the time requirements to perform qualification tests and documentation activities that 

are required to ensure the desired column packing quality. As mentioned earlier, 

membrane chromatography is an alternative, plug-and-play technology offering 

comparable purification performance, reduction in materials and a decrease in capital 

expenditures compared to packed-bed chromatography columns (Knudsen et al., 2001; 

Zhou & Tressel, 2005; Lim, et al., 2007; Jacquemart et al., 2016). 

Another available option is the utilisation of disposable pre-packed chromatography 

columns, which offer the advantage of eliminating the need for packing/unpacking 

activities and hence the need for a packing system. Pre-packed chromatography 

columns have been available for over a decade and were primarily used at laboratory 

scale for bioprocess development. Scharl et al. (2016) collected a large dataset over a 

period of ten years from test runs with small-scale pre-packed columns considering a 
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significant number of commercially available chromatography resins covering all steps 

in the purification sequence and their analysis concluded that pre-packed columns offer 

consistently good packing quality. 

Although pre-packed columns have been extensively used at small-scale, larger 

columns have become available only recently that could fit into pilot and commercial 

facilities. Grier and Yakubu (2016) summarised potential merits and drawbacks with pre-

packed columns in GMP and non-GMP facilities and compared their performance with 

conventional self-packed columns. Potential benefits that have not been mentioned 

earlier could include simplified technology transfer activities and column packing 

consistency across different manufacturing sites. On the other hand, potential 

disadvantages could be the lead time to obtain pre-packed columns and the loss of 

column packing know-how. Their evaluation showed minor dissimilarities in packing 

qualification between data provided by the vendors and tests runs they performed post-

shipment. Additionally, a slightly better purification performance and a lower pressure 

drop for linear velocities above 300cm/h were demonstrated for self-packed columns. 

Their evaluation concluded that these differences between pre-packed and self-packed 

columns could be attributed to differences in packing methods and materials. 

1.4. Process development approaches in chromatographic purification of 

biopharmaceuticals 

The increasing demands for mAbs, combined with intellectual property issues (expiration 

of patent(s)) and the need to be the first-in-market and acquire an advantage over other 

competitors, make it essential for process development to be rapid, efficient and off the 

critical path. Additionally, the advances in upstream processes have shifted the 

manufacturing bottleneck to downstream processes (Nfor et al., 2009). Initially, the 

traditional approach to the development of purification processes, involved the 

application of prior knowledge and the execution of an extensive number of experiments 

at bench scale. However, several restrictions such as limited or no previous knowledge, 
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the ability to screen only one set of operating conditions at a time, the relatively large 

amounts of product required and the high cost of the necessary laboratory equipment, 

prevent the in-depth evaluation of all the necessary operating parameters. As a result, 

pilot scale studies were delayed until sufficient data were gathered through clinical trials. 

A major drawback then is the incomplete determination of the design space and the 

regulatory inflexibility, coupled with the adoption of suboptimal processes (Chhatre & 

Titchener-Hooker, 2008). 

Nowadays, the regulators, through Quality by Design (QbD) and Process Analytical 

Technology (PAT) initiatives, prompt manufacturers to accommodate a more systematic 

approach in process development and optimisation in order to explore the whole design 

space, define its boundaries and determine the impact of critical process parameters 

(CPPs) on critical quality attributes (CQAs). Currently, different strategies for the 

development of purification processes are available including heuristic or knowledge-

based methods, algorithmic- and model-based methods, high-throughput experimental 

and hybrid methods combining different approaches (Nfor et al., 2008). 

1.4.1. Knowledge-based methods 

The heuristics approach is based on leveraging prior knowledge from experts on a topic 

of interest. Usually prior knowledge is captured through a set of rules-of-thumb that can 

guide process synthesis and design (Nfor et al., 2009). Wheelwright (1989) discussed 

different design methods based on heuristics from copying an already existing process 

to the development of computer-aided expert systems that rationalise that prior 

knowledge. Asenjo et al. (1989) developed a prototype expert system summarising a set 

of 65 rules-of-thumb to synthesise and select complete downstream processes in bio-

manufacturing. The authors demonstrated the efficient synthesis of primary recovery 

steps in downstream processing and highlighted the need for additional information 

regarding the physicochemical properties of the protein of interest and its impurities to 

make decisions on high resolution chromatography steps. Leser and Asenjo (1992) 
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showed that the integration to an expert system of a database with comprehensive 

information on the major mixture components identified in upstream processing offers a 

more accurate selection of purification processes. Further developments in expert 

systems introduced more accurate databases, improved tool structure and flexibility and 

mathematical correlations to model more accurately different downstream processing 

trains (Leser & Asenjo, 1994; Lienqueo et al., 1996; Leser et al., 1996; Lienqueo & 

Asenjo, 2000). 

Heuristics-based methods can be used for rapid evaluation of alternative bio-

manufacturing strategies and have been proven to provide essential insights for the 

design of a purification process when limited data on the protein of interest and its 

impurities are available. Furthermore, with such an approach complex process synthesis 

and design tasks can be organised into more manageable operations. On the other hand, 

adopting solely a heuristics approach could lead to sub-optimal manufacturing processes 

and thus further evaluation should be performed to increase the level of process 

understanding and optimise the process (Nfor et al., 2008; Nfor et al., 2009; Hanke & 

Ottens, 2014). 

1.4.2. Algorithmic- and model-based methods 

Throughout the bio-manufacturing process there is a tendency to progressively replace 

empirical correlations with mechanistic models in order to provide a higher level of 

process understanding (Hanke & Ottens, 2014). Mechanistic models are derived from 

fundamental (or first) principles (conservation of mass, heat and momentum) and thus 

have the potential to describe more accurately the phenomena occurring in any system. 

The chemical industry has a long history and sufficient databases on thermodynamic 

properties exist to support the use of mechanistic models. In contrast, the biotechnology 

industry lacks the advanced models, software tools and simulation packages to improve 

and assist in process synthesis, design and optimisation mainly due to the complex 

nature of biomolecules (Nfor et al., 2009).  
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Significant research has been done since the late 1960s in the area of mathematical 

modelling for packed-bed adsorption operations (Bellot & Condoret, 1991; Bellot & 

Condoret, 1993). A comprehensive overview has been given by Ruthven (1984) 

classifying different modelling approaches into three main categories; equilibrium, plate 

and rate models. Mathematical models based on the equilibrium theory make the 

assumption of rapid equilibrium achieved between the stationary and the mobile phase 

neglecting the effects of mass transfer resistance and axial dispersion. Models based on 

the plate theory adopt a different approach by dividing the column into a series of 

theoretical plates within which equilibrium has been achieved. The empirical nature of 

plate models cannot relate them to first principles (Gu et al., 1993). Nevertheless, their 

application has been demonstrated on the separation of multicomponent systems (Gu et 

al., 1993; Guiochon, 2002). 

Rate models are expressed mathematically through a set of differential equations that 

describe the phenomena acquiring between the stationary and mobile phase for each 

component (Gu et al., 1990). Among rate models, the general rate model is considered 

one of the most comprehensive that attempts to capture the effect of all possible 

contributions such as axial dispersion, intra-particle diffusion, external firm mass transfer 

resistance and adsorption/desorption kinetics. The complexity and non-linearity of the 

general rate model have posed great challenges in solving the system of the differential 

equations required to describe the operation and efficient algorithms are necessary to 

provide a solution (Gu et al., 1990; Gu et al., 1993; Guiochon, 2002). Gu et al. (1990) 

proposed a numerical procedure to solve the general rate model using the finite element 

and the orthogonal collocation methods. Later the authors extended their work with the 

addition of second order kinetics and size exclusion effects in their model (Gu et al., 

1993). 

Other studies have used the general rate model or a variation of it to address various 

aspects of the chromatographic performance. Degerman et al. (2006) used the general 

rate model with Langmuir isotherm kinetics and a modulator to optimise the separation 
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of an IgG from bovine serum albumin. Their model was able to simulate real gradient 

elution profiles using a constraint on the slope of the gradient embedded in their 

optimisation procedure, thus avoiding making assumptions on ideal gradients. The 

authors demonstrated their approach using six decision variables with a fixed bed-height 

and confirmed graphically the success of their optimisation method. Gerontas et al. 

(2010) integrated scale-down experimental data with general rate modelling to scale-up 

and predict the chromatographic separation at manufacturing scale. The general rate 

model with Langmuir kinetics and a mobile phase modulator was used and solved using 

the finite element method. Additionally, the authors demonstrated the use of genetic 

algorithms to calibrate model parameters and showed the validity and applicability of 

their approach using three different CEX resins. Boushaba et al. (2011) used the same 

modelling approach described by Gerontas et al. (2010) to evaluate the effect of fouling 

in the chromatographic performance. The authors demonstrated the use of windows of 

operation to visualise the trade-offs between the effort and the benefits of feed 

clarification prior to chromatography. 

A systematic approach to model chromatography operations has been developed by 

Chan et al. (2008). Their approach consists of three main parts. First a methodology was 

proposed to determine the feed concentration and identify significant components in the 

feed mixture that are required for the development of an accurate model. Then, the 

second part involves the estimation of model parameters for different rate models. The 

authors identified two models that have been studied extensively; the equilibrium-

dispersive and the general rate model and employed them to demonstrate their 

approach. The general rate model offers a more accurate description of the separation 

process however at a high computational cost. In contrast, the equilibrium-dispersive 

model makes further assumptions to simplify the general rate model thus mitigating the 

time required to solve it with potential consequences on the accuracy of the model. At 

the third and last part the authors utilised the fractionation diagram method to compare 

the accuracy of the mechanistic models they included. Three case-studies were 
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presented to illustrate the applicability and usefulness of their approach. The 

fractionation diagram method was employed due to its sensitivity to capture efficiently 

the trade-offs between purity and recovery. 

Origin of the fractionation diagram approach 

The final output of a chromatography cycle is a chromatogram, which presents how the 

concentration of the eluate changes against volume or time. However, it is difficult to 

extract straightforward relationships that can correlate performance with operating 

conditions and moreover, this task becomes more difficult when product and impurities 

concentrations are expressed in different units and when inadequate data are available 

(Ngiam et al., 2001). To address this issue, Ngiam et al. (2001) proposed a method to 

manipulate the information provided by chromatograms and construct graphical 

representations to visualise the trade-offs between purity and product recovery. 

Originally, the graphical method was developed by Richardson et al. (1990) to correlate 

product recovery and purity in protein precipitation and furthermore, to optimise the 

precipitation conditions and identify the precipitant cut points. Later a similar graphical 

method was developed to optimise high-performance tangential flow filtration operations 

(Reis & Saksena, 1997). 

Examples of implementation of the fractionation diagram approach 

The fractionation diagram approach in chromatography development was first used by 

Ngiam et al. (2001) with a hypothetical three component mixture. The authors utilised a 

mathematical model of size exclusion chromatography (SEC) to describe and simulate 

the separation of the desired component at different flow rates of the mobile phase. The 

resulting chromatograms where then translated into fractionation diagrams and 

maximum purification factor (PF) versus recovery diagrams were generated to visualise 

the effect of flow rate on the chromatographic performance. In the same study, the team 

conducted experiments with an IEX column to evaluate the removal of endotoxin and 

plasmid DNA. The fractionation approach was used to identify the collection points on 
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the chromatogram that will provide the desired level of purity and yield. In a subsequent 

study, the same approach was employed to optimise a two-column purification sequence 

(HIC followed by SEC). The authors identified the need to perform an integrated 

optimisation approach and develop the purification sequence as a whole and not as 

individual steps, which may lead to a sub-optimal result. Initially, the mobile phase flow 

rate was chosen as the investigated variable and how it affects HIC performance in terms 

of purity and yield. Subsequently, the effect of each HIC flow rate on the following SEC 

step, was evaluated in order to make decisions regarding the operating flow rate of the 

HIC step. The authors concluded that SEC is strongly affected by HIC (Ngiam et al., 

2003).  

Salisbury et al. (2006) considered the need to optimise the chromatographic purification 

sequence as a whole, utilised the fractionation diagram approach and introduced 2D 

windows of operation, capturing the trade-offs between productivity and purity. To 

generate a window of operation, initially a range of product breakthrough levels and 

operating flow rates have to be chosen based on the desired level of resolution. Then 

the time to achieve each breakthrough level was determined and the elution profiles were 

generated for each flow rate/breakthrough level combination. Subsequently, PF versus 

recovery diagrams were created for each combination of flow rate and breakthrough level 

and purity was estimated at the desired level of product recovery. Finally, productivity 

was calculated for each flow rate and breakthrough level combination. A window of 

operation for the first chromatography step was created and a feasible region within the 

window of operation was identified for the operation of the next chromatography step. 

The above studies demonstrate that the fractionation diagram approach is a powerful 

tool in purification process development and optimisation. The method offers an efficient 

solution to the issues arising from the insufficient approaches on how to extract rapidly 

useful information from a plethora of chromatograms. Moreover, it considers the 

importance of optimising each chromatography step as part of the whole purification 

sequence and not individually. Incorporation of the fractionation diagram approach with 
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other techniques has been proven to be an excellent tool in process development that 

can help make feasible decisions. 

1.4.3. High-throughput experimentation and design of experiments 

Although mechanistic models offer a high level of process understanding, there are 

challenges that arise from the selection of the appropriate modelling approach, to the 

related experimental effort to determine model parameters, to the high computational 

cost associated with some models (e.g. general rate model). Additionally, the inherent 

complexity of biopharmaceuticals and their manufacturing processes, increase the need 

for the development of novel tools and techniques to enhance the efforts towards 

accelerating bioprocess development while gaining an in-depth understanding of the 

process (Hanke & Ottens, 2014).  

High-throughput experimentation has emerged as a useful tool in purification bioprocess 

development and is characterised by miniaturisation, automation and parallelisation 

(Bhambure et al., 2011). 

 Miniaturisation due to the very small quantities of materials required to run the 

experiments, which are usually an order of magnitude lower than the requirements 

for small scale studies 

 Automation due to the ability to incorporate automated liquid-handling platforms 

 Parallelisation because a set of experimental runs can be executed simultaneously 

The major advantage with high-throughput experimentation is the ability to explore a 

large combination of operating parameters with minimal feedstock requirements. 

Additionally, pilot scale studies can be more targeted and designed to explore further 

only the conditions that appear the most promising, minimising cost and time 

requirements. Despite the significant merits of high-throughput experimentation 

techniques, there are important concerns that have to be addressed regarding the design 
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of the experiments and the organisation and manipulation of the resulting information 

(Chhatre & Titchener-Hooker, 2008; Nfor et al., 2009).  

1.4.3.1. High-throughput screening techniques in chromatography 

Currently, different high-throughput screening techniques are employed in the 

development of chromatographic purification processes. Chhatre and Titchener-Hooker 

(2008) proposed a route to chromatography process development using micro-scale 

chromatography and provided a comprehensive overview of the different formats of 

micro-scale chromatography. The authors identified three different formats most 

commonly used: 1) microliter batch incubation, 2) micropipette chromatography tips and 

3) miniature pre-packed columns. These micro-scale chromatography devices can be 

operated manually or automatically and can generate quantitative and qualitative data 

(Chhatre & Titchener-Hooker, 2008). The ability to operate these devices using a robotic 

workstation provides many advantages such as, increased productivity, consistency and 

accuracy. However, automated liquid-handling devices such as Freedom EVO® by 

Tecan require proper training and time to develop the appropriate operating protocols. 

Those protocols are especially important in platform processes where specific unit 

operations are employed and therefore the same protocol, for example for Protein A 

chromatography, can be used multiple times (Chhatre & Titchener-Hooker, 2008). Lacki 

(2012) evaluated the limitations and the advantages of the three micro-scale formats 

available and provided guidelines based on published high-throughput screening 

purification data, setting out which format is more appropriate for a given kind of 

experimental goal. 

The implementation of the first micro-scale format utilising the microliter batch incubation 

technique most commonly takes place using 96-well filter plates loaded with 

chromatography resins. Manually loaded 96-well plates have been used to identify the 

best performing chromatographic purification sequence for recombinant proteins (Rege 

et al., 2006). A plethora of different studies have been published utilising 96-well filter 

plates and automated liquid handling systems, to investigate different types of protein 
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chromatographic purification (Kramarczyk et al., 2008; Kelley et al., 2008; Kelley et al., 

2008b) and to identify the accuracy and consistency of automated liquid landing systems 

(Coffman et al., 2008). Additional studies have been conducted using 96-well filter plates 

to determine the dynamic binding capacity (Bergander et al., 2008; Carta, 2012). 

The demonstration of the second micro-scale format using pre-packed micropipette 

chromatography tips has been less extensively reported, compared to microliter batch 

incubation. Wenger et al. (2007) evaluated the purification of virus-like-particles from 

yeast lysate and developed an operating protocol using an automated robotic 

workstation. Chhatre et al. (2009) used the same micropipette chromatography tips 

format and a 2-level full factorial design of experiments to evaluate the effects of pH and 

salt concentration in the recovery and purification of polyclonal antibodies by a mixed-

mode cation exchange resin. The authors identified the challenges associated with 

scale-up of chromatography processes based on the HTE results and highlighted the 

increasing necessity for faster analytical methods to cope with the large datasets that 

result from HTE. 

The third and last micro-scale technique available incorporates miniature packed-bed 

chromatography columns with bed volumes of 100, 200 and 600μl. The miniature 

columns are a close representation of a packed-bed chromatography column, in terms 

of geometry and flow characteristics. Wierling et al. (2007) recognised the necessity for 

more rapid analytical tools and utilised these miniature columns coupled with an 

automated liquid handling system and an analytical system to evaluate the ability of four 

different chromatography resins to purify monoclonal antibodies from host cell proteins. 

In a different study, miniature chromatography columns were used to conduct 

breakthrough and elution experiments and to screen different resins and operating 

conditions. The authors concluded that there was a good agreement between micro-

scale and laboratory scale data when comparing breakthrough curves and an acceptable 

representation of purification performance. Finally, the authors highlighted the important 

role HTE has in chromatography process development and mentioned the potential 
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benefits that could be achieved by integrating HTE with model-based methods for the 

rapid evaluation of model parameters (Wiendahl et al., 2008). 

These examples all evaluate the performance of a single purification step. Treier et al. 

(2012b) demonstrated the ability to develop the whole purification sequence and 

highlighted the analytical challenges that arise from HTE. Welsh et al. (2014) 

incorporated 96-well filter plates for initial screening of binding conditions, followed by 

miniature columns to evaluate impurities removal capabilities. The authors demonstrated 

the applicability of their strategy with proof of concept examples and confirmed the HTE 

results with small-scale experiments. 

HTE offers benefits not only in terms of materials and time consumption but also in terms 

of the in-depth level of process understanding that can be achieved from very early stage 

in process development. Process limitations and manufacturing bottlenecks can be 

identified and alternatives can be rapidly evaluated with limited resources and the results 

could be used to drive and accelerate scale-up studies. The potentially vast amounts of 

data that can result from HTE require the appropriate methods and tools in order to fully 

leverage the information provided and support decision-making in bio-manufacturing. 

1.4.3.2. Design of experiments in chromatography 

Micro-scale, HTE techniques available for the chromatographic purification of 

biopharmaceuticals have increased the impetus for methodical experimental planning in 

order to maintain the number of experiments to a manageable level both in terms of 

experimental and analytical work while gaining the desired level of process 

understanding. The classical experimental approach evaluates the impact of each factor 

(or variable parameter) individually by keeping all the other independent variables 

constant. This approach is also known as one-factor-at-a-time (OFAT) and usually 

requires extensive experimentation and increased effort in data analysis and 

visualisation. The limitations of the OFAT approach become apparent even with relative 

simple systems where only a few factors have an influence. For instance, for a system 
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with four factors evaluated at four different levels each, the resulted number of 

experiments is 44=256, excluding replicates necessary to evaluate experimental errors 

and lack of fit of the proposed model. Moreover, the investigation of each factor 

independently hinders the identification of interactions among factors thus providing a 

limited level of confidence on the resulted model (Lazic, 2004). 

Design of experiments (DoE) is an alternative approach that investigates multiple factors 

simultaneously and provides empirical correlations that link factors with responses 

(Kumar et al., 2013). A comprehensive overview of the statistics involved in DoE as well 

as a review and discussion on the different designs that have been developed with 

applications in Chemical Engineering is given by Lazic (2004). Ferreira et al. (2007) 

identified chemometric tools commonly employed for the development of 

chromatographic systems. They reported that two-level full factorial, central composite, 

Box-Behnken, Doehlert and mixture design of experiments were among those more 

frequently used. Different types of experimental designs in DoE have been discussed 

also by Hibbert (2012). The author identified different designs in the DoE arsenal and 

provided a concise description summarising advantages, and limitations for each of 

them. Additionally the author offered recommendations on the procedure of reporting 

studies incorporating DoE, mentioning the inadequate description by many authors in 

their publications of the DoE methodology they followed. Furthermore, it was highlighted 

that DoE is a well-established chemometric tool with a list of different software packages 

to assist in implementation and analysis. Hence, there is no need to repeat its full history 

in every study but rather focus on the description of the details in the development of the 

DoE, the reasons behind the selection of a specific design by a researcher and the 

methodology that was followed to identify the appropriate model to describe the system.  

Following Hibbert’s (2012) paradigm, Kumar et al. (2013) used the microliter batch 

incubation technique with a 96-well filter plate loaded with a CEX resin to purify a 

therapeutic protein and they evaluated different design of experiments. The authors 

proposed a systematic approach for optimum model selection. Their approach 
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investigates different combinations of model parameters using a stepwise regression 

analysis and identifies the optimal model through a series of comparisons among key 

statistics of different models to describe a given system. Xu et al. (2012) followed the 

QbD paradigm in the development of a CEX chromatography step to separate a mAb 

from its aggregates. The authors used DoE to screen different CEX resins and develop 

a pH-conductivity hybrid elution profile. However, limited information was provided on 

the methodology that was followed to select their DoE method and model parameters 

that describe the chromatographic purification. 

1.4.4. Hybrid methods 

Another option in chromatography process development is the combination of different 

approaches that were discussed above (Nfor et al., 2008; Nfor et al., 2009; Hanke & 

Ottens, 2014). Susanto et al. (2009) integrated HTE with genetic algorithms to optimise 

chromatography operations. Their approach combined an automated liquid handling 

system with software tools to manipulate raw data and perform the experimental design 

using a genetic algorithm. The authors demonstrated their fully automated platform using 

both the microliter batch incubation and the miniature pre-packed chromatography 

columns technique.  The use of genetic algorithms in combination with HTE has also 

been discussed by Treier et al. (2012) to optimise a CEX chromatography step. The 

authors developed an automated protocol to prepare chromatography buffers based on 

conditions dictated by their platform and compared their approach with DoE and 

response surface analysis. They concluded that in case of multiple optimal solutions their 

approach to incorporate a genetic algorithm for experimental planning and analysis 

provided better correlations. However, in case of a single optimum the authors 

mentioned that it would require four times more experimental runs than using the DoE 

approach. 

An alternative methodology was presented by Osberghaus et al. (2012) linking 

mechanistic modelling with HTE. Miniature pre-packed chromatography columns were 
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operated with an automated liquid handling system and a series of experiments were 

performed to determine model parameters. The authors calibrated a lumped transport-

dispersive model to make scale-up predictions and reported an acceptable agreement 

between the predicted performance and the experimentally achieved with a laboratory 

scale chromatography column. Traylor et al. (2014) incorporated microliter batch 

incubation with 96-well filter plates operated on an automated liquid handling system with 

a multi-channel robotic arm and adjusted the pore diffusion model assuming a Langmuir 

isotherm to describe a multi-addition batch uptake. 

Another hybrid approach in chromatography process development was demonstrated by 

Nfor et al. (2011). The authors integrated HTE with model-based optimisation using a 

combination of the equilibrium-transport-dispersive and the liquid-film linear driving force 

models. HTE was implemented using the microliter batch incubation technique on an 

automated liquid handling system to acquire model parameters to describe the 

chromatographic operation. A multi-objective optimisation was performed considering 

quality and performance attributes along with process economics metrics related only to 

chromatography and Pareto frontier graphs were generated to visualise the trade-offs 

among different attributes. The authors utilised the weighted sum method to compare 

three different mixed-mode resins under their respective optimal operating conditions 

that were screened and optimised using their proposed hybrid approach for the 

purification of a particular mixture. 

The QbD paradigm in chromatography process development has also been 

demonstrated by Bhambure and Rathore (2013). The authors established a High-

Throughput Process Development (HTPD) platform combining DoE with the microliter 

batch incubation technique using prefilled 96-well filter plates. The experimental plan of 

their HTPD platform was operated manually leading to the introduction of correction 

factors to minimise experimental errors. Moreover, the authors reported a difference in 

the step recovery between their HTPD platform and laboratory-scale systems possible 

due to non-specific binding of the protein on the bottom of the filter plates, reporting the 
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high hydrophobicity of the protein as the cause of this behaviour. Overall, the study 

demonstrated the applicability and usefulness of their HTPD platform highlighting the 

enormous benefits in terms of time and feedstock material required compared with 

traditional, laboratory scale experimentation. 

More recently, Liu et al. (2017) developed a decision-support framework for the optimum 

resin selection and operation of a two-step chromatographic purification train. The 

proposed hybrid approach was developed using miniature, pre-packed chromatography 

columns on an automated liquid handling system. High-throughput purification data 

generated for each resin candidate were integrated into a multi-objective, mixed-integer 

nonlinear programming model and used Pareto frontiers to visualise the trade-offs 

between purity and yield. A key advantage of the suggested decision-support framework 

is the integration of two steps in the purification train highlighting the importance of 

considering the whole purification train when developing individual chromatographic 

operations. Although such a holistic approach offers critical insights regarding the 

interdependencies among individual chromatography steps it comes with an increased 

experimental effort when screening multiple chromatography resin sequences and 

multiple process parameters at a wide range. 

HTE has emerged as a powerful tool in chromatography process development. There is 

an increasing trend to develop hybrid approaches and incorporate HTE into platforms 

(or workflows) that combine different tools and methods forming a HTPD strategy 

(Bhambure & Rathore, 2013). Hybrid methods offer the advantage of linking different 

approaches emphasising on the merits while mitigating the limitations that each method 

offers when used individually (Hanke & Ottens, 2014). Regulatory agencies through the 

QbD initiative suggest the manufacturers to adopt a HTPD strategy in order to accelerate 

process development from a very early stage in a product’s lifecycle and achieve a high 

level of product and process understanding.  
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1.5. Process economics modelling in bio-manufacturing 

The high cost of R&D, combined with the increased necessity to provide affordable new 

biologics, is driving the biotech sector to identify solutions that can mitigate the clinical 

and commercial manufacturing cost. The design and optimisation of bio-manufacturing 

facilities for therapeutic antibodies have been evaluated in several studies. The 

Department of Biochemical Engineering at University College London has a key focus 

on the development of decision-support tools to address process (e.g. Farid et al., 2005; 

Farid et al., 2007; Simaria et al., 2012; Allmendinger et al., 2014; Yang et al., 2014) and 

business (e.g. Rajapakse et al., 2005; George & Farid, 2008) aspects in bio-

manufacturing. One key performance metric used by a plethora of studies is the cost of 

goods (COG) that provides a sum of direct (or running) and indirect (or overhead) 

manufacturing costs. 

Farid et al. (2000) developed a prototype hierarchical tool to model process and business 

aspects in bio-manufacturing. The authors provided a breakdown of COG that reflects 

the cost associated with cGMP bio-manufacturing facilities and demonstrated the 

implementation and functionality of their tool through a case study evaluating different 

stainless steel and single-use manufacturing strategies. Mustafa et al. (2004) followed 

the same modelling approach and used COG as the key metric in decision-making 

between packed-bed chromatography and expanded bed adsorption. Later Mustafa et 

al. (2006) presented a framework to address both business and process aspects related 

to retrofitting using discrete event simulations. 

The continuously increasing demands for higher annual outputs have a positive effect 

on the COG per gram of product produced (COG/g) and therefore, as the annual 

production capacity rises, COG/g reduces (Farid, 2007). At small scales the contribution 

of capital investment and labour cost in COG is typically greater compared with the cost 

of materials. However, the proportion of indirect and direct costs is reversed, as scale 

increases. Moreover, as the scale and/or the titre increase, upstream processes tend to 

provide a smaller portion of the COG compared to downstream processes (Farid, 2009). 
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It has been suggested that the proportion of upstream over downstream cost changes 

from 55/45 to 30/70, as titre increases ten-fold (Sommerfeld & Strube, 2005). The trend 

shows that downstream processes play an important role in the economic feasibility of 

the whole process and hence significant challenges have to be addressed. Innovations 

and further improvements in the existing technologies are required to minimise the cost 

of downstream processes and by extension the overall cost of manufacturing. 

Single-use technologies (SUT) are considered an alternative in order to reduce the cost 

of manufacturing. Some advantages and disadvantages associated with SUT were 

discussed earlier in Section 1.3.2. Novais et al. (2001) developed a process economics 

model to evaluate and compare conventional (fixed) and single-use bio-manufacturing 

facilities using the net present value (NPV) as the key performance metric. The authors 

estimated the capital investment for each facility following principles discussed in 

chemical engineering textbooks (Peters & Timmerhaus, 1991) by using a method initially 

proposed by Lang (1948). Their evaluation was demonstrated through a case study 

concluding that the cost of consumables increases substantially in disposable-based 

facilities while on the other hand the capital investment reduces significantly. 

Other examples on the economic evaluation of SUT have been published using 

commercially available computer aided tools. Sinclair and Monge (2002) used a 

spreadsheet-based COG model (BioPharm Services Ltd) and discrete-event modelling 

to compare the cost-effectiveness of disposable bags over stainless steel vessels 

throughout the bio-manufacturing process. The authors considered a 2000L 

manufacturing capacity and demonstrated a reduction in capital investment of 20% and 

an increase in throughput of 7% resulting in 8% drop in COG for facilities utilising 

disposable bags over stainless steel vessels. In a following study, Sinclair and Monge 

(2005) illustrated the design of a concept bio-manufacturing multi-product facility based 

on SUT.  Their concept facility was based on a 1000L bioreactor for the production of 

material for late stage clinical trials. The authors reported a 40% decrease in capital 
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investment and a 17% drop in COG for their concept facility compared with a traditional 

facility of the same capacity. 

1.5.1. Managing risk and uncertainty in bio-manufacturing    

Most of the examples discussed above regarding the economic evaluation of bio-

manufacturing facilities used a knowledge-based and deterministic approach in the 

design of the process. However, the complex nature of biomolecules and their 

manufacturing processes introduce deviations in the behaviour of a process for different 

products and even between batches of the same product. Additional uncertainties 

regarding the regulatory approval of a new product and its commercial success, all create 

a complex environment that requires the appropriate tools to identify the optimum 

manufacturing strategy and enhance decision-making. In order to attempt to address 

these challenges and consider risks associated with manufacturing and 

commercialisation of new biopharmaceuticals, Farid et al. (2005) extended a prototype 

hierarchical decision-support tool (Farid et al., 2000) and used stochastic analysis to 

evaluate different manufacturing strategies for early stage clinical manufacturing. The 

authors initially determined critical technical and market uncertainties using one-way 

sensitivity analysis and then used Monte Carlo simulations to further evaluate their 

impact on COG and project throughput. A case study was presented to demonstrate the 

application of their prototype tool comparing different manufacturing technology options 

(stainless steel, disposable and hybrid facility configuration). 

Farid et al. (2007) identified the lack of commercially available software tools in 

bioprocessing that can integrate process design calculations with logistical activities (e.g. 

resource allocation between competing tasks) and incorporate risks associated with all 

relevant activities. The authors used a task-oriented computer-aided tool combining the 

above features through a case study comparing traditional, stainless steel with 

disposable facilities in terms of COG/g and annual project throughput. A key process 

parameter that introduces a significant variability in COG and throughput is the 
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fermentation titre (Farid et al., 2007). Subsequent studies have illustrated a mixed integer 

linear programming approach to optimise medium term (1 – 3 years) planning of bio-

manufacturing facilities considering a distribution of potential titre values through Monte 

Carlo analysis (Lakhdar et al., 2006; Lakhdar & Papageorgiou, 2008). 

The integration of stochastic simulations with multivariate data analysis and visualisation 

techniques to address technology transfer challenges was presented by Stonier et al. 

(2013). Technology transfer activities related with the scale-up of manufacturing 

processes from pilot scale to late phase clinical trials and commercial facilities are typical 

based on limited information rendering very difficult to perform properly facility fit 

assessments. Stonier et al. (2013) identified though discussions with industrial experts 

in technology transfer activities significant process parameters that are most likely to 

cause process deviations at larger scale and used triangular distributions in their Monte 

Carlo analysis to evaluate their impact on key metrics (e.g. COG and product mass loss). 

Results from these stochastic simulations were leveraged using principal component 

analysis and clustering algorithms to reduce the dimensions of the process design space 

and promote visualisation. Finally, the authors demonstrated a novel visualisation 

technique using co-ordinate plots with actual process related data rather than principal 

components scores to address facility fit issues in bio-manufacturing facilities. Yang et 

al. (2014) improved upon previous work by Stonier et al. (2013) and used a data-driven, 

discrete simulation tool and a decision tree technique to leverage the large datasets from 

Monte Carlo simulations. The authors demonstrated a case-study to investigate the 

impact of process deviations on the product mass loss and provided solutions to 

debottleneck the manufacturing process based on their decision tree analysis.    

Another prototype framework was developed by Rajapakse et al. (2005) to assist in 

decision-making in portfolio management for the development of new 

biopharmaceuticals. The authors evaluated a portfolio with three different mAbs entering 

clinical trials and estimated the portfolio’s NPV through a 20-year period comparing in-

house (early and late build) with contract manufacturing. Critical technical and 



67 
 

commercial uncertainties were identified through one-way sensitivity analysis and their 

impact was further investigated using Monte Carlo simulations. A different application of 

this prototype tool in portfolio management was demonstrated by Rajapakse et al. (2006) 

to evaluate the rewards and risks related with different portfolios. The authors integrated 

the efficient frontier approach in portfolio management initially proposed by Harry 

Markowitz (1991) with Monte Carlo analysis. The authors used NPV of each portfolio as 

the metric for reward and its standard deviation as the risk metric and demonstrated the 

functionality of their approach comparing different drug portfolios for a hypothetical 

biopharmaceutical company. 

A holistic approach was presented by George and Farid (2008) to address 

simultaneously R&D portfolio management and bio-manufacturing capacity planning 

decisions. The authors developed a framework to evaluate different portfolio strategies 

by leveraging Bayesian networks and evolutionary algorithms to search efficiently a vast 

decision space and identify optimal solutions. Their approach was demonstrated with a 

case study discussing the alternative strategies a hypothetical biopharmaceutical 

company could consider when developing a portfolio under technical and commercial 

uncertainties. Two conflicting objectives were considered in the evaluation: to maximise 

the NPV and the probability of the NPV being positive. In general terms, their holistic 

approach provided insights on various aspects that need to be considered in portfolio 

management such as which drug candidates should be included in a portfolio and their 

priority in the development sequence along with scheduling of the related development 

activities and finally the decision to include (or not) third parties into the venture (e.g. 

contract research and manufacturing organisations). 

An additional study used the same framework and evaluated the impact of portfolio size 

and cash flow restrictions on the decision space. It was indicated that cash flow 

constraints could lead to a reduction in the expected rewards or the success probability 

of a strategy. Moreover, decisions regarding scheduling and third party collaborations 

are significantly influenced by the size of a portfolio (George & Farid, 2008b). 
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The majority of the studies presented so far provide a framework that considers usually 

one or two criteria in the decision-making process thus excluding potentially important 

attributes. To address this limitation Farid et al. (2005b) developed a multi-attribute 

decision-making (MADM) approach that considers qualitative and quantitative attributes 

in the evaluation of different bio-manufacturing strategies. One type of classification of 

different MADM methods is based on the dimensions in which the attributes are 

analysed. For instance, multi-dimensional methods evaluate each attribute considering 

its actual value and are typically used for initial screening of alternatives by excluding 

those that do not meet certain criteria (Farid et al., 2005). On the other hand, methods 

that involve a single dimension are more preferred when trade-offs among attributes 

require evaluation. 

Farid et al. (2005b) recognised the simplicity to formulate and utilise the simple additive 

weighting technique (also known as weighted sum method) and extended it to introduce 

uncertainty in the weight coefficient assigned to each attribute as well as the attributes. 

Hence, instead of using constant weights for the attributes in their model, the authors 

considered a distribution of values evaluated through Monte Carlo simulations. The 

proposed probabilistic additive weighting method capturing financial and operational 

attributes was demonstrated through a case study that was initially investigated by Farid 

et al. (2005) comparing stainless steel, disposable and hybrid facilities for manufacturing 

material for late phase clinical trials. The authors evaluated a range of operational to 

financial ratios and compared the aggregated scores for each ratio among the three 

different manufacturing strategies in order to provide a better understanding between 

trade-offs and their impact in decision-making. 

The simple additive weighting technique has also been used in a decision-support 

framework to evaluate strategies for achieving bio-manufacturing capacity at 

commercial-scale (George et al., 2007). A hypothetical biopharmaceutical company with 

three drugs with different development and market characteristics was used as an 

example to illustrate the implementation of the approach. Options involving third parties 
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(contract manufacturers or other partners) and/or investment in building new commercial 

facilities were considered and uncertainties associated with each option were 

determined. The authors included financial and operational attributes and evaluated 

different options based on their average aggregated score at different operational to 

financial ratios. Hence, highlighting the importance of considering multi-criteria in 

decision-making especially in the presence of conflicting attributes under uncertainty. 

A significant number of studies discussed throughout this chapter have employed Monte 

Carlo simulations in their analysis to introduce and evaluate uncertainty. Monte Carlo is 

a numerical method that attempts to describe the function of a complex system that does 

not follow a predefined pattern but rather a stochastic (Landau & Binder, 2009). Thus, 

the method has been widely accepted and used to provide solutions to very challenging 

“problems”. Nevertheless the development of the appropriate algorithm can be 

challenging; from the selection of the correct sampling method for random numbers to 

the determination of the convergence criteria (Ballio & Guadagnini, 2004; Landau & 

Binder, 2009). 

1.5.2. Design, economic evaluation and optimisation of chromatographic 

separation of biopharmaceuticals 

Significant work has been published investigating different methods in the design and 

optimisation of the chromatographic purification train. As cell culture titres increase the 

manufacturing bottleneck tends to shift from upstream to downstream processing 

(Sommerfeld & Strube, 2005). Therefore, optimal design of the purification train requires 

the consideration of multiple criteria including product quality, productivity and cost-

effectiveness along with additional restrictions associated with product, process, facility 

and business aspects. 

Process development and optimisation of chromatography unit operations require 

numerous decisions to be made: from the selection of the appropriate chromatography 

resin type, its position in the purification train, the operating conditions and the size of 
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the column(s) to scheduling of shift patterns, monitoring and control of the operation. The 

traditional approach in decision-making relied heavily on prior knowledge and experience 

of process engineers thus lacking a systematic framework to aid design and optimisation 

often leading to sub-optimal solutions. Joseph et al. (2006) developed a model-based 

framework to assist in the systematic design of the chromatographic separation of 

biopharmaceuticals. The authors evaluated different strategies comparing 

chromatography column sizes and operating conditions assessing resin degradation, 

lifetime and compression effects on productivity, COG and facility fit restrictions. An 

example case study was presented assuming a given manufacturing process to 

demonstrate their approach using windows of operation to visualise trade-offs under 

constraints among key performance metrics for the capture step in the purification train 

utilising an affinity (recombinant Protein A) resin. 

The use of mechanistic models in an integrated process synthesis and optimisation 

framework has been presented by (Nfor et al., 2013). The authors used HTE to screen 

different chromatography resins and obtain model parameters and utilised Pareto 

frontiers to visualise the trade-offs of different optimal solutions considering purity and 

purification cost as the two decision-making attributes.   

Purification sizing strategies have also been discussed by Stonier et al. (2012). A 

decision-support tool was developed to integrate process and business aspects in 

antibody manufacturing and identify the optimum sizing strategy for the purification 

sequence. All three chromatography steps were modelled in a multi-product bio-

manufacturing facility consisting of 3 x 2000L bioreactors operated in a staggered mode 

with two downstream processing (DSP) suites. The authors evaluated the effects of 

increasing cell culture titre on the chromatographic purification train and assessed the 

robustness of the process to titre fluctuations. Pareto (or efficient) frontier graphs were 

used to visualise the set of optimal solutions provided by their database-driven, discrete-

event simulation tool to visualise the trade-offs between COG and time for different 

solutions. It was demonstrated that as titre increases from 1g/L to 10g/L the COG/g of 
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the DSP reduces by approximately 50% and it was highlighted that the affinity (Protein 

A) chromatography step was the main bottleneck in DSP with high cost of consumables 

and relative low binding capacity (Stonier et al., 2012). 

Another approach has been presented considering also the effect of different impurities 

loads of the harvested feed material on the design and optimisation of the purification 

train (Simaria et al., 2012). The proposed framework was based on previous work by 

Farid et al. (2007) and linked with a meta-heuristic optimisation approach using genetic 

algorithms to identify the optimum purification train configuration. A set of heuristics 

(rules-of-thumb) were proposed after discussions with industrial experts to rationalise the 

capabilities and restrictions of different chromatography resin types. A case study 

inspired from the biopharmaceutical industry investigated a portfolio of mAbs at different 

stages in their respective lifecycle with different product and capacity specifications. The 

overall objective of the case study was to identify the optimal upstream processing (USP) 

to DSP ratio, determine the sequence of the chromatographic purification train and the 

sizing strategy for each chromatography step to minimise the COG/g for each product in 

the portfolio (Simaria et al., 2012). 

Furthermore, it was demonstrated through a case study the ability of evolutionary 

algorithms to identify global optimal solutions even when considering conflicting 

attributes. The value and benefits of evolutionary algorithms in bioprocess optimisation 

become more apparent when evaluating very large decision spaces. Allmendinger et al. 

(2013) formulated a single-objective, multi-constrained optimisation problem using 

evolutionary algorithms performing Monte Carlo trials to account for uncertainty in cell 

culture titre. Optimisation involved only the sizing strategy of the chromatographic 

purification train considering a process economics model developed by Farid et al. 

(2007). The authors demonstrated their approach with an industrially relevant case study 

for the manufacture of a mAb at commercial scale optimising bed-height, diameter, 

number of columns in parallel and number of cycles per batch for each chromatography 
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step in the purification sequence using the COG/g as the key performance metric to 

identify the optimum sizing strategy. 

A following study improved upon previous work (by Allmendinger et al., 2013) and 

developed an evolutionary multi-objective optimisation algorithm. The authors included 

chromatography resin utilisation, impurities reduction capabilities, COG/g and its 

robustness as the four objectives in their optimisation approach. Additionally, uncertainty 

was introduced in several process parameters with emphasis in the purification 

sequence and It was highlighted the importance of including uncertainty in design and 

optimisation to avoid sub-optimal manufacturing strategies. The authors demonstrated 

their approach evaluating a bio-manufacturing process for a single mAb and compared 

their results with a typical platform purification strategy from the industry and reported a 

reduction in COG/g up to 10% (Allmendinger et al., 2014). 

An alternative to evolutionary algorithms was presented by Liu et al. (2013). A mixed-

integer nonlinear programming (MINLP) approach was developed to identify the 

optimum chromatographic purification train sizing strategy with increasing cell culture 

titres. The COG/g was used as the single objective of optimisation for a 

biopharmaceutical company manufacturing a single mAb at commercial scale. Results 

from their approach suggested that for low titres, single USP and DSP trains with a single 

chromatography column for each step, offer the lowest COG/g values without any 

product loss. However, for higher titre values (>6g/L) it was presented that increased 

number of USP trains (bioreactors working in staggered mode) and parallel 

chromatography columns were necessary to avoid product loss and minimise COG/g 

(Liu et al., 2013). Subsequently, Liu et al. (2014) formulated a mixed-integer linear 

fractional programming (MILFP) model to optimise the chromatography sizing strategy 

along with the resin sequence and mitigate the computational cost of their MINLP 

approach. The authors followed an industrial relevant case study initially presented by 

Simaria et al. (2012) considering a single mAb instead of a portfolio of three products 

and discussed the advantages in computational speed of their MILFP approach. 
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Furthermore, Liu et al. (2015) improved upon previous work to consider more 

chromatography resin candidates in their optimisation approach along with continuous 

values for the bed-height of the chromatography columns in the purification train. 

1.6. Research scope and thesis layout 

The biopharmaceutical industry is a fast growing segment of the global pharmaceutical 

market and projections indicate the continuously increasing contribution of 

biopharmaceuticals in global sales. Nevertheless, the high level of uncertainty that 

governs the industry along with increased pressure from regulatory agencies and the 

necessity to commercialise affordable therapeutic drugs all create enormous challenges. 

The high R&D cost and time requirements combined with low success rates are driving 

the industry to develop cost-effective bio-manufacturing processes while demonstrating 

an in-depth level of product and process understanding.  

The continuously increasing annual product demands for mAbs combined with 

improvements in cell culture titres tend to shift the manufacturing bottleneck from 

upstream to downstream processing. Chromatography remains the workhorse in 

antibody purification despite the high cost and complex process development. The 

complexity in the development of chromatographic separation processes stems from the 

large number of factors that can potentially have a significant impact on the performance 

of the process mainly due to the complex nature of biomolecules. Additionally, process 

design and optimisation should evaluate the complete bio-manufacturing process 

considering both operational and financial criteria. The traditional approach in 

chromatography process development involves extensive experimentation at small and 

pilot scale to gain the required level of process understanding. Additionally, it relies 

heavily on prior knowledge and experience of process engineers. This approach usually 

requires substantial amount of feed material often leading to the postponement of 

process development activities until late-stage clinical trials where a lot of decisions have 

already been made regarding the manufacturing process. 
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Hence, in this thesis the research focus is the development of decision-support tools to 

assist in chromatography process development for the purification of therapeutic 

antibodies. Considering some of the drivers identified above, the overall aim of this 

research project is to establish a systematic methodology to rationalise and accelerate 

resin screening, selection and optimisation at early-stage process development. 

Additionally, emphasis is placed on evaluating the cost-effectiveness of a 

chromatographic purification train using high-throughput screening data in order to 

determine its commercial feasibility. 

Chapter 1 of the thesis discussed the development pathway of a new therapeutic drug, 

the associated R&D cost and the uncertainties related with R&D and commercialisation. 

Furthermore, key aspects in bio-manufacturing focusing on the chromatographic 

purification were presented and a series of different approaches in chromatography 

process development were discussed. Finally, alternative methodologies for the design 

and optimisation of chromatographic purification trains were identified. 

Chapter 2 outlines materials, equipment and computer software tools that were used 

throughout this research. Additionally, the experimental and data analysis methodologies 

are presented. The integration of the fractionation diagram approach with design of 

experiments is presented along with a decision-support tool to assist in chromatography 

resin comparison and selection procedure for a single chromatography step. A 

robustness analysis technique is presented to identify windows of operation considering 

multiple attributes under uncertainty. Chapter 2 continues with the description of a 

process economics model developed to capture technical and financial differences 

between self-packed and pre-packed chromatography columns. Finally, a decision-

support tool for the chromatographic purification train is presented to link high-throughput 

purification data with process economics modelling. 

Chapter 3 demonstrates the implementation of a novel High Throughput Process 

Development (HTPD) workflow integrating a scale-down chromatography 
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experimentation strategy with an advanced chromatogram evaluation method, 

multivariate data analysis and decision-making and robustness modelling techniques. 

This new approach enables efficient evaluation of vast amounts of data generated 

through high-throughput experimentation, achieves a fair comparison among different 

chromatography resins and identifies windows of operation that can meet quality and 

performance criteria under uncertainty. 

Chapter 4 presents a case study to investigate the economics of pre-packed 

chromatography columns in antibody purification as an alternative to self-packed 

columns. Single-Use technologies in antibody purification demonstrate significant 

benefits over conventional self-packed columns with the majority of the studies focusing 

on the operational and financial evaluation of membrane chromatography columns. On 

the other hand, there are limited published studies on the evaluation of pre-packed 

chromatography columns. Hence, a series of hypothetical scenarios are analysed to 

identify advantages and limitations of pre-packed columns from a process economics 

perspective at various stages in the drug development pathway. Stochastic simulations 

are performed to evaluate the uncertainty in process parameters and other model 

assumptions and identify their impact on key performance metrics. 

Chapter 5 demonstrates an integrated framework consolidating the HTPD workflow, the 

process economics model and the decision-support tool for the chromatographic 

purification train. The objective is to enable the evaluation of the performance of different 

resin candidates considering the implications on the complete manufacturing process. 

Chapter 6 is an overview of the current validation approach in bio-manufacturing 

discussing elements in Quality by Design relevant to the methodologies and the tools 

presented in the context of this research. Finally, Chapter 7 provides concluding remarks 

from the whole research, outlines the overall benefits of the proposed methods and tools, 

discusses their current limitations and offers recommendations regarding future work. 
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Chapter 2. Materials and methods 

2.1. Materials, laboratory equipment and software tools 

All chemical reagents used to prepare chromatography buffers were provided by J.T. 

Baker (Avantor Performance Materials Inc., Pennsylvania, U.S.A). All weight 

measurements were performed using a BP 3100 S balance (Sartorius, Surrey, UK) while 

pH and conductivity were measured using a PHM220 Lab pH meter and a CDM230 

conductivity meter (Radiometer Analytical, Colorado, U.S.A), respectively. Antibody 

solutions were concentrated using a tangential flow filtration system (Pall Life Science, 

Portsmouth, UK) with a 30kDa ultrafiltration membrane (Ultracel®, Merck Millipore, 

Hertfordshire, UK). High-throughput experimentation was performed using an automated 

liquid handling system, Freedom EVO® 200 (Tecan, Mannedorf, Switzerland). Small-

scale experiments were conducted using an AKTATM Avant 25 chromatography system 

(GE Healthcare Life Sciences, Uppsala, Sweden). 

Samples, throughout the experimental work, were collected in 2mL Masterblock® 96 

deep well plates (Greiner Bio-One, Stonehouse, UK) and total protein concentration was 

measured using an Xpose™ UV/VIS spectrophotometer at a wavelength of 280nm 

(Trinean, Ghent, Belgium). The Xpose™ system was operated manually analysing 16 

samples at a time. Sample composition in terms of aggregates, product and fragments 

was determined using an Acquity UPLCTM system (Waters, Milford, Massachusetts) with 

a size exclusion chromatography column (BEH200 with 200A, D=4.6mm, L=150mm and 

1.7μm bead size). The Acquity UPLCTM system can analyse eight 96-deep well plates 

without any intervention, with a sample volume of 5μL and a flowrate of 0.4mL/min. Feed 

antibody solution samples were analysed prior to the analysis of the experimentation 

samples to determine the initial composition of the mixture. 

The automated liquid handing system was programmed, operated and monitored using 

the corresponding software package (Freedom EVOware®, Tecan Group Ltd., 

Mannedorf, Switzerland). Additional software tools that were used in data handling, 
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manipulation and analysis throughout the research involve: MS Excel 2010 (Microsoft) 

including the SOLVER optimisation tool and the data analysis tool-pack add-ins along 

with @RISK 6.5 (Palisade Corporation, West Drayton, UK). The SOLVER optimisation 

tool add-in offers three optimisation engines: a Simplex LP engine for linear problems, a 

GRG Nonlinear engine for non-linear and smooth problems and an Evolutionary engine 

for non-linear and non-smooth problems. Additionally, Visual Basic for Applications 

(VBA) was used to automate and accelerate different analytical procedures. Finally, JMP 

Pro 11 (SAS Institute Inc., Marlow, UK) was used for the design and analysis of the 

experiments. 

2.2. Experimental and data analysis methodology 

2.2.1. Design of experiments 

Screening experimentation was based on definitive screening designs while for the 

optimisation purposes central composite designs were used. Central composite designs 

have been widely employed in optimisation of chromatography systems (Ferreira et al., 

2007; Hibbert, 2012; Kumar et al., 2013). On the other hand, definitive screening designs 

were introduced in 2011 (Jones & Nachtsheim, 2011) and yet have limited published 

examples in bioprocessing. Jones and Nachtsheim (2011) identified limitations of 

resolution III and IV fractional factorial designs used for early-stage screening 

experimentation and proposed a new class of screening designs known as definitive 

screening designs. 

The proposed new class of screening designs estimates main effects completely 

independent of two-factor interactions. Moreover, the evaluation of each factor at three 

levels offers the ability to estimate quadratic effects orthogonal to main effects and not 

completely confounded with second order interactions. Tai et al. (2015) implemented a 

hybrid approach combining HTE using an ambr250™ system with a 10-factor definitive 

screening design for the characterisation of fermentation processes for therapeutic 

proteins. According to Jones and Nachtsheim (2011) a definitive screening design with 
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10 factors results in 21 experimental runs. Tai et al. (2015) augmented that DoE space 

with 3 additional control runs at the centre point and reported the ability of their model to 

capture efficiently main and quadratic effects along with higher order interactions. 

The construction and the evaluation of the DoE space were performed in JMP Pro 11 

which offers a definitive screening design platform. Insights gained through screening 

experimentation were leveraged to develop the DoE space for the subsequent 

optimisation study. The resin comparison and selection methodology described in 

Section 2.2.3.3., determines the set-point of process parameters for each resin to meet 

quality and performance targets. These set-point values were used as the mid-values 

when designing the optimisation experiments. 

Having completed the experimental runs the DoE responses were estimated in MS Excel 

and imported into JMP to enable the initiation of the DoE analysis. Using the Model Fit 

platform in JMP, a stepwise regression fitting approach was followed considering all 

possible main and quadratic effects and second order interactions. The stepwise 

regression platform in JMP can be tailored to follow a similar methodology to that 

demonstrated by Kumar et al. (2013) to identify the appropriate empirical model avoiding 

under- or over-fitting issues using a series of standard statistical criteria (e.g. Akaike 

information criterion (AIC), Bayesian information criterion (BIC), R2, adjusted R2 and p-

value threshold (<0.05)). 

2.2.2. Experimental set-up 

For the estimation of the DBC10%, the flow-through volume was fractionated into fractions 

of equal volume (200μL) and collected in 96-deep well plates for further analysis to 

determine the protein concentration in each fraction. To evaluate selectivity and 

recovery, the elution pool was fractionated and each fraction (200μL) was analysed to 

determine its total protein concentration and purity. Several steps were involved in the 

experimental set-up to investigate the dynamic binding capacity as well as the capability 

for purification and recovery. 
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The process cycle started with equilibration of the chromatography resins at the 

appropriate pH and conductivity conditions. Then to evaluate the binding capacity, each 

resin was challenged at a high load mass. For the stepwise elution experiments, 

equilibration was followed by loading of the product to a specific load challenge 

expressed as a fraction of the maximum DBC10%. Product and impurities were eluted 

with increasing conductivity of the mobile phase, followed by a high pH – high 

conductivity step to clean and sanitise the chromatography resins. The same protocols 

were used for the purposes of subsequent steps in the HTPD workflow, to optimise the 

process parameters for the selected chromatography resin as well as for the model 

verification experiments at bench-scale. The only differences in the protocols were the 

volume of the fractions that was collected (300μL and 1.7mL) and the volume of the 

chromatography column (600μL and 4mL) for the optimisation and model verification 

studies at bench-scale, respectively. 

2.2.3. Data analysis methodology 

2.2.3.1. Dynamic Binding Capacity at 10% breakthrough  

The DBC10% was estimated using Eq.2.1 (Carta and Jungbauer, 2010), where V10% is the 

cumulative flow-through volume (L) at 10% breakthrough, CFeed is the protein 

concentration of the feed material (g/L) and Vcolumn is the volume of the column (L). 

DBC10% was calculated at every set of operating conditions as dictated by the DoE for 

screening and optimisation. 

DBC10%  (g L)⁄ =
V10% ∗ CFeed

Vcolumn

                                       (Eq. 2.1) 

2.2.3.2. Integration of fractionation diagram approach and design of experiments  

The execution of the experimental plan for every resin combined with the fractionation of 

the elution pool generated thousands of samples and hundreds of different 

chromatograms, posing a significant challenge in terms of sample and data analysis. To 

overcome the data analysis difficulties, the fractionation diagram approach was used to 
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rapidly analyse the resulted chromatograms (Ngiam et al., 2001 & 2003; Salisbury et at., 

2006).  

The fractionation diagram approach offers a quantitative relationship between 

purification and recovery. Any changes to the operating conditions such as pH or linear 

velocity can potentially lead to a shift to the relative position of the peaks of the product 

and its impurities in a chromatogram and hence to a different purification-recovery trade-

off. It is worth highlighting that the Y axis (Eq.2.2) in the fractionation diagram expresses 

the amount of product (MP) collected over the total amount of product eluted, while the 

X axis (Eq.2.3) displays the cumulative mass fraction of the total material (MT) eluted. In 

Eq.2.2 and Eq.2.3, “F” represents the total number of fractions, “f” is the fraction index 

(e.g. the third fraction) and “n” is the number of fractions collected in the elution pool. 

Therefore, any product loss during binding and wash steps in a typical chromatography 

cycle operating in bind-and-elute mode is ignored. Additionally, under strong binding 

conditions it is possible not to be able to recover the entire product during the elution 

step in a cycle. This issue becomes more apparent when the fractionation diagram 

method is used to screen a wide range of process parameters. 

Y =
∑ MP,f

f+n
f

∑ MP,f
F
f=1

       ∀ n ∈ ℕ, n ≤ F − 1                        (Eq. 2.2) 

 X =
∑ MT,f

f+n
f

∑ MT,f
F
f=1

       ∀ n ∈ ℕ, n ≤ F − 1                        (Eq. 2.3) 

Hence, the distance between two points on the Y axis on the fractionation diagram (Yf+n 

– Yf) in this context represents YieldElution instead of yield (Figure 2.1d). YieldElution 

changes from 0% to 100% regardless of the operating conditions thus ignoring any 

product loss. Yield can be estimated simply as the ratio of total amount of material 

collected in the elution pool over the total amount of material that was loaded onto the 

chromatography resin (Eq.2.4). To estimate yield, the total amount of material loaded is 

calculated as the product of DBC10% and the volume of the chromatography column. The 
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amount of product collected in the elution pool is estimated by multiplying the desired 

level of YieldElution with the total amount of product eluted (∑ MP,f
F
f=1 ). At a certain value 

of YieldElution there is a maximum purification factor, thus a maximum purity value (Figure 

2.1e). Purity is estimated as the product of the purification factor and the initial feed purity 

(Figure 2.1f). 

Yield (%) =
YieldElution ∗ ∑ MP,f

F
f=1

DBC10% ∗ Vcolumn
                                    (Eq. 2.4) 

 

Figure 2.1: Schematic illustration of the Fractionation Diagram methodology. a) 

Typical chromatogram of a complete chromatography cycle, b) Elution part of a 

chromatogram, c) Fractionated elution chromatogram, d) Fractionation diagram 

plotting the cumulative product fraction against the cumulative fraction of the total 

protein, e) maximum purification factor against elution yield graph, f) purity 

against elution yield graph, g) purity against yield graph, h) schematic illustration 

of the DoE – Fractionation Diagram approach integration. Steps a) through f) 

presented as described by Ngiam et al. (2001) and steps g) & h) show the extension 

to the method as proposed here to account for potential product loss and integrate 

the method with DoE 

In cases where there is no product loss (∑ MP,f
F
f=1 = MP,IN = DBC10% ∗ Vcolumn) yield 

would be equal to the YieldElution. The final step in the approach plots purity against yield 

(Figure 2.1g). Additionally, every purity-yield pair corresponds to a set of Yf+n – Yf and 

Xf+n – Xf values that define the cut-points on the respective chromatogram and thus 
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determine the volume of the elution pool that delivers that purity-yield pair. The difference 

with the method initially proposed by Ngiam et al. (2001) is that using the current 

terminology the final graph would be purity against YieldElution (Figure 2.1f) thus potentially 

overestimating the recovery capabilities of a resin at a certain set of operating conditions. 

Using the Purity versus Yield graph (Figure 2.1g) as discussed here, a series of purity-

yield pairs can be selected as dictated by the DoE space thus integrating the fractionation 

diagram approach with DoE (Figure 2.1h). Figure 2.1 shows a simplified example of the 

integration of the fractionation diagram approach with a two factor, two level DoE. The 

steps a) to f) in Figure 2.1 illustrate the fractionation diagram approach as described by 

Ngiam et al. (2001) while steps g) and h) visualise the integration of purity-yield pairs 

with DoE using the YieldElution term as an additional factor in the DoE. 

The integration of the fractionation diagram approach with DoE requires meticulous 

calculations to estimate the DoE responses (e.g. purity and yield). Considering also the 

large number of chromatograms resulted from a resin screening study the raw data 

manipulation becomes extremely challenging and prone to error. Nevertheless, the well-

defined mathematical structure of the fractionation diagram approach allows for the 

development of a tool to automate the analysis. Here, for the purpose of this research, 

the fractionation diagram approach was programmed in MS Excel. The GRG Nonlinear 

engine of SOLVER (optimisation tool add-in) was called through VBA to estimate the 

purification factors at different YieldElution values (0 – 100%). Furthermore, a procedure 

was written in VBA to automate the analysis of multiple chromatograms and for multiple 

resins.     

2.2.3.3. A decision-support tool for resin comparison and selection for a single 

chromatography step 

Statistical analysis of the DoE space for each resin candidate develops a regression 

model that describes each attribute (or DoE response) as a function of the process 

parameters (or DoE factors). Apart from screening for significant process parameters, 

the purpose of screening different chromatography resins is also to compare them and 
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identify those with the greatest performance. To standardise and automate the resin 

comparison and selection procedure a decision-support tool was developed in MS Excel 

using the SOLVER optimisation tool add-in with the evolutionary engine activated. Given 

the non-linear and non-smooth structure of the resin selection tool the only feasible 

option is the evolutionary engine. The evolutionary engine receives variable inputs and 

searches different combinations of them to achieve the objective function while satisfying 

a set of constraints. A short script was written in VBA calling SOLVER to accelerate the 

resin comparison and selection process. A generalised schematic of the structure of the 

resin selection decision-support tool is presented in Figure 2.2a. 

A record of resin candidates included in the study is created. The resin selection tool 

identifies each resin using an index (i) assigned to it in order to recognise its associated 

fixed and variable parameters. The mean value (μ) of the DoE factors investigated in the 

screening study are used as the variable inputs in the tool. Fixed inputs include the limits 

of the DoE factors and the regression coefficients of model parameters describing DoE 

responses. Additional assumptions required for the calculation of key metrics included in 

the resin selection tool are considered as fixed inputs. For instance, to calculate 

productivity it is necessary to estimate the processing time thus assuming a column bed-

height and the number of column volumes for each step in a chromatography cycle. 

Furthermore, threshold values are assigned for the decision attributes (e.g. purity and 

yield) included in the resin selection tool along with their respective weight coefficient. 

The weight coefficient of each attribute defines its relative importance among the other 

attributes and therefore, dictates its priority order in the tool. It should be noted that the 

user has the flexibility to define any metric as a decision attribute and determine its 

relative importance and its threshold value. Therefore, the resin selection tool is not 

restricted in using fixed decision attributes but provides the framework to the user to 

introduce its own metrics depending on the purification problem. 
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Figure 2.2: Schematic illustration of the decision-making components of the HTPD 

workflow. a) Structure of the resin selection tool used to screen different resin 

candidates and determine the best candidate, b) Robustness analysis 

methodology to identify a window of operation under uncertainty 

The resin selection tool operates in two steps. The first step identifies decision attributes 

(e.g. yield, purity) and their relative significance and prioritises them in descending order. 

Thus the most important attribute is evaluated first while the least significant attribute is 

considered last. The evolutionary engine in SOLVER is searching for the set-point of 

process parameters (variable inputs) to achieve the threshold value for the first decision 

attribute. Once this is achieved the search continues with the second decision attribute 

while still satisfying the previous attribute. The procedure continues for all decision 

attributes included in the analysis with the last attribute requiring the satisfaction of all 

previous attributes. This approach of satisfying criteria also known as satisficing can 

potentially exclude resin candidates that meet a significant number of criteria but 

however failed to reach an important decision criterion that was ranked high in the priority 

order. Hence, it is crucial that the appropriate weight coefficients are assigned to the 

decision attributes in order to capture specific requirements from the resin candidates 

and avoid selecting resins that meet less significant attributes. 

The evolutionary engine runs with the objective to maximise the number of decision 

attributes achieved in their respective priority order for each resin candidate while 

managing to meet the constraints. A set of constraints for each resin candidate in the 
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resin selection tool include the limits within process parameters (variable inputs) are 

allowed to vary. The lower and upper limits of variable inputs are dictated by the DoE 

and considered as fixed inputs. The role of the constraints is to ensure that variable 

inputs fall within the acceptable range and set the threshold value for each decision 

attribute. 

A number of resin candidates could potentially achieve all decision attributes due to 

either relatively low threshold values or their adequate performance. Additionally, resin 

selection would be difficult when resin candidates perform very similarly. To address 

these issues a second step in the resin selection tool is used to assign a score to each 

resin candidate that successfully meets all decision attributes. A performance score is 

estimated for each successful resin candidate using the weighted sum method 

combining all the attributes used in the first step of the tool. In Eq.2.5, wj is the weight 

coefficient of each attribute (j), “J” is the total number of attributes and Ki,j is the 

normalised value of attribute (j) for resin (i). In case an attribute needs to be maximised 

in Eq.2.5.1 the worst and best normalised values correspond to the minimum and 

maximum values of the attribute, respectively. On the other hand, in case an attribute 

needs to be minimised, worst and best refer to the maximum and minimum value, 

respectively. The term ki,j in Eq.2.5.1 represents the actual value achieved of attribute (j) 

for resin (i). Finally the sum of the weight coefficients should be equal to the unit.  

Performance Scorei = ∑ wj ∗ Ki,j

J

j=1

                                        (Eq. 2.5) 

where: 

Ki,j =
ki,j − ki,j worst

ki,j best − ki,j worst
                                             (Eq. 2.5.1) 

∑ wj

J

j=1

= 1                                                        (Eq. 2.5.2) 
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The final decision regarding the selection of the most suitable resin candidate(s) is 

performed by identifying the candidate that reached the highest number of decision 

attributes and achieved the maximum performance score, in this order. Hence, the 

comparison based on the performance score is only taking place when more than one 

resin candidates achieve the same maximum number of decision criteria. 

2.2.3.4. Window of operation and robustness analysis 

The resin selection tool suggests the most suitable resin candidate(s) and also provides 

the set-point values for the process parameters included in the regression model that 

describes the factors-response relationship. These set-point values were used as the 

centre point in the subsequent central composite designs to optimise process 

parameters and identify a window of operation. Response surface analysis of the DoE 

space as constructed by the central composite designs promoted the development of set 

of MLR equations that describe the relationship between factors and responses. The 

appropriate MLR model for each response is identified using the stepwise regression 

approach through the Model Fit platform in JMP with a minimum BIC model selection 

criterion, backward elimination and a p-value threshold of 0.05. 

To identify a window of operation that satisfies a number of quality and performance 

attributes a stochastic simulations engine was built in MS Excel (Figure 2.2b). Each 

process parameter was expressed using a triangular distribution defined by its mode, 

minimum and maximum values representing the set-point and its limits. The resulting 

probabilistic process parameters were then used to estimate each DoE response (e.g. 

purity, yield) using the MLR correlations developed through the optimisation study for the 

selected resin candidate. A series of Monte Carlo simulations were performed by varying 

the set-point and its deviation for each process parameter and deriving distributions for 

each DoE response. 

An optimisation was set up to determine the optimal set-point and range that minimised 

the objective function. This was achieved using the evolutionary engine provided by the 
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SOLVER optimisation tool add-in in MS Excel. It should be noted that although the 

smoothness of the problem allows for the use of the GRG Nonlinear engine in SOLVER, 

the evolutionary engine was much faster and easier to tune for the given optimisation 

problem. SOLVER was set to receive the set-point and its deviation for each process 

parameter (DoE factors) as decision variables. The objective function was defined as 

minimisation of the probability of process failure. In this context process failure was 

considered the probability of failing to meet the threshold value for any of the quality and 

performance attributes. For instance, assuming two attributes: purity and yield the 

probability of process failure is defined as (Ross, 2009): 

P(fail) ≡ P(A ∪ B) = P(A) + P(B) − P(A ∩ B) 

where: 

P(A) =
∑ E(A)N

1

N
, P(B) =

∑ E(B)N
1

N
 

E(A): the event where purity fails to meet the threshold purity value 

E(B): the event where yield fails to meet the threshold yield value 

P(A): the probability of failing to meet the threshold purity value 

P(B): the probability of failing to meet the threshold yield value 

P(A∩B): the probability of failing both purity and yield threshold values 

N: Total number of simulations (sample space) 

A potential window of operation is defined by a set-point value and an acceptable range 

for each process parameter (DoE factor) in order to minimise the probability of process 

failure. The robustness of the optimal solution as identified by SOLVER was further 

analysed by examining its associated Monte Carlo simulation dataset to determine the 

parameters with the greatest impact on each attribute and visualise its distribution using 

@RISK. 
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2.2.4. Bench-scale model verification 

To verify the predictive ability of the model, targeted experimentation within the 

suggested window of operation was performed at bench-scale using a self-packed 

chromatography column with a bed-height of 20cm and a diameter of 0.5cm. The 

sequence and configuration of the chromatography cycle was similar to that used at 

micro-scale with the only difference being the gradient elution profile. Experimentation 

related to the HTPD workflow was conducted with a stepwise gradient elution profile due 

to limitations related with the liquid handling system. On the other hand, experimentation 

at bench-scale was performed by applying a linear conductivity gradient profile so as to 

enable a more accurate determination of the conductivity range where product is 

collected in the elution pool. Experimentally achieved values (or actual values) were 

plotted against predicted values for each attribute to visualise the accuracy of the 

predictions. Additionally, statistical tests (F-test and t-test) were performed to address 

the hypothesis that actual and predicted values are all from the same distribution 

comparing the mean and standard deviation for each dataset. 

2.3. A process economics model for antibody bio-manufacturing facilities 

2.3.1. Process economics model structure 

A process economics spreadsheet model was developed in MS Excel based on previous 

work conducted at the Advanced Centre for Biochemical Engineering at University 

College London (Farid et al., 2007; Simaria et al., 2012). A schematic of the information 

flow in the process economics model is presented in Figure 2.3. 

The model receives a series of inputs form three different sources. The first source is the 

user which needs to build a scenario for evaluation by determining model parameters 

such as the annual product demand and cell culture titre. The second source is a list of 

assumptions related to the operation of different process steps and the facility. 

Additional, assumptions include process economic factors used to estimate 

manufacturing costs that are not directly captured by the model. For instance, the cost 

of equipment maintenance can be estimated based on the fixed capital investment. The 
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third and final source of inputs is a cost database with process equipment sizes and 

prices. Moreover, a list of chemical reagents and consumables (e.g. filters) is included in 

the database. The default values used in the cost database and the model assumptions 

can be found in the Appendix (Table A.1 and Table A.2). 

The user has the option to change any of the values in the list of assumptions and the 

cost database. Throughout this research a number of different assumptions were 

challenged. In order to avoid extensive user intervention into the model, VBA was used 

to automate and accelerate iterative procedures. As soon as the user has determined 

the required scenario inputs the model performs a series of mass balance and equipment 

sizing calculations across all unit operations. Individual unit operations are sized based 

on their performance and the product load that has to be processed per batch. A more 

detailed description of the model calculations is discussed in the next Section of this 

chapter (Section 2.3.2.) and process equipment sizing formulas can be found in the 

Appendix (Table A.3). 

 
Figure 2.3: Schematic of the information flow in the spreadsheet process 

economics model developed to evaluate the economics of pre-packed 

chromatography columns 

The output of the process economics model is a record containing the results regarding 

the size, the duration and the cost of each unit operation as well as a breakdown of the 

cost of goods. A level of flexibility in synthesizing the desired process sequence is offered 

focusing on the purification train. For each chromatography step (capture, intermediate 
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purification and polishing) the model offers two options: self-packed (SP) or pre-packed 

(PP) columns. 

2.3.2. Design and process economics calculations in the model 

The main objectives of the process economics model developed here is the evaluation 

of pre-packed chromatography columns as an alternative to self-packed columns and 

the integration of high-throughput purification data with process economics. Hence, a 

relative simplistic approach was followed for sizing of the unit operations in the process 

sequence. The equipment sizing calculations begin by identifying the working volume of 

the production bioreactor using the annual product demand, the cell culture titre, the total 

yield of downstream processing and the number of batches. 

The number of seed bioreactors required and their respective working volume is 

estimated based on the inoculation ratio. For the primary recovery it is assumed that a 

disc-stack centrifuge is used to harvest the cell culture broth and separate liquid from 

solid phase followed by a series of depth filters for further clarification of the supernatant. 

For the purposes of this research it is assumed that the performance of the primary 

recovery steps is satisfactory regardless of the cell culture titre and the solids load. The 

size of the centrifuge is estimated through the working volume of the bioreactor and the 

desired time window for processing that volume. The total depth filtration area is 

calculated by dividing the volume of the supernatant by the capacity of the depth filter. 

The next step in the bio-manufacturing process sequence traditionally is a 

chromatography step for which design calculations are based on the mass load the unit 

operation has to process per batch. For any given set of: number of columns in parallel, 

number of cycles per batch, bed-height and dynamic binding capacity the process 

economics model estimates the required column diameter. The available (actual) 

diameters for self-packed and pre-packed chromatography columns are stored in the 

database used in the model. Then the model identifies the actual diameter closest to the 

required diameter to process a given mass load and recalculates the number of cycles 
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to satisfy mass balance based on the actual diameter. Additionally, it might be necessary 

to tune the bed-height within an acceptable range to correct for the new number of cycles 

and diameter. The algorithm that was used to size chromatography columns, either self-

packed or pre-packed, can be visualised in Figure A.1, of the Appendix. 

Inactivation of potential enveloped viruses takes place at low pH in a stirred tank that 

receives the total eluate volume from the first chromatography step. It is common 

practice in the mAb purification field to have the low pH virus inactivation step after the 

capture chromatography step, which involves typically addition of acid after the low pH 

elution step. The required working volume of the low pH inactivation tank is estimated by 

adding the volume of the acidic and the neutralisation buffers to the total Protein A eluate 

volume. The final antibody solution is then purified by one or two sequential polishing 

chromatography steps sized by applying the same design methodology as described for 

the first chromatography step. It should be highlighted that in case a chromatography 

step was operated in flow-through mode the size of the column was estimated 

considering the loading capacity rather than the binding capacity since the impurities 

bind to the resin and the product flows through. 

The last two steps in antibody manufacture is a virus filtration step followed by the final 

concentration and formulation step. For the virus filtration step the total required 

membrane area is estimated based on the mass load per batch for the unit operation 

and the capacity of the membrane. To calculate the required total area of the 

ultrafiltration membrane the assumption is made that the product can be concentrated 

and exchange buffers in a two-step operation. This assumption holds when the required 

concentration factor and the hold-up volume of the UFDF system are low enough. When 

these assumptions fail a four-step procedure is implemented where the antibody solution 

is first concentrated to an intermediate level, then buffer exchange takes place followed 

by an over-concentration step above the desired final concentration. The final step in the 

procedure would involve the recovery of the hold-up volume of the system to retrieve any 

product left in the system and maximise yield (Rao et al., 2012). For the purpose of this 
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study the first approach is followed assuming a low hold-up volume and a maximum 

concentration factor of 10 to achieve the desired final concentration. 

The process economics model considers additionally support equipment used 

throughout the bio-manufacturing process such as stainless steel hold-tanks for the cell 

culture media, buffers and the product. For instance, a chromatography step operating 

in bind-and-elute mode typically requires five different buffer solutions for equilibration, 

wash, elution, strip and regeneration of a chromatography resin plus a hold-tank for the 

eluted product. The working volumes for all these hold-tanks can be estimated based on 

assumptions regarding the number of column volumes needed and the calculated 

chromatography column volume provided by the process economics model. 

Through mass balance and design calculations for each unit operation the volume of the 

product and all related buffers for each process step is estimated thus providing the size 

and the number of the necessary hold-tanks. The requirements for cleaning-in-place 

(CIP) buffer, water for injection (WFI) and process water (PW) are estimated assuming 

a diameter to height ratio for the hold-tanks, a CIP buffer flowrate per diameter and a 

duration for the WFI and PW rinse steps. To estimate the cost of each hold-tank the 6/10 

approach was used (Peters & Timmerhaus, 1991). 

The term COG is defined as the sum of direct and indirect costs associated with 

manufacturing.  A COG breakdown is presented in Table 2.5. Direct costs account for 

the cost of staff and materials. Materials include consumables and chemical reagents 

used for different buffers and media. The cost of the staff was estimated based on the 

utilisation of the staff resources rather than an annual-salary per staff (Farid et al., 2007). 

The annual cost of direct labour is calculated as the product of the number of operators, 

an hourly wage per operator, the number of batches and the batch time required for each 

unit operation. The cost of additional personnel for supervision, management and QCQA 

was estimated based on the direct labour cost (Farid et al., 2007; Simaria et al., 2012). 
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The total cost of labour is the sum of all costs related to the staff involved in 

manufacturing.  

The cost of chemical reagents involves the cost for WFI, PW and chemical reagents for 

buffers and media. Consumables include chromatography resins, pre-packed 

chromatography columns and filters/membranes (depth filters, virus filtration 

membranes, UFDF membranes). Other consumables include 0.45μm guard filters for 

the hold-tanks. The cost of these guard filters was estimated based on the 6/10 rule. 

Moreover, an additional cost to account for miscellaneous materials such as QCQA 

consumables and chemical reagents and personal protective equipment (PPE) is 

estimated through the direct cost of chemical reagents and consumables. 

Indirect costs include the depreciation of the fixed capital investment (FCI), the cost of 

general utilities and the cost to maintain and insure the facility as well as local taxes 

(Farid et al., 2007; Simaria et al., 2012). The FCI is estimated based on the Lang factorial 

method by multiplying the total cost of purchased equipment with a number 

corresponding to the type of the facility of interest (Eq.2.6). Novais et al. (2001) 

suggested a Lang factor of 8.13 for conventional (fixed, stainless steel equipment) bio-

manufacturing facilities. The depreciation of the FCI is calculated assuming a 10-year 

lifespan for the fixed equipment installed in the facility.  

The term general utilities is used to include the cost of monitoring and running a 

manufacturing facility. For instance, general utilities would account for HVAC systems 

used to maintain the clean status required in different rooms in the facility and is 

expressed in monetary units per square meter of the facility (Farid et al., 2007). Farid 

(2001) reported after discussion with industrial experts a value of 300 £/m2. Using the 

Chemical Engineering index for the years 2000 (CE2000 = 394.1) and 2016 (CE2016 = 

541.7) it can be estimated an updated value of approximately 400 £/m2. In order to 

calculate the cost of general utilities it is required to estimate the size of the facility. 



94 
 

George (2008) suggested a function after analysing data on different facility sizes and 

their corresponding FCI to estimate the size of a facility based on its FCI (Eq.2.7). 

Additionally, the annual cost to maintain and insure the facility and cover obligations 

regarding local taxes related to the facility is estimated based on the FCI. Indirect cost 

or overheads will also occur regardless of the operational status of the facility. In case of 

multiproduct facilities these overheads can be distributed across all products 

(nP) manufactured annually. As mentioned, the COG is the sum of direct and indirect 

cost associated with manufacturing and the value of COG/g is estimated by dividing the 

COG with the annual product demand. 

Table 2.1: A breakdown of the cost of goods for a bio-manufacturing facility 

Cost Category Sub-category Equation 

Direct Chemical Reagents f(utilisation) 

Consumables f(utilisation) 

Miscellaneous Materials 0.1 ∗ (Reagents + Consumables) 

Direct Labour f(utilisation) 

Supervisors 0.2 ∗ Direct Labour 

QCQA 1 ∗ Direct Labour 

Management 1 ∗ Direct Labour 

Indirect Depreciation 0.1 ∗ FCI 

Maintenance 0.1 ∗ FCI 

Insurance 0.01 ∗ FCI 

Local Taxes 0.02 ∗ FCI 

General Utilities 400$/m2 ∗ Facility Footprint (m2) 

COG  Direct + Indirect/pipeline 

COG/g  
COG

Annual Product Demand
 

FCI = Lang Factor ∗ ∑ (Process & Ancillary Equipment cost)

Unit
Operations

         (Eq. 2.6) 
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Facility Footprint (m2) = 0.093 ∗ 1730 ∗ (
FCI

106
)

0.9136

                    (Eq. 2.7) 

2.4. A decision-support tool for the chromatographic purification train 

2.4.1. Structure and functionality of the tool 

To provide a greater flexibility and detail in the design of the chromatographic purification 

train a decision-support tool was developed in MS Excel as an extension on the process 

economics model (Figure 2.4). The tool receives the target product profile as a user 

specified input. Additionally, the tool offers to the user several options in the design of a 

purification train. For instance, the user can specify the mode of operation and type of 

chromatography resin for each step or allow for any mode and type to be used at any 

step. A restriction that the tool sets by default is the orthogonality in resin selection, 

constraining any type of resin to be used only once in the purification train. The last input 

the tool receives is a list of chromatography resins with their respective properties and 

purification performance. That resin list acts as a library that the tool can refer to in order 

to iterate through different purification trains. 

Each resin candidate in the library is assigned an index (i) used by the tool to recognise 

it. Key information each resin candidate should provide include the dynamic binding 

capacity, yield, maximum linear velocity, resin lifespan and price as well as the ability to 

separate a product from its impurities. Moreover, essential information would be the 

position in the purification train at which a resin can provide the given performance for a 

given product. Due to the structure of the tool it is possible to evaluate the same resin 

multiple times using different values for its purification performance depending on the 

conditions. For instance, with reference to the fractionation diagram approach a number 

of purity-yield pairs can be selected and added to the resin list as alternative 

performances of the same resin. Although this approach could increase substantially the 

computational cost it offers the ability to evaluate in more detail a resin by leveraging 

experimental data. 
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Figure 2.4. A schematic illustration of the structure of a decision-support tool for 

the chromatographic purification train 

Having defined the inputs, the tool is using a brute force search algorithm written and 

executed in VBA to search among all possible resin sequences and identify those that 

meet all the specifications defined by the user. The successful purification trains are then 

recorded and compared with each other using the weighted-sum method considering 

two attributes with opposite objectives. The score function is given in Eq.2.5. The weight 

coefficients in the score function (Eq.2.5.2) are also user specified to assign the desired 

level of significance to each attribute. The tool offers the flexibility to the user to define 

the appropriate attributes to compare the performance of different purification trains. 

Additionally, metrics that are calculated and considered as restrictions in the tool include 

the yield of the purification train (Eq.2.8) along with the reduction capabilities for HCPs 

(Eq.2.9), HMW (Eq.2.10) and LMW species (Eq.2.11). In equations Eq.2.8 – 2.11, “i” 

indicates a resin in a purification train of three chromatography steps, LRV stands for the 

logarithmic reduction value and RHMW/RLMW indicate the percentage removal of 

HMW/LMW species. 
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Train Yield = ∏ Yieldi

3

i=1

≥ Target train yield                                 (Eq. 2.8) 

HCPsOUT = HCPsIN ∗ 10− ∑ LRVi
3
i=1 ≤ HCPsTarget                             (Eq. 2.9) 

HMWOUT = HMWIN ∗ ∏(1 − RHMW)i

3

i=1

≤ HMWTarget                      (Eq. 2.10) 

LMWOUT = LMWIN ∗ ∏(1 − RLMW)i

3

i=1

≤ LMWTarget                       (Eq. 2.11) 

The overall outcome of the tool is a list of descending score order with all the purification 

trains that met the target product profile and all the user specified restrictions. Then the 

process economics model offers the option to import a subset of the successful 

purification trains and evaluate the complete manufacturing process for each of them. 

Information related to each chromatography resin in all suggested purification trains is 

received by the process economics model to adjust its assumptions and database and 

re-synthesise the process sequence in order to reflect the changes from the default 

purification train. 
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Chapter 3. High throughput process development workflow 

with advanced decision-support for antibody purification 

3.1. Introduction  

The development of a chromatographic purification process in bio-manufacturing is 

highly challenging and complex. The large number of parameters that could potentially 

have a significant impact on the chromatographic separation performance requires 

extensive experimentation and usually a substantial amount of clarified material in order 

to optimise the operating conditions (Coffman et al., 2008). An additional consideration 

especially at early-stage process development could be the number of different drug 

candidates under development along with the uncertainty around their commercialisation 

that could limit even further allocated resources and shorten the available development 

timeline. 

Due to the complex nature of mAbs and their impurities, a sequence of chromatography 

steps is typically designed and developed to achieve the desired level of product quality. 

For each step in the purification train there are several commercially available options 

regarding the selection of a chromatography resin. A crucial decision at early-stage 

process development is the selection of the appropriate chromatography resin for each 

step in the correct order in the purification train. Resin selection is a rather complex task 

considering different resins with a wide operating range and number of process 

parameters for screening. An additional complication might be that different resins can 

be operated under different conditions thus intensifying substantially laboratory activities 

for experimentation (e.g. buffer preparation). The impetus for the development of a 

systematic methodology to address the challenges involved in optimal chromatography 

resin selection was discussed by Rathore (2001). Although the concept of a rational and 

systematic resin selection was highlighted and demonstrated for an AEX 

chromatography step, there were still unresolved issues mainly around the experimental 

design. 
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High-throughput experimentation (HTE) has emerged as a powerful technique to 

accelerate process development with relatively small amounts of feedstock material 

(Chhatre & Titchener-Hooker, 2008). The integration of HTE with other methods such as 

DoE and multi-variate data analysis has led to the establishment of hybrid approaches 

in the development and optimisation of chromatographic separation processes (Susanto 

et al., 2009; Bhambure & Rathore, 2013; Traylor et al., 2014). Previous studies have 

focused mainly on individual techniques with limited examples of complete workflows 

integrating scale-down experimentation with DoE, MVDA and decision-making tools. In 

addition, a further challenge often associated with HTE is how best to leverage the large 

amounts of raw data generated and to evaluate trade-offs in the datasets to make 

decisions on optimal strategies. The work here focuses on the establishment of a high-

throughput process development (HTPD) workflow that combines a variety of different 

methods in a semi-automated manner so as to streamline screening of different cation 

exchange (CEX) chromatography resins and optimisation of process parameters under 

uncertainty. 

The overall aim of this research is to identify the appropriate combination of experimental 

approaches and decision-support techniques, in order to provide a consistent 

methodology for rapid generation and analysis of chromatographic purification data. A 

single chromatography step is investigated rather than the complete purification train in 

order to provide a detailed investigation of process parameters that could impact the 

performance of each resin candidate. The proposed HTPD workflow suggests the use 

of miniature pre-packed chromatography columns coupled on an automated liquid 

handling system, for the rapid generation of purification data. Additionally, the integration 

of DoE with the fractionation diagram method (Ngiam et al., 2001; Ngiam et al., 2003; 

Salisbury et al., 2006) was introduced to cope with the vast amounts of data generated 

through HTE. Furthermore, a combination of multivariate data analysis, multi-criteria 

decision-making and robustness analysis was established to define a potential window 
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of operation for the chromatographic purification of a highly aggregated antibody 

solution.  

The chapter is structured as follows. Section 3.2 focuses on describing the individual 

experimental, data analysis and decision-making methods used in the HTPD workflow. 

An example of implementing the HTPD workflow is demonstrated in Section 3.3 to 

facilitate resin screening and process parameter optimisation for bind-and-elute ion-

exchange chromatography used for intermediate antibody purification. 

3.2. Materials and methods 

A case study was formulated in collaboration with MedImmune to demonstrate the HTPD 

workflow, using a bispecific monoclonal antibody with high aggregate concentration post 

Protein A chromatography. The bispecific antibody was produced in Chinese hamster 

ovary (CHO) cells and cell culture material was clarified and partially purified by 

MedImmune. The cell culture broth was clarified by a series of depth filters and the 

clarified material was further processed using a Protein A chromatography column 

followed by a low pH hold to inactivate any enveloped viruses. The preparation of the 

feedstock material for the investigation of the CEX chromatography step was completed 

with the neutralisation of the low pH antibody solution. Miniature chromatography 

columns, pre-packed with 200μL and 600μL of resin (Atoll GmbH, Weingarten, Germany) 

were used in the screening study. Eight CEX resins were included: PorosTM XS and 

PorosTM HS50 (Life Technologies, California, U.S.A), Toyopearl® GigaCap S-650(S) and 

Toyopearl® GigaCap CM-650(M) (Tosoh Biosciences, Redditch UK), CaptoTM S Impact 

(GE Healthcare Life Sciences, Buckinghamshire, UK), Fractogel® EMD COO- (M) and 

Eshmuno® CPX (EMD Merck Millipore, Darmstadt, Germany) and UNOsphereTM Rapid 

S (Bio-Rad Laboratories, California, U.S.A). 

The main steps involved in the HTPD workflow are outlined in Figure 3.1. The design 

and execution cycle is the central component of the workflow that combines DoE, the 

fractionation diagram method, high-throughput experimentation and multivariate data 
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analysis. A key output of the design and execution cycle is the regression models (i.e. 

binding and elution models) which can be imported into decision-support tools for further 

evaluation. Starting with a screening study and regression models are used in the resin 

selection tool to determine the best resin candidate. On the other hand, an optimisation 

study leverages binding and elution regression models using a robustness analysis tool 

to identify a window of operation under uncertainty in process parameters. 

Experimentation is performed using miniature pre-packed chromatography columns of 

200μL and 600μL for screening and optimisation studies, respectively. 

It is essential to gather relevant information regarding the product and the process before 

proceeding into any experimental work. For instance, information on previously tested 

CEX chromatography resins, potentially significant process parameters and ranges, 

level and composition of impurities as well as properties related to the molecule under 

investigation could all provide critical insights and hence promote and improve the design 

of the experiments. After discussion with the purification process development team and 

the industrial supervisors of the project in MedImmune (Granta Park, Cambridge, UK), 

eight CEX chromatography resins (as named above) were chosen. Due to the high 

aggregate concentration (~20%) of the antibody solution post Protein A chromatography, 

the primary consideration was the identification of resin candidates that could remove a 

sufficient amount of high molecular weight (HMW) species. 

Additional information required is the mode of operation of the selected resin candidates. 

Given the high isoelectric point (>8.5) of the particular bispecific mAb, CEX 

chromatography resins were operated in bind-and-elute mode. A typical chromatography 

cycle operating in bind-and-elute mode involves six main steps: equilibration, load, wash, 

elution, strip and resin regeneration. The two steps investigated here were the load (or 

binding) step and the elution step. The operation conditions for resin equilibration and 

wash were dictated by the operating conditions for binding and elution, respectively, 

while a universal protocol was used to strip and regenerate all CEX resins. Binding and 

elution conditions were evaluated through two different sets of DoE. 
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Figure 3.1: Schematic illustration of the proposed High-Throughput Process 

Development workflow for a chromatography operation in bind-and-elute mode. 

The Design & Execution Cycle consist the central component of the workflow 

starting with the design of the DoE space. High-throughput experimentation 

follows to investigate the suggested DoE space. After sample analysis, DoE 

responses are estimated and imported into the DoE table to initiate regression 

analysis. Completion of the cycle results in regression models estimating DoE 

responses as functions of DoE factors. Finally the regression models are imported 

into the decision-making components of the workflow allowing for the screening 

and selection of the best chromatography resin candidate and optimise its 

operating conditions under uncertainty 
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3.3. Results and discussion 

3.3.1. Design of experiments 

The HTPD workflow starts with the construction of the DoE space to investigate the 

binding conditions for each CEX resin. A definitive screening design was created in JMP 

with four continuous factors (process parameters) and a single response (Table 3.1). 

The conditions of the mobile phase (pH and conductivity), the linear velocity and the 

concentration of the feed were the four factors considered in the DoE with DBC10% as 

the only response to be maximised. Linear velocity was adjusted in order to keep the 

residence time between two scales constant. At micro-scale the bed-height was 1cm and 

3cm for a 200μL and a 600μL miniature chromatography column, respectively while a 

typical bed-height at pilot- and large-scale would be around 20cm. Thus operating a 

20cm bed-height column at a linear velocity of 300cm/h would result in a residence time 

of 4min. The corresponding linear velocity at micro-scale can be estimated by keeping 

constant the residence time. For this example, using a 600μL column the linear velocity 

would be 45cm/h. 

The definitive screening design platform in JMP Pro 11 created a design of nine runs 

with four factors to screen in order to maximise the DBC10% for each CEX resin. 

Breakthrough curves resulted from the DoE runs were analysed in MS Excel to calculate 

the DBC10% at each set of operating conditions and for each CEX resin. DBC10% values 

were imported in JMP and through a stepwise regression analysis, a MLR regression 

model was developed estimating DBC10% as a function of the DoE factors and for each 

CEX resin. Each model demonstrated an R2 and adjusted R2 value above 80% and a p-

value less than 0.05 through analysis of variance (ANOVA) indicating that variability of 

the response from its mean value is not due to chance. 

A set of operating conditions that seemed to favour every CEX resin was identified in 

order to simplify subsequent experimentation to evaluate the elution operating 

conditions. Three process parameters were selected as the DoE factors (elution pH, 
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elution linear velocity and load challenge) in the elution definitive screening design 

created to screen for maximum purity and yield for each CEX resin. The conductivity 

gradient profile of the mobile phase during elution was kept the same throughout the 

experimental runs and for all CEX resins. A stepwise elution profile over 20 column 

volumes (CVs) from 0mM to 450mM with a 50mM step of sodium chloride (NaCl) was 

applied. 

Table 3.1: Design of Experiments used in the HTPD workflow for screening and 

optimisation of CEX chromatographic separation for a bispecific antibody 
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Factors (Range) 

 Load pH 

(4.5 – 7.5) 

 Load Conductivity 

(0 – 150mM) 

 Load Linear 

Velocity 

(300 – 500cm/hr) 

 Feed Concentration 

(4 – 12g/L) 

Responses (Objective) 

 DBC10% (Maximise) 

Factors (Range) 

 Elution pH 

(5.0 – 7.0) 

 Elution Linear Velocity 

(300 – 500cm/hr) 

 Load Challenge 

(30 – 90g/L) 

 YieldElution 

(50 – 100%) 

Responses (Objective) 

 Purity (Maximise) 

 Yield (Maximise) 
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Factors (Range) 

 Load pH 

(4.5 – 5.5) 

 Load Conductivity 

(0 – 75mM) 

 Load Linear 

Velocity 

(350 – 500cm/hr) 

Responses (Objective) 

 DBC10% (Maximise) 

Factors (Range) 

 Elution pH 

(4.5 – 5.5) 

 Elution Linear Velocity 

(300 – 500cm/hr) 

 Load Challenge 

(40 – 120g/L of resin) 

 YieldElution 

(50 – 100%) 

Responses (Objective) 

 Purity (Maximise) 

 Yield (Maximise) 

 Elution Pool Volume (Minimise) 
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The term load challenge expresses the binding capacity of a CEX resin as a fraction of 

its DBC10%. Additionally, the product recovery term, YieldElution, was considered as the 

fourth factor in the elution definitive screening design as discussed in Chapter 2, Section 

2.2.3.2., in order to achieve the integration of DoE and the fractionation diagram 

approach. Hence the resulted DoE space consisted of four factors leading to nine 

experimental runs investigating two responses. Two CEX resins demonstrated the 

lowest DBC10% and therefore load challenge was not considered as a factor in their 

elution definitive screening design. The evaluation of all three DoE responses (DBC10%, 

purity and yield) was achieved using the resin selection tool. 

3.3.2. Resin comparison and selection 

The structure and the main components of the resin selection tool are illustrated in Figure 

2.2. Additionally, Table 3.2 provides a summary of its main components used in the case 

study. To initiate the comparison and selection protocol it is necessary to define the 

desired decision attributes along with their relative importance. As discussed above, due 

to the high concentration of HMW species it was crucial to identify CEX resin candidates 

that had high HMW removal capabilities (over 70%). Therefore, HMW removal (Eq.3.1) 

was selected as the first decision attribute and it was assigned the maximum factor of 

significance (significance = 1). High HMW removal may result in product loss in cases 

with poor selectivity and peak resolution; thus, a second metric was introduced to 

evaluate the purity. For the purposes of the screening study it is equally important to 

identify the best resin candidate and determine how the rest of the candidates compare. 

Therefore, instead of comparing the resin candidates using the purity of the bispecific 

antibody a different metric was introduced to capture the change in purity relative to the 

theoretical maximum improvement. Equation 3.2 describes that change in purity which 

was given a significance of 0.7. The third decision attribute considered was the step yield 

(Eq.2.4) followed by productivity (Eq.3.3) assigned a relative significance of 0.5 and 0.3, 

respectively. The determination of the factor of significance for each decision attribute 

was achieved empirically after discussions with members of the purification team at 
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MedImmune in Cambridge, UK. Using the factors of significance, the weight coefficient 

for each decision attribute can be calculated as demonstrated in the Appendix  

HMW Removal (%) = 1 − (
HMWElution pool

HMWFeed
)                                  (Eq. 3.1) 

Purity Change (%) =
PurityElution pool − PurityFeed

1 − PurityFeed
                          (Eq. 3.2) 

Productivity (g L hr⁄⁄ ) =
LC ∗ Yield

tCYC
                                          (Eq. 3.3) 

where: 

tCYC (hours) = (

LC
CFeed

+ CVEquilibration

uLoad
+

CVWash + CVElution

uElution
+

CVStrip & Regen.

uStrip & Regen.
) ∗ H 

HMWElution pool: Mass of HMW species collected in the elution pool (g) 

HMWFeed: Initial mass content of HMW species in the feed stream (g) 

tCYC: Processing time for a single chromatography cycle (hours)  

LC: Load challenge (g/L of resin) 

u: Linear velocity (cm/h) 

CV: Number of column volumes 

H: Column bed-height (cm) 
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Table 3.2: Case study formulation of the decision-making components in the HTPD workflow 

HTPD 

workflow step 
Variables Fixed Inputs Constraints Objective Outcome 

Resin 

Comparison 

& Selection 

Tool 

Set point of 

process 

parameters 

(DoE factors) 

 ML Regression 

coefficients 

 DoE factors’ limits 

 Weight of Decision 

Attributes:  

o WHMW removal = 0.4 

o WPurity change = 0.3 

o WYield = 0.2 

o WProductivity = 0.1 

 DBC10% > Load Challenge 

 Low limits < Variables < Upper 

limits 

 Attribute targets in priority order: 

1. HMW removal ≥ 70% 

2. Purity change ≥ 50% 

3. Yield ≥ 50% 

4. Productivity ≥ 25 g/L/h 

Maximum:  

Number of achieved 

Decision Attributes 

in priority order 

 Resin Ranking 

 Set-point of 

process 

parameters 

 Selected Resin 

Window of 

Operation & 

Robustness 

Analysis 

Set point & 

acceptable 

range of 

process 

parameters 

(DoE factors) 

 ML Regression 

coefficients 

 DoE factors’ limits 

 Number of Monte 

Carlo runs = 10000 

Attributes’ threshold values: 

 DBC10% ≥ 110g/L 

 Purity ≥ 91% 

 Yield ≥ 75% 

 Pool volume ≤ 5CV 

Minimum:  

Probability of 

process failure 

P(fail) 

 Window of 

Operation 

 Distribution of 

attributes 

 Sensitivity to 

process 

deviations 
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The resin selection tool receives user specifications and first it calculates the weight 

coefficient for each attribute based on their relative significance and organises 

accordingly the order that each attribute is evaluated. Then an evolutionary engine 

(SOLVER Optimisation tool, MS Excel) searches for the set-point of process parameters 

for each CEX to achieve threshold values of the decision attributes as shown in Table 

3.2. The final decision was based on the weighted sum method assigning a performance 

score (Eq.2.5) to each CEX resin based on the value it achieved for each decision 

attribute (Equations: 2.4, 3.1, 3.2 and 3.3). The CEX resin that met the maximum number 

of decision attributes and achieved the highest performance score (in that order) was 

selected as the most suitable candidate to undergo further experimentation to optimise 

its operating conditions. An illustration of the final outcome of the tool for the bispecific 

mAb case study is presented in Figure 3.2.  

Two CEX resin candidates managed to achieve all four decision criteria in their 

respective order. It should be noted that the yield requirement was dropped to a low level 

in order to allow a high HMW removal. Due to high aggregate concentration and poor 

peak resolution achieved with the 200μL chromatography columns a substantial 

reduction of HMW species was only achieved through decreased product recovery. 

Although limitations were observed regarding the use of the 200μL miniature columns 

(e.g. flowrate limitations of the robotic arm and poor peak resolution due to the small 

bed-height), they were universal for all CEX resins. Therefore, for comparability purposes 

the 200μL chromatography columns were considered sufficient providing the advantage 

of low material consumption especially when multiple CEX resins are screened. 
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Figure 3.2: A visualisation of the resin selection tool developed to identify CEX 

resins that meet the desired decision attributes. User specifications define the 

priority order of the decision attributes. Achieved attributes are determined using 

the satisficing method. Each resin candidate is assigned a performance score 

combining their respective attribute normalised values. Ranking is performed 

considering first the resin candidates with the highest number of achieved 

attributes and then their performance score. The set-point of each process 

parameter is presented in the table. CEX resin in order of appearance 1 – 8: Poros 

XS, Poros HS 50, Toyopearl GigaCap S 650 (S), Toyopearl GigaCap CM 650 (M), 

Capto S Impact, Fractogel COO (M), Eshmuno CPX and UNOsphere Rapid S. 

Regression correlations used by the resin selection tool were developed through 

DoE analysis. Experimentation was performed using 200μL miniature pre-packed 

chromatography columns operated with a Tecan Freedom EVO® 200. 

Between the two successful CEX resin candidates the performance score achieved by 

Resin-7 was approximately 85% compared to 55% achieved by Resin-1. Hence, Resin-

7 was determined as the top-ranked CEX resin that was selected to undergo further 

experimentation to optimise its operating conditions. Figure 3.2 also provides a ranking 

of all the CEX resins included in screening and the set-points of the operating 

parameters. Given the configuration of the resin selection tool for the particular bispecific 

mAb, the vast majority of the CEX resins managed to remove HMW species and increase 
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purity. However, a low level of yield was observed throughout all resin candidates that 

partially rendered them incapable of reaching the productivity target. 

3.3.4. Window of operation 

Leveraging the CEX resin screening results summarised in Figure 3.2, the subsequent 

optimisation experiments were designed for the selected Resin-7 (Table 3.1). It should 

be noted that binding conditions were optimised considering only to maximise DBC10%. 

On the other hand, the elution pool volume that was collected was introduced as the third 

DoE response after purity and yield due to its impact on productivity. A stepwise 

regression analysis identified a model to describe each of the four DoE responses as a 

function of the DoE factors. Figure 3.3 shows the prediction profilers of each DoE 

response along with a model-fit summary. 

 
Figure 3.3: Prediction profilers generated using JMP Pro 11 to visualise each 

attribute (DoE response) as a function of process parameters (DoE factors) for 

CEX Resin – 7. Solid lines represent the average response and dotted lines 

indicate the confidence interval at a 95% confidence level. DoE was executed 

using 600μL miniature pre-packed chromatography columns operated with a 

Tecan Freedom EVO® 200.  
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Instead of using the prediction profilers to identify a sweet spot, the MLR coefficients 

were linked into a stochastic simulation engine evaluating simultaneously the set-point 

and the acceptable range of each process parameter. Through a series of Monte Carlo 

simulations a window of operation was determined where the probability of failing to meet 

the threshold values of any attribute is minimised. The contour plots in Figure 3.4 

demonstrate the areas where all attributes are satisfied (white areas) operating under no 

deviations from the set-point. Additionally, black shaded circular areas present the 

window of operation considering a level of uncertainty for each process parameter. 

 

Figure 3.4: Window of operation under uncertainty for CEX Resin – 7. White (blank) 

areas demonstrate the operating space under no process deviations from the set-

point. Black areas define a window of operation that satisfies the attributes under 

uncertainty by minimising the probability of failing any of the threshold values of 

the attributes. Number of Monte Carlo simulations per iteration = 10000.  

Typically, a window of operation would focus on defining the boundaries of an operating 

space and determine its centre point as the sweet-spot due to its greatest distance from 



112 
 

the boundaries and thus potentially increasing the robustness of a process. Additionally, 

stochastic simulations could be performed on the sweet-spot once it has been identified 

to determine its robustness. Although this approach helps to define a set-point for each 

process parameter, it neglects to determine an acceptable range within which each 

process parameter is allowed to vary without compromising any quality and performance 

attributes. Moreover, iterative calculations would be necessary to assess the acceptable 

range. Additionally, when multiple parameters are investigated a series of contour plots 

would be necessary to describe a window of operation especially when parameter 

interactions have a significant impact on the attributes. Using the methodology as 

described in Section 2.2.3.4., it is possible to determine an acceptable operating range 

for each process parameter along with its set-point. Thus providing a greater 

understanding regarding the impact of process parameters on different attributes and 

hence guide subsequent experimentation at larger scales. 

Using the Monte Carlo simulations dataset that resulted in a minimum probability of 

process failure a distribution for each attribute was created and a tornado plot was drawn 

to evaluate the significance of each process parameter (Figure 3.5). The process 

parameter with the most significant impact on DBC10% was identified as the load (binding) 

pH, while all operating parameters demonstrated an impact on purity and yield. It should 

be noted that it can be expected that the linear velocity of the mobile phase during elution 

would have no effect on the volume of the elution pool as it can be seen in Figures 3.3 – 

3.5. Furthermore, the benefits of using the 600μL miniature chromatography columns 

should be highlighted as it was possible to achieve a greater peak resolution compared 

with the 200μL columns. That led to a more realistic approximation of the trade-offs 

between purity and yield.  
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Figure 3.5: Robustness analysis for CEX Resin – 7. Distribution and sensitivity of 

attributes operating with the identified window of operation under uncertainty. 

Solid bars in the tornado graphs for the sensitivity analysis indicate lower 

parameter values than the set-point and hollow bars indicate higher values. 

Number of Monte Carlo simulations = 10000. 

3.3.5. Targeted bench-scale experimentation 

The validity of the predictions made through the implementation the HTPD workflow was 

assessed by performing targeted experiments at bench-scale with a 20cm bed-height 

chromatography column packed with Resin-7. Bench-scale experimentation evaluated 

the operation at the centre of the suggested window of operation (set-point of process 

parameters) while additional runs were performed deliberately introducing deviations 

from the set-point within and outside the window of operation. 

The DBC10% was evaluated first in order to determine whether the predicted value of load 

challenge was feasible. Experimentally achieved (i.e. actual) DBC10% values were plotted 

against predicted to visualise their accuracy. It can be noted that DBC10% was 

consistently overestimated leading to a shift of the data-points in Figure 8a from the 

diagonal line to the right. In order to improve the accuracy of the predictions, the 
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predicted DBC10% was corrected to account for the collection of a column volume of 

equilibration buffer in the flow-through pool at the beginning of the loading phase and the 

hold-up mass from the application of the last column volume (Eq.3.4). Additional 

breakthrough curves were generated to address the validity of the correction made 

(Figure 3.6b). 

DBC10%
Corrected = DBC10%

Predicted − 2 ∗ CFeed                                  (Eq. 3.4)   

Linear gradient elution experiments followed to evaluate the predictive ability of the 

elution performance at bench-scale. Experimental values were plotted against predicted 

for each attribute (purity, yield and elution pool volume) as shown in Figure 3.6c – e. 

Statistical tests were performed to assess the significance of the difference between the 

means (t-Test) and the variances (F-Test) of the predicted and the actual values. The 

test results suggested a good agreement between the predicted and the experimental 

values for purity and yield and confirmed the over-prediction of the DBC10% without the 

application of the correction for the hold-up mass. Additionally, there was a statistically 

significant difference between the variances of the predicted and the actual datasets on 

elution pool volume, however within the corresponding probabilistic limits defined by its 

distribution in Figure 3.5d. In summary, implementation of the proposed HTPD workflow 

enabled the comparison of a number of CEX resins under conditions that favour each 

candidate. Two CEX resins qualified as the top-ranked candidates for this particular 

purification challenge. The CEX Resin-7 was selected based on its performance score 

for further experimentation to identify a window of operation. The results suggested a 

mean predicted purity and yield level of 93% and 76%, respectively with an elution pool 

volume of 4.0 CV. Targeted bench-scale experimentation within the predicted window of 

operation resulted in similar performance (92% purity, 74% yield and 3.9 CV) and hence 

provided a preliminary justification of the predictive ability of the model. 



115 
 

 
Figure 3.6: Actual vs Predicted plots and Statistical tests to visualise and verify 

the proposed window of operation for CEX Resin – 7. Actual refers to the 

experimental values obtained at bench-scale using a 20cm bed height 

chromatography column operated with an AKTA Avant 25. Predicted values were 

obtained using regression correlations developed through analysis of the DoE 

space. DoE was performed using 600μL miniature pre-packed chromatography 

columns and operated with a Tecan Freedom EVO® 200. 

Note: A 95% confidence level was used. The null hypothesis considers the two samples sets are 
from the same distribution. P-values ≤ 0.05 reject the null hypothesis. Sample size: 7 for a) and 
b) and 3 for c), d) and e). 

3.4. Conclusions 

This chapter demonstrated a hybrid approach for the development of a CEX 

chromatographic separation process to purify a high-aggregated bispecific antibody. The 

proposed workflow offers significant benefits in terms of materials’ consumption (80% 

reduction in feedstock material and 50% reduction in buffer consumption) and time 

requirements compared with bench-scale experimentation in order to achieve a similar 

level of process understanding. A key focus of the HTPD workflow was the establishment 

of a systematic framework providing the methods and the tools to cope with the large 

datasets resulting from HTE and automate a significant part of data manipulation and 

analysis. 
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A biopharmaceutical company could identify very rapidly limitations that a specific resin 

type has for a given product and re-orient development activities accordingly. For 

instance, as demonstrated here through an industrially relevant case study, a number of 

well-studied commercial CEX chromatography resins managed to remove only a portion 

of HMW species thus putting an additional burden on downstream unit operations to 

provide the desired product profile. Through the introduction of a systematic HTPD 

workflow process bottlenecks can be identified rapidly at an early stage in process 

development. Therefore, it would be possible to consider alternative options in order to 

develop a cost-effective purification process that can meet product and process 

specifications. Finally, the insights that were gained through the analysis to identify a 

window of operation and assess its robustness can be further leveraged to guide 

subsequent experimentation at larger scales. Further experimentation could focus on 

optimising process parameters that were identified as significant thus mitigating the 

experimental effort. 
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Chapter 4. A process economics evaluation of pre-packed 

chromatography columns in antibody purification 

4.1. Introduction 

Single-use technologies (SUT) have gained a significant momentum in bio-

manufacturing offering a lower capital investment and facility footprint when compared 

to conventional facilities using fixed, stainless steel process equipment. An example of 

this momentum from the industry is the introduction by GE Healthcare of modular, 

prefabricated cGMP bio-manufacturing facilities (KUBio) with a flexible production line.  

Chapter 1 (Section 1.3.2) described available SUT in bio-manufacturing and discussed 

the main advantages, limitations and challenges related to the introduction of disposable 

unit operations in the process sequence. Evidently, the decision to adopt SUT in bio-

manufacturing relies upon multiple criteria and objectives. For instance, disposable 

equipment could decrease the fixed capital investment and mitigate validation activities 

however size limitations could render infeasible their fit into a large scale facility. 

Therefore, different considerations such as the drug development stage and available 

resources as well as the desired annual throughput and the performance of each unit 

operation could potentially have conflicting effects on the final decision. 

The traditional industrial approach in manufacturing of therapeutic antibodies has 

developed a platform process usually involving three distinct and orthogonal 

chromatographic purifications steps (Kelley et al., 2009). Already published work has 

discussed the economic impact of disposable bags (Sinclair & Monge, 2002) and 

compared single-use, stainless steel (Novais et al., 2001; Sinclair & Monge, 2005) and 

hybrid bio-manufacturing facilities (Farid et al., 2005). However, there is no published 

work focusing on the economics of pre-packed chromatography columns in bio-

manufacturing. Additionally, there is a lack of commercially available computer aided 

tools flexible enough to facilitate a comprehensive investigation of pre-packed columns. 

This chapter focuses on the chromatographic purification and attempts to identify 
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benefits and limitations of pre-packed columns from a process economics point of view. 

The overall objective here is the evaluation of pre-packed chromatography columns as 

an alternative to self-packed columns in the purification of therapeutic antibodies using 

the cost of goods per gram of product (COG/g) as the key performance metric. A process 

economics model was developed emphasising on the design of the purification train to 

capture all chromatography related activities and required resources to allow for the 

detailed cost comparison of pre-packed and self-packed columns. A series of 

hypothetical scenarios were designed based on evidence from the industry and 

academia to simulate a wide decision space and address the impact of multiple 

parameters on the cost-effectiveness of pre-packed columns. The key focus of the 

scenario analysis was to determine whether the benefits and limitations of pre-packed 

columns have a significant impact on the COG/g and identify the scale of manufacturing 

where pre-packed columns are no longer a feasible or an economically attractive option.   

4.2. Materials and methods 

To facilitate the investigation of pre-packed chromatography columns a process 

economics model was developed in MS Excel as described in Chapter 2 (Section 2.3). 

A benefit of the model is offered through its structure which allows the investigation of 

individual unit operations and the whole manufacturing train. Throughout this chapter a 

generic platform manufacturing process for mAbs was used as shown in Figure 4.1. 

Three different chromatography steps were assumed in the purification train using a 

Protein A resin for the capture step, a cation exchange resin for the intermediate step 

and an anion exchange resin for the polishing step. 

Before assessing the economics of the complete manufacturing process, the first part of 

this chapter focuses on an individual chromatography unit operation in order to perform 

an in-depth comparison of the costs related to self-packed and pre-packed columns. Key 

operational differences between self-packed and pre-packed columns are the time and 

cost related for packing and unpacking activities. The number of times that a 

chromatography column needs to be packed can be estimated based on the effective 
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chromatography resin lifespan, the number of chromatography cycles per batch and the 

number of batches performed annually. Increasing packing activity would lead to a surge 

in the cost of labour and the related chemical reagents and consumables. On the other 

hand it is assumed that the corresponding packing system and the stainless steel 

chromatography column can handle the increased utilisation through proper operation 

and maintenance. Moreover, from a process economics point of view a key model 

parameter is the ratio of the price of a chromatography resin over the price of an empty 

pre-packed column. Changing from a self-packed to a pre-packed chromatography 

column of the same size would cause an increase in the cost of consumables due to the 

addition of the cost of the empty pre-packed column. 

 

Figure 4.1: A generic manufacturing process flowsheet for mAbs 

To investigate these differences a representative range of chromatography column 

diameters was selected for evaluation under different levels of facility utilisation and a 

range of resin prices (Table 4.1). Facility utilisation was estimated assuming a maximum 
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of 20 batches per year using a single production bioreactor. To automate and accelerate 

the simulation of different scenarios a procedure was programmed in VBA to assign the 

desired values to model parameters and assumptions and create a record of the cost 

breakdown for a chromatography step. Following the deterministic comparison of self-

packed and pre-packed columns using the base assumption values (Table 4.1), a 

worst/best case sensitivity analysis was performed to determine model parameters with 

the greatest impact on the cost of goods for a single chromatography column (Table 4.2).  

Table 4.1: Range of parameters used to compare the manufacturing costs between 

pre-packed and self-packed chromatography columns of the same size and 

packed with the same resin 

Parameter Range 

Diameter (cm) [5, 20, 45, 60] 

Resin Price ($/L) [500, 2000, 8000] 

Batches [1, 2, 4, 8, 12, 16, 20] 

Column type [Self-packed, Pre-packed] 

Empty Pre-packed Column Price ($/cm) 2000 

Resin Lifespan (#cycles) 25 

DBC (g/L) 50 

Number of Cycles per Batch 5 

Table 4.2: Model parameters included in the sensitivity analysis to determine their 

significance in the manufacturing costs of a single chromatography step utilising 

either a self-packed or a pre-packed column  

Parameter Worst Base Best 

DBC (g/L) 20 60 100 

Resin Price ($/L) 15000 5000 1000 

Empty Pre-packed Column Price ($/cm 

of diameter) 
3500 2000 500 

Buffer Price ($/L) 7 5 2 

Resin Lifespan (#cycles) 20 50 100 

Elution Pool Volume (#CV) 7 3 1.5 

Linear Velocity (cm/hr) 100 300 500 

Note: Using a 30cm in diameter column operated for 5 cycles per batch over 20 batches 
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Evaluation of a single chromatography step isolated from the rest of the process allows 

the direct comparison of manufacturing costs related to self-packed and pre-packed 

columns. Nevertheless, a unit operation is always part of a process flowsheet thus 

development and optimisation should consider the complete manufacturing process. 

Hence, to put into perspective the impact of pre-packed columns on the whole process 

a series of scenarios was created to simulate pre-clinical, clinical and commercial 

manufacturing of mAbs. Model parameters such as the annual product demand and cell 

culture titre for each scenario are defined in Table 4.3. In order to achieve a realistic 

approximation of the different manufacturing stages a set of assumptions was made 

based on previous published work by (Simaria et al., 2012) regarding a hypothetical mAb 

and the population to be treated at each stage. In order to estimate the annual product 

demand, average body weight for each patient of 100kg was assumed. Using Eq.4.1 and 

the assumptions in Table 4.4 the total annual demand can be approximated. For each 

manufacturing stage an overproduction factor was applied to account for additional 

material required for QCQA and process development activities. Finally, at the pre-

clinical stage a total annual demand of 0.5kg was assumed regardless of the size of the 

study in order to have enough material to be used in process development.  

Demand = Overproduction factor ∗ #Patients ∗
#Doses

patient
∗ Dosage ∗ Body weight    (Eq. 4.1) 

Table 4.3: Key model assumptions used to evaluate the cost-effectiveness of pre-

packed chromatography columns considering the complete manufacturing 

process 

Stage 
Total Demand 

(kg/year) 

Cell Culture 

Titre (g/L) 

No. of 

Batches 
Pipeline 

Pre-Clinical 0.5 2.5 1 12 

Clinical Phase I & II 5 2.5 1 9 

Clinical Phase III 20 5 2 2 

Commercial 200 5 20 1 
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Table 4.4: Annual product demand approximation for each phase in the drug 

development pathway 

 
Pre-

Clinical 

Clinical 

Phase I 

Clinical 

Phase II 

Clinical 

Phase III 
Commercial 

Success Rate 0.69 0.54 0.34 0.70 0.91 

Patients Treated - 40 150 1300 15000 

Doses/patient - 1 18 18 18 

Dosage (mg/kg) - 15 7 7 7 

Overproduction Factor - 2.5 2.5 1.25 1 

Total Demand (kg/year) 0.5 0.2 4.8 20.0 200.0 

Note: Average body weight = 100kg 

Considering the flowsheet in Figure 4.1 with three chromatography steps and given the 

two options for each step (self-packed or pre-packed column), there are eight possible 

configurations for the purification train. A procedure was written in VBA to automate the 

simulation of every scenario in Table 4.3 and for each purification train configuration. 

Additionally, using transition probabilities for each development stage as reported by 

Paul et al. (2010) the required number of drug candidates in the pipeline at each stage 

can be estimated based on the desired number of successful product launches per year. 

Therefore the influence of the biopharmaceutical pipeline size on the decision to 

introduce pre-packed chromatography columns can be evaluated. A stochastic analysis 

using the Monte Carlo approach was performed to address the robustness of the 

decision to introduce pre-packed columns at each manufacturing stage in Table 4.3. For 

each chromatography step in the purification sequence probabilistic values were drawn 

using triangular distributions with minimum, mode and maximum values as specified in 

Table 4.5. 
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Table 4.5: Key model parameters and their distributions that were included in the 

robustness analysis on the decision to introduce pre-packed columns at different 

manufacturing stages 

Step Parameter Distribution (Min., Mode, Max.) 

C
a

p
tu

re
 

DBC (g/L) Tr(35, 40, 45) 

Resin Price ($/L) Tr(9000, 12000, 15000) 

Resin Lifespan (#cycles) Tr(40, 50, 60) 

Empty Pre-packed Column Price ($/cm 

of diameter) 
Tr(1800, 2000, 2200) 

In
te

rm
e

d
ia

te
 

DBC (g/L) Tr(55, 60, 65) 

Resin Price ($/L) Tr(3000, 4000, 5000) 

Resin Lifespan (#cycles) Tr(75, 100, 125) 

Empty Pre-packed Column Price ($/cm 

of diameter) 
Tr(1800, 2000, 2200) 

P
o

li
s

h
in

g
 

DBC (g/L) Tr(85, 100, 115) 

Resin Price ($/L) Tr(2000, 3000, 4000) 

Resin Lifespan (#cycles) Tr(75, 100, 125) 

Empty Pre-packed Column Price ($/cm 

of diameter) 
Tr(1800, 2000, 2200) 

Note: Tr(a,b,c) refers to the triangular probability distribution where a, b, c are the minimum, most 

likely, and maximum values, respectively.
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4.3. Results and discussion 

Evaluation of pre-packed chromatography columns as an alternative to self-packed 

columns was performed through a series of scenarios designed to capture key process 

economics drivers. Assuming the same size of a chromatography column for both 

technologies packed with the same resin and operated under the same conditions a 

relativistic impact of pre-packed columns on manufacturing costs is demonstrated in 

Table 4.6. 

Table 4.6: A qualitative comparison of the manufacturing costs associated with 

self-packed and pre-packed columns of the same size, packed with the same 

chromatography resin and operated under identical conditions 

Manufacturing Costs Self-packed Pre-packed 

Direct Costs 

Labour 1 1 

Chemical Reagents 1 1 

Packing Labour 1 0 

Packing Chemical Reagents 1 0 

Consumables 1 1(+) 

Indirect Costs 

Self-packed Column 1 0 

Chromatography Skid 1 1 

Buffer & Product Hold-tanks 1 1(-) 

Column Packing System 1 0 

The manufacturing costs in Table 4.6 refer only to the costs associated with a 

chromatography unit operation. Labour and chemical reagents account for the cost of 

operating a chromatography column including personnel, buffers for operation and 

cleaning of hold-tanks. Since the size and operating conditions are the same for both 

column technologies it is expected that the required time and volume of buffers for 

operation and therefore the volume of the hold-tanks would remain constant. However, 

any hold-tanks associated with packing and unpacking buffers would be eliminated in 

case of pre-packed columns. Additionally, the necessary chromatography skid would 

remain the same regardless of the technology of the column. On the other hand, any 

cost related to column packing would be eliminated for a pre-packed column. These 

costs include the associated personnel and chemical reagents for packing and 
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unpacking activities along with the cost for the necessary column packing system. 

Finally, in case of self-packed columns consumables would involve the cost of the 

chromatography resin and the guard filters for the hold-tanks. On the other hand, in case 

of pre-packed columns the cost of consumables would be the sum of the cost of the pre-

packed column and the guard filters for associated hold-tanks. 

The cost of consumables for a self-packed chromatography unit operation as estimated 

in the process economics model is a function of the volume of the chromatography 

column and thus a function of its diameter and bed-height. Additionally, the cost of a pre-

packed column is estimated as the sum of the cost of the chromatography resin and the 

cost of the disposable empty column. Here, the cost of the empty pre-packed column is 

calculated based on the diameter of the column using a unit price per centimetre. Due to 

the same size and operating conditions between the two column technologies the cost 

of the disposable guard filters for the hold-tanks would be constant. Hence, guard filters 

could be excluded in order to evaluate the relationship between the cost of the resin and 

the disposable empty pre-packed column. 

A graphical representation of the relationship between the cost of a chromatography 

resin and the cost of a pre-packed column is shown in Figure 4.2. As shown in Figure 

4.2 increasing resin price and diameter values lead to the dominance of the resin cost. 

At small diameters (up to 10cm) the cost of the resin varies between approximately 5% 

and 50%. For instance, a Protein A resin with a price of 12500$/L would account for 50% 

of the total cost of a pre-packed column packed with the same resin. It should be noted 

that the curves in Figure 4.2 were generated assuming a price for the empty pre-packed 

column of 2000$/cm of diameter. 

The cost breakdown in Table 4.7 might give the impression that pre-packed columns 

offer a significant reduction in manufacturing costs however, the end result would also 

be subject to the ratio between direct and indirect costs. It is expected that indirect costs 

would decrease in the case of a pre-packed column of the same size compared to a self-
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packed column. On the other hand, the answer is not straightforward for the direct costs 

since the intensity of packing activities could change the balance among different cost 

components. 

 
Figure 4.2: Cost of a chromatography resin relative to the total cost of a pre-packed 

chromatography column against the price of the resin at different column 

diameters 

Figure 4.3 shows different cost ratios for pre-packed columns over self-packed. The top-

half of Figure 4.3 plots the consumables cost ratio (i.e. consumables for pre-packed over 

self-packed column) with increasing facility utilisation and increasing column diameter. 

As shown in Figure 4.2 increasing resin price and column diameter lead to the 

dominance of the cost of the chromatography resin over the empty pre-packed column. 

Figure 4.3 confirms that relationship and demonstrates that the consumables cost ratio 

of pre-packed over self-packed decreases with increasing resin price and/or diameter. 

On the other hand, increasing facility utilisation has a moderate effect on the 

consumables cost ratio as direct costs would increase for both column technologies.  

The bottom-half of Figure 4.3 plots the cost ratios of labour, chemical reagents and 

indirect costs. These cost categories demonstrate a clear benefit from the introduction 

of pre-packed columns. Their cost ratios are throughout different levels of facility 
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utilisation and column diameters below 1, indicating that these costs are reduced for the 

pre-packed option. Furthermore, increasing diameter and/or facility utilisation above 20% 

have no further cost benefits as labour, reagents and indirect cost ratios reach a plateau 

value. 

 

Figure 4.3: Cost ratios of pre-packed over self-packed columns 

Overall, Figure 4.3 demonstrates the conflicting effect that pre-packed columns have on 

the manufacturing costs for a single chromatography step. While labour, reagents and 

indirect costs benefit from the introduction of pre-packed columns the same cannot be 

claimed for the cost of the consumables especially with small column diameters. 

To better understand how different costs vary between self-packed and pre-packed 

columns a COG/batch breakdown was plotted at different diameters and resin prices. 

Assuming full facility utilisation (20 batches), 5 chromatography cycles per batch and a 

resin lifespan of 25 cycles a self-packed chromatography column would have to be 

packed four times. Alternatively, four pre-packed columns would be needed. It should be 

noted that the process economics model generates all cost estimates on an annual 

basis. Thus, any cost per batch can be estimated by dividing the annual cost with the 

number of batches in a manufacturing campaign. The bar charts in Figure 4.4 

demonstrate the contribution of different costs in the COG/batch. 
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Figure 4.4: Chromatography cost of goods per batch breakdown for a self-packed 

and a pre-packed chromatography column at different diameters and a) resin price 

= 500$/L, b) resin price = 2000$/L, c) resin price = 8000$/L 
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As shown in Figure 4.4 the costs associated with packing and unpacking activities 

account for only a small percentage (2.5 – 6.5%) of the cost of goods. At small diameters 

indirect costs dominate the COG. At this size the introduction of pre-packed columns 

causes the greatest decrease in the COG/batch of approximately 13%. Moreover, the 

drop in the COG is consistent throughout different prices of a chromatography resin. On 

the other hand, pre-packed columns offer a 2% drop in the COG/batch using a 60cm 

diameter column. As column diameter increases the cost savings of pre-packed columns 

decrease. Nevertheless, pre-packed columns offer a reduction in the COG throughout 

different sizes and resin prices. 

A sensitivity analysis followed to determine key model parameters and assumptions that 

cause the greater deviations in the cost of goods. Figure 4.5 presents a tornado graph 

for each column type demonstrating the parameters with the greatest impact on the 

COG/batch for a single chromatography column (COGCHROM/batch) of 30cm in diameter 

operated for 5 cycles per batch over 20 batches. Three parameters show more significant 

impact: the dynamic binding capacity (DBC), the lifespan of the chromatography resin 

and its price. Additionally, these three parameters have a stronger influence on the pre-

packed option, with low DBC and resin lifespan values resulting in greater increase in 

COGCHROM/batch compared to the self-packed option. For both chromatography column 

technologies a low DBC value shows the greatest impact on the COGCHROM/batch. 

Evaluating a single chromatography step in isolation from the rest of the manufacturing 

process provided insights regarding the re-distribution of manufacturing costs caused by 

the introduction of pre-packed columns. To address the impact of the decision to 

introduce pre-packed columns throughout the purification train a generic process 

flowsheet was created to simulate the manufacture of a hypothetical mAb at pre-clinical, 

clinical and commercial stage. 
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Figure 4.5: Tornado graphs visualising key model parameters related to 

chromatography and their impact on the COGCHROM/batch for a) self-packed and b) 

pre-packed column of the same size and packed with the same resin 

As discussed in Section 4.2, given three chromatography steps and two column 

technologies there are eight possible configurations for the purification train. Figure 4.6 

shows the cost differences of all purification train configurations that involve at least one 

pre-packed column against the base case of a full self-packed train. The conflicting effect 

that pre-packed columns have on the manufacturing costs can also be observed here. 

Direct costs throughout different manufacturing stages and purification train 

configurations demonstrate an increase from the base case of a full self-packed train. 

The incorporation of a single pre-packed column for the last polishing step (train 
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configuration: SP-SP-PP) demonstrates the minimum impact on direct costs while the 

greatest impact can be observed for a purification train using only pre-packed columns 

(PP-PP-PP). The same trend is also noticeable for indirect costs, however, with the 

opposite effect. Indirect costs benefit throughout the manufacturing stages from the 

introduction of pre-packed columns with the most significant savings achieved through 

the use of a full pre-packed purification train. 

 

Figure 4.6: Changes in direct and indirect costs of a complete manufacturing 

process using different configuration of the purification train relative to a full self-

packed purification train at different manufacturing stages 

The conflict stems from the fact that pre-packed columns cause approximately the same 

level of increase in direct costs as the level of decrease in indirect costs. Therefore, the 

final offset in the COG would only be subject to the ratio between direct and indirect 

costs. Figure 4.7 plots the direct to indirect cost ratios for a full self-packed and a full pre-

packed purification train at different manufacturing stages. The full pre-packed option 

demonstrates a consistent increase of the ratio between direct and indirect costs. 

However, that increase is capable of changing the cost balance only at the pre-clinical 

stage. At this stage a full self-packed purification train would result in almost a perfect 
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balance between direct and indirect cost reaching a ratio close to 1. With the introduction 

of a full pre-packed train at this stage that ratio exceeds the unit slightly. In contrast, the 

impact on the direct/indirect ratio although present it does not change the balance at 

clinical and commercial manufacturing. It should be highlighted that different 

manufacturing stages involve different pipeline sizes and thus a different level of indirect 

costs dilution among projects. In this case study the size of the pipelines (Table 4.4) was 

estimated targeting the successful commercialisation of at least one new therapeutic 

mAb given the transition probabilities in Table 4.5.  

 

Figure 4.7: Direct over indirect cost ratios for full pre-packed and full self-packed 

purification trains across different manufacturing stages 

The changes in the total COG/g for the whole manufacturing process for different 

configurations of the purification train and across all manufacturing stages are 
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summarised in Figure 4.8. The cost-effectiveness of the process is not demonstrating a 

significant improvement from the conventional configuration of the purification train using 

only self-packed columns. The greatest cost reduction can be observed with the 

introduction of a full pre-packed purification train at clinical phase III reaching 

approximately 6%. Pre-clinical, clinical phase III and commercial manufacturing appear 

to benefit from pre-packed columns with a maximum cumulative cost reduction reaching 

just above 10%. This can be justified though the combination of Figure 4.6 and Figure 

4.7. For instance, at commercial scale direct costs are two times higher than indirect 

costs. The introduction of pre-packed columns causes approximately a 10% decrease in 

indirect costs and less than 3% increase in direct costs. Hence, an overall 3% reduction 

in the COG/g. On the other hand, at clinical phase I & II the increase in direct costs 

caused by pre-packed columns offsets a similar decrease in indirect costs leading to a 

slight increase in the COG/g by less than 2%. 

 

Figure 4.8: Changes in COG/g of a complete manufacturing process at different 

configuration of the purification train relative to a full self-packed purification train 

at different manufacturing stages 
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As discussed, considering Figure 4.8 the most cost-effective configuration of the 

purification train would be the utilisation of pre-packed columns for all chromatography 

steps at pre-clinical, clinical phase III and commercial manufacturing. In contrast, at 

clinical phase I & II the full self-packed configuration offers the lowest COG/g. A direct 

comparison between full self-packed and full pre-packed configurations across all 

manufacturing stages is shown in Figure 4.9. The COG breakdown offers an alternative 

visualisation of the re-distribution of the manufacturing costs caused by the introduction 

of pre-packed columns. Additionally, the effect of the manufacturing scale on the COG/g 

is illustrated starting with approximately 1750$/g at the pre-clinical stage and reaching 

150$/g (a 90% decrease) at commercial scale. 

To further understand the drivers behind the moderate change in the total COG/g caused 

by pre-packed columns it is necessary to determine the gravity that the chromatographic 

purification train has on the manufacturing costs. Figure 4.10 demonstrates a COG 

breakdown per unit operation across different manufacturing stages highlighting the 

contribution of each chromatography step in the total cost for a full self-packed train and 

a full pre-packed train. As expected, mainly due to its resin price, the capture step 

dominates the cost of the whole purification train and covers a significant percentage of 

the cost of the downstream processing train. In most cases the combined cost of the 

other two chromatography steps match the cost of the capture chromatography step. By 

comparing the percentage contribution of corresponding individual chromatography 

steps the impact of pre-packed columns can be quantified. For instance, at pre-clinical 

stage a small reduction in the cost contribution occurs for the intermediate and polishing 

chromatography steps with the introduction of pre-packed columns. On the other hand, 

a small increase for the capture step can be detected. This observation agrees also with 

Figure 4.8 where the option of having a self-packed capture step followed by two pre-

packed steps (SP-PP-PP) comes very close to the full pre-packed configuration. 
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Figure 4.9: Direct comparison and cost of goods breakdown of a full self-packed 

and a full pre-packed purification train across different manufacturing stages 

 

Figure 4.10: Cost of goods breakdown per unit operation across different 

manufacturing stages for a full self-packed and a full pre-packed purification train 

Note: SEED: Flasks & Seed bioreactors, BIOR: Production bioreactor, CENT: Disk-stack 

centrifuge, DEPF: Depth filtration, CAP: Capture chromatography, VI: Virus inactivation, INT: 

Intermediate chromatography, POL: Polishing chromatography, VF: Virus filtration and UFDF: 

Ultrafiltration/Diafiltration 

In order to assess the robustness of the decision regarding the selection of the most 

cost-effective configuration for the purification train at each manufacturing stage a series 
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of Monte Carlo simulations were performed. The stochastic inputs that were challenged 

in the analysis are presented in Table 4.6. The DBC, the resin lifespan and the resin 

price for each chromatography step were selected based on the observations made 

through the tornado graphs in Figure 4.4. Additionally, the unit price of an empty pre-

packed column was included in the analysis in order to leverage the effect of any 

deviations in the price ratio between the chromatography resin and the empty pre-packed 

column. The resulted distributions of the COG/g are presented in Figure 4.11 for a full 

self-packed (black coloured histograms) and a full pre-packed (grey coloured 

histograms) purification train configuration at different manufacturing stages. 

 

Figure 4.11: COG/g distributions generated through Monte Carlo simulations for a 

full self-packed (Full SP: black coloured histograms) and a full pre-packed (Full 

PP: green coloured histograms) purification train across different manufacturing 

stages 

The COG/g distributions confirm the decision made through the initial deterministic 

analysis. At pre-clinical, clinical phase III and commercial manufacturing stages 

evaluated in this case study the pre-packed option demonstrates greater cost-

effectiveness than the conventional full self-packed option, even under uncertainty on 

key parameters. Moreover, at clinical phase I & II there is a small shift to the right of the 

COG/g distribution for the case of a full pre-packed purification train relative to a full self-

packed train. 
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The deterministic and stochastic analysis performed so far demonstrate a moderate 

benefit from introducing pre-packed columns into the manufacturing process for mAbs 

from a cost of goods perspective. However, the annual product demand for a commercial 

mAb could be above the 200kg limit that was challenged here. Therefore, the cost-

effectiveness of pre-packed columns should be further evaluated at larger scales of 

manufacturing. Figure 4.12 shows a plot of the COG/g with increasing annual product 

demand up to a tone of mAb. On the horizontal axis of the plot there are tabulated five 

model parameters: the technology of the chromatography columns, the capacity of the 

production bioreactor, the number of upstream processing (USP) trains operating in 

staggered mode, the annual product demand and the number of batches performed 

annually. 

 

Figure 4.12: Cost of goods breakdown of a full self-packed and a full pre-packed 

purification train across different commercial annual product demands with 

increasing and fixed the capacity of the production bioreactor 

With a single USP train the facility can run up to 20 batches within a year, thus in order 

to keep the capacity of the production bioreactor constant throughout late clinical and 

commercial manufacturing more batches have to be performed. Hence additional USP 

trains have to be included to maintain the same batch throughput. On the other hand, 
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there is the option to increase the capacity of the production bioreactor and maintain a 

single USP train. A comparison between the two options is visualised in Figure 4.12. The 

option of multiple staggered USP trains to maintain the bioreactor capacity constant 

demonstrates higher COG/g than the alternative of increasing bioreactor capacity. 

The option of adding multiple USP trains and keep the batch throughput constant 

ensures that the size and the operation of each process step is maintained. In contrast, 

increasing the batch throughput could require bigger size of process equipment. 

Although there is a wide range of self-packed column diameters (up to 200cm) available 

in the market, the largest pre-packed column diameter that was considered in this 

research was 60cm. Recently, Repligen (Waltham, Massachusetts) commercialised the 

largest yet pre-packed column of 80cm in diameter. In case of high batch throughput 

where the required chromatography column diameter is bigger than 60cm, multiple pre-

packed columns would have to be operated in parallel. Table 4.7 summarises the size 

and the processing time for each chromatography step in the purification train using self-

packed and pre-packed columns. The size of the purification train changes with 

increasing batch throughput. For instance, at 1000kg/year and 20 batches annually the 

capture chromatography step requires 4 pre-packed columns of 60cm in diameter 

operated over 7 cycles per batch. In contrast only a single self-packed column of 140cm 

in diameter operated over 6 cycles per batch can be used to achieve the same batch 

throughput. The increased number of pre-packed columns operated in parallel requires 

the addition of multiple chromatography skids. Therefore, indirect costs would not 

necessarily decrease as it is observed with lower batch throughputs (Figure 4.6) where 

a single chromatography column of no more than 60cm can be used for each 

chromatography step. 

Overall, a full pre-packed purification train shows comparable COG/g with a full self-

packed train. The greatest cost reduction from the introduction of pre-packed columns, 

of approximately 10%, can be seen at 350kg/year with a manufacturing capacity of 2 x 

4000L operating 35 batches annually. As annual product demand increases the drop in 
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the COG/g starts to disappear. At 1000kg/year with 20 batches and 750kg/year with 75 

batches the pre-packed option breaks even with the self-packed option. Finally, the 

intensive utilisation of the DSP train that’s associated with the increased number of 

batches to maintain constant the batch throughput causes a significant increase in the 

cost of labour. That increase in the cost of labour is mainly responsible for the higher 

COG/g compared with the operation of a single USP train. At 1000kg/year with 100 

batches there is no significant difference between the pre-packed and the self-packed 

options. It should be highlighted, that in case of multiple USP trains the indirect costs 

related with the chromatographic purification train account for a small percentage of the 

total indirect costs for the whole process. Additionally, considering that direct costs are 

approximately 3 times higher than indirect costs the pre-packed option shows very 

similar COG/g with the self-packed option. 

Table 4.7: Purification train size across increasing annual product demand with 

increasing bioreactor capacity using self-packed and pre-packed (SP / PP) 

columns 

Chromatography 

Step 
Parameter 

Annual Product Demand (kg/year) 

200 350 500 750 1000 

Capture No. of Columns 1 / 1 1 / 1 1 / 2 1 / 3 1 / 4 

 No. of Cycles 6 / 6 6 / 10 6 / 7 6 / 7 6 / 7 

 Diameter (cm) 60 / 60 80 / 60 100 / 60 120 / 60 140 / 60 

 Processing (hr) 8/ 8 8 / 14 7 / 10 8 / 10 7 / 10 

Intermediate No. of Columns 1 / 1 1 / 1 1 / 1 1 / 2 1 / 3 

 No. of Cycles 7 / 7 7 / 7 5 / 9 5 / 7 6 / 6 

 Diameter (cm) 45 / 45 60 / 60 80 / 60 100 / 60 110 / 60 

 Processing (hr) 9 / 9 9 / 9 7 / 12 7 / 9 7 / 8 

Polishing No. of Columns 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 

 No. of Cycles 8 / 8 6 / 6 5 / 5 5 / 8 6 / 10 

 Diameter (cm) 30 / 30 45 / 45 60 / 60 80 / 60 80 / 60 

 Processing (hr) 9 / 9 7 / 7 5 / 5 5 / 8 6 / 11 

4.4. Conclusions 

The main objective of this chapter was to address the cost-effectiveness of pre-packed 

chromatography columns when compared to conventional self-packed columns in 

antibody purification. A series of scenarios were performed investigating 
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chromatography operations as individual units in order to provide an in depth 

understanding of the costs associated with self-packed and pre-packed columns. 

Furthermore, pre-packed chromatography columns were evaluated considering their 

impact on the complete manufacturing process. Through a scenario analysis the 

utilisation of pre-packed columns at a range of manufacturing capacities for mAbs using 

a typical platform process sequence was evaluated. The re-distribution of direct and 

indirect costs caused by pre-packed columns demonstrated a definitive influence on the 

decision regarding the selection of the most cost-effective chromatography column type. 

On the other hand, the size limitations of pre-packed chromatography columns did not 

appear to hinder their use at large scales of manufacturing. Moreover, in cases where 

both column technologies offer insignificantly different COG values the use of pre-packed 

columns could be considered due to the increased flexibility they offer especially in 

multiproduct facilities. However, the potential loss of in-house column packing know-how 

should also be weighed against the savings in time and cost due to reduced validation 

effort for packing and unpacking activities.



 
 

141 
 

Chapter 5. Integration of high-throughput purification data with 

process economics modelling and decision-support tools  

5.1. Introduction 

The challenges associated with the development of a chromatographic separation unit 

operation were discussed in Chapter 1. Additionally, the significance of rational and 

systematic chromatography resin selection was highlighted in Chapter 3. Previous 

publications have demonstrated the integration of high-throughput screening (HTS) 

purification data with optimisation algorithms to identify the optimal resin candidates for 

a single chromatography step (Nfor et al., 2011) and a two-step purification train (Liu et 

al., 2017). Other work has focused on developing combinatorial optimisation algorithms 

for 2-step and 3-step column purification trains with the goal of determining the most 

cost-effective chromatography resin sequence and column sizing strategy, using 

advanced evolutionary algorithms (Simaria et al., 2012; Allmendinger et al., 2014) and 

mathematical programming approaches (Liu et al., 2014). This chapter presents a 

framework for integrating HTS chromatography data with a process economics model 

and a decision-support tool for the purification train to optimise all the chromatography 

steps in a purification train in terms of resin sequence and column type (pre-packed or 

self-packed columns) for both clinical and commercial manufacture. 

This chapter builds on the HTPD workflow illustrated in Chapter 3 and the process 

economics model illustrated in Chapter 4. A decision-support tool was built as a “bridge” 

linking the HTPD workflow (Chapter 3) with the process economics model (Chapter 4) in 

order to promote the evaluation of different chromatography resin candidates from a 

facility perspective and investigate the impact of different purification trains on the total 

manufacturing costs. The decision-support tool for the chromatographic purification train 

was developed and linked with the process economics model. The structure and 

functionality of the tool were described in Chapter 2, Section 2.4. The main features of 

the tools are: a brute force algorithm to screen all possible purification trains for their 
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purification capabilities and a multi-attribute decision-making technique to rank 

alternatives based on multiple objectives. This tool was necessary to explore in an 

automated fashion the large decision space when considering multiple resins for multiple 

chromatography steps. 

The rest of Chapter 5 presents two case studies demonstrating the functionality of the 

proposed decision-support tool for the purification train and its integration with an HTPD 

workflow and a process economics model. The first case study focuses on the synergy 

between the process economics engine and the decision-support tool for the purification 

train. Following the scenario analysis presented in Chapter 4 for a hypothetical mAb 

multiple chromatographic purification trains are evaluated against the platform 

considering both self-packed and pre-packed columns. A second case study was 

formulated in collaboration with MedImmune to screen multiple CEX chromatography 

resins for a series of mAbs and leverage the high-throughput data through an integrated 

framework. To accommodate the screening of multiple resins for multiple mAbs certain 

modifications and improvements were implemented on the central component of the 

HTPD workflow (Design & Execution cycle, Figure 3.1). Finally, a linear mathematical 

formulation was applied in an option evaluation method to identify the optimum resin 

sequence and column type across different manufacturing stages. The integrated 

framework enabled quality and performance targets as well as productivity and financial 

objectives to be considered when weighing up different chromatography options. 

5.2. Materials and methods 

The structure of the proposed decision-support tool for the purification train was 

discussed in Chapter 2 and illustrated in Figure 2.5. Additionally Chapter 2 discussed 

the information flow of the process economics model (Figure 2.3) and the main 

components of the HTPD workflow are presented in Chapter 3 (Figure 3.1). A key 

objective of this chapter is the consolidation of the work presented and discussed in 

previous chapters of the thesis. A schematic representation of this consolidation is shown 
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in Figure 5.1. Following the steps involved in the design and execution cycle of the HTPD 

workflow a resin database can be generated containing properties for each resin 

candidate and their respective performance for a particular mAb. The resin database can 

be imported into the chromatography resin library of the decision-support tool to evaluate 

the performance of different purification trains. 

Successful purification trains that meet user specifications and quality attributes were 

ranked based on their performance using the weighted sum method (Eq.2.5). For the 

purposes of resin ranking two attributes were selected. The first attribute is the 

productivity of the chromatographic purification train (Eq.5.1). The second attribute is a 

metric that attempts to capture simultaneously the price, the binding capacity and the 

lifespan of a chromatography resin. This metric is referenced here as the resin cost per 

gram and is expressed in monetary units per gram of product that can be processed 

(Eq.5.2). The objective is to maximise productivity and minimise the resin cost per gram 

of product. 

Train Productivity (g L hr⁄⁄ ) =
∑ (DBC ∗ Yield)i

3
i=1

∑ tCYC,i
3
𝑖=1

                            (Eq. 5.1) 

Resin Cost (£ g⁄ ) = ∑ (
Resin Price

DBC ∗ Resin Lifespan
)

i

3

i=1

                              (Eq. 5.2) 

where: 

i: index of chromatography resin in a purification train with 3 steps 

tCYC: processing time for a single chromatography step (Eq.3.3) 

Properties and performance attributes for each chromatography resin of the top-ranked 

purification trains were imported into the process economics model in order to adjust 

assumptions related to each chromatography step, update the cost database with the 

new resin prices and re-synthesise the purification train to meet the operating 
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specifications for each successful train. To demonstrate the functionality of the decision-

support tool in combination with the process economics model a case study was 

designed evaluating a number of different purification trains across different 

manufacturing stages. The annual product demand, the cell culture titre, the number of 

batches performed annually and the size of the pipeline are summarised in Table 4.5. 

One of the most challenging elements of the decision-support tool for the purification 

train is the chromatography resin library. The great difficulty in creating properly a resin 

library stems from the large number of factors that could potentially offset the level of 

confidence in the correct approximation of the performance of a purification train. 

Although the biotech industry has gained significant experience in antibody purification 

that has led to the development of platform processes (Shukla et al., 2007) not all mAbs 

respond equally well to the same purification train. Moreover, chromatography steps and 

resin types might have been standardised, nevertheless there are several different resin 

choices from a number of vendors that could fit into the purification train. Additionally, 

the performance of a chromatography resin in a given position in the purification train is 

subject to the profile of the impurities delivered by the previous unit operation. For 

instance, assuming the last chromatographic polishing step has a tolerance for HMW 

species of 5% that would require the previous steps in downstream processing to deliver 

an antibody solution with less than 5% of HMW species. Such heuristics have been 

presented in the literature in order to demonstrate the implementation of different 

approaches in optimisation of antibody purification processes (Simaria et al., 2012; Liu 

et al., 2014). 
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Figure 5.1: Integrated framework in chromatography process development. 

Schematic illustration of the consolidation of a process economics model, a 

decision-support tool for the chromatographic purification train and a high-

throughput process development workflow 

A similar approach was followed here to demonstrate the synergistic functionality of the 

decision-support tool for the purification train and the process economics model (Figure 

5.1). For the purposes of the first case study a conceptual chromatography resin library 

was created assuming resin properties and performance inspired by the literature, 

application notes from different chromatography resin vendors and the industrial sponsor 

(MedImmune). The conceptual resin library for a hypothetical mAb is presented in Table 

5.1. A number of different performance characteristics were assumed for each resin 

along with its position in the purification train. A level of uncertainty was introduced 

regarding the impurities profile delivered by the primary recovery and clarification 

process. The overall aim was to identify the optimum resin sequence and column type 

for each profile of impurities across pre-clinical, clinical and commercial manufacturing. 

A critical assumption made in the process economics model is the ability of the proposed 

platform purification train to deliver the desired target product profile. The first case study 

challenges this assumption by introducing different impurities loads for the same mAb 
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and evaluating the economics of multiple purification trains that could meet the target 

product profile. The profiles of different impurities along with quality and performance 

targets for a purification train are presented in Table 5.2. 

Both attributes (productivity and resin cost) that were selected to compare the 

performance of different purification train using the weighted sum method have an impact 

on the COG. Parameters such as yield, dynamic binding capacity, processing time and 

resin price dictate the size of unit operations and the manufacturing costs. Therefore, for 

the purpose of the first case study each attribute in the score function of the decision-

support tool was considered equally important (w = 0.5). 

The first case study had as the main objective to present the integration of a decision-

support tool with a process economics model. Nevertheless, the true purpose of the 

decision-support tool is to act as a link between the HTPD workflow and the process 

economics model. Hence, a second case study was formulated to demonstrate this 

consolidation. Impurities profiles post primary recovery and clarification are shown in 

Table 5.2. Four different mAbs partially purified using Protein A chromatography 

following the process as discussed in Chapter 2 were provided by MedImmune. High-

throughput experimentation was performed as described in Chapter 2 for the 

intermediate chromatography step to screen different CEX resins. Finally, a mixed-mode 

(hydrophobic interaction and anion-exchange) resin was considered for the last 

chromatography step in the purification train. Assumptions regarding the properties and 

the performance of the capture and polishing steps for each mAb are presented in Table 

5.4. It should be highlighted that high-throughput experimentation was performed only 

for the intermediate chromatography step (CEX) while the values summarised in Table 

5.4 for the capture and polishing steps were derived after discussions with the industrial 

collaborator, MedImmune.
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Table 5.1: Conceptual chromatography resin library for a hypothetical mAb used for the purpose of demonstrating the synergistic 

functionality of a decision-support tool for the purification train and a process economics model (Case study 1) 

Resin Name Position 
Mode of 

Operation 
DBC 
(g/L) 

Yield 
Linear 

Velocity 
(cm/hr) 

Elution 
CVs 

Wash 
CVs 

Resin 
Lifespan 
(#cycles) 

HMW 
Reduction 

(%) 

LMW 
Reduction 

(%) 

HCPs 
LRV 

Price 
($/L) 

Platform Protein A 1 Bind and Elute 40 97% 350 2.5 2.0 50 15 15 3.5 12000 

Platform CEX 2 Bind and Elute 60 93% 350 4.0 2.0 100 85 90 2.5 4000 

Platform AEX 3 Flow-Through 100 97% 350 0.0 0.0 100 75 50 2.0 3000 

Protein A - 1 1 Bind and Elute 50 90% 250 3.5 2.0 50 15 15 3.5 13000 

Protein A - 2 1 Bind and Elute 40 95% 350 3.0 2.0 100 45 35 2.5 16250 

Protein A - 3 1 Bind and Elute 30 95% 350 2.5 2.0 50 25 20 2.0 11050 

CEX - 1 1 Bind and Elute 65 85% 400 4.0 2.0 100 65 55 1.1 4550 

CEX - 3 1 Bind and Elute 75 90% 500 3.5 2.0 80 50 75 1.6 2730 

MMCEX - 1 1 Bind and Elute 65 90% 300 5.0 2.0 50 20 60 2.5 5200 

MMCEX - 2 1 Bind and Elute 40 95% 450 3.5 2.0 50 80 90 2.0 6500 

CEX - 1 2 Bind and Elute 90 85% 500 3.0 2.0 100 80 75 0.5 4550 

CEX - 5 2 Bind and Elute 100 90% 350 4.0 2.0 80 75 50 2.4 4940 

CEX - 6 2 Bind and Elute 55 95% 300 3.0 2.0 100 85 80 1.2 3900 

MMAEX - 2 2 Bind and Elute 60 95% 350 4.0 2.0 60 60 50 1.7 3640 

MMAEX - 1 2 Flow-Through 80 95% 300 0.0 0.0 100 45 60 1.4 3900 

AEX - 1 2 Flow-Through 75 95% 300 0.0 0.0 150 30 90 0.2 1300 

AEX - 2 3 Flow-Through 100 95% 450 0.0 0.0 100 75 75 1.1 5200 

MMAEX - 3 3 Flow-Through 80 90% 350 0.0 0.0 100 65 80 2.3 4940 

MMAEX - 4 3 Flow-Through 100 95% 400 0.0 0.0 100 85 85 1.5 5850 

CEX - 2 3 Bind and Elute 65 90% 250 2.5 2.0 100 60 75 1.0 3770 

CEX - 4 3 Bind and Elute 70 95% 350 5.0 2.0 100 80 35 1.5 2340 
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Table 5.2: Profile of impurities delivered by the primary recovery and clarification 

process to the first chromatography step (capture) and quality and performance 

targets as received by the decision-support tool for the purification train 

 

Case study 1 Case study 2 

Light 
Lower 

Medium 

Upper 

Medium 
Heavy 

mAb 

1 

mAb 

2 

mAb 

3 

mAb 

4 

HMWIN 

(%) 

3.0 6.0 12.0 20.0 6.1 6.3 7.1 20 

LMWIN  

(%) 

1.0 2.0 5.0 7.0 0.0 0.1 0.0 0.0 

HCPsIN 

(106 

ng/mg) 

1.0 1.5 3.5 5.0 4.0 1.1 3.6 NA 

YieldTarget 

(%) 

75.0 Unconstrained 

HMWTarget 

(%) 

0.4 0.4 0.4 0.4 1.5 

LMWTarget 

(%) 

0.1 0.1 0.1 0.1 0.1 

HCPsTarget 

(ng/mg) 

100.0 100.0 100.0 100.0 NA 

wproductivity 0.5 0.0 – 1.0 

Note: YieldTarget refers to the yield of the chromatographic purification train 

Case study 1 considered alternative resins for all three chromatography steps. In 

contrast for Case study 2 it was assumed a certain resin for the capture step and the 

polishing step. This difference could have a significant impact on the ability of the certain 

decision attributes to compare efficiently different purification trains. For instance, the 

high price of a Protein A resin and its relatively low binding capacity could dominate the 

resin cost per gram (Eq.5.2). Therefore, any small deviations among different CEX resin 

prices could become undetected or even misleading in predicting the most cost-effective 

train. In order to determine if this indeed was the case in Case study 2 the weight 

coefficients were varied for 0 to 1. 
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The link between the decision-support tool for the purification train and the HTPD 

workflow was achieved through the modification of the fractionation diagram approach. 

The fractionation diagram approach as described in Chapter 2 and used in Chapter 3 

considered only HMW species as the only impurity in the antibody solution neglecting 

other product and process-related impurities. In contrast, this chapter requires the 

evaluation of host cell proteins (HCPs) and LMW species along with HMW species. 

Hence, the fractionation diagram approach had to be extended in order to account also 

for HCPs. Samples collected through high-throughput experimentation were sent for an 

in-house analysis by Medimmune to measure the concentration of HCPs using ELISA 

on a disc. HCPs concentration values were received in units of ng/ml thus for a given 

fraction volume the mass of HCPs in each fraction (f) can be calculated. Additionally, 

following the same methodology in the fractionation diagram approach, the cumulative 

mass faction of HCPs (Z) can be estimated using Eq.5.3. Finally, each pair of purity-yield 

corresponds to a concentration of HCPs in the elution pool which can be determined as 

described in chapter 2 and initially proposed by Ngiam et al. (2001). By determining the 

elution pool volume, the required fractions for collection are identified thus enabling the 

estimation of the total mass of HCPs collected in the elution pool. 

Z =
∑ MHCPs,f

f+n
f

∑ MHCPs,f
F
1

       ∀ n ∈ ℕ, n ≤ F − 1                        (Eq. 5.3) 

The design and execution cycle illustrated in Figure 3.1 was followed for mAb-1, mAb-2 

and mAb-3 shown in Table 5.2 (Case study 2) to screen eight CEX resins: PorosTM XS 

and PorosTM HS50 (Life Technologies, California U.S.A), Toyopearl® GigaCap S-650(S) 

and Toyopearl® GigaCap CM-650(M) (Tosoh Biosciences, Redditch UK), CaptoTM S 

Impact (GE Healthcare Life Sciences, Buckinghamshire UK), Fractogel® EMD COO- (M) 

and Eshmuno® CPX (EMD Millipore, Darmstadt Germany) and NuviaTM-HRS (Bio-Rad 

Laboratories, California U.S.A). On the other hand, mAb-4 is the same molecule as the 

one used to demonstrate the HTPD workflow in Chapter 3 and due to low availability of 

additional feedstock material the performance of each CEX resin was obtained from the 
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results of the screening part of the HTPD workflow in Chapter 3. As a consequence data 

on HCPs for mAb-4 are not available since HCPs were not considered in the initial 

configuration of the fractionation diagram approach. For the rest of the molecules in Case 

study 2 (mAb-1 to mAb-3) raw data manipulation was performed applying the 

modifications implemented in the fractionation diagram approach to include HCPs. 

In order to simplify and accelerate experimentation only one set of operating conditions 

was evaluated for each mAb, thus eliminating the need for the development of a DoE 

space. This approach can rapidly provide information regarding the fit of a CEX resin into 

a platform purification train, although operating under the same conditions does not 

guarantee the optimum performance for every CEX resin for a given mAb. Nevertheless, 

the implementation of the fractionation diagram approach offers the ability to identify 

several purity-yield pairs thus promoting a comprehensive evaluation of a given set of 

operating conditions (i.e. pH, linear velocity etc.). Furthermore, due to the structure of 

the chromatography resin library the same resin can be evaluated multiple times simply 

by assigning a different index value to it every time it is imported into the library under 

different conditions. 

Results from the implementation of the design and execution cycle led to the construction 

of a chromatography resin library for each mAb. The resin library that was generated for 

each mAb can be found in the Appendix (Table A.4 – A.7). Subsequently, the decision-

support tool evaluated all possible CEX resins that can be used in the intermediate step 

of the purification train and can achieve quality and performance specifications given in 

Table 5.2. Then each successful purification train was assigned a score and ranked 

against each other. Finally, properties related to each top-ranked purification train were 

imported to the process economics model to evaluate its cost-effectiveness considering 

the complete manufacturing process. 

For the purposes of the Case study 2, the 4 mAbs included in the evaluation are 

considered to have successfully passed the pre-clinical stage of the drug development 
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pathway and preparing to enter clinical trials. Therefore, the manufacturing costs were 

estimated for the clinical phase I & II, clinical phase III and commercial stage. The 

scenario inputs used for Case study 2 are summarised in Table 5.3, assuming only these 

four mAbs in the pipeline of the facility at early stage in the clinical trials and the 

commercialisation of a single mAb. 

Table 5.3: Scenario inputs in the process economics model used in Case study 2 

to demonstrate the implementation of the integrated framework 

Stage 
Total Demand 

(kg/year) 
Cell Culture 
Titre (g/L) 

No. of 
Batches 

Pipeline 

Clinical Phase I & II 5 2.5 1 4 

Clinical Phase III 20 5 2 1 

Commercial 200 5 20 1 

The overall objective here was to identify the optimum CEX resin candidate for each mAb 

to be included in the purification train across clinical and commercial manufacture and 

minimise the total COG. The flow of information in the integrated framework is presented 

in Figure 5.2. Purification data can be generated rapidly through the design and 

execution cycle of the HTPD workflow and create a database with a purification profile 

for each resin candidate. That resin database is then imported into the chromatography 

resin library of the decision-support tool for the purification train using a brute force 

algorithm to screen all possible resin sequences and creates a record with the 

purification train that have successfully met the quality and performance threshold. The 

target values for quality and performance attributes that were considered in both case 

studies and for each mAb are shown in Table 5.2 along with the impurities loads. 

All successful purification trains are ranked based on the cost of the resin sequence and 

the productivity of the train using the weighted sum method. Then the user can specify 

the number of these successful purification trains for further evaluation using the process 

economics model. For instance, it might be desirable to evaluate the top-5 or the top-10 
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from the pool of successful purification trains. The decision-support tool allows the user 

to specify the size of pool containing the top-ranked purification trains and import them 

into the process economics model. Once a purification train has been imported into the 

process economics model relevant assumptions are adjusted to simulate the 

performance of the new train and generate a COG value. 

In order to identify the optimum purification train for each mAb it is important to recognise 

the possibility that a certain train might not be the most cost-effective throughout different 

manufacturing stages. Moreover, the decision regarding the selection of the appropriate 

resin sequence should be consistent throughout all manufacturing stages in order to 

avoid introducing a different chromatography resin in the purification train at later 

development stages. Furthermore, pre-packed columns were evaluated in both case 

studies at each manufacturing stage and for every successful purification train as 

determined by the decision-support tool. Hence, in this chapter the investigation of 

different purification strategies was performed considering three main factors: the 

manufacturing stage “m”, the purification train (or resin sequence) “p” and the 

chromatography column type “c”. Additionally, the final decision was based on the 

cumulative COG achieved for each combination of manufacturing stage, resin sequence 

and chromatography column type (COGm,p,c). 

The mathematical formulation for the option evaluation method used to identify the 

optimum purification strategy for each mAb in both case studies is as follows. A binary 

variable (bm,p,c) was assigned to each COGm,p,c value since the decision to choose any 

purification strategy (m,p,c) would be either true or false. To achieve the unique selection 

of a resin sequence across all manufacturing stages an additional set of binary variables 

(Ip) was introduced along with a set of constraints to ensure the consistency of the 

selected resin sequence throughout all manufacturing stages (Eq.5.4 to Eq.5.6). Finally 

optimisation was performed in MS Excel by employing the Simplex LP engine in 

SOLVER optimisation tool add-in with the objective to minimise the sum of COG across 

all the manufacturing stages (Eq.5.7). The abbreviations MM, MP and MC indicate the 



 
 

153 
 

maximum number of manufacturing stages, alternative purification trains (resin 

sequences) and column type configurations, respectively. 

Binary Variables: b, I ∈ [0, 1] 

Constraints: 

∑ ∑ bm,p,c

MC

c=1

MP

p=1

= 1   ∀ m ∈ [1, MM]                                      (Eq. 5.4) 

∑ ∑ bm,p,c

MC

c=1

MM

m=1

= MP ∗ Ip   ∀ p ∈ [1, MP]                                  (Eq. 5.5) 

∑ Ip

MP

p=1

= 1                                                           (Eq. 5.6) 

Objective function: 

min [ ∑ ∑ ∑(bm,p,c ∗ COGm,p,c)

MC

c=1

MP

p=1

MM

m=1

]                                    (Eq. 5.7)
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Table 5.4: Key assumptions regarding the properties and the performance of platform resins for the capture and polishing chromatography 

steps for each mAb involved in Case study 2 

mAb 
Resin 

Name 

Mode of 

Operation 
Position DBC (g/L) Yield (%) 

Linear 

Velocity 

(cm/hr) 

Elution 

CVs 

Wash 

CVs 

Resin 

Lifespan 

(#cycles) 

HMW 

Reduction 

(%) 

HCPs 

LRV 

Price 

($/L) 

1 

Protein A Bind & Elute 1 40 95 300 3.5 2.0 50 10.0 3.5 10000 

MM-AEX Flow-Through 3 80 97 300 0.0 0.0 100 90.0 1.0 3200 

2 

Protein A Bind & Elute 1 40 95 300 3.2 2.0 50 10.0 3.5 10000 

MM-AEX Flow-Through 3 80 99 300 0.0 0.0 100 90.0 1.0 3200 

3 

Protein A Bind & Elute 1 40 97 300 2.5 2.0 50 10.0 3.5 10000 

MM-AEX Flow-Through 3 90 99 300 0.0 0.0 100 90.0 1.0 3200 

4 

Protein A Bind & Elute 1 30 93 300 3.0 2.0 50 10.0 NA 10000 

MM-AEX Flow-Through 3 65 95 300 0.0 0.0 100 90.0 NA 3200 
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Figure 5.2: Schematic illustration of the information flow within the integrated framework. HTPD: High-Throughput Process Development, 

MADM: Multi-Attribute Decision-Making, COG/g: Cost of goods per gram of product, BLP: Binary Linear Programming 
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5.3. Results and discussion 

The overall objective of this chapter was to further leverage the work presented in 

previous chapters. An integrated framework in chromatography process development is 

demonstrated combining high-throughput experimentation with process economics and 

decision-making analysis. A decision-support tool for the purification train was developed 

as described in Chapter 2 to link a HTPD workflow for the chromatographic purification 

of therapeutic antibodies with a process economics model for bio-manufacturing 

facilities. Initially, a case study was formulated to present the synergy between the 

process economics model and the decision-support tool. A second case study followed 

to demonstrate the implementation of the integrated framework using four mAbs 

provided by MedImmune. 

5.3.1. Case study 1: Decision-support tool and process economics model synergy 

For the purpose of Case study 1, according to the number of chromatography resins 

available for each position in the purification train (Table 5.1) there are more than 300 

possible purification trains. Figure 5.3 presents the number of successful purification 

trains across different impurities profiles. As impurities become more challenging the 

number of successful trains decreases. The fewest purification train alternatives that 

were identified by the decision-support tool correspond to the heavy load of impurities. 

In order to proceed with the process economics evaluation and optimisation the size of 

the top-ranked train pool was set to the minimum number of successful purification trains 

across all impurities loads. 

The top-six purification trains for each impurities load were further evaluated considering 

the whole manufacturing process. Additionally, for each top-ranked purification train the 

process economics model simulated its operation using either a full self-packed or a full 

pre-packed column train. Insights that were gained through the evaluation of pre-packed 

chromatography columns (Chapter 4) concluded that the greatest cost benefits can be 

observed when all three chromatography steps operate using pre-packed columns. 
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Hence, in this chapter only the full self-packed and the full pre-packed configurations of 

the purification train were evaluated in order to simplify and accelerate the scenario 

analysis. The comparison between self-packed and pre-packed purification trains is 

consistent through different impurities loads with relatively small deviations. The changes 

caused in the COG/g from the introduction of a full pre-packed column train against a full 

self-packed train with the same resin sequence are presented in Figure 5.4. Pre-packed 

columns demonstrate a reduction in the COG/g at pre-clinical, clinical phase III and 

commercial scale with the greatest benefits observed at phase III of approximately 6%. 

On the other hand, a small increase in the COG/g using pre-packed columns appears at 

clinical phase I & II. The same trend was also noticed in Chapter 4 and it was expected 

here since the same scenario inputs were used. The error bars in Figure 5.4 represent 

the standard deviation of the COG/g among the top-ranked trains.     

 

Figure 5.3: Number of successful purification trains for different impurities loads 

as identified using the decision-support tool for the chromatographic purification 

train 
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Figure 5.4: Average change in the COG/g among different loads of impurities for a 

full pre-packed train relative to a full self-packed train across all manufacturing 

stages. Error bars show two standard deviations 

According to Figure 5.4 the decision to introduce pre-packed chromatography columns 

in the purification train is consistent throughout different impurities loads and across all 

top-ranked purification trains. The most cost-effective configuration would be a full self-

packed purification train for the manufacture of material for clinical phase I & II and a full 

pre-packed purification train for pre-clinical, clinical phase III and commercial 

manufacture. 

Using the weighted sum method each successful purification train was assigned a score 

expressing its performance it terms of productivity and the resin cost per gram of product. 

Figure 5.5 plots the top-six purification trains for each impurities load based on their 

respective resin cost and productivity values. According to Figure 5.5 as the load of 

impurities increases the purification trains that manage to meet the quality and 

performance threshold achieve a high resin cost and a low productivity. At a light load of 

impurities the vast majority of the top-ranked purification trains are located on the bottom-

right quadrant of the scatter plot in Figure 5.5 with high productivity and low resin cost. 

On the other hand, at a heavy load of impurities top-ranked purification trains are mostly 
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located on the top-left quadrant of the scatter plot with low productivity and high resin 

cost. It is worth highlighting that the top-ranked purification trains for the lower and upper 

impurities loads demonstrate almost parallel profiles with average productivity and high 

resin cost.  

 
Figure 5.5: Resin cost per gram of product against productivity of the purification 

train considering the top-six purification trains for different loads of impurities 

Due to the fact that both the resin cost and productivity have a direct impact on the COG, 

the top-six purification trains for each impurities load were evaluated considering the 

whole manufacturing process using the process economics model. A summary of key 

results for each purification train is presented in Table 5.5. For each impurities load, 

Table 5.5 provides the top-six resin sequences with descending score order along with 

the train yield and the delivered impurities profile. The last column in Table 5.5 shows 

the cumulative COG across pre-clinical, clinical and first year of commercial 

manufacturing. Highlighted purification trains in Table 5.5 indicate the train with the 

minimum cumulative COG for each load of impurities. 
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Table 5.5: Top-six purification trains and their respective quality and performance profile for Case study 1 

Impurities Load Capture Intermediate Polishing Score 
Train Yield 

(%) 
HMW Out 

(%) 
LMW Out 

(%) 

HCPs 
Out 

(ng/mg) 

Total Clinical & first 
Year Commercial COG 

($M) 

Light CEX-3 MMAEX-1 Plat. AEX 100.0% 82.9 0.26 0.06 10.0 35.0 

  CEX-3 MMAEX-2 AEX-2 88.5% 81.2 0.19 0.04 39.8 36.9 

  CEX-3 MMAEX-2 Plat. AEX 85.3% 82.9 0.19 0.08 5.0 35.9 

  MMCEX-1 CEX-5 AEX-2 75.4% 77.0 0.20 0.07 1.0 38.3 

  MMCEX-2 CEX-1 Plat. AEX 74.9% 78.3 0.04 0.02 31.6 39.1 

  MMCEX-1 CEX-5 MMAEX-4 73.2% 77.0 0.12 0.04 0.4 38.3 

Lower MMCEX-2 CEX-1 Plat. AEX 87.9% 78.3 0.08 0.03 47.4 39.1 

Medium MMCEX-1 CEX-5 MMAEX-4 85.0% 77.0 0.25 0.08 0.6 38.3 

  MMCEX-2 MMAEX-1 AEX-2 83.7% 85.7 0.21 0.03 47.4 38.9 

  MMCEX-2 CEX-5 AEX-2 83.0% 81.2 0.10 0.03 4.7 39.0 

  MMCEX-2 CEX-5 MMAEX-4 79.5% 81.2 0.06 0.02 1.9 39.0 

  MMCEX-2 MMAEX-1 Plat. AEX 79.4% 87.5 0.20 0.05 6.0 38.3 

Upper MMCEX-2 CEX-5 AEX-2 86.7% 81.2 0.22 0.09 11.1 39.0 

Medium MMCEX-2 CEX-5 MMAEX-4 83.0% 81.2 0.13 0.06 4.4 39.0 

  MMCEX-1 Plat. CEX MMAEX-4 75.4% 79.5 0.33 0.05 1.1 38.2 

  MMCEX-1 CEX-6 MMAEX-4 70.6% 81.2 0.32 0.09 22.1 37.7 

  MMCEX-2 Plat. CEX AEX-2 70.2% 83.9 0.13 0.02 8.8 39.4 

  MMCEX-2 CEX-5 MMAEX-3 68.8% 77.0 0.33 0.08 0.7 40.1 

Heavy MMCEX-2 Plat. CEX Plat. AEX 73.4% 85.7 0.24 0.06 1.6 38.8 

  MMCEX-2 CEX-5 MMAEX-4 67.2% 81.2 0.25 0.09 6.3 39.0 

  MMCEX-2 Plat. CEX AEX-2 50.2% 83.9 0.24 0.03 12.6 39.4 

  MMCEX-2 Plat. CEX MMAEX-4 37.2% 83.9 0.15 0.02 5.0 39.5 

  MMCEX-2 Plat. CEX MMAEX-3 12.9% 79.5 0.36 0.02 0.8 40.6 

  MMCEX-2 CEX-6 MMAEX-3 0.0% 81.2 0.35 0.05 15.8 40.3 
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According to Table 5.5, in most cases the lowest cumutive COG can be observed with 

purification trains that have managed to achieve a high place in the ranking list. An 

exception is for the upper medium load of impurities where the fourth ranking purification 

train demonstrated the lowest cumulative COG however with a small difference from its 

alternatives. The most cost-effective (first option) purification train for each impurities 

load is plotted in Figure 5.6. Although at each load of impurites a different resin sequence 

demonstrated the lowest cumulative COG, there is a common resin sequence among 

the heavy and the two medium impurity profiles. This common resin sequence is also 

part of the list with the successful purification trains for the light impurities load. However, 

its avarage productiviry and high resin cost prevented its progression to the top-ranked 

list. Nevertheless, it is of high value to identify resin sequences that could handle a variaty 

of impurity profiles especially at early stage in process development. The value stems 

from the uncertanty at early stage that is assoiated with the profile of the impurities that 

could be delivered to the chromatographc purification train. 

Additionally, Figure 5.6 illustrates the resin sequence and the cumuative COG for each 

purification train and plots the platform puritication train to visualise how it compares with 

the proposed alternatives. It should be highlighted that all the alternative purification 

trains suggest the replacement of the Protein A resin for the capture chromatography 

step. 
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Figure 5.6: Resin cost per gram of product against productivity of the purification 

train graph illustrating the most cost-effective (first option) purification train at 

different loads of impurities. A common purification train option and the platform 

option are also plotted. The resin sequence for each purification train is indicated 

along with the cumulative COG for pre-clinical, clinical and first year of 

commercial manufacture 

5.3.2. Case study 2: Integrated framework in chromatography process 

development 

An industrially-relevant case study was formulated to demonstrate the implemenation of 

the consolidation of the HTPD workflow (Chapter 3) with the process economics model 
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(Chapter 4) and the decision-support tool for the purification train. Due to the lack of 

experimental data for the capture and polishing chromatography steps for the four mAbs 

provided by MedImmune the evaluation here refers only to the intermediate 

chromatography step. Hence, resin screening and analysis considered certain resins for 

the capture and the polishing steps (Table 5.4). A consequence of this formulation is the 

low responsiveness of the resin cost metric to different CEX resins introduced in the 

purification train. Figure 5.7 presents the average and the standard deviation for the 

productivity and the resin cost across all four mAbs. The first three mAbs are represented 

with a single bar due to their similar performance. For the fourth mAb a separate bar was 

needed due to its signifiant differnent performance. It should be highlighted that for the 

fourth mAb the decsion-support tool could not identify a CEX resin among those tested 

that could fit into the given purification train and deliver the desired product profile. 

Instead, for the fourth mAb, the tolerance for HMW species had to be increased to 1.5% 

in order to identify any purification trains for further evaluation for Case study 2.   

 

Figure 5.7: Average productivity and resin cost across all successful purification 

trains that have met their respective quality and performance threshold. Error bars 

indicate two standard deviations 

As expected the resin cost across all successful purification trains demonstrates almost 

a constant value of 5.7$/g for mAbs 1-3 and 7.4$/g for mAb 4. Hence, the resin cost 

metric is unable in this case to provide a good comparator for different purification trains. 
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In order to neglect the resin cost per gram of product and rank the successful purification 

train only based on their productivity the weight coefficient for productivity was set to 1.0. 

Similarly to Case study 1, the top-six purification trains were selected for each mAb to 

be imported into the process economics model and simulate their respective COG 

values. For each top-ranked purification train and each mAb the process economics 

model simulated the COG for a full self-packed and a full pre-packed purification train. A 

comparison between full self-packed and full pre-packed purification trains across all 4 

mAbs is presented in Figure 5.8. Throughout different manufacturing stages pre-packed 

columns demonstrate a reduction in the COG compared to self-packed columns, 

regardless of the resin sequence and the mAb. In contrast to Chapter 4 and Case study 

1 of this chapter, here pre-packed columns demonstrate cost benefits throughout clinical 

manufacture. The difference can be observed for clinical phase I & II and the root cause 

of it can be explained considering the different size of the pipelines. For instance, Figure 

5.4 considers 9 products in the pipeline (Case study 1) while Figure 5.8 assumes only 4 

products at clinical phase I & II (Chapter 2). That difference translates into a change in 

the direct to indirect costs ratio which has a definitive impact of the cost-effectiveness of 

pre-packed columns as discussed in Chapter 4.  

A summary of the top-ranked CEX resins for each mAb is presented in Table 5.6. The 

resin indices refer to the resin lists in the Appendix (Table A.4 – A.7) for each mAb 

respectively. Different CEX resin options are presented in a descending order from high 

to low productivity. Additionally, only the concentration of HMW species and HCPs in the 

final product are indicated since the initial concentration of LMW species was very low 

and below the specified targets in Table 5.2. 
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Figure 5.8: Average percentage change in COG/g for pre-packed purification trains 

relative to self-packed at different manufacturing stages across the top-ranked 

purification trains and across all 4 mAbs 

The last column in Table 5.6 shows the cumulative COG for clinical (phase I, II & III) and 

first year commercial manufacture and highlighted rows indicate the CEX resin that 

demonstrated the lowest cumulative COG. The cumulative COG values in Table 5.6 

correspond to purification trains that use pre-packed columns throughout all 

chromatography steps. For mAb-1 and mAb-2 the first option with the highest productivity 

train resulted also in the most cost-effective option. In contrast, for mAb-3 and mAb-4 

the CEX resins that resulted in the lowest cumulative COG achieved a lower position in 

the top-ranked list. Nevertheless, the differences in productivity among the top-six CEX 

resins for each mAb were relatively low. On the other hand, greater deviations can be 

observed among the train yields for different CEX resins. Hence, the cumulative COG 

was plotted against the purification train yield to determine their correlation. Evidently, 

Figure 5.9 shows a negative correlation between COG and yield. Increasing train yield 

results in a reduction in the cumulative COG throughout different mAbs. The yield of the 

purification train was defined as a constraint in the decision-support tool for the purposes 

of the Case study 1. In contrast, for Case study 2 that constraint was removed in order 

to focus the brute force screening on determining CEX resins capable of removing 

impurities. 
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Table 5.6: Top-six CEX resins and their respective quality and performance profile 

for Case study 2 

mAb 

CEX 

Resin 

(index) 

Train 

Productivity 

(g/L/hr) 

Train 

Yield 

(%) 

HMW 

Out 

(%) 

HCPs 

Out 

(ng/mg) 

Total Clinical & 

first Year 

Commercial COG 

($Million) 

1 R5 (32) 44.8 77.9% 0.39 69.8 46.5 

 R7 (20) 44.4 69.8% 0.35 61.2 48.5 

 R5 (24) 44.0 72.9% 0.31 61.1 47.3 

 R7 (12) 43.6 65.2% 0.28 57.8 50.1 

 R3 (6) 43.3 62.8% 0.39 75.1 50.6 

 R5 (16) 43.2 68.2% 0.25 55.0 48.9 

2 R7 (20) 46.5 70.7% 0.40 6.3 47.3 

 R7 (12) 45.3 66.3% 0.35 6.4 48.7 

 R5 (24) 44.4 69.9% 0.38 5.2 48.1 

 R7 (4) 44.3 61.9% 0.31 6.4 50.6 

 R5 (16) 43.4 65.5% 0.33 5.1 49.2 

 R5 (8) 42.5 61.1% 0.29 4.9 50.5 

3 R7 (20) 53.2 77.7% 0.33 49.3 45.6 

 R7 (12) 52.1 72.5% 0.25 46.8 46.9 

 R5 (24) 51.1 82.1% 0.33 48.3 45.0 

 R7 (4) 50.9 67.6% 0.19 44.2 48.4 

 R5 (16) 50.3 76.8% 0.27 43.9 46.0 

 R5 (8) 49.5 71.6% 0.21 35.8 46.8 

4 R1 (17) 35.4 57.5% 1.39 0.0 54.4 

 R7 (20) 35.1 60.1% 1.36 0.0 53.8 

 R1 (9) 34.4 53.2% 1.25 0.0 56.6 

 R7 (12) 34.2 56.0% 1.26 0.0 54.9 

 R7 (4) 33.4 51.9% 1.14 0.0 58.0 

 R2 (26) 31.9 64.8% 1.41 0.0 53.3 

The negative correlation between COG and yield can be justified considering a specific 

product demand. For instance, assuming a throughput of 10kg/batch and a process yield 

of 50% it would require the production of 20kg/batch during the cell culture. As the 

process yield decreases the batch throughput increases to meet the product demand. 
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Hence, decreasing process yield would require the use of larger process equipment to 

maintain the batch throughput, thus increasing the cost. 

 

Figure 5.9: Total COG for clinical (phase I, II & III) and first year commercial 

manufacture against product yield of the purification train across different mAbs. 

Solid shapes indicate the CEX resin that demonstrated the lowest cumulative COG 

for each mAb 

Cross-referencing the CEX resin indices in Table 5.6 and the corresponding resin list for 

each mAb in the Appendix (Table A.4 – A.7) it can be seen that certain CEX resins 

appear throughout the top-ranked lists in Table 5.6 for different mAbs. Figure 5.10 shows 

on the left vertical axis the frequency that a CEX resin appears in Table 5.6 for all mAbs. 

Two CEX resins show the greater frequency of approximately 38% and 45% for Resin-

5 and Resin-7, respectively. These two CEX resins combined dominate the top-ranked 

lists in Table 5.6 due to their use under different sets of yield and impurities removal 

capability. 

Through the use of the fractionation diagram approach incorporated into the HTPD 

workflow a series of Pareto diagrams can be generated to describe the profile of each 

impurity against product yield. The decision-support tool for the purification train can 
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import a large set of impurities-yield data-points and assign to each of them a different 

index number. The appearance of the same resin multiple times in the top-ranked list 

indicates its superior performance against other resin candidates. Additionally, it could 

also demonstrate a wider operating window considering that every time the same CEX 

resin appears in the top-ranked list is under different conditions. Furthermore, Figure 

5.10 plots on the right vertical axis the number of mAbs that each top-ranked CEX resin 

managed to purify. The most frequent CEX resin (Resin-7) managed to reach the top-

ranked list for every mAb that was included in this study. In contrast Resin-5 managed 

to reach the top-ranked list of the first three mAbs only to be excluded for mAb-4. It 

should be highlighted that mAb-4 had a challenging concentration of HMW species and 

the decision-support tool could not identify a CEX resin among those tested that could fit 

into the purification train and deliver the desired target product profile. Hence, in order to 

allow for the comparison among different CEX resins the target for HMW species was 

incrementally increased to 1.5%. 

Overall, Resin-5 and Resin-7 demonstrated superior performance against other CEX 

resin candidates. It should be mentioned that Resin-7 was also determined the best CEX 

resin candidate using the resin selection tool of the HTPD workflow in Chapter 3 (Figure 

3.2). Similarly to Case study 1 the synergy between the decision-support tools and the 

process economics model has revealed the optimum purification train and has identified 

a purification train that could handle multiple mAbs. A COG/g breakdown is shown in 

Figure 5.11 comparing the costs for the most cost-effective purification train using self-

packed and full pre-packed columns for each mAb and across clinical and commercial 

manufacture. The most cost-effective options are highlighted in Table 5.6. The use of 

pre-packed columns offers a reduction in the COG/g at clinical and commercial 

manufacture and across different mAbs with the greatest cost savings achieved at 

clinical phase III. 
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Figure 5.10: Frequency of appearance and number of purified mAbs for each CEX 

resin included in Case study 2. Resin-8 was used only for mAb-4 and it was 

replaced with Resin-9 for mAb 1-3 

 

Figure 5.11: COG/g breakdown for the first option (i.e. most cost-effective) for the 

purification train using self-packed and pre-packed chromatography columns 

across clinical and commercial manufacture and for each mAb included in Case 

study 2 

Finally, Figure 5.12 demonstrates the total COG across clinical and first year commercial 

manufacture for the first option (most cost-effective) and the second option regarding the 
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CEX resin for the intermediate purification step. Both options are plotted considering the 

use of pre-packed columns for all chromatography steps and throughout different 

manufacturing stages. Moving towards the selection of a platform CEX resin that could 

fit into the purification train for different mAbs, Figure 5.12 demonstrates that CEX Resin-

7 could be a suitable candidate. CEX Resin-7 ranks consistently in the top-two options 

with a difference in the cumulative COG of 1 – 4%. Having identified CEX resins with 

superior performance against other candidates it is important to attempt and determine 

the resin properties associated with their performance. 

 

Figure 5.12: Total COG for clinical (phase I, II & III) and first year of commercial 

manufacture of the first and the second option for the CEX resin for the 

intermediate chromatography step in the purification train across all mAbs 

included in Case study 2. Pre-packed columns were assumed throughout. 

As discussed in Chapter 4 the dynamic binding capacity of a chromatography resin has 

a strong impact on the economics of the unit operation with low DBC values leading to 

high cost (Figure 4.X). According to Figure 5.13, CEX Resin-5 and CEX-Resin-7 report 

consistently high DBC values throughout different mAbs. However, other CEX resins 

demonstrate comparable DBC without necessarily leading them to a high ranking place. 

For instance, CEX Resin-3 shows a high DBC, however it manages to purify only one 

mAb out of four (Figure 5.10). 
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Therefore, suitability and cost-effectiveness are not guaranteed simply with high DBC. 

Additionally, yield demonstrates a strong correlation with the COG (Figure 5.9). 

Nevertheless, neither the throughput or product recovery can be considered without 

being able to deliver the desired target product profile. Thus resins that demonstrate high 

yield and high DBC might be excluded from the evaluation due to their insufficient 

purification profile. In order to determine whether the purification profile of a 

chromatography resin could potentially provide early evidence of superior cost-

effectiveness, Figure 5.14 plots HMW reduction, HCPs logarithmic reduction values 

(LRV) and elution pool volume against yield for each CEX resin and across all mAbs 

included in Case study 2. A visual inspection of the data plotted in Figure 5.14 reveals 

the trade-offs among different attributes (e.g. HMW reduction, yield, etc.). 

 

Figure 5.13: Dynamic binding capacity for each CEX chromatography resin across 
different mAbs included in Case study 2. 



 
 

172 
 

 

Figure 5.14: Impurities removal and elution pool volume against yield for each CEX 

resin and each mAb included in Case study 2. Profiles generated through the 

implementation of the HTPD workflow using the resin databases shown in the 

Appendix (Table A.4 – A.7) 

For mAb-2 the greatest HMW reduction profile is provided by CEX Resin-8 followed by 

CEX Resin-6. On the other hand, the greatest reduction of HCPs was observed for CEX 

Resin-1. Nevertheless, none of these resins managed to reach the top-ranked list. In 

contrast, CEX Resin-5 and Resin-7 showed average HMW and HCPs reduction 

capabilities and managed to dominate the top-ranked list for mAb-2 (Table 5.6). It should 

be highlighted that CEX Resin-5 and Resin-7 demonstrate the two highest DBCs for 

mAb-2 with average yield. Similar trends can be observed for the other mAbs in Figure 

5.14. Hence, an overall trend emerges for these four mAbs and eight CEX resins. Figure 

5.15 illustrates a simplistic decision-tree for the selection of CEX resins for the 

intermediate chromatographic purification step. The first decision level is the impurities 

reduction capabilities followed by yield and concluding with DBC. As demonstrated in 

Case study 2, CEX resins can be considered only when they can meet product quality 

targets. The next major influence is the product recovery that can be achieved for a given 

impurities reduction level. Step yield affects directly the whole manufacturing process 

influencing the size and the operation of all process steps. Finally, having secured a good 
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yield and impurities reduction level the cost-effectiveness of the process can benefit from 

high DBC values. 

 

Figure 5.15: A simple decision-tree illustrating the main decision levels and their 

order for the selection of CEX resins for the intermediate chromatography step in 

the purification train for the mAbs included in Case study 2 

5.4. Conclusions 

This chapter focused on demonstrating an integrated framework in chromatography 

process development leveraging high-throughput purification data using advanced 

decision-support tools. Through the implementation of the integrated framework a great 

number of different purification trains can be evaluated considering the economics of the 

whole manufacturing process. The progressive flow of information in the framework 

allowed for a systematic data manipulation and storage providing the flexibility to the 

user to trace any piece of information at any point in the analysis. For instance, it would 

not be possible to determine a common purification train in Case study 1 without being 
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able to access the lists of successful purification trains in retrospect. The value of such 

a level of flexibility was demonstrated in both case studies by determining at least one 

purification train that could be used for different mAbs or could handle greater deviations 

in the profile of the product. Hence, through the integrated framework, a greater process 

understanding and the establishment of a platform process can be achieved. 

Furthermore, process bottlenecks can be identified and alternative solutions can be 

considered very rapidly at early-stage in process development. This capability of the 

framework was demonstrated through Case study 2. For the case of mAb-4 it was 

determined that none of the CEX resins that were tested could fit into the given 

purification train and deliver the desired product profile. Hence, further development 

efforts could be focused on different resin types for the intermediate chromatography 

step in the purification train to replace the CEX resin. Additionally, further research could 

be initiated to investigate the root cause of the inadequate performance of multiple well-

established CEX resins. 
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Chapter 6. Process validation 

Process validation is a major concern in the pharmaceutical industry and its main 

objective is to provide guarantees that the final product, which will be administrated to 

the patients, consistently meets specific pre-determined quality characteristics (FDA, 

2011). 

6.1. Initial approach in process validation 

Initially, the industry was very sceptical when it came to the introduction of new 

technologies into their manufacturing process, due to the uncertainty on how the 

regulators might respond. Additionally, the manufacturing processes were usually 

designed insufficiently and operated under sub-optimal conditions, which had 

tremendous implications in the profitability of the industry (Pujar et al., 2009; Rathore & 

Winkle, 2009). The ‘’traditional’’ process validation approach was based mainly, if not 

entirely, on empirical information. Additionally, there was a lack in predictive tools to 

evaluate the effects of scale-up on product quality and process performance. Moreover, 

there was little understanding on manufacturing failures and how they were caused 

(Rathore & Winkle, 2009). 

6.2. Quality by design approach in process validation  

Quality by design (QbD) is an initiative to help both the industry and the regulators to 

communicate more efficiently and accelerate process development, following a more 

systematic approach throughout the lifecycle of a therapeutic drug (ICH Q8(R2), 2009; 

Rathore & Winkle, 2009). QbD incorporates sound scientific knowledge and risk-based 

evaluation with management of the performance of the manufacturing process, in order 

to develop a flexible and robust process, capable of delivering consistently the desired 

product quality (Rathore & Winkle, 2009; Francis, 2012). QbD is based upon the 

fundamental principal that product quality cannot be tested and hence it has to be build-

in the process. 
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The guidelines provided by the regulators offer instructions for pharmaceutical 

development and product lifecycle management. They prompt the adaption of a more 

systematic approach in process development, using prior knowledge and experience. In 

such an approach results from design of experiments (DoE) studies and quality risk 

assessment are combined in order to acquire an in-depth process and product 

understanding (ICH Q8(R2), 2009; ICH Q9, 2005; ICH Q10, 2008). 

Furthermore, the guidelines encourage the incorporation of process analytical 

technologies (PAT) to help improve process understanding and identify the appropriate 

tools for analysing and controlling the manufacturing process (FDA, 2004; Rathore et al., 

2010). A central objective of the QbD approach is to define the target product profile 

(TPP), identify critical quality attributes (CQAs) and critical process parameters (CPPs) 

and develop connective correlations between them (Chhatre et al., 2011). Gaining an in-

depth process and product understanding can support the establishment of a design 

space. The design space is defined as ‘’the multidimensional combination and interaction 

of input variables and process parameters that have been demonstrated to provide 

assurance of quality.’’ Operating within the design space permits changes in the 

manufacturing process without initiating regulatory concerns. On the other hand, any 

changes that can cause operation outside the design space require revalidation to 

ensure that the process can still deliver the desired quality (ICH Q8(R2), 2009). 

In 2009, a consortium of leading biotech companies gathered to combine their 

knowledge and experience in QbD focusing on guidelines contained in ICH Q8, Q9 and 

Q10 (CMC Biotech Working Group, 2009). Through the collective effort of the consortium 

and its interaction with the regulators a case study (A-Mab) in bioprocess development 

was formulated to discuss the guidelines and their application to real world scenarios. 

The final document discusses different elements in QbD from product and process 

characterisation to determining CQAs and CPPs and establishing a design space and a 

process control strategy. 
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More recently, Roche/Genentech published a special Section of Biologicals 

demonstrating an integrated framework implementing QbD principles for mAbs (Kelley, 

2016). The first chapter of the publication described the overall QbD roadmap that was 

created to enhance and streamline decision-making in development activities. The 

authors highlighted the benefits of an enhanced approach in process development that 

links systematically a risk-based control strategy with advanced understanding of CQAs. 

Additionally, it was emphasised that development activities should begin considering the 

end goal. The control strategy should be progressively created to ensure the consistent 

delivery of the target product profile. Thus the starting point should be the definition of 

the target product profile with the determination of CQAs and CPPs gradually leading to 

the establishment of a design space (Finkler & Krummen, 2016). 

The rest of the chapters in this special Section of Biologicals describe in detail the key 

components of the proposed integrated framework in QbD. Alt et al. (2016) discussed a 

systematic approach towards an in-depth understanding of quality attributes and the 

determination of the impact on product safety and efficacy. Hakemayer et al. (2016) 

focused on developing the tools to facilitate process characterisation, identify potential 

CPPs and their acceptable operating range and define a design space. Kepert et al. 

(2016) discussed the tools created to establish a control system by defining acceptance 

criteria and a testing approach for impurities. The implementation of the control strategy 

was demonstrated by Ohage et al. (2016) along with a Post Approval Lifecycle 

Management (PALM) plan. The PALM plan enables the linkage between the 

development and the commercial stages of the product and helps to manage risks after 

commercialisation. The final chapter presented the integration of all the tools developed 

throughout the proposed QbD roadmap (Kelley et al., 2016). 

The work presented in the context of this thesis considered QbD principles and 

guidelines in the development of a decision-support framework in protein 

chromatography process development. Prior knowledge and experience from the 

sponsor company were used to guide the development of a high-throughput process 
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development workflow. Core objective of the HTPD workflow is to leverage high-

throughput purification data using a novel approach linking design of experiments (DoE) 

with the fractionation diagram method. Multi-variate data analysis of the DoE space 

enabled the development of predictive correlations to estimate potential CQAs as a 

function of potential CPPs. Furthermore, predictive correlations were integrated with a 

multi-attribute decision-making method to perform a fair comparison among different 

CEX chromatography resins and identify the most suitable candidate to deliver the 

desired product quality and process performance. Finally, the HTPD workflow described 

a novel methodology in identifying potential windows of operation under process 

deviations. Overall, the HTPD workflow offers the ability to gain an enhanced process 

understanding with limited feedstock material from an early stage in process 

development. Insights can be further leveraged in subsequent assessments for the 

establishment of a design space and a control strategy. 

The significant effort from the industry, the regulatory agencies and academia has 

highlighted the importance in adapting a QbD strategy from the beginning of a product’s 

lifecycle. As new therapeutic proteins and advanced therapy medicinal products 

(ATMPs) are discovered new challenges will emerge. Hence, the early establishment of 

a QbD driven framework is paramount to ensure consistent product quality. 
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Chapter 7. Concluding remarks and recommendations for 

future work 

The research project discussed throughout the chapters of the current thesis focused on 

the establishment of advanced decision-support tools in early-stage protein 

chromatography process development. The tools that were developed combine a variety 

of methodologies with the overall objective of gaining an in-depth process understanding 

and accelerating process development activities. This chapter summarises the main 

features of the decision-support tools developed throughout this research and the 

benefits associated with their use. Additionally, current limitations and potential areas of 

improvement are identified paving the road towards future research. 

7.1. High-throughput process development workflow 

Chapter 3 demonstrated the implementation of a high-throughput process development 

(HTPD) workflow for the chromatographic purification of a highly aggregated bispecific 

monoclonal antibody (mAb). The HTPD workflow links high-throughput experimentation 

(HTE) at micro-scale with design of experiments (DoE), regression analysis, multi-

attribute decision-making and stochastic analysis. HTE often results in a large number 

of samples which could potentially increase the analytical and data analysis effort 

(Chhatre et al., 2009). Additionally, a chromatogram offers much more information than 

a single pair of purity-yield values. Typically, a chromatogram can be transformed into a 

Pareto frontier demonstrating a relationship between product recovery and purity (Ngiam 

et al., 2001; Ngiam et al., 2003). Thus considering a single point on the Pareto curve 

neglects the rest of the purification profile. 

A key focus of the HTPD workflow was the establishment of a systematic framework 

providing the methods and the tools to cope with the large datasets and leverage 

information regarding the complete purification profile. A novel approach in 

chromatogram analysis was illustrated that integrates DoE with the fractionation diagram 
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approach in order evaluate the trade-offs between purity and yield at different operating 

conditions. Although the fractionation diagram approach can be used very efficiently for 

the transformation of a chromatogram into a Pareto frontier graph it requires meticulous 

calculations (Ngiam et al., 2001; Ngiam et al., 2003). Considering also the large number 

of chromatograms, the data analysis effort could increase substantially becoming a 

development bottleneck. The HTPD workflow leverages the advantages of the 

fractionation diagram approach and automates the whole analysis for all the 

chromatograms through the synergistic use of SOLVER (optimization tool add-in) and 

VBA in MS Excel. Hence, user intervention is mitigated to importing raw data received 

from different analytical tools in the laboratory and initiating a VBA script (Macro) to 

perform raw data manipulation. 

The HTPD workflow offers the ability to screen multiple chromatography resins and 

develop regression correlations between process parameters and quality/performance 

attributes. Chromatography resin selection can become challenging due to the need to 

satisfy usually conflicting resin properties. Furthermore, visual inspection of the results 

from the DoE analysis could prove even more challenging to determine with confidence, 

resin candidates with superior performance. To address these issues the HTPD workflow 

utilizes a resin selection tool build in MS Excel. The resin selection tool leverages the 

regression correlations developed for each resin candidate and uses SOLVER through 

VBA to optimize the set-point of process parameters and achieve user defined quality 

and performance targets. The comparison of the resin candidates is performed by 

combining two multi-attribute decision-making techniques: satisficing and weighted sum. 

The satisficing method compares prioritized threshold values of user defined targets to 

the performance of individual resin candidates and reports the values achieved for each 

attribute. Then, in case all attributes were satisfied for more than one resin, a 

performance score was estimated for each resin candidate based on the weighted sum 

of normalized attribute values. Thus the final comparison is based on a relative score 

among resin candidates rather than threshold values. 
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Another function of the HTPD workflow is the optimization of process parameters and 

the definition of windows of operation under uncertainty. Conventionally, windows of 

operation are identified and represented graphically (Salisbury et al., 2006; Boushaba et 

al., 2011). However, in cases where the number of parameters is greater than 2 and/or 

the interaction of different parameters has an impact on the shape of the window of 

operation, its graphical determination becomes extremely difficult. Additionally, 

depending on the sensitivity of the attributes on deviations from the set-point of different 

parameters the shape of the window of operations could change dramatically. To 

overcome these challenges a robustness assessment tool was built in MS Excel using 

SOLVER through VBA. A series of Monte Carlo simulations were performed introducing 

a level of uncertainty on each process parameter and the probability of failing to meet 

any of the user-specified threshold values of the desired attributes was calculated. Using 

SOLVER the robustness assessment tool manages to iterate through different set-point 

values for each parameter and determine a sweet-spot able to tolerate process 

deviations. 

Insights gained throughout the implementation of the HTPD workflow can be further 

leveraged to guide experimentation at larger scales towards the establishment of a 

design space and a control strategy. Evidently, the HTPD workflow is greatly influenced 

by the QbD paradigm towards gaining a thorough understanding of chromatographic 

separation processes for therapeutic proteins. The establishment of the workflow 

required iterative discussions with the industrial sponsor (MedImmune) in order to 

determine the appropriate experimental and analytical protocols and develop the 

framework to its current state. Nevertheless, there are still known and unknown 

challenges that would require the modification of certain components of the workflow in 

order to avoid creating a bottleneck in process development. 

Through the implementation of the HTPD workflow for the purposes of Chapter 3 and 

Chapter 5 a previously unreported source of error was identified. The potential error 

stems from the operation of the robotic arm in a liquid handling system and more 
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specifically the capacity of its pipettes. To achieve a target load challenge the required 

volume depends on the feed concentration. Therefore, at a low feed concentration and 

a high load challenge the necessary volume might exceed the maximum volume of the 

pipettes. Thus multiple aspiration/dispersion cycles would be required to achieve the 

target load challenge. In such cases, the delay of the robotic arm would increase the 

residence time that could cause a surge in the dynamic binding capacity. Hence, for 

future studies the delay of the robotic arm should be quantified and considered for the 

calculation of the flowrate at micro-scale. 

Another known challenge that the HTPD workflow currently faces is related to the 

analytics. High-throughput screening can lead to the generation of a large number of 

samples, thus potentially increasing manual intervention, materials consumption and 

analytical time. As an indication, during the implementation of the workflow demonstrated 

in Chapter 3, more than 4000 samples were generated for binding and elution studies 

combined. The use of a UPLC system in sample analysis was of great benefit due to its 

capability to process up to 8x96 samples without any manual intervention. However, 

using the current protocol it would require a few days of continuous operation for the 

UPLC system while generating the samples would take only a few hours. 

Further improvements on the operating protocol for the UPLC system could accelerate 

the analysis. Residence times for different impurities and the product can be determined 

prior to the analysis of the samples in order to determine the cut-points and potentially 

shorten the analytical timeframe. Such an approach might need fine tuning of the 

protocol for different molecules. Another suggestion would be to introduce an 

intermediate analytical step (e.g. Infinite® 200 PRO, Tecan) to selectively pick samples 

with a protein concentration above a pre-specified threshold. Proper calibration would be 

necessary to avoid excluding samples with protein or including empty samples. 

Additionally, a data management system has to be established to generate indices or 

barcodes for samples to enable sample tracking across different analytical tools in the 

laboratory. 
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A significant part of the HTPD workflow both on the experimental and the computational 

front is fully automated. For instance, both the resin selection tool and the robustness 

approach to determine windows of operation under uncertainty make use of the SOLVER 

optimization add-in tool in MS Excel through VBA. Additionally, through the same 

synergy of tools in MS Excel it was possible to fully automate raw data manipulation and 

analysis to determine the responses in the DoEs (e.g. DBC, Purity, etc.). On the other 

hand there are key points of manual intervention. For example in data transfer from 

different analytics to the tools of the HTPD workflow for further manipulation and 

analysis. Hence, in order for the HTPD workflow to become part of an automated process 

development platform additional modifications are required. Critical areas of 

improvement in automation that could be prioritized include:  

 The data transfer between the laboratory and the computational tools of the 

HTPD workflow 

 The data transfer between MS Excel and JMP 

 The model fitting process in JMP by developing a script that could follow a 

procedure as described by Kumar et al. (2013) and followed in the current thesis 

7.2. Process economics model 

Chapter 4 demonstrated the functionality of a process economics spreadsheet model 

simulating a typical manufacturing process for mAbs. The spreadsheet model offers a 

dashboard that allows the user to perform deterministic and stochastic analysis. The 

purpose of the model was to enable the evaluation of pre-packed chromatography 

columns as an alternative to traditional self-packed columns in antibody purification. 

Hence, a built-in function of the model is the sizing of pre-packed columns and the 

estimation of related direct and indirect costs. Additionally, great attention was given to 

the design of ancillary equipment (e.g. buffer hold-tanks) and estimating the 

requirements in materials for operating (e.g. guard filters) and cleaning (CIP buffers, WFI, 

etc.). 
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Single-use technologies (SUT) could potential offer significant cost benefits (Lopes, 

2015). Although pre-packed chromatography columns have been extensively used in 

research and process development activities (Scharl et al., 2016) there are limited 

studies discussing their fit into pilot and commercial scale facilities (Grier & Yakubu, 

2016). The utilization of pre-packed columns could eliminate the need for a packing 

system and a self-packed column. On the other hand, the cost of consumables is 

expected to increase. Hence, the main objective of Chapter 4 was the detailed 

investigation of the changes in the manufacturing costs associated with the use of pre-

packed columns for a given set of assumptions. Additionally, through a sensitivity 

analysis it was possible to address the significance of different parameters and 

assumptions on the cost of goods. Through a series of simulations the cost-effectiveness 

of pre-packed columns was evaluated for every chromatography step in a purification 

train. Additionally, it was demonstrated that pre-packed columns could potentially 

replace large scale self-packed chromatography columns despite the size limitations. 

The analysis in Chapter 4 demonstrated the cost-effectiveness of pre-packed columns 

despite the assumption regarding a column packing success rate of 100% that favors 

the self-packed columns. In practice, such a high column packing success rate would be 

very difficult to achieve. A lower packing success rate would lead to an increase in 

personnel and reagents cost for self-packed columns. Additionally, significant disruptions 

might occur in scheduling and operation of a manufacturing process and its support 

activities (e.g. media and buffer preparation, column packing, etc.). The consequences 

of a low column packing success rate in a process economics analysis would highlight 

even further the benefits of pre-packed columns. 

The cost-effectiveness of pre-packed columns depends on several factors related to the 

product, the process, the facility and the portfolio of a biopharmaceutical company. A 

cost of goods analysis focuses on capturing the costs related to manufacturing thus 

neglecting the cost associated with R&D. As discussed in Chapter 1, the introduction of 

single-use technologies could mitigate the cleaning activities in a bio-manufacturing 
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facility and reduce the effort in validation studies. Hence, a cash-flow analysis would be 

necessary to capture both the cost of goods and the cost of development for a drug 

candidate in order to determine the cost-effectiveness of an alternative technology. 

The process economics model developed here provides a framework to rapidly evaluate 

technical and financial metrics in manufacture related to pre-packed and self-packed 

chromatography columns and determine the most cost-effective configuration of the 

purification train for a given scenario. A level of flexibility was achieved through the 

utilization of VBA which allowed for the development of scripts (Macros) to automate the 

analysis of multiple scenarios and the creation of a database to store all the model 

outputs. 

A current limitation of the model is the restriction to simulate a certain flowsheet using a 

Chinese Hamster Ovary (CHO) cell-based manufacturing process. Any intention to 

simulate an alternative flowsheet would require additional model development effort. The 

biopharmaceutical industry has a number of different therapeutic proteins expressed 

intracellularly or extracellularly using different cell lines (e.g. bacterial, yeast or 

mammalian cell lines). Additionally, the process economics model was developed to 

simulate batch and fed-batch mode of operation thus, neglecting the option of continuous 

bio-manufacturing. The design calculations applied to a batch or a fed-batch process 

require further tuning to simulate accurately continuous and/or hybrid manufacturing 

strategies. Designing individual flowsheets for each case would require intense 

development work and could lead into a very large spreadsheet that would be difficult to 

use and maintain. Hence, in order to acquire a greater level of flexibility in synthesizing 

alternative flowsheets the use of an object oriented programming language would be 

preferred. Thus future work could focus on determining a suitable programming language 

to improve and re-write the design equations. 

An additional consideration for future work could be to update the cost database of the 

process economics model. Currently, the database is populated with equipment and 
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materials purchase cost and size values based on literature and commercially available 

computer-aided tools. Moreover, the cost of the vast majority of unit operations was 

estimated based on the 6/10 rule assuming a base size, a base cost and a scaling factor 

(Peters & Timmerhaus, 1991). A more systematic approach would be to create a list of 

alternative process equipment with their sizes and purchase costs for each unit operation 

in bio-manufacturing. One challenge of this approach could be the maintenance of the 

database as new equipment and technologies emerge. Moreover, in case an equipment 

or material is withdrawn from the market changes in the cost database would be needed 

to reflect the changes in availability. 

7.3. Integrated framework 

Although the process economics model offers the capability to simulate different 

chromatography resins through VBA, the requirements in user intervention increase 

exponentially with the number of alternative resins. Increased manual intervention is 

more prone to error and decelerates the whole analysis. To overcome this challenge a 

decision-support tool for the chromatographic purification train was developed in MS 

Excel as an extension of the process economics model. 

The tool for the purification train can be operated independently from the process 

economics model for the rapid evaluation of multiple purification trains using a brute force 

search algorithm written in VBA. Chapter 5 demonstrated the linkage of the decision-

support tool for the purification train and the process economics model. Additionally, the 

HTPD workflow was used to generate and manipulate purification data and create the 

appropriate datasets that can be further leveraged using the integrated framework. 

Hence, the purification performance of different chromatography resins can be assessed 

using real data within a process economics engine evaluating the cost-effectiveness of 

multiple purification trains across different stages in the drug development pathway. 

The level of difficulty to interpret a scenario output and determine the optimum 

purification strategy depends on the complexity of the scenario. In case of a relative 
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simple scenario set-up the optimum purification train could be identified using a graphical 

approach to visualize key metrics among a few options. However, in cases of a complex 

scenario set-up that searches for the optimum within a conditional environment across a 

large number of alternatives and across different manufacturing stages, simple 

visualization becomes challenging. In such cases the integrated framework offers a 

mathematical formulation for the linear transformation of the objective function and the 

constraints of an option evaluation method. The Simplex LP engine in SOLVER has been 

used very efficiently to identify the optimum configuration of the purification train in 

complex scenario configurations (Chapter 5, Case study 1 & 2). 

Implementation of the framework can be of great benefit in establishing platform 

purification processes and determining manufacturing bottlenecks at early-stage in 

process development. Through an industrially-relevant case study, high-throughput data 

were used to evaluate eight CEX resins for the intermediate chromatography step in the 

purification train and for four different mAbs. Two CEX resins demonstrated superior 

performance considering their technical and financial impact on the whole manufacturing 

process. 

Already published work (Simaria et al., 2012; Liu et al., 2014; Liu et al., 2015) has 

focused primiraly on the development of the optimisation algoritms to determine the most 

cost-effective resin sequence. Hence, a simplistic apparoch was followed in the 

development of the chromatography resin database. Typically, a resin database used in 

a process economics model simulating a bio-manufacturing facility would consider a 

chromatography resin operating at a set of conditions and delivering a certain purification 

and recovery performance. Therefore, potentially valuable information from the complete 

purification profile (e.g. purity versus yield curves) could be neglected. The integrated 

framework offers the ability through the use of the HTPD workflow to build a more 

comprehensive resin database that contains several data-points for each resin 

candidate. Thus providing a greater and more flexible decision space to the user by 

offering the ability to identify resin candidates that otherwise could be left unnoticed. 
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The challenges and limitations that were discussed so far with regards to the HTPD 

workflow and the process economics model also apply here. Future work could focus on 

developing experimental strategies that could provide a more comprehensive 

chromatography resin library. A DoE strategy can be created to perform resin screening 

considering all chromatography steps in the purification train. For instance, operating 

under different conditions the capture chromatography step might result in significantly 

different product profiles in the elution pool. Thus, a different product profile could be 

delivered to the next chromatography step and have a definitive impact on its 

performance. Therefore, the load of impurities to each chromatography step could be a 

factor in the DoE. 

Another advantage of the integrated framework is that it allows the use of purification 

data from any source or scale of experimentation. The user can follow the structure of 

the chromatography resin library (e.g. Table 5.3) and import relevant information from 

any data source. However, special care must be taken in cases of incorporating datasets 

from different sources at the same time. For instance, Chapter 3 showed that the 600μL 

miniature chromatography columns offer a better approximation of the purification 

performance of a bench-scale column compared to the 200μL columns. Purification data 

using the 200μL columns can provide critical insights and offer significant savings in 

materials consumption especially in screening studies.  Nevertheless, when creating a 

chromatography resin library a mathematical transformation might be required before 

combining data from different scales. 

Furthermore, high-throughput purification data and process economics data could be 

leveraged along with resin characteristics using multivariate data analysis to develop 

predictive correlations. These predictive correlations could potentially dictate the resin 

characteristics and purification performance that are required to design a cost-effective 

purification train that could deliver the desired product quality. A simplified example was 

given in Figure 5.15 illustrating a decision-tree for the selection of CEX resins for the 

intermediate chromatography step in the purification train. Through the implementation 
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of the integrated framework, it was possible to identify key parameters that had a 

significant impact on the decision to select a CEX resin candidate. However, additional 

experimental effort and more advanced data mining techniques such as Classification 

and Regression Trees (Yang et al., 2014) are required to define threshold values for key 

decision parameters (e.g. yield and DBC). Moreover, the development of predictive 

correlations would be subject to other process related factors (e.g. impurities load from 

previous step and purification performance of downstream steps). A potential challenge 

of this approach could be the data requirements to develop useful correlations that could 

screen resin characteristics for multiple resin sequences and identify the most suitable 

resin candidates for the design of a cost-effective purification process.      

To sum up, the process economics model offers a solid base that combined with 

additional work at the Advanced Centre for Biochemical Engineering at UCL could 

establish the framework for a multi-purpose tool package. A multi-purpose tool package 

could attempt to simulate various aspects in bioprocessing including: 

 Techno-economic evaluation 

 Drug development modelling 

 Capacity planning 

 Supply-chain modelling 

 Portfolio management 

Through the use of such a package a more comprehensive evaluation of alternative 

manufacturing technologies can be performed. For instance, in relation to the evaluation 

of pre-packed chromatography columns it would be possible to assess the potential cost 

savings during R&D related to column packing activities. Additionally other parameters 

could be factored in the analysis (e.g. relationship with vendors, availability of backup 

options for vendors, potential loss of packing know-how etc.). Furthermore, the 

integrated framework could become part of a platform approach in chromatography 

process development both in academia and industry. All individual components are 
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described throughout the thesis in order to allow other researchers and process 

developers to follow the integrated framework as it stands or even to dismantle it and 

use parts of it. Alternatively, the work presented here hopefully can inspire the 

development of novel and more advanced tools with greater automation and flexibility.
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Appendix 

Table A.1: List of process equipment and materials as assumed in the process 

economics model. Base costs are given in USD ($) 

Equipment & Materials 
Base 

Size 

Min. 

Size 

Max. 

Size 
Units 

Base 

Cost 

Scaling 

Factor 

Bioreactor 200 2 25000 L 240000 0.384 

Hold-Tanks 500 25 20000 L 40000 0.384 

Chromatography Skid 3 3 100 L/min 160000 0.245 

Chromatography Column 60 5 200 cm 66500 0.900 

Packing System 50 10 100 L/min 35000 0.363 

Centrifuge 600 50 3000 L/hr 430000 0.155 

Filter Housing 2 1 5 m2 3500 0.306 

TFF Skid 20 1 85  m2 245000 0.295 

PW Vessel 1000 1000 40000 L 27500 0.384 

WFI Vessel 1000 1000 25000 L 36500 0.384 

Hold-Tank Guard Filter 1000 20 20000 L 310 0.645 

Shake Flask 0.50 0.015 1.5 L 500 0.400 

Depth Filter 1 NA  NA  m2 300 NA 

Virus Removal Membrane 1 NA  NA  m2 6800 NA 

Ultrafiltration Membrane 1 NA NA m2 3200 NA 

Empty Pre-packed Column 1 NA NA cm 2000 NA 

Cell Culture Media 1 NA NA L 50 NA 

Buffers 1 NA NA L 5 NA 

PW 1 NA NA L 0.07 NA 

WFI 1 NA NA L 0.59 NA 

Incubator NA NA NA NA 5000 NA 

Sources: UCL Decisional Tools database, Simaria et al. (2012), Repligen, GE Healthcare, Sigma-

Aldrich (Merck) & Biosolve (BioPharm Services). Base costs are given in USD ($). 

Cost = CostBase ∗ (
Size

SizeBase
)

Scaling Factor
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Table A.2: Key assumptions for each unit operation used in the process 

economics model as identified through discussions with the industrial sponsor 

(MedImmune) 

Assumption Shake Flasks Seed Bioreactors 
Production 

Bioreactor(s) 

Preparation Time (hr) 1 5 5 

Load Time (hr) 0 3 3 

Operation Time (hr) 24 72 336 

Turnaround Time (hr) 2 48 48 

Inoculation Ratio (%) 10 10 10 

Fed-batch Media addition (%) NA NA 25 

H/D tank ratio NA 3 3 

Space Efficiency (%) 50 75 75 

Assumption Depth Filtration Virus Filtration 
Ultrafiltration/Dia

filtration 

Preparation Time (hr) 0.5 0.5 1 

Turnaround Time (hr) 1 1 1 

Duration Limit (hr) 5 6 8 

Flush Volume (L/ m2) 100 100 100 

Filter Flush Preparation 0.8 0.8 0.8 

Filter Flush Recovery 1.5 1.5 1.5 

Hold-up Volume (L/ m2) 10 2 0.3 

Flux (LMH) 200 250 40 

Step Yield (%) 95 99 98 

Capacity 200 L/ m2 10 kg/ m2 NA 

Acidic Buffer (%) NA 20 NA 

Neutralisation Buffer (%) NA 20 NA 

Diafiltration Cycles NA NA 5.5 

Diafiltration Time Limit (hr) NA NA 3 

Assumption 
Chrom. Self-

packed 
Chrom. Pre-

packed 
Disk-Stack 
Centrifuge 

Preparation Time (hr) 1 1 1 

Packing Prep. Time (hr) 8 0 NA 

Unpacking Prep. Time (hr) 4 0 NA 

Turnaround Time (hr) 1 1 1 

Duration Limit (hr) 16 16 4 

Resin Overfill (%) 10 10 NA 

Pre-packing (CVs) 14 0 NA 

Pre-First Operation (CVs) 16 16 NA 

Equilibration (CVs) 4 4 NA 

Wash (CVs) 2 2 NA 

Strip (CVs) 3 3 NA 

Regeneration (CVs) 3 3 NA 

Packing (CVs) 20 0 NA 

Unpacking (CVs) 5 0 NA 

Sanitisation (CVs) 4 4 NA 

Storage (CVs) 3 3 NA 

Step Yield (%) Resin Specific Resin Specific 85 
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Table A.3: Key design calculations to estimate the size of each unit operation used 

in the process economics model 

 Upstream Processing 

Unit 

Operation 

Sizing 

VBIOR =
Demand

Batches ∗ Titre ∗ YieldDSP
 

VSEED,q = VBIOR ∗ rq,   for q = [1,2,3]  if  VSEED,q < min[BV] ⇒ VSEED,q = 0 

VFlask = r ∗ min[VSEED,q]
q=1

3
       for VSEED,q > 0 

 Chromatography Step Centrifugation & Depth Filtration 

Unit 

Operation 

Sizing 

D =
√

4 ∗
MIN

DBC ∗ nCOL ∗ nCYC

π ∗ H
 

find DA for min [(D − DA)2] 

Recalculate nCYC for DA 

nCYC ⟹ nCYC,new 

Sizing algorithm available 

in Figure A.1 

FlowrateCENT =
VIN

Duration ∗ #Units
 

ADEPF =
VIN

Capacity
 

VVI = VIN ∗ (1 + Acid) ∗ (1 + Neutr. ) 

AVF =
MIN

Capacity
 

AUFDF =
VIN

Flux
∗ (

1

Duration − tDiaf

+
DFC

tDiaf ∗ CF
) 

 

YieldDSP = ∏ Yieldstep

DSP

 

q: Seed bioreactor’s index 

r: Inoculation ratio 

VIN: Volume in (L) 

MIN: Mass in (g) 

D: Calculated chromatography column diameter (cm) 

DA: Available chromatography column diameter (cm) 

nCOL: Number of chromatography columns in parallel 

nCYC: Number of chromatography cycles per batch 

nCYC,new: Recalculated number of chromatography cycles per batch 

A: Filter/Membrane area (sqm) 

DFC: Diafiltration cycles 

tDiaf: Diafiltration time limit (hr) 

CF: Concentration factor 
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Figure 16: Algorithm for sizing chromatography columns used in the process 
economics model 

Method A.1: 

Method for calculating weight coefficient of each decision attribute considered in the resin 

selection tool based on its factor of significance. 

Consider four decision attributes (j = [1, 2, 3, 4]) with factors of significance (f = [a, b, c, 

d] where a, b, c and d ∈ ℝ+). The objective is to normalize the factors of significance (fj) 

and transform them into weight coefficients (wj). The ratios among a, b, c, and d should 

be reflected by the ratios among w1, w2, w3 and w4. Thus, w1 w2⁄ = a b⁄ . Given also 

that ∑ wj
4
j=1 = 1, the weight coefficients are calculated as; wj = 𝑓𝑗/ ∑ 𝑓𝑗

4
𝑗=1 . The benefit of 

Method A.1 is the flexibility that it offers to the user to define its own scale for the factors 

of significance instead of attempting to assign values strictly between 0 and 1. 
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Table A.4: CEX Chromatography resin list for mAb-1 used in Chapter 5, Case study 
2 

Index 
Resin 
Name 

DBC (g/L) Yield (%) Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

3 Resin-6 40 64.5 3.0 85.2 0.42 1000 

4 Resin-7 100 66.0 3.3 76.5 0.35 2500 

5 Resin-8 65 66.9 2.3 76.8 0.41 2000 

6 Resin-3 95 68.1 2.0 57.8 0.22 1900 

7 Resin-4 60 65.6 3.0 45.2 0.17 1900 

8 Resin-5 90 69.0 2.1 78.5 0.43 2300 

9 Resin-1 65 69.4 4.0 72.8 0.33 2800 

10 Resin-2 70 68.5 3.4 73.5 0.34 1800 

11 Resin-6 40 69.3 3.2 75.3 0.42 1000 

12 Resin-7 100 70.7 3.7 68.7 0.33 2500 

13 Resin-8 65 71.8 2.7 68.6 0.38 2000 

14 Resin-3 95 72.9 2.2 51.0 0.21 1900 

15 Resin-4 60 70.1 3.2 38.9 0.16 1900 

16 Resin-5 90 74.0 2.7 71.0 0.36 2300 

17 Resin-1 65 74.4 4.3 64.3 0.31 2800 

18 Resin-2 70 73.4 3.8 65.5 0.32 1800 

19 Resin-6 40 74.1 3.4 66.8 0.42 1000 

20 Resin-7 100 75.7 4.2 58.5 0.31 2500 

21 Resin-8 65 76.7 2.9 60.1 0.35 2000 

22 Resin-3 95 77.8 2.4 42.9 0.20 1900 

23 Resin-4 60 74.7 3.4 32.5 0.16 1900 

24 Resin-5 90 79.1 3.2 61.2 0.31 2300 

25 Resin-1 65 79.5 4.7 53.7 0.30 2800 

26 Resin-2 70 78.5 4.2 55.4 0.30 1800 

27 Resin-6 40 79.0 3.7 54.7 0.39 1000 

28 Resin-7 100 80.7 4.4 45.7 0.29 2500 

29 Resin-8 65 81.7 3.3 48.5 0.30 2000 

30 Resin-3 95 82.7 2.6 33.2 0.18 1900 

31 Resin-4 60 79.2 3.7 25.8 0.15 1900 

32 Resin-5 90 84.4 3.7 47.8 0.25 2300 

33 Resin-1 65 84.8 5.0 40.6 0.26 2800 

34 Resin-2 70 83.7 4.7 42.6 0.26 1800 

35 Resin-6 40 84.3 4.3 37.8 0.31 1000 

36 Resin-7 100 86.0 5.1 29.5 0.24 2500 

37 Resin-8 65 87.1 3.9 32.6 0.22 2000 

38 Resin-3 95 87.8 3.0 21.7 0.16 1900 

39 Resin-4 60 83.8 4.1 18.9 0.14 1900 

40 Resin-5 90 90.0 4.3 29.7 0.19 2300 

41 Resin-1 65 90.3 5.6 24.6 0.23 2800 

42 Resin-2 70 89.2 5.3 26.6 0.22 1800 
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Table A.4 (cont.): CEX Chromatography resin list for mAb-1 used in Chapter 5, 
Case study 2   

Index 
Resin 
Name 

DBC (g/L) Yield (%) Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

43 Resin-6 40 89.9 7.9 14.4 0.07 1000 

44 Resin-7 100 91.5 6.5 9.3 0.00 2500 

45 Resin-8 65 92.7 7.5 10.9 0.00 2000 

46 Resin-3 95 92.9 7.3 9.0 0.10 1900 

47 Resin-4 60 88.3 7.4 12.2 0.00 1900 

48 Resin-5 90 96.0 6.5 5.4 0.08 2300 

49 Resin-1 65 96.0 7.1 5.1 0.14 2800 

50 Resin-2 70 94.8 7.0 6.6 0.12 1800 

Table A.5: CEX Chromatography resin list for mAb-2 used in Chapter 5, Case study 
2  

Index 
Resin 
Name 

DBC (g/L) Yield Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

3 Resin-6 35 70.1 2.9 73.5 0.49 1000 

4 Resin-7 100 65.8 1.8 68.0 0.74 2500 

5 Resin-8 60 70.5 1.5 89.6 0.66 2000 

6 Resin-3 65 71.3 1.3 36.0 0.49 1900 

7 Resin-4 50 72.0 2.5 32.7 0.25 1900 

8 Resin-5 90 65.0 1.8 70.1 0.85 2300 

9 Resin-1 65 70.0 1.7 55.2 1.09 2800 

10 Resin-2 70 72.7 1.9 59.2 0.82 1800 

11 Resin-6 35 75.2 3.1 64.7 0.48 1000 

12 Resin-7 100 70.4 1.9 61.5 0.74 2500 

13 Resin-8 60 75.6 1.9 82.2 0.63 2000 

14 Resin-3 65 76.1 1.4 30.5 0.49 1900 

15 Resin-4 50 76.9 3.0 27.3 0.22 1900 

16 Resin-5 90 69.6 1.9 64.0 0.84 2300 

17 Resin-1 65 74.9 1.8 48.2 1.06 2800 

18 Resin-2 70 77.8 2.0 51.9 0.81 1800 

19 Resin-6 35 80.3 3.3 55.1 0.47 1000 

20 Resin-7 100 75.2 1.9 53.2 0.74 2500 

21 Resin-8 60 80.9 2.1 71.9 0.58 2000 

22 Resin-3 65 81.0 1.8 24.7 0.46 1900 

23 Resin-4 50 81.7 3.9 21.8 0.10 1900 

24 Resin-5 90 74.2 2.0 56.0 0.83 2300 

25 Resin-1 65 79.9 1.9 40.2 1.04 2800 

26 Resin-2 70 83.0 2.2 43.0 0.79 1800 

27 Resin-6 35 85.6 3.5 42.9 0.45 1000 

28 Resin-7 100 80.0 2.0 42.7 0.74 2500 

29 Resin-8 60 86.4 2.3 57.2 0.51 2000 

30 Resin-3 65 85.8 2.0 19.0 0.44 1900 

31 Resin-4 50 86.6 6.8 16.1 0.01 1900 

32 Resin-5 90 79.0 2.1 45.6 0.81 2300 

33 Resin-1 65 84.9 2.0 30.9 1.02 2800 

34 Resin-2 70 88.3 2.3 32.4 0.77 1800 
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Table A.5 (cont.): CEX Chromatography resin list for mAb-2 used in Chapter 5, 
Case study 2 

Index 
Resin 
Name 

DBC (g/L) Yield (%) Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

35 Resin-6 35 91.0 3.8 27.4 0.42 1000 

36 Resin-7 100 85.1 2.4 29.4 0.71 2500 

37 Resin-8 60 92.2 2.7 36.7 0.46 2000 

38 Resin-3 65 90.7 2.4 12.7 0.38 1900 

39 Resin-4 50 91.5 7.0 10.0 0.02 1900 

40 Resin-5 90 84.0 2.2 32.4 0.81 2300 

41 Resin-1 65 90.0 2.0 20.3 1.01 2800 

42 Resin-2 70 93.7 2.4 19.6 0.76 1800 

43 Resin-6 35 96.7 7.5 7.9 0.12 1000 

44 Resin-7 100 90.3 7.0 12.7 0.28 2500 

45 Resin-8 60 98.5 7.9 8.5 0.04 2000 

46 Resin-3 65 95.5 7.4 6.0 0.05 1900 

47 Resin-4 50 96.4 7.7 3.8 0.02 1900 

48 Resin-5 90 89.2 6.7 15.6 0.22 2300 

49 Resin-1 65 95.2 7.0 8.1 0.45 2800 

50 Resin-2 70 99.3 6.5 4.4 0.35 1800 

Table A.6: CEX Chromatography resin list for mAb-3 used in Chapter 5, Case study 
2 

Index 
Resin 
Name 

DBC (g/L) Yield Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

3 Resin-6 35 71.1 3.1 72.4 0.35 1000 

4 Resin-7 120 70.3 3.1 80.2 0.42 2500 

5 Resin-8 70 74.1 2.3 71.3 0.41 2000 

6 Resin-3 100 71.1 2.1 52.9 0.10 1900 

7 Resin-4 45 67.9 3.1 39.1 0.12 1900 

8 Resin-5 100 74.6 1.9 76.6 0.51 2300 

9 Resin-1 90 72.2 3.2 74.4 0.38 2800 

10 Resin-2 85 72.4 3.2 74.0 0.39 1800 

11 Resin-6 35 76.2 3.3 66.0 0.33 1000 

12 Resin-7 120 75.5 3.4 71.8 0.39 2500 

13 Resin-8 70 79.5 2.8 63.0 0.38 2000 

14 Resin-3 100 76.1 2.2 46.1 0.10 1900 

15 Resin-4 45 72.5 3.3 33.2 0.12 1900 

16 Resin-5 100 80.0 2.5 68.8 0.42 2300 

17 Resin-1 90 77.4 3.5 65.8 0.35 2800 

18 Resin-2 85 77.6 3.6 65.9 0.36 1800 

19 Resin-6 35 81.4 3.6 57.0 0.31 1000 

20 Resin-7 120 80.8 3.9 60.7 0.37 2500 

21 Resin-8 70 84.9 3.1 54.1 0.38 2000 

22 Resin-3 100 81.1 2.4 38.1 0.10 1900 

23 Resin-4 45 77.2 3.5 27.2 0.11 1900 

24 Resin-5 100 85.5 3.1 58.6 0.38 2300 

25 Resin-1 90 82.9 4.0 54.7 0.32 2800 

26 Resin-2 85 83.0 4.0 55.2 0.33 1800 
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Table A.6 (cont.): CEX Chromatography resin list for mAb-3 used in Chapter 5, 
Case study 2 

Index 
Resin 
Name 

DBC (g/L) Yield Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

27 Resin-6 35 86.8 4.0 44.7 0.26 1000 

28 Resin-7 120 86.4 4.3 46.2 0.34 2500 

29 Resin-8 70 90.5 3.5 41.8 0.35 2000 

30 Resin-3 100 86.3 2.7 28.6 0.10 1900 

31 Resin-4 45 81.8 3.8 21.2 0.11 1900 

32 Resin-5 100 91.3 3.5 44.4 0.33 2300 

33 Resin-1 90 88.5 4.3 40.7 0.17 2800 

34 Resin-2 85 88.6 4.5 41.5 0.31 1800 

35 Resin-6 35 92.5 4.5 28.1 0.21 1000 

36 Resin-7 120 92.2 4.7 27.4 0.31 2500 

37 Resin-8 70 96.4 4.1 25.2 0.28 2000 

38 Resin-3 100 91.6 3.0 17.4 0.09 1900 

39 Resin-4 45 86.5 4.5 15.2 0.10 1900 

40 Resin-5 100 97.5 4.3 24.9 0.25 2300 

41 Resin-1 90 94.4 4.8 23.0 0.09 2800 

42 Resin-2 85 94.5 5.0 23.8 0.27 1800 

43 Resin-6 35 98.6 8.1 5.6 0.09 1000 

44 Resin-7 120 98.5 6.5 2.9 0.18 2500 

45 Resin-8 70 99.0 7.9 2.7 0.12 2000 

46 Resin-3 100 96.9 7.3 4.4 0.00 1900 

47 Resin-4 45 91.1 7.3 9.3 0.00 1900 

48 Resin-5 100 99.5 6.5 0.0 0.14 2300 

49 Resin-1 90 99.5 6.5 0.5 0.02 2800 

50 Resin-2 85 99.5 7.0 1.2 0.07 1800 

Table A.7: CEX Chromatography resin list for mAb-4 used in Chapter 5, Case study 
2 

Index 
Resin 
Name 

DBC (g/L) Yield Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

3 Resin-6 30 51.0 2.0 54.7 NA 1000 

4 Resin-7 85 58.8 2.7 73.3 NA 2500 

5 Resin-8 25 70.5 1.7 43.7 NA 2000 

6 Resin-3 140 60.5 7.1 44.2 NA 1900 

7 Resin-4 45 62.3 5.6 39.3 NA 1900 

8 Resin-5 50 56.8 3.6 59.2 NA 2300 

9 Resin-1 90 60.2 2.7 70.1 NA 2800 

10 Resin-2 60 63.1 2.8 72.0 NA 1800 

11 Resin-6 30 54.8 2.0 49.7 NA 1000 

12 Resin-7 85 63.3 2.9 68.2 NA 2500 

13 Resin-8 25 75.8 1.8 37.2 NA 2000 

14 Resin-3 140 64.6 7.2 39.8 NA 1900 

15 Resin-4 45 66.5 5.8 35.0 NA 1900 

16 Resin-5 50 61.1 3.8 53.8 NA 2300 

17 Resin-1 90 65.0 2.8 64.0 NA 2800 

18 Resin-2 60 68.0 2.9 66.4 NA 1800 
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Table A.7 (cont.): CEX Chromatography resin list for mAb-4 used in Chapter 5, 
Case study 2 

Index 
Resin 
Name 

DBC (g/L) Yield Elution CVs 
HMW 

Reduction 
(%) 

HCPs LRV 
Price 

(USD/L) 

19 Resin-6 30 58.5 2.2 45.2 NA 1000 

20 Resin-7 85 67.9 3.0 63.1 NA 2500 

21 Resin-8 25 81.2 1.9 29.9 NA 2000 

22 Resin-3 140 68.9 7.3 35.1 NA 1900 

23 Resin-4 45 70.7 6.0 30.7 NA 1900 

24 Resin-5 50 65.6 4.0 47.5 NA 2300 

25 Resin-1 90 70.2 2.9 56.1 NA 2800 

26 Resin-2 60 73.3 2.9 58.9 NA 1800 

27 Resin-6 30 62.3 2.4 40.5 NA 1000 

28 Resin-7 85 73.8 3.4 51.6 NA 2500 

29 Resin-8 25 86.8 2.0 21.8 NA 2000 

30 Resin-3 140 73.2 7.4 29.9 NA 1900 

31 Resin-4 45 74.9 6.4 26.2 NA 1900 

32 Resin-5 50 70.4 4.5 40.0 NA 2300 

33 Resin-1 90 75.9 3.1 45.9 NA 2800 

34 Resin-2 60 79.3 3.0 48.4 NA 1800 

35 Resin-6 30 66.1 2.6 35.5 NA 1000 

36 Resin-7 85 80.2 4.0 37.3 NA 2500 

37 Resin-8 25 92.5 2.4 12.8 NA 2000 

38 Resin-3 140 77.6 7.5 24.4 NA 1900 

39 Resin-4 45 79.2 6.8 21.5 NA 1900 

40 Resin-5 50 75.4 5.0 31.0 NA 2300 

41 Resin-1 90 82.3 3.7 32.1 NA 2800 

42 Resin-2 60 86.2 3.5 33.0 NA 1800 

43 Resin-6 30 69.9 9.0 30.3 NA 1000 

44 Resin-7 85 88.6 8.5 12.9 NA 2500 

45 Resin-8 25 98.5 8.5 2.5 NA 2000 

46 Resin-3 140 82.1 7.5 18.4 NA 1900 

47 Resin-4 45 83.5 7.8 16.9 NA 1900 

48 Resin-5 50 80.9 8.5 20.0 NA 2300 

49 Resin-1 90 89.9 8.0 11.8 NA 2800 

50 Resin-2 60 95.3 7.0 6.7 NA 1800 
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Abbreviations 

Abbreviation Description Abbreviation Description 

AEX Anion Exchange HTE High-Throughput 
Experimentation 

ATF Alternative Tangential Flow  HTPD High-Throughput Process 
Development 

BE Bind-and-Elute HTS High-Throughput Screening 

BLA Biologics Licence 
Application 

ICH International Conference 
on Harmonisation of 
Technical Requirements for 
Registration of 
Pharmaceuticals for 
Human Use  

BLP Binary Linear Programming IEX Ion Exchange 

CEX Cation Exchange IND Investigational New Drug 

cGCP current Good Clinical 
Practice 

LMW Low Molecular Weight 

  mAb Monoclonal Antibodies 

cGLP current Good Laboratory 
Practice 

MADM Multi-Attribute Decision-
Making 

CHO Chinese Hamster Ovary MILFP Mixed-Integer Linear 
Fractional Programming  

CIP Cleaning-in-place MINLP Mixed-Integer Non-Linear 
Programming 

COG Cost of Goods MLR Multiple Linear Regression 

COG/g COG per gram of product NDA New Drug Application 

CPPs Critical Process 
Parameters 

NPV Net Present Value 

CQAs Critical Quality Attributes OFAT One-factor-at-a-time 

DBC Dynamic Binding Capacity PMDA Pharmaceutical and 
Medical Devices Agency, 
Japan 

DBC10% DBC at 10% breakthrough PW Process Water 

DoE Design of Experiments QbD Quality by Design 

DSP Downstream Processing QCQA Qaulity Control and Quality 
Assurance 

EMA European Medicines 
Agency 

R&D Research and 
Development 

Fab Antibody Fragment SEC Size Exclusion 
Chromatography 

FCI Fixed Capital Investment SIP Sterilisation-in-place 

FDA Food and Drug 
Administration 

SUT Single-Use Technologies 

FT Flow-Through UPLC Ultra-High Performance 
Liquid Chromatography 

GMP Good Manufacturing 
Practice 

USP Upstream Processing 

HA Hydroxyapatite 
Chromatography 

VBA Visual Basic for 
Applications 

HCPs Host Cell Proteins WFI Water For Injection 

HIC Hydrophobic Interaction 
Chromatography 

WPC Weak Partitioning 
Chromatography 

HMW High Molecular Weight 
  

 


