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Abstract
We propose an unfitted finite element method for flow in fractured porous media. The
coupling across the fracture uses a Nitsche type mortaring, allowing for an accurate
representation of the jump in the normal component of the gradient of the discrete
solution across the fracture. The flow field in the fracture is modelled simultaneously,
using the average of traces of the bulk variables on the fractures. In particular the
Laplace–Beltrami operator for the transport in the fracture is includedusing the average
of the projection on the tangential plane of the fracture of the trace of the bulk gradient.
Optimal order error estimates are proven under suitable regularity assumptions on the
domain geometry. The extension to the case of bifurcating fractures is discussed.
Finally the theory is illustrated by a series of numerical examples.
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1 Introduction

We consider a model Darcy creeping flow problem with low permeability in the bulk
and with embedded interfaces with high permeability. Our approach is based on the
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Nitsche extended finite element of Hansbo and Hansbo (2002), which however did
not include transport on the interface. Here, we follow Capatina et al. (2016) and let a
suitable mean of the solution on the interface be affected by a transport equation see
also Burman et al. (2015). We present a complete a priori analysis and consider the
important extension to bifurcating fractures.

The flow model we use is essentially the one proposed in Capatina et al. (2016).
More sophisticatedmodels have been proposed, e.g., in Angot et al. (2009), Formaggia
et al. (2014), Frih et al. (2008) andMartin et al. (2005), in particular allowing for jumps
in the solution across the interfaces. To allow for such jumps, one can either align the
mesh with the interfaces, as in, e.g., Berrone et al. (2017) and Hægland et al. (2009),
or use extended finite element techniques, cf. Burman et al. (2015), Capatina et al.
(2016), D’Angelo and Scotti (2012) and Del Pra et al. (2017).

In previous work Burman et al. (2017) we used a continuous approximation with
the interface equations simply added to the bulk equation, which does not allow for
jumps in the solution. This paper presents a more complex, but more accurate, dis-
crete solution to the problem. To reduce the technical detail of the arguments we
consider a semi-discretization of the problem where we assume that the integrals on
the interface and the subdomains separated by the interface can be evaluated exactly.
The results herein can be extended to the fully discrete setting, with a piecewise affine
approximation of the fracture using the analysis detailed in Burman et al. (2016).

An outline of the paper is as follows: in Sect. 2 we formulate the model problem,
its weak form, and investigate the regularity properties of the solution, in Sect. 3 we
formulate the finite element method, in Sect. 4 we derive error estimates, in Sect. 5
we extend the approach to the case of bifurcating fractures, and in Sect. 6 we present
numerical examples including a study of the convergence and a more applied example
with a network of fractures.

2 Themodel problem

In this section we introduce our model problem. First we present the strong form of
the equations and then we derive the weak form that is used for the finite element mod-
elling. We discuss the regularity properties of the solution and show that if the fracture
is sufficiently smooth the problem solution, restricted to the subdomains partitioning
the global domain, has a regularity that allows for optimal approximation estimates
for piecewise affine finite element methods (Fig. 1).

2.1 Strong and weak formulations

Let Ω be a convex polygonal domain in R
d , with d = 2 or 3. Let Γ be a smooth

embedded interface in Ω , which partitions Ω into two subdomains Ω1 and Ω2. We
consider the problem: find the pressure u : Ω → R such that

−∇ · a∇u = f in Ωi , i = 1, 2 (2.1)

−∇Γ · aΓ ∇Γ u = fΓ − �n · a∇u� on Γ (2.2)
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Fig. 1 Schematic figure of
bifurcating fractures

[u] = 0 on Γ (2.3)

u = 0 on ∂Ω (2.4)

Here
[v] = v1 − v2, �n · a∇v� = n1 · a1∇v1 + n2 · a2∇v2 (2.5)

where vi = v|H1(Ωi )
, ni is the exterior unit normal to Ωi , ai are positive bounded

permeability coefficients, for simplicity taken as constant, and 0 ≤ aΓ < ∞ is a
constant permeability coefficient on the interface. Note that it follows from (2.3) that
v is continuous acrossΓ while from (2.2)we conclude that the normal flux is in general
not continuous across Γ . Note also that taking aΓ = 0 and fΓ = 0 corresponds to a
standard Poisson problem with possible jump in permeability coefficient across Γ .

To derive the weak formulation of the system we introduce the L2-scalar product
over a domain X ⊂ R

d , or X ⊂ R
d−1. For u, v ∈ L2(X) let

(u, v)X =
∫
X
u v dX (2.6)

with the associated norm ‖u‖X = (u, u)
1/2
X . Multiplying (2.1) by

v ∈ V :=
{
v ∈ H1(Ω); v|Γ ∈ H1(Γ )

}
, (2.7)

integrating by parts over Ωi , and using (2.2), we obtain

( f , v)Ω = −(∇ · a∇u, v)Ω1 − (∇ · a∇u, v)Ω2 (2.8)

= (a∇u,∇v)Ω1 + (a∇u,∇v)Ω2 − (�n · a∇u�, v)Γ (2.9)

= (a∇u,∇v)Ω − ( fΓ + ∇Γ · aΓ ∇Γ u, v)Γ (2.10)

= (a∇u,∇v)Ω + (aΓ ∇Γ u,∇Γ v)Γ − ( fΓ , v)Γ (2.11)

We thus arrive at the weak formulation: find u ∈ V such that

(a∇u,∇v)Ω + (aΓ ∇Γ u,∇Γ v)Γ = ( f , v)Ω + ( fΓ , v)Γ ∀v ∈ V (2.12)
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Observing that V is a Hilbert space with scalar product

a(v,w) = (a∇v,∇w)Ω + (aΓ ∇Γ v,∇Γ w)Γ (2.13)

and associated norm ‖v‖2a = a(v, v) it follows from the Lax–Milgram lemma that
there is a unique solution to (2.12) in V for f ∈ H−1(Ω) and fΓ ∈ H−1(Γ ).

2.2 Regularity properties

To prove optimality of our finite element method we need that the exact solution
is sufficiently regular. However since the normal fluxes jump over the interface the
solution can not have square integrable weak second derivatives. If the interface is
smooth however we will prove that the solution restricted to the different subdomains
Ω1, Ω2 and Γ is regular. The upshot of the unfitted finite element method is that this
local regularity is sufficient for optimal order approximation. More precisely we have
the elliptic regularity estimate

‖u‖H2(Ω1)
+ ‖u‖H2(Ω2)

+ ‖u‖H2(Γ ) � ‖ f ‖Ω + ‖ fΓ ‖Γ (2.14)

Proof Let ui ∈ H1
0 (Ωi ) solve

(ai∇ui ,∇v)Ωi = ( f , v)Ωi ∀v ∈ H1
0 (Ωi ) (2.15)

Then we have
‖ui‖H2(Ωi )

� ‖ f ‖Ωi i = 1, 2 (2.16)

Let u = uΓ + u1 + u2 where uΓ satisfies

−∇Γ · aΓ ∇Γ uΓ = fΓ + �n · a∇(uΓ + u1 + u2)� (2.17)

= fΓ + �n · a∇uΓ � + n1 · a∇u1 + n2 · a∇u2 on Γ (2.18)

and
− ∇ · a∇uΓ = 0 on Ωi , i = 1, 2 (2.19)

Using (2.16) we conclude that

ni · a∇ui |Γ ∈ H1/2(Γ ) i = 1, 2 (2.20)

Furthermore, using that uΓ ∈ H1(Γ ), which follows from the fact that uΓ ∈ V it
follows that uΓ |Ωi ∈ H3/2(Ωi ), i = 1, 2, and thus

�n · a∇uΓ � ∈ H1/2(Γ ) (2.21)
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Since the right hand side of (2.18) is in L2(Γ ) we may use elliptic regularity for the
Laplace Beltrami operator to confirm that

uΓ |Γ ∈ H2(Γ ) (2.22)

Collecting the bounds we obtain the refined regularity estimate

‖uΓ ‖H2(Γ ) +
2∑

i=1

(‖uΓ ‖H5/2(Ωi )
+ ‖ui‖H2(Ωi )

)
� ‖ f ‖Ω + ‖ fΓ ‖Γ (2.23)

where we note that we have stronger control of uΓ on the subdomains. 
�

3 The finite element method

3.1 Themesh and finite element space

Let Th be a quasi-uniform conformal mesh, consisting of shape regular elements with
mesh parameter h ∈ (0, h0], on Ω and let

Th,i = {T ∈ Th : T ∩ Ωi = ∅} i = 1, 2 (3.1)

be the active meshes associated with Ωi , i = 1, 2. Let Vh be a finite element space
consisting of continuous piecewise polynomials on Th and define

Vh,i = Vh |Thi i = 1, 2 (3.2)

and
Wh = Vh,1 ⊕ Vh,2 (3.3)

To v = v1 ⊕ v2 ∈ Wh we associate the function ṽ ∈ L2(Ω) such that ṽ|Ωi = vi |Ωi ,
i = 1, 2. In general, we simplify the notation and write ṽ = v. Finally, we use Th(Γ )

to denote the set of elements intersected by Γ .

3.2 Derivation of themethod

To derive the finite element method we follow the same approach as when introducing
the weak formulation, but taking care to handle the boundary integrals that appear due
to the discontinuities in the approximation space.

Testing the exact problem with v ∈ Wh and integrating by parts over Ω1 and Ω2
we find that

( f , v)Ω1 + ( f , v)Ω2 (3.4)

= (−∇ · a∇u, v)Ω1 + (−∇ · a∇u, v)Ω2 (3.5)

= (a∇u,∇v)Ω − (〈n · a∇u〉, [v])Γ − (�n · a∇u�, 〈v〉∗)Γ (3.6)
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= (a∇u,∇v)Ω − (〈n · a∇u〉, [v])Γ − (∇Γ · aΓ ∇Γ u, 〈v〉∗)Γ − ( fΓ , 〈v〉∗)Γ
(3.7)

= (a∇u,∇v)Ω − (〈n · a∇u〉, [v])Γ + (aΓ ∇Γ u,∇Γ 〈v〉∗)Γ − ( fΓ , 〈v〉∗)Γ (3.8)

= (a∇u,∇v)Ω − (〈n · a∇u〉, [v])Γ − ([u], 〈n · a∇v〉)Γ (3.9)

+(aΓ ∇Γ u,∇Γ 〈v〉∗)Γ − ( fΓ , 〈v〉∗)Γ (3.10)

where in the last identity we symmetrized using the fact that [u] = 0. We also used
the identity

[vw] = [v]〈w〉 + 〈v〉∗[w] (3.11)

where the averages are defined by

〈w〉 = κ1w1 + κ2w2, 〈w〉∗ = κ2w1 + κ1w2 (3.12)

with κ1 + κ2 = 1 and 0 ≤ κi ≤ 1.
Introducing the bilinear forms

aΩ(v,w) = (a∇v,∇w)Ω1+(a∇v,∇w)Ω2−(〈n · a∇v〉, [w])Γ − ([v], 〈n · a∇w〉)Γ (3.13)
ah,Γ (v,w) = (aΓ ∇Γ 〈v〉∗,∇Γ 〈w〉∗)Γ , (3.14)

lh(v) = ( f , v)Ω + ( fΓ , 〈v〉∗)Γ (3.15)

the above formal derivation leads to the following consistent formulation for discon-
tinuous test functions w. For u ∈ W = H1(Ω) ∩ H3/2(Ω1) ∩ H3/2(Ω2) ∩ H1(Γ )

the solution to (2.12) there holds

aΩ(u, w) + ah,Γ (u, w) = lh(w) ∀w ∈ Wh (3.16)

Observe that we have modified ah,Γ by introducing the average 〈v〉∗ also in the left
factor. This changes nothing when applied to a smooth solution, but will allow also
to apply the form to the discontinuous discrete approximation space. The subscript
h in the form indicates that it is modified to be well defined for the discontinuous
approximation space. The definition ofW is motivated by the fact that the trace terms
should be well defined, for instance,

(〈n · a∇v〉, [w])Γ �
(

2∑
i=1

‖vi‖2H1(∂Ωi )

)1/2 (
2∑

i=1

‖wi‖2∂Ωi

)1/2

(3.17)

�
(

2∑
i=1

‖vi‖2H3/2(Ωi )

)1/2 (
2∑

i=1

‖wi‖2H1(Ωi )

)1/2

(3.18)

where we used the trace inequalities ‖v‖Hs (∂Ωi ) � ‖v‖Hs+1/2(Ωi )
for s > 0 and

‖w‖∂Ωi � ‖w‖H1/2+ε (Ωi )
� ‖w‖H1(Ωi )

for ε > 0.
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3.3 The finite element method

Thefinite elementmethod thatwepropose is based on the formulation (3.16).However,
using this formulation as it stands does not lead to a robust approximation method.
Indeedwe need to ensure stability of the formulation through the addition of consistent
penalty terms. First we need to enforce continuity of the discrete solution across Γ .
To this end we introduce an augmented version of aΩ ,

ah(v,w) = aΩ(v,w) + βh−1([v], [w])Γ
with β a positive parameter. Since the exact solution u ∈ H1(Ω), there holds
aΩ(u, w) = ah(u, w). Secondly, to obtain stability independently of how the interface
cuts the computational mesh and for strongly varying permeabilities a1, a2 and aΓ we
also need some penalty terms in a neighbourhood of the interface. We define

sh(v,w) = sh,1(v1, w1) + sh,2(v2, w2)

where
sh,i (vi , wi ) = γ h([n · a∇vi ], [n · a∇wi ])Fh,i i = 1, 2 (3.19)

where γ is a positive parameters and Fh,i is the set of interior faces in Th,i that
belongs to an element T ∈ Th,i which intersects Γ , see Fig. 6. Observe that for
u ∈ H2(Ω1 ∪ Ω2), sh(u, v) = 0 for all v ∈ Wh .

Collecting the above bilinear forms in

Ah(v,w) = ah(v,w) + sh(v,w) + ah,Γ (v,w) (3.20)

the finite element method reads:

Find uh ∈ Wh such that: Ah(uh, v) = lh(v) ∀v ∈ Wh (3.21)

4 Analysis of themethod

In this section we derive the basic error estimates that the solution of the formulation
(3.21) satisfies. The technical detail is kept to a minimum to improve readability. In
particular, we assume that the bilinear forms can be computed exactly and that Γ

fulfils the conditions of Hansbo and Hansbo (2002). For a more complete exposition
in a similar context we refer to Burman et al. (2016).

4.1 Properties of the bilinear form

For the analysis it is convenient to define the following energy norm
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|||v|||2h =
2∑

i=1

(
‖a1/2i ∇v‖2Ωi

+ |v|2si
)

+ cah‖〈n · a∇v〉‖2Γ + βh−1‖[v]‖2Γ + ‖aΓ ∇Γ 〈v〉∗‖2Γ
(4.1)

where |v|si = si (v, v)1/2 and ca is a constant fulfilling ca ∼ a−1
min, cf. Lemma 4.1

below.

Lemma 4.1 The form Ah, defined in (3.20), satisfies the following bounds:

– Ah is continuous

Ah(v,w) � |||v|||h|||w|||h v,w ∈ W ∪Wh (4.2)

where W was introduced in (3.16).
– Ah is coercive on Wh,

|||v|||2h � Ah(v, v) v ∈ Wh (4.3)

provided β is large enough.

Proof The first estimate (4.2) follows directly from the Cauchy–Schwarz inequality.
To show (4.3) we recall the following inequalities:

‖a1/2i ∇v‖2Th,i
� ‖a1/2i ∇v‖2Ωi

+ |v|2sh,i
(see Burman and Hansbo 2012) (4.4)

h‖〈n · a∇v〉‖2Γ �
2∑

i=1

‖κi ai∇v‖2Th,i (Γ ) (see Hansbo and Hansbo 2002) (4.5)

In (4.5) we used the notation Th,i (Γ ) := {T ∈ Th,i : T ∩ Γ = ∅}. To prove the claim
observe that for all v ∈ Wh

Ah(v, v) =
2∑

i=1

(
‖a1/2i ∇v‖2Ωi

+ |v|2si
)

+ βh−1‖[v]‖2Γ

+‖aΓ ∇Γ 〈v〉∗‖2Γ − 2 (〈n · a∇v〉, [v])Γ (4.6)

Using (4.4) and (4.5) we obtain the following bound on the fluxes

h‖〈n · a∇v〉‖2Γ ≤ C
2∑

i=1

κi ai
(
‖a1/2i ∇v‖2Ωi

+ |v|2sh,i

)
(4.7)

Now assume that κi ai ≤ amin := mini∈{1,2} ai , for instance one may take κ1 =
a2/(a1 + a2) and κ2 = a1/(a1 + a2) then

2 (〈n · a∇v〉, [v])Γ ≤ 2a−1/2
min h1/2‖〈n · a∇v〉‖Γ a

1/2
minh

−1/2‖[v]‖Γ (4.8)
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≤ εha−1
min‖〈n · a∇v〉‖2Γ + aminh

−1ε−1‖[v]‖2Γ (4.9)

≤ Cε

2∑
i=1

(
‖a1/2i ∇v‖2Ωi

+ |v|2sh,i

)
+ aminh

−1ε−1‖[v]‖2Γ (4.10)

It follows that

Ah(v, v) ≥ (1 − Cε)

2∑
i=1

(
‖a1/2i ∇v‖2Ωi

+ |v|2si
)

+ (β − amin/ε) h
−1‖[v]‖2Γ + ‖a1/2Γ ∇Γ 〈v〉∗‖2Γ (4.11)

The bound (4.3) now follows taking ε = 1/(2C) and β > 2Camin and by applying
once again (4.7), taking ca ∼ a−1

min. 
�
A consequence of the bound (4.3) is the existence of a unique solution to (3.21).

Lemma 4.2 The linear system defined by the formulation (3.21) is invertible.

Proof Follows from Lax–Milgram’s lemma. 
�

4.2 Interpolation

For δ > 0 let Ei : Hs(Ωi ) → Hs(Ω) be a continuous extension operator s > 0. We
define the interpolation operator

πh : L2(Ω) � v �→ πh,1v1 ⊕ πh,2v2 ∈ Vh,1 ⊕ Vh,2 = Wh (4.12)

where πh,i : L2(Ωi )� vi �→ π SZ
h,i Eivi ∈ Vh,i , i = 1, 2, and π SZ

h is the Scott–Zhang
interpolation operator. We then have the interpolation error estimate

|||u − πhu|||h � h
(
‖u‖H2(Ω1)

+ ‖u‖H2(Ω2)
+ ‖u‖L∞

δ (H2(Γt ))

)
(4.13)

where, with ρΓ the signed distance function associated with Γ ,

Γt = {x ∈ Ω : ρΓ (x) = t}, |t | ≤ δ (4.14)

and
‖v‖L∞

δ (Hs (Γt )) = sup
|t |≤δ

‖v‖(Hs (Γt )) (4.15)

Proof To prove the estimate (4.13) we use a trace-inequality on functions in
H1(Th(Γ )) (i.e., with ‖ · ‖Th(Γ ) the broken H1-norm over the elements intersected by
Γ ),

‖vi‖Γ � h−1/2‖Eivi‖Th(Γ ) + h1/2‖∇Eivi‖Th(Γ ) (4.16)
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see Hansbo and Hansbo (2002), then interpolation on Th(Γ ) and finally we use the
stability of the extension operator Ei . First observe that by using the trace inequality
(4.16) we obtain, with v = u − πhu

‖(βh)−1/2[v]‖Γ + cah‖〈n · a∇v〉‖Γ �
2∑

i=1

(
h−1‖vi‖Th(Γ ) + ‖∇vi‖Th(Γ ))

+ h‖∇2vi‖Th(Γ ))

)
(4.17)

Using standard interpolation for the Scott–Zhang interpolation operator we get the
bound

‖(βh)−1/2[v]‖Γ + cah‖〈n · a∇v〉‖Γ � h
2∑

i=1

|Eiui |H2(Th(Γ ))

� h
2∑

i=1

|ui |H2(Ωi )
(4.18)

where we used the stability of the extension operator in the last inequality. The bound

|u − πhu|si � h
2∑

i=1

|a1/2i ui |H2(Ωi )
(4.19)

follows similarly using element-wise trace inequalities follows by interpolation (c.f.
Burman and Hansbo 2012). The interpolation error estimate for the terms due to the
Laplace–Beltrami operator on Γ is a bit more delicate. We use a trace inequality to
conclude that

‖a1/2Γ ∇Γ 〈u − πhu〉‖2Γ �
2∑

i=1

‖a1/2Γ ∇Γ (ui − πh,i ui )‖2Γ (4.20)

�
2∑

i=1

h−1‖∇(ui − πh,i ui )‖2Th(Γ )
+ h‖∇2(ui − πh,i ui )‖2Th(Γ )

(4.21)

�
2∑

i=1

h‖∇2ui‖2Th(Γ )
(4.22)

� δh‖u‖2L∞
δ (H2(Γt ))

(4.23)

Observing that we may take δ ∼ h the estimate follows. 
�
Comparing (4.13) with (2.23) we see that we have a small mismatch between the

regularity that we can prove and that required to achieve optimal convergence. In view
of this we need to assume a slightly more regular solution for the H1-error estimates
below. The sub optimal regularity also interferes in the L2-error estimates. Here we
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need to use (2.23) on the dual solution and in this case the additional regularity of the
estimate (4.13) is not available. Instead we need to find the largest ζ ∈ [0, 1] such that
|||u − πhu|||h � hζ

∑2
i=1 ‖u‖H2(Ωi )

, which will result in a suboptimality by a power
of 1− ζ in the convergence order in the L2-norm. Revisiting the analysis above up to
(4.22) we see that

|||u − πhu|||h � h
2∑

i=1

|ui |H2(Ωi )

+
2∑

i=1

h−1/2‖∇(ui − πh,i ui )‖Th(Γ ) + h1/2‖∇2(ui − πh,i ui )‖Th(Γ )

(4.24)

�
(
h + h1/2

) 2∑
i=1

|ui |H2(Ωi )
(4.25)

4.3 Error estimates

Theorem 4.1 If u is the solution to (2.1)–(2.4), satisfying u ∈ H2(Ω1 ∪ Ω2) ∪
L∞

δ (H2(Γt )), and uh is the finite element approximation defined by (3.21), then

|||u − uh |||h � h
(
‖u‖H2(Ω1)

+ ‖u‖H2(Ω2)
+ ‖u‖L∞

δ
(H2(Γt ))

)

‖u − uh‖Ω + ‖u − uh‖Γ � h3/2
(
‖u‖H2(Ω1)

+ ‖u‖H2(Ω2)
+ ‖u‖L∞

δ
(H2(Γt ))

)
(4.26)

(4.27)

Proof (4.26). Splitting the error and using the interpolation error estimate we have

|||u − uh |||h ≤ |||u − πhu|||h + |||πhu − uh |||h (4.28)

Using coercivity (4.3), Galerkin orthogonality and continuity (4.2) the second term
can be estimated as follows

|||πhu − uh |||2h � Ah(πhu − uh, πhu − uh) (4.29)

= Ah(πhu − u, πhu − uh) (4.30)

≤ |||πhu − u|||h |||πhu − uh |||h (4.31)

and thus applying the approximation result (4.13) we conclude that

|||u − uh |||h � |||u − πhu|||h (4.32)

� h
(
‖u‖H2(Ω1)

+ ‖u‖H2(Ω2)
+ ‖u‖L∞

δ (H2(Γt ))

)
(4.33)

(4.27). Consider the dual problem

A(v, φ) = (v, ψ)Ω + (v, ψΓ ) ∀v ∈ V (4.34)
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and recall that by (2.23) we have the elliptic regularity

2∑
i=1

‖φ‖H2(Ωi )
+ ‖φΓ ‖H2(Γ ) �

2∑
i=1

‖ψi‖Ωi + ‖ψΓ ‖Γ (4.35)

Setting v = e = u − uh and using Galerkin orthogonality, followed by the continuity
(4.2) and the suboptimal approximation estimate (4.24) on |||φ − πhφ|||h we get

(e, ψ)Ω + (e, ψΓ )Γ = Ah(e, φ) (4.36)

= Ah(e, φ − πhφ) (4.37)

≤ |||e|||h |||φ − πhφ|||h (4.38)

� |||e|||hh1/2
(

2∑
i=1

‖φ‖H2(Ωi
+ ‖φΓ ‖H2(Γ )

)
(4.39)

� h1/2|||e|||h
(

2∑
i=1

‖ψi‖Ωi + ‖ψΓ ‖Γ

)
. (4.40)

In the last step we used the elliptic regularity estimate (4.35) for the dual problem.
Setting ψi = ei/‖ei‖Ωi and ψΓ = eΓ /‖eΓ ‖Γ estimate (4.27) follows. 
�
Remark 4.1 As noted before the error estimate in the L2-norm is suboptimal with a
power 1/2. To improve on this estimate we would need to sharpen the regularities
required for the approximation estimate (4.13). This appears to be highly non-trivial
since the interpolation of u and uΓ can not be separated when both are interpolated
using the bulk unknowns. Therefore we did not manage to exploit the stronger control
that we have on the harmonic extension of uΓ in (2.23). Note however that if separate
fields are used on the fracture and in the bulk domains we would recover optimal order
convergence in L2.

Remark 4.2 Using the stronger control of the regularity of the harmonic extension
provided by (2.23) we may however establish an optimal order L2 error estimate for
the solution on Γ ,

‖u − uh‖Γ � h2
(
‖u‖H2(Ω1)

+ ‖u‖H2(Ω2)
+ ‖u‖L∞

δ (H2(Γt ))

)
(2.14)

5 Extension to bifurcating fractures

In the case most common in applications, fractures bifurcate, leading to networks of
interfaces in the bulk. It is straightforward to include this case in the method above
and we will discuss the method with bifurcating fractures below. The analysis can
also be extended under suitable regularity assumptions, but becomes increasingly
technical. We leave the analysis of the methods modelling flow in fractured media
with bifurcating interfaces to future work.
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Fig. 2 Notation for bifurcating
fractures

5.1 Themodel problem

Description of the domain Let us for simplicity consider a two dimensional problem
with a one dimensional interface. We define the following:

– Let the interface Γ be described as a planar graph with nodes N = {xi }i∈IN and
edges E = {Γ j } j∈IE , where IN , IE are finite index sets, and each Γ j is a smooth
curve between two nodes with indexes IN ( j). Note that edges only meet in nodes.

– For each i ∈ IN we let IE (i) be the set of indexes corresponding to edges for
which xi is a node. For each i ∈ IN we let IE (i) be the set of indexes j such that
xi is an end point of Γ j , see Fig. 2.

– The graph Γ defines a partition of Ω into N subdomains Ωi , i = 1, . . . , N .

The Kirchhoff condition The governing equations are given by (2.1)–(2.4) together
with two conditions at each of the nodes xi ∈ N , the continuity condition

uΓk (xi ) = uΓl (xi ) ∀k, l ∈ IE (i) (5.1)

and the Kirchhoff condition
∑

j∈IE (i)

(tΓ j · aΓ j ∇Γ j uΓ j )|x j = 0 (5.2)

where tΓ j (xi ) is the exterior tangent unit vector to Γ j at xi . Note that in the special
case when a node xi is an end point of only one curve the Kirchhoff condition becomes
a homogeneous Neumann condition.

5.2 The finite element method

Forms associated with the bifurcating interface Let VΓ = {v ∈ C(Γ ) : v ∈
H1(Γ j ), j ∈ IE } and V = H1

0 (Ω)∩VΓ . We proceed as in the derivation (2.8)–(2.11)
of the weak problem (2.12) in the standard case. However, when we use Green’s
formula on Γ we proceed segment by segment as follows

∑
j∈IE

− (∇Γ j · aΓ j ∇Γ j u j , 〈v j 〉∗
)
Γ j
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=
∑
j∈IE

(
aΓ j ∇Γ j u,∇Γ j 〈v〉∗

)
Γ j

−
∑
j∈IE

∑
i∈IN ( j)

(
ti · aΓ j ∇Γ j u, 〈v〉∗

)
xi

(5.3)

=
∑
j∈IE

(
aΓ j ∇Γ j u,∇Γ j 〈v〉∗

)
Γ j

−
∑
i∈IN

∑
j∈IE (i)

(
ti · aΓ j ∇Γ j u, 〈v〉∗ − 〈〈v〉∗〉i

)
xi

(5.4)

where we changed the order of summation and used the Kirchhoff condition (5.2) to
subtract the nodal average

〈v〉i =
∑

j∈IE (i)

κΓ
j v j (xi ) (5.5)

where 0 < κΓ
i , and

∑
j∈IE (i) κΓ

j = 1. Note that when a node xi is an end point
of only one curve the contribution from xi is zero, because in that case we have
〈〈v〉∗〉i |xi − 〈v〉∗ = 0 since there is only one element in IE (i), and thus we get the
standard weak enforcement of the homogeneous Neumann condition.

Symmetrizing and adding a penalty term we obtain the form

ah,Γ (v,w) =
∑
j∈IE

(
aΓ j ∇Γ j 〈v〉∗,∇Γ j 〈w〉∗

)
Γ j

−
∑
i∈IN

∑
j∈IE (i)

(
t j · aΓ j ∇Γ j 〈v〉∗, 〈w〉∗ − 〈〈v〉∗〉i

)
xi

−
∑
i∈IN

∑
j∈IE (i)

(〈v〉∗ − 〈〈v〉∗〉i , t j · aΓ j ∇Γ j 〈w〉)
xi

+
∑
i∈IN

∑
j∈IE (i)

βΓ h−1 (〈v〉∗ − 〈〈v〉∗〉i , 〈w〉∗ − 〈〈w〉∗〉i )xi (5.6)

where βΓ is a stabilisation parameter with the same function as β. A similar derivation
can be performed for a two dimensional bifurcating fracture embedded into R

3, see
Hansbo et al. (2017) for further details.

To ensure coercivity we add a stabilization term of the form

sh,Γ (v,w) =
∑
j∈IE

sh,Γ j (v,w) (5.7)

where
sh,Γ j (v,w) = ([∇Γ j 〈v〉∗], [∇Γ j 〈w〉∗]

)
Xh(Γ j)

(5.8)

and Xh(Γ j ) is the set of points
Γ j ∩ Fh(xi ) (5.9)

whereFh(xi ) is the set of interior faces in the patch of elementsNh(T (xi )) and T (xi )
is an element such that xi ∈ T .
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We finally define the form Ah,Γ associated with the bifurcating crack by

Ah,Γ (v,w) = ah,Γ (v,w) + sh,Γ (v,w) ∀v ∈ Wh (5.10)

Themethod Define

Wh =
N⊕
i=1

Vh,i (5.11)

where Vh,i = Vh |Th,i . The method takes the form: find uh ∈ Wh such that

Ah(uh, v) = lh(v) ∀v ∈ Wh (5.12)

where

Ah(v,w) =
N∑
i=1

Ah,i (v,w) + Ah,Γ (v,w) (5.13)

and
Ah,i (v,w) = ah,i (v,w) + sh,i (v,w) (5.14)

6 Numerical examples

6.1 Implementation details

We will employ piecewise linear triangles and extend the implementation approach
proposed in Hansbo and Hansbo (2002) to include also bifurcating fractures. Recall
that Th(Γ ) denotes the set of elements intersected by Γ , where each side of the
intersection belongs to Ω1 and Ω2, respectively. For each element in Ti ∈ Th(Γ ),
we assign elements Ti,1 ∈ Th,1 and Ti,2 ∈ Th,2 by overlapping the existing element
Ti ∈ Th(Γ ) using the same nodes from the original triangulation. Elements Ti,1 and
Ti,2 coincide geometrically, see Fig. 3. To ensure continuity, we used the same process
on the neighboring elements and checked if new nodes had already been assigned. For
each bifurcation point, two approaches can be adapted. Either by letting the bifurcation
point coincide with a node or by the less straight-forward approach to overlap the
existing element Ti ∈ Th(Γ ) into Ti,1, Ti,2 and Ti,3, see Fig. 4. For simplicity of
implementation, we have here chosen to let the bifurcating point coincide with a node.
The triangles Ti /∈ Th(Γ ) were handled in the usual way. The stabilization (3.19) was
only applied to the cut sides of the elements which in all examples was sufficient for
stability.

6.2 Example 1: No flow in fracture

We consider an example on Ω = (0, 1) × (0, 1), from Hansbo and Hansbo (2002).
We solved the example with an added bifurcation point. For the added fracture, we
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Fig. 3 The split of a triangle without bifurcation point
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j1

i3

k3

Ω1

Ω2
Ω2

Ω3

Ω1

Ω3

Ti,1

Ti,2

Ti,3

Fig. 4 The split of a triangle with bifurcation point

denote the diffusion coefficient by aΓ1 . The exact solution is given by

u(x, y) =
{

r2
a1

, if r � r0
r2
a2

− r20
a2

+ r20
a1

, if r > r0
(6.1)

where r = √
x2 + y2. We chose r0 = 3/4, a1 = 1, a2 = 1000 and aΓ = aΓ1 = 0,

with a right-hand side f = − 4 and fΓ = 0. The boundary conditions were symmetry
boundaries at x = 0 and y = 0 and Dirichlet boundary conditions corresponding to
the exact solution at x = 1 and y = 1. This example is outlined in Figs. 5 and 6. We
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Ω2

Γ1

Ω3

Ω1

Fig. 5 Active meshes with two embedded fractures, Example 1

Fig. 6 The red edges indicates
the selection for computing
stabilization terms asscording to
(3.19) (color figure online)

Fig. 7 Elevation of the
approximate solution with two
embedded fractures, Example 1

give the elevation of the approximate solution in Fig. 7, on the last mesh in a sequence.
The corresponding convergence of the L2-norm and the energy-norm is given in Fig. 8.

6.3 Example 2: Flow in the fracture

We considered a two-dimensional example on the domain Ω = (
1, e5/4

) × (
1, e5/4

)
,

from Burman et al. (2017). We solved the example with an additional fracture added,
see Fig. 9. The exact solution is given by
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Fig. 8 L2-norm and energy-norm convergence using natural logarithmwith two embedded fractures, Exam-
ple 1. Dotted lines signify optimal convergence. Inclination 1:1 for energy-norm and 2:1 for L2-norm

Γ1

Ω2
Ω3

Ω1

Fig. 9 Active meshes with two embedded fractures, Example 2

u1 = log (r)

5
(4 + e) for 1 < r < e,

u2 = 4 − 4e

5

(
log (r) − 5

4

)
+ 1 for e < r < e5/4,

where
√
x2 + y2 := r = e. We chose a1 = a2 = aΓ = 1 and the right hand side

to f = fΓ = 0. For the added crack we chose aΓ1 = 0. The Dirichlet boundary
conditions corresponding to the exact solution at x, y = 1 and x, y = e5/4. In Fig. 10,
we give the elevation of the approximate solution. The corresponding L2-norm con-
vergence and the energy-norm is given in Fig. 11.

6.4 Example 3: Flow in bifurcating fractures

We consider an example with two bifurcating points. The fractures are modeled using
higher order curves. In Fig. 12 we show the fractures and construction of individual
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Fig. 10 Elevation of the
approximate solution with two
embedded fractures, Example 2
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Fig. 11 L2-norm and energy-norm convergence using natural logarithm with two embedded fractures,
Example 2. Dotted lines signify optimal convergence. Inclination 1:1 for energy-norm and 2:1 for L2-norm

Γ

Ω

Fig. 12 Active meshes with two bifurcating points, Example 3

elements. On the domain Ω = (0, 1) × (0, 1), we chose a1 = a2 = 1, fΩ = 1
and fΓ = 0. We impose the Dirichlet boundary conditions u = 0 at x, y = 0 and
u = 0 at x, y = 1. For the diffusion coefficient, we denote aΓi for each fracture where
aΓi ∈ {0, 100} and assign an individual value for each Γi , see Fig. 13. We report six
different solutions by allowing different fractures to be active. The first result have
been obtained with aΓi = 0, thus no flow in the fractures is allowed, see Fig. 14.
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Fig. 13 Embedded fractures
with assigned Γ , Example 3

Γ2
Γ3

Γ4
Γ5

Ω

Γ1

Fig. 14 Elevation of the approximate solution using two bifurcating points, Example 3. Assigned value to
the left figure: aΓ1 = aΓ2 = aΓ3 = aΓ4 = aΓ5 = 0, and assigned values to the right figure: aΓ1 = 100
and aΓ2 = aΓ3 = aΓ4 = aΓ5 = 0

Fig. 15 Elevation of the approximate solution using two bifurcating points, Example 3. Assigned value to
the left figure: aΓ1 = aΓ2 = 100 and aΓ3 = aΓ4 = aΓ5 = 0, and assigned values to the right figure:
aΓ1 = aΓ2 = aΓ3 = 100 and aΓ4 = aΓ5 = 0

Further, each solution has one additional fracture activated by changing the diffusion
coefficent aΓi = 100, see Figs. 14, 15 and 16. The last solution is presented with flow
in all fractures.
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Fig. 16 Elevation of the approximate solution using two bifurcating points, Example 3. Assigned value to
the left figure: aΓ1 = aΓ2 = aΓ3 = aΓ4 = 100 and aΓ5 = 0, and assigned values to the right figure:
aΓ1 = aΓ2 = aΓ3 = aΓ4 = aΓ5 = 100

7 Concluding remarks

We proposed a discontinuous finite element method using a one–field approach to
modelling Darcy flow in a cracked medium. The pressure in the crack was modelled
as an average of pressure on either side of the crack which, unlike our previous work
(Burman et al. 2017), allows for pressure jumps across the crack. In particular, the case
of bifurcating fractures was considered. Optimal order error estimates were proven
and backed up by numerical experiments. Extension to other flow models in the crack
have been considered in Burman et al. (2018).
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