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ABSTRACT

In gravitational microlensing, binary systems may act as lenses or sources. Identifying lens binarity is generally
easy, in particular in events characterized by caustic crossing since the resulting light curve exhibits strong
deviations from a smooth single-lensing light curve. In contrast, light curves with minor deviations from a
Paczyński behavior do not allow one to identify the source binarity. A consequence of gravitational microlensing is
the shift of the position of the multiple image centroid with respect to the source star location— the so-called
astrometric microlensing signal. When the astrometric signal is considered, the presence of a binary source
manifests with a path that largely differs from that expected for single source events. Here, we investigate the
astrometric signatures of binary sources taking into account their orbital motion and the parallax effect due to the
Earth’s motion, which turn out not to be negligible in most cases. We also show that considering the above-
mentioned effects is important in the analysis of astrometric data in order to correctly estimate the lens-event
parameters.
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1. INTRODUCTION

Gravitational microlensing is a mature technique for detecting
compact objects in the disk and in the halo of our Galaxy via the
observation of the light magnification of source stars due to the
intervening lenses. Indeed, advances in technological instrumen-
tation has allowed gravitational microlensing to detect and
characterize low-mass objects (see, e.g., Park et al. 2015) as well
as binary lens systems (see, e.g., Udalski et al. 2015) including
planetary systems with planets masses down to Earth mass with
host–planet separations of about a few AU.

In addition to the magnification of the source brightness,
another phenomenon related to microlensing is the shift of the
light centroid of the source images. This subject was studied by
many authors (see, e.g., Høg et al. 1995; Miyamoto &
Yoshii 1995; Walker 1995; Paczyński 1996, 1998; Jeong et al.
1999; Dominik & Sahu 2000; Takahaschi 2003; Lee
et al. 2010). In the simplest case of a point lens, lensing
causes the source image to split into two and the position of the
light centroid with respect to the unlensed source star position
traces out an ellipse with semi-axes depending, in general, on
the lens impact parameter u0 (the minimum projected distance
of the lens to the source star) and the shape of the astrometric
trajectory does not depend on the Einstein time tE.

When the lens is a binary system (see, e.g., Han et al. 1999;
Safizadeh et al. 1999; Bozza 2001; Han et al. 2001;
Hideki 2002; Sajadian & Rahvar 2015), the number and the
position of the images differ from those of the single lens case
and the astrometric signal trajectory and the deviation varies
depending on on the binary system parameters (i.e., the mass
ratio and the component separation).

It is evident that in both cases astrometry gives more
information than that derived from the analysis of light curves
(photometry), allowing one to better constrain the lens system.1

A further advantage of astrometric microlensing is that an
event is potentially observable for a much longer time with
respect to the typical photometric event because astrometric
signals persist to much longer lens–source separations than
photometric signals (see the following sections). In addition,
interesting events can be predicted in advance (Pac-
zyńsky 1995) and, indeed, by studying in detail the
characteristics of stars with large proper motions, Proft et al.
(2011) identified dozens of candidates for astrometric micro-
lensing observations using the Gaia satellite, an European
Space Agency mission, which is performing photometry,
spectroscopy, and high precision astrometry (Eyer et al. 2013).
Binary star systems can act as sources of microlensing

events. In this regard, each component of the binary system
acts as an independent source (with given impact parameter)
for the intervening lens and the resulting light curve
corresponds to a a superposition of the single-lensing light
curves associated with the individual source stars. However,
although Griest & Hu (1992) predicted that about 10% of the
observable events should involve features of a binary source,
few clear detections of such systems have been reported to
date.2 As argued by Dominik (1998b), the lack of binary source
events may be explained by the fact that most of the light
curves for events involving a binary source can be explained by
a single lens model with a blended source. Thus binary sources
are hidden in photometric observations. This is certainly not the
case for astrometric microlensing observations, for which, as
first pointed out by Han & Kim (1999) and Dalal & Griest
(2001), the binarity of the source strongly modifies astrometric
signals. However, these authors accounted for the binary source
effect by considering the centroid shift as being due mainly to
the primary object while treating its companion as a simple
blending source. This simplifying assumption is overcome in
the present paper where both components of the binary source
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1 We mention that other methods to deal with the parameter degeneracy
problem rely on the measurement of the lens proper motion (see, e.g., Bennett
et al. 2015) or on polarization observations (Ingrosso et al. 2014, 2015) in
ongoing microlensing events.

2 Jaroszyński et al. (2004), analyzing the OGLE-III Early Warning System
database for seasons 2003–2004, reported 15 events possibly interpreted as
binary sources lensed by single objects (see also Hwang et al. 2013).
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and their relative motion are considered in calculating the
resulting astrometric path.

Several theoretical studies (see, e.g., Dominik 1997, 1998a,
Penny et al. 2011a, 2011b; Nucita et al. 2014; Giordano
et al. 2015) already pointed out the importance of considering
the orbital motion of a binary lens system in microlensing light
curves and observation of peculiar microlensing events (see,
e.g., Park et al. 2015; Skowron et al. 2015, and Udalski
et al. 2015), demonstrating the necessity to account for such an
effect. Here, we investigate the effects on the astrometric
signals of the binary source orbital motion, also taking into
account Earth’s parallax effect. We show that both effects are
not negligible in most astrometric microlensing observation.

The paper is structured as follows. In Section 2, we briefly
review the basics of astrometric microlensing for a single lens
and source. In Section 3, we discuss the expected astrometric
signal for binary source events (static or not) lensed by single
or binary objects and show that the centroid shift trajectories
strongly deviate from the pure elliptical shape. In Section 4, we
consider Earth’s motion and study the deviation in astrometric
curves induced by the parallax effect. We address our
conclusion in Section 5.

2. BASICS OF ASTROMETRIC MICROLENSING

For a source at angular distance qS from a point-like
gravitational lens, the positions θ of the images with respect to
the lens are obtained by solving the lens equation (Schneider
et al. 1992)
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E
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with M the lens mass, and DS and DL the distances from the
observer to the source and lens, respectively. When the Einstein
radius is expressed as a linear scale q=R DLE E the lens
equation becomes
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where dS and d are the linear distances (in the lens plane) of the
source and images from the gravitational lens, respectively.
Using the dimensionless quantities
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the lens equation can be further simplified as
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give the locations of the positive and negative parity images (+
and −, respectively) with respect to the lens position. The two
images have magnifications

( )m = 
+

+
+ -

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

u

u u

1

2
1

2

4
, 7,

2

2

so that the total magnification is (Paczyńsky 1986),
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Note that, in the lens plane, the + image always resides outside
a circular ring centered on the lens position with radius equal to
the Einstein angle, while the − image is always within the ring.
As the source–lens distance increases, the + image approaches
the source position while the − one (becoming fainter) moves
toward the lens location. For u 1, the magnification can be
approximated3 as (see, e.g., Dominik & Sahu 2000)
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while for u 1, one has
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so that for large angular separations, the lensing effect produces
a source magnitude shift of
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Let us consider now a source moving in the lens plane with
transverse velocity v⊥ and let x hL be a frame of reference
centered on the lens, with the ξ axis oriented along the velocity
vector and the η axis perpendicular to it. Then, the projected
coordinates of the source (in units of the Einstein radius) result
as

( ) ( ) ( )x h=
-
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t t

t
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where = ^t R vE E is the Einstein timescale of the event and u0
is the distance of closest approach or impact parameter (in this
case lying on the η axis) occurring at time t0. Thus, since

x h= +u2 2 2, the two images move in the lens plane during
the gravitational lensing event. The centroid of the image pair
can be defined as the average position of the + and − images
weighted by the associated magnifications (Walker 1995)
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so that, by symmetry, the image centroid is always at the same
azimuth as the source. The measurable quantity is the
displacement of the centroid of the image pair relative to the
source, i.e.,
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Considering the next order approximation, one obtains
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which is a function of the time since u is time dependent. One
can easily realize that D may be viewed as a vector
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with components along the axes
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Here, we remark that all the angular quantities are given in
units of the Einstein angle qE which is related to the physical
lens parameters as
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Note that while theDh component is symmetric with respect to
t0 and always positive, theDx component is an anti-symmetric
function with minimum and maximum values occurring at

 +t t u 20 E 0
2 , respectively.

One can also verify that, in contrast to the magnification μ
(which diverges for u 00 ), the maximum centroid shift
equals to 2 4 for =u 20 . In particular, due to the anti-
symmetry of the ξ component, for <u 20 the shift goes
through a minimum at =t t0 and has two maxima at

 -t t u20 E 0
2 . Conversely, for u 20 , Δ assumes the

single maximum value equal to ( )+u u 20 0
2 at =t t0. As first

noted by Dominik & Sahu (2000), for u 2 the centroid
shift tends linearly to zero (hence, D u 2) while the
photometric magnification increases toward small lens–star
separation. In addition, for u 2 one has D u1 , so that
the centroid shift falls more slowly than the magnification—see
Equation (12)—thus implying that the centroid shift could be a
promising observable also for large source–lens distances, i.e.,
far from the light curve peak. In fact, in astrometric
microlensing the threshold impact parameter uth (i.e., the value
of the impact parameter that gives an astrometric centroid
signal larger than a certain quantity dth) is

( )d= ^u T v DLth obs th where Tobs is the observing time and
v⊥ the relative velocity of the source with respect to the lens.
For example, the Gaia satellite would reach an astrometric
precision of s 300G μas (for objects with visual magnitude
20) in five years of observation (Eyer et al. 2013). Then,
assuming a threshold centroid shift d sGth , one has u 60th
for DL=0.1 kpc and v̂ 100 km s−1. For comparison, the
threshold impact parameter for a ground-based photometric
observation is 1. Thus, the cross section for astrometric
microlensing, and consequently the event rate, is much larger
than that of the photometric observation since it scales as uth

2 .
It is straightforward to show (Walker 1995) that during a

microlensing event the centroid shift Δ traces (in the D Dx h,
plane) an ellipse centered in the point ( )b0, . The ellipse
semimajor axis a (along Dh) and semiminor axis b (along Dx)
are
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it is evident that for  ¥u0 the ellipse becomes a circle with
radius ( )u1 2 0 and it becomes a straight line of length 1 2 ,
for u0 approaching zero. Note also that from Equation (20) one

finds that

( ) [ ( ) ] ( )= - -u b a b a2 1 . 210
2 2 2 1

Hence (in the absence of finite-source and blending effects) by
measuring a and b, one can directly estimate the impact
parameter u0. In addition, in the case of small impact
parameters ( <u 20 ) the Einstein time tE can be readily
derived by measuring the time lag between the peak features
(see, e.g., Figure 1 in Dominik & Sahu 2000).

3. ASTROMETRIC MICROLENSING FOR
A BINARY SOURCE

Here, we study the astrometric path for a rotating binary
source lensed by a single lens or by a binary system. As pointed
out by Dominik (1998b), in the case of a binary source with a
single intervening lens, the resulting light curve is the
superposition of the Paczyńsky amplifications associated to
the individual binary components. Since, typically, only one
source is highly magnified, the convolved light curve can be
well fitted by a single lens model with a blended source so that
the binary source event is missed completely. However, as
noted by Han & Kim (1999) (but see also Dalal & Griest 2001),
for binary source events the astrometric signal strongly deviates
from that expected in the single source case. In particular, Han
(2001) showed that the centroid shift at time t can be obtained
via a weighted average of the individual source component
amplifications with respect to the reference position the center
of light between the unlensed source components, i.e.,
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m m
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where ui are the distances between the lens and the individual
binary source components, mi andDi the magnification factors
and the centroid shifts of the two single sources (as given by
Equations (8) and (17)) having luminosity Fi with subscripts
i = 1 and i = 2 for the primary object and its companion,
respectively.
Several studies (Dominik 1997; Penny et al. 2011a, 2011b;

Nucita et al. 2014; Giordano et al. 2015 and Luhn et al. 2015)
and microlensing observations (Park et al. 2015; Skowron
et al. 2015, and Udalski et al. 2015) pointed out the necessity to
consider the orbital motion of the lens components in
photometric studies.
In astrometric observation of microlensing events, the lens

orbital motion gives rise to single or multiple twists in the
astrometric path of D showing the importance of considering
this effect in any fit procedure. The same is also true if one
considers the astrometric signal due to binary sources. Let us
define by m1 and m2 as the masses of the two source
components (with <m m2 1 so that = <q m m 12 1 ), and total
mass normalized to unity, i.e., + =m m 11 2 . In this case, the
separations of the individual source components from the
center of mass are, respectively

( )
m m

= - =r
m

b r
m

b, , 23r r
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2

2

where the reduced mass is ( )m = +q q1r
2 and b represents

the binary semimajor axis in units of the RE. Hence, the
components of the position vectors of the binary source objects
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in the lens plane with respect to the lens (at the origin of the
adopted reference frame) are

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
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x x q h h q
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= + = +

t t r t t t r t

t t r t t t r t

cos , sin ,

cos , sin ,

24
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where ( )x tcm and ( )h tcm are the coordinates at time t of the
center of mass, given in Equation (14) and the polar angle
depends on the Keplerian orbital period P as q =

( )p -t t P2 0 . Note that in this toy-model we are assuming
binary sources moving on circular orbits: the most general case
of elliptic orbits (with r1 and r2 depending also on time t) can
be easily accounted for by solving the associated Kepler
problem (see, e.g., Nucita et al. 2014 and references therein).

In Figure 1, we present the source path (left panels) and the
astrometric shift (right panels) for a simulated microlensing
event involving a binary source. The binary source system is
constituted by two objects with equal mass ( = =m m 11 2 M )
and luminosity ( = =F F 11 2 L ), separated by a distance of
10 AU. The binary source is assumed to reside in the galactic
bulge, i.e., D 8 kpcS . The lens (located at =D 1 kpcL from
the observer) has mass ml= 1 M , impact parameter u0= 0.5,
and moves with a projected velocity =v̂ 100 km s−1, thus
implying an Einstein angular radius q = 2.7E mas. For the
simulated event, t 46E days and P 8674 days. In panels
(a) and (b), we consider a static binary source, while in panels
(c) and (d) the source system orbital motion is taken into
account. In Figure 2, we consider the expected astrometric
microlensing signal for a static—panels (a) and (b)—and a
rotating—panels (c) and (d)—binary source, respectively.
Here, we assumed two objects with masses =m 11 M , and
m2= 0.1 M , separated by 1 AU and fixed the intrinsic
luminosities to =F 11 L , and F2= 0.01 L . We furthermore
set u0= 0.01. For such case, the binary source orbital period
turns out to be P 370 days. In both Figures, the solid curves
represent the centroid shift ellipse expected for a single source
located at the center of mass of the binary source system. It is
evident that the presence of a binary source system introduces
deformations of the astrometric signal with respect to the pure
ellipse case. This is also true when the orbital motion of the
binary source system is taken into account as illustrated in the
lower panels of Figures 1 and 2, where modulations with a
timescale corresponding to the source system orbital period do
appear.

Note that, for the considered cases, the astrometric signal,
q 2.7E mas, matches well within the astrometric precision of

the Gaia satellite in five years of integration. This opens the
possibility to detect binary systems as sources of astrometric
microlensing events and characterize their physical parameters
(mass ratio, projected separation, and orbital period).

We would like to mention the challenging possibility for
Gaia-like observatories to also detect astrometric microlensing
events involving both binary sources and binary lenses. For the
sake of simplicity, we do not consider here the orbital motion
of the systems. For such cases, Equation (22) remains valid
provided that the centroid shifts Di of each components of the
binary source system are obtained solving numerically the two-
body lens equation. In this case the lens equation is expressed

as (Witt 1990; Witt & Mao 1995; Skowron & Gould 2012),

¯ ¯
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+

+
z

m

z z
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, 25i i

L
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L i
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where mL,1 and mL,2 are the masses of the binary lens
components (with <m mL L,2 ,1 so that )= <q m m 1L L L,2 ,1 , zL,1

and zL,2 are the positions of the lenses (separated by bL), and
z x h= + ii i i and = +z x iyi i i are the positions of the binary
source components and associated images, respectively. The
lens components are located on the ξ axis with the primary at
( )-b 2, 0L and secondary at ( )b 2, 0L .

In this case, the centroid shifts with respect to the position of
the unlensed star (one per each of the intervening source, see
also Han 2001) are

( ) ( ) ( )x hD D = - -x h x y, , , 26i i c i i c i i, , , ,

where the positions of the source star centroid are simply the
average of the locations of the individual images weighted by
each corresponding amplification mj i, , i.e.,

( ) ( )å åm m m m=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x y x y, , . 27c i c i

j
j i i i

j
j i i i, , , ,

Here, mi is the total amplification (i.e., m m= åi j j i, , with j
running over the image number) and, as above, i= 1, 2
indicates the primary and secondary component of the binary
source system. As an example, in panel (a) of Figure 3, we
present the paths of the primary (dotted line) and secondary
(dashed line) components of the binary source system
characterized by b= 0.5, and q = 1. The solid line indicates
the path followed by the center of mass. The binary source
system (assumed here for simplicity to be static) is lensed by a
binary lens with = =b q 0.1L L and the event impact parameter
is u0= 0.5. The asterisk and diamond represent the positions of
the primary and secondary lenses, respectively. In panel (b) we
give the astrometric signal (dashed line) expected for the
simulated microlensing event. For comparison, the solid line
represents the astrometric signal associated with the same
binary lens acting on a single point-like source. Note that the
presence of a binary source gives a substantial difference with
respect to the single source case which, for the assumed
simulated event parameters, amounts to  q0.1 270E μas,
well within the Gaia capabilities. In panels (c) and (d), we set
the event impact parameter to u0= 0.05, leaving the other
parameters unchanged. In this case the astrometric signal is
completely different with respect to the previous case. This is a
general behavior of the astrometric shift curves which strongly
depend on even small changes of the system’s physical
parameters. It goes without saying that, conversely to what
happens with standard photometric microlensing, a fitting
procedure on the observed astrometric data may provide a
robust estimate of the microlensing event parameters. This is
clear when considering events that are not well sampled, such
as OGLE 2002-BLG-099 (see Jaroszyński et al. 2004 for
details) where different interpretations of the photometric data
are statistically acceptable. In particular, the considered event
can be described as being due to a single source lensed by a
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binary system or by a double source lensed by a single object.
While the light curve analysis does not allow one to distinguish
between these models, it is clear from Figure 4 that astrometric
observations would have resolved the degeneracy since the
astrometric signals associated with the two cases are com-
pletely different. Indeed, considering the most likely values for
the total lens mass and distance of0.47 M and D 5.7 kpcL

(Dominik 2006) one obtains q 470E μas. Hence, from
Figure 4, astrometric observations with precision of at least 40
−50 μas (i.e., within the capabilities of the Gaia satellite)
would make possible the distinction between the two different
configurations.

4. EARTH PARALLAX EFFECTS ON
ASTROMETRIC MICROLENSING

In photometric observation of microlensing events the
parallax effect, due to Earth’s motion, generally induces minor
anomalies unless the event Einstein time is comparable with (or
longer than) the Earth’s orbital period (see, e.g., Wyrzykowski
et al. 2016). On the contrary, in astrometric microlensing
Earth’s orbital motion is not negligible even for short duration
events. Here, based on the seminal idea by Paczyński (1998)
we account for the parallax effect following the formalism
provided by Dominik (1998a) in the approximation of small
orbital eccentricity. Let ( )x t0 and ( )h t0 be the coordinates of the

Figure 1.We give the source path (left panels) and the corresponding astrometric curves (right panels) for a binary source with components of mass = =m m 11 2 M ,
with the same luminosity, and separated by 10 AU. The lens has a mass of ml = 1 M , is located at =D 1 kpcL and moves with a projected velocity =v̂ 100 km s−1,
thus implying an Einstein angular radius of 2.7 mas. The event impact parameter is u0 = 0.5. The upper panels show the expected signal for a static binary source,
while in the bottom ones the orbital motion is taken into account. For the simulated event, the Einstein time and the binary source orbital period are t 46E days and
P 8674 days, respectively. In the right panels the continuous ellipses represent the astrometric trajectories for a single source located in the center of mass, while

dashed lines stand for the binary source.
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source (not corrected for parallax effect) in the lens plane at
time t. The new coordinates are

( ) ( ) ( ˜ ( ) ˜ ( ))
( ˜ ( ) ˜ ( )) ( )

x x y
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= + -
+ -

t t x t x t
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2 2 0
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( ) ( ) ( ) ( )n e j= + -Åt M t M t d2 sin , 29

( ) ( )p=
-

Å
M t

t t

P
e2 , 29

p

( )=x D D f29L S

In the previous equations, M(t) is the mean anomaly of the
Earth, tp is the last time of perihelion passage, so that M lies in
the interval [ [ ( )p n t0, 2 , its true anomaly shifted by j. In
addition, j and χ are, respectively, the longitude and the
latitude of the source measured in the ecliptic plane as
prescribed by Dominik (1998a), while ψ is the relative
orientation of v̂ to the Sun–Earth system. Here,
 ´Åa 1.49 10 cm13 is the Earth orbit semimajor axis4,

e =Å 0.0167 is its eccentricity, and =ÅP 365.26 days the
orbital period. In the definition of ( )¢A t , note that

( )r¢ = -Åa x R1 E is the Earth semimajor axis projected onto

Figure 2. Same as in Figure 1, for a binary source with components of mass =m 11 M , m2 = 0.1 M , =F 11 , = -F 102
2, and separated by 1 AU. The lens has a mass

of ml = 1 M , is located at =D 1 kpcL , and moves with a projected velocity of =v̂ 100 km s−1, thus implying an Einstein angular radius of 2.7 mas. The event
impact parameter is u0 = 0.01. For the simulated event, the Einstein time and the binary source orbital period are 46 days and 369 days, respectively.

4 Note that the Gaia satellite is placed at the Lagrangian Point L2 at about
´1.5 106 km from Earth, a distance much smaller than the Sun–Earth

semimajor axis. It is therefore reasonable to apply the Earth parallax correction
described in this section also to Gaia observations.
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Figure 3. We give the source path (left panels) for the primary source (dotted line), its companion (dashed line), and the associated center of mass (solid line). The
asterisk and diamond represent the location of the primary and secondary lens, respectively. The expected astrometric signal is given in the right panels for a binary
source (b = 0.5, q = 1) lensed by a binary lens ( = =b q 0.1) with impact parameter u0 = 0.5 (panel b) and impact parameter u0 = 0.05 (panel d).

Figure 4. For the event OGLE 2002-BLG-099, we give the simulated astrometric path for the binary lens and single source (left panel for q = 0.248, b = 1.963,
u0 = 0.09, and tE = 24.4 days) and for the single lens and binary source (right panel for =u 0.08210,1 , =u 0.02940,2 , corresponding to peak times of =t 2402.930,1

days and =t 2425.230,2 , tE = 47.1 days, and blending parameters f1 = 0.147 and f2 = 0.051) cases, respectively.
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the lens plane, in units of Einstein radii, and is a measure of the
importance of the parallax effect.
In Figure 5, we show the astrometric curves (obtained with

an integration time of 5 years) for three simulated events
taking into account the Earth parallax and assuming
= =t t 0p0 . In all cases, we fixed the source coordinates to

be j = 2.93 rad, and c = -0.08 rad as in Dominik (1998a)
corresponding to ecliptic coordinates l = 271 , and b = - 5 .
In the upper panel, a single source is microlensed by a single

lens (x = 0.1, v= 30 km s−1, and tE = 50 days corresponding
to q 1E mas) for three different impact parameters. In the
middle panel, we fixed the impact parameter to u0= 0.64
leaving the other parameters unchanged. Dashed and contin-
uous curves are for two disk events at different distances from
the observer, x= 0.1 and x= 0.2 (corresponding to q 1E mas
and q 0.5E mas), respectively. The dotted line has been
obtained for a bulge lens (x= 0.9) with q 0.6E mas. The
inset shows the scaled astrometric signal in physical units.
Finally, in the bottom panel, we give the expected astrometric
signal (red curve) for a (static) binary source microlensed by a
single object, assuming the same parameters as in Figure 2 and
u0= 0.01. The black line corresponds to an event with impact
parameter u0= 0.1. In both cases, x= 0.1, q 2.5E mas, and
tE= 45.6 days.
It is worth mentioning that while in standard photometric

microlensing the parallax effect becomes more important close
to the event peak and (especially) for long events, in
astrometric observations the deviations with respect to the
pure ellipse path show up even in the case of events
characterized by short tE. Moreover, modulations with the
Earth orbital period appear, also at very large impact parameter
values where the photometric signal is useless. As a final note,
we remark that taking into account the source orbital motion
produces modulations with a peculiar frequency characteristic
of the system.

5. CONCLUSIONS

In this paper we considered the anomalies induced in
simulated astrometric events by the orbital motion of lens and/
or source binary systems taking into account the Earth’s
parallax effect. Considering and implementing these effects in
astrometric microlensing is essential in order to correctly
estimate the system parameters thus alleviating the parameter
degeneracy problem that afflicts photometric microlensing.
This issue is particularly important in the era of the Gaia
satellite, which is performing a survey of the whole sky
allowing one to obtain the astrometric path of microlensed
sources with unprecedented precision. Indeed, it has been
estimated that the Gaia mission will discover, in five years of
operation, 3500 photometric and 25,000 astrometric micro-
lensing events (Belokurov & Evans 2002) which will be
characterized by a astrometric precision down to 30 μas. An
even better precision could possibly be obtained by following
up the events discovered by Gaia with ground-based observa-
tions (such as Gravity at the Very Large Telescope, see
Eisenhauer et al. 2009 but also Zurlo et al. 2014) for a longer
observation time. This is important since the astrometric path of
a microlensing event changes substantially during a much
longer time interval than in the usual photometric observations.

Figure 5. Earth parallax effect on astrometric curves for three simulated
microlensing events (see the text for details).
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