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Abstract Introduction: Longitudinal cohort studies of cognitive agingmust confront several sources ofwithin-
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person variability in scores. In this article, we compare several neuropsychological measures in terms
of longitudinal error variance and relationships with biomarker-assessed brain amyloidosis (Ab).
Methods: Analyses used data from the Wisconsin Registry for Alzheimer’s Prevention. We quanti-
fied within-person longitudinal variability and age-related trajectories for several global and domain-
specific composites and their constituent scores. For a subset with cerebrospinal fluid or amyloid
positron emission tomography measures, we examined how Ab modified cognitive trajectories.
Results: Global and theoretically derived composites exhibited lower intraindividual variability and
stronger age ! Ab interactions than did empirically derived composites or raw scores from single
tests. For example, the theoretical executive function outperformed other executive function scores
on both metrics.
Discussion: These results reinforce the need for careful selection of cognitive outcomes in study
design, and support the emerging consensus favoring composites over single-test measures.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Understanding individual longitudinal cognitive change
requires parsing multiple sources of variability in scores.
In a longitudinal observational study, consistent decline
may indicate true change, whereas a succession of rises
and falls may not. However, true decline may be difficult
to detect when changes are subtle and fluctuations over
time are large—as in the beginning stages of a dementing
disorder such as Alzheimer’s disease (AD), where someone
may meet criteria for mild cognitive impairment (MCI) at
one visit but not the next [1]. Seeking measures with high
test-retest reliability may not solve the problem, as the
most stable tests may not be sensitive to early change. A
more subtle criterion that directly assesses longitudinal vari-
ability is the intraindividual standard deviation (IISD) over
repeated assessments [2]. Individuals with larger IISD may
be at higher risk of subsequent dementia [1–3] or other
impairment [4]; however, high IISD values in stable normal
samples may be inflated by measurement error. Strategies
for reducing error are necessary for understanding early
cognitive decline.

To understand variability across tests and time, longitudi-
nal studies of cognition typically include comprehensive
cognitive batteries assessing many domains [5,6]. Separate
analysis of each outcome without considering familywise
type I error risks spurious or irreproducible findings [7].
Alternatively, to reduce multiplicity, we can average individ-
ual tests into composite scores, as in, for example, the pre-
clinical Alzheimer’s cognitive composite (PACC), which
combines scores from tests of memory and executive func-
tion [8]. Such composite scores have attracted attention as
sensitive indicators of early cognitive change [9], and the
FDA has indicated openness to cognitive composite end-
points for anti-AD drug trials [10]. Several approaches to
devising composites have been proposed, including the
data-driven approach, in which empirical data reduction
techniques such as factor analysis are used to combine scores
that tend to covary [11]; the theory-driven approach, in
which established neuropsychological theories are used to
combine scores within a single cognitive domain [12]; and
the global approach, as in the PACC, in which representative
tests from multiple domains are combined in a theory-driven
way to estimate overall cognitive performance [8,13]. In
developing composites, reliability and validity must be
considered in tandem, ensuring the composite reflects the
construct of interest—a reduction in error variance must
not come at the cost of a weakened relationship to the
criterion [14]. If this is achieved, composite scores can limit
type I error and reduce error variance, improving statistical
power.

We assessed the suitability of several cognitive tests and
composites for identifying cognitive change in the context of
an ongoing longitudinal study of middle-aged and older
adults. We aimed to (1) identify which measures have the
lowest IISD, after adjusting for known sources of cognitive
variability, and (2) examine the criterion validity of each
measure by assessing its association with age and with
amyloid-accelerated decline during late middle age.
2. Methods

2.1. Participants

Analyses used longitudinal neuropsychological data from
participants in the Wisconsin Registry for Alzheimer’s
Prevention (WRAP), who are cognitively unimpaired at
the baseline. Only visits with complete data were included.
Participants having fewer than two complete visits
(N 5 397) or reporting a baseline neurological diagnosis
(N 5 43) were excluded. In addition, to ensure our measure
of longitudinal inconsistency was not inflated by the pres-
ence of clinically significant decline, we also excluded par-
ticipants who were diagnosed with MCI or dementia at any
visit (N 5 52). The effect of this exclusion criterion was
examined in a sensitivity analysis (Section 2.4.5). After
exclusions, this standardizing sample included data from
1063 participants with 2–5 visits (mean intervisit
interval 5 2.51 years). Participant characteristics are sum-
marized in Table 1.

Full-sample validity analyses compared age effects
across measures. Additional validity analyses used a subset
with cerebrospinal fluid (CSF) and/or [11C]Pittsburgh com-
pound B (PiB)-labeled positron emission tomography im-
ages, enabling in vivo estimates of amyloid burden
(N 5 226). To ensure the widest range of amyloidosis, this
biomarker sample included 11 additional participants with
MCI or dementia who had available amyloid estimates,
but had been excluded from the standardizing sample. The
effect of these participants on results was examined in a
sensitivity analysis (Section 2.4.5).

Procedures were performed in compliance with ethical
standards for human subjects research, and all participants
provided informed consent.
2.2. Assessments

Participants in WRAP complete a comprehensive cogni-
tive battery described in full elsewhere [5]. Cognitive tests
incorporated in the current analyses include the Rey
Auditory-Verbal Learning Test (AVLT) [15]; the Logical
Memory subtest of the Wechsler Memory Scale—Revised
(LM) [16]; the Brief Visuospatial Memory Test—Revised
(BVMT) [17]; the Stroop test, Color–Word Interference
(STROOP) [18]; the Trail Making Test, parts A and B
(TMT-A and TMT-B) [19]; the Digit Symbol subtest of the
Wechsler Adult Intelligence Scale—Revised (DIGSYM)
[20]; the Controlled Oral Word Association Test, CFL
version (CFL) [21]; and the Mini-Mental State Exam
(MMSE) [22]. We quantified baseline literacy using the
Reading subtest of the Wide Range Achievement Test—
Third Edition [23].



Table 1

Demographic characteristics of the WRAP sample

Sample characteristic

Cognitively unimpaired

sample

Biomarker

subsample

Excluded from

standardization sample

N 1063 226 492

Age at WRAP recruitment, y, mean (SD) 53.9 (6.5) 54.8 (6.4) 54.9 (7)

Age at first visit selected, y, mean (SD) 58.2 (6.4) 58.7 (6.1) –

Number of study visits included, median (range) 3 (2–5) 4 (2–5) –

Sex, male, N (%) 322 (30%) 74 (33%) 137 (28%)

Education, some college or less, N (%) 399 (38%) 74 (33%) 252 (52%)

White/Caucasian 1014 (95%) 214 (95%) 360 (73%)

Black/African American 29 (3%) 8 (4%) 95 (19%)

Spanish/Hispanic 8 (1%) 1 (0%) 30 (6%)

American Indian/Native American 9 (1%) 2 (1%) 5 (1%)

Asian 3 (0%) 1 (0%) 1 (0%)

Parental history of AD, N (%) 772 (73%) 168 (74%) 357 (73%)

WRAT-3 reading standard score, median (range) 107 (66–120) 109 (66–119) 103 (45–120)

MMSE total, median (range) 30 (23–30) 30 (26–30) 30 (25–30)

Amyloid PET data, N (%) – 206 (91%) –

CSF amyloid data, N (%) – 128 (57%) –

Amyloid positive, N (%) – 58 (26%) –

Too few visits – – 397 (81%)

Baseline neuro dx – – 43 (9%)

Clin dx – – 52 (11%)

Abbreviations: AD, Alzheimer’s disease; WRAP, Wisconsin Registry for Alzheimer’s Prevention; PET, positron emission tomography; CSF, cerebrospinal

fluid; MMSE, Mini-Mental State Exam; WRAT, Wide Range Achievement Test.
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2.3. Biomarker methods

Methods for processing CSF are described in full else-
where [24]. Briefly, 22 mL of CSF were removed from the
L3-L4 or L4-L5 vertebral interspace for each participant.
These samples were processed at the Clinical Neurochem-
istry Laboratory at the Sahlgrenska Academy of the Univer-
sity of Gothenburg, Sweden. Samples were sent in batches at
two time points and analyzed using commercially available
enzyme-linked immunosorbent assay methods. CSF sam-
ples were assayed for Ab42 and Ab40 and corrected for batch
as previously described [24]. 128 participants in the present
study had available CSF Ab42 and/or Ab40.

206 participants underwent 70-minute dynamic [11C]PiB
positron emission tomography scans (Siemens EXACT
HR1) initiated with bolus injection (nominal 555 MBq).
[11C]PiB radiochemical synthesis, positron emission tomog-
raphy data acquisition, image processing and quantification
have been described in depth previously [25]. The primary
measure was average cortical [11C]PiB distribution volume
ratio (reference Logan graphical analysis, cerebellum gray
matter reference region, k2 5 0.149 min21 [26,27]) across
eight bilateral regions of interest (angular, anterior, and
posterior cingulate, medial orbitofrontal, supramarginal,
middle, and superior temporal gyri, and precuneus) [28].
2.4. Statistical methods

2.4.1. Composite measures
We considered five composites based on previous factor

analyses of the WRAP battery [11,29], representing
immediate learning (EMP-IMM-LRN); delayed recall
(EMP-DEL-REC); executive function (EMP-EXEC-FN);
story recall (EMP-LM); and visuospatial learning (EMP-
BVMT) (Table 2, columns 1–5). While item inclusion in
the factor analysis was guided by theoretical perspectives
on cognitive decline, the loadings and factor structure
were data-driven; thus we refer to these as empirical com-
posites (EMP). Although the cohort has grown since the first
factor analysis, approximately 90 percent of the standard-
izing sample was in the earlier sample, and the baseline de-
mographic characteristics of the overlapping samples were
similar (Supplementary Table 1). Because some tests of in-
terest were first administered at visit 2, the average age of
sample members at the first visit included in these analyses
is about 4 years older than the average baseline age reported
elsewhere [5]. However, the factorial invariance by age
noted in the original analysis justifies assuming that the fac-
tor structure remains a reasonable fit [11].

We also considered several theoretically derived compos-
ites (THEO). Three domain-specific theoretical composites,
previously used in WRAP, represent immediate learning
(THEO-IMM-LRN), delayed recall (THEO-DEL-REC),
and executive function (THEO-EXEC-FN) [24] (Table 2,
columns 6–8). We also considered five global composites
(Table 2, columns 9–13), including the global preclinical
Alzheimer’s composite (PACC4-MMSE) [8]; a three-test
PACC version omitting MMSE, due to its limited sensitivity
in middle-aged healthy samples (PACC3) [30]; and a PACC
version replacing MMSE with the CFL (PACC4-CFL) [31].
Furthermore, because one PACC test, DIGSYM, is not avail-
able in the National Alzheimer’s Coordinating Center
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Uniform Data Set, Third Edition [6], we included two exper-
imental versions of the PACC4 substituting TMT-B for
DIGSYM, both with (PACC4-TMTB) and without
(PACC3-TMTB) MMSE. Finally, we considered individual
tests contributing to each composite.

To compute composites, we first standardized all scores
(mean 5 0, SD 5 1). Where lower scores indicated better
performance (TMT-A, TMT-B), scores were multiplied
by21. Each compositewas created as an average of selected
standardized raw scores (Table 2), with weighting scheme
varying by composite type. Empirical composite inputs
were weighted according to the factor analysis on which
they were based, as described by Koscik et al. [29].
Domain-specific and global composites were unweighted
averages of their components. All composites were then re-
standardized to a mean of 0 and a standard deviation of 1.

2.4.2. Convergent and discriminant validity
We explored Spearman intercorrelations among all raw

and composite scores. To explore the domain structure of
the theoretical composites in a systematic way, we con-
structed a correlation matrix of constituent raw scores
(similar to a multitrait-multimethod matrix [32]). Reliability
estimates (diagonal) were calculated using intraclass corre-
lation; between-outcome estimates (off-diagonal) were
calculated using the repeated measures correlation, which
adjusts for between-subjects performance differences
[33,34].

2.4.3. Intraindividual longitudinal standard deviation
We estimated the longitudinal inconsistency of each

outcome after factoring out known sources of variability.
To do this, we constructed random-slopes models of each
outcome, controlling for age, sex, education, literacy, and
number of prior exposures to the battery, and output the re-
siduals, such that the score for each variable at each person-
visit represented the deviation from its predicted value given
the covariates. For each subject and outcome, we then calcu-
lated the IISD of these residuals as a measure of inconsis-
tency [35]. This provided a subjectwise estimate of the
amount of longitudinal within-person variability not associ-
ated with known covariates.

2.4.4. Criterion validity
Criterion validity was assessed by exploring relationships

between each outcome, age, and (in the biomarker subsam-
ple) Ab status. To examine age-related change across out-
comes, we plotted 95% CIs of the bbage terms obtained
from linear mixed models of each outcome controlling for
covariates.

Primary subsample analyses treated Ab as a binary vari-
able, with 1 representing suprathreshold levels of PiB, CSF-
Ab42, or CSF-Ab42/40, and 0 representing subthreshold
values on each available marker. The processes for deter-
mining these thresholds for Ab positivity have been reported
in detail elsewhere [24,36]. To estimate the proportion of
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variance attributable to Ab42-related longitudinal decline,
we regressed out covariate effects, and then modeled the
residuals as a function of Ab and Ab! age. Next, we
plotted the generalized R2 for these models (R2

GLMM) [37].
To examine absolute effect sizes across outcomes, we
plotted 95% CIs of the bbAb!age terms obtained from linear
mixed models of each outcome. Secondary validity analyses
explored Spearman correlations between continuous Ab
biomarker values and individual age-slope estimates for
each outcome.

2.4.5. Sensitivity analyses
To examine the robustness of the IISD findings, we esti-

mated mean IISD in a larger sample including 52 individuals
that had previously been excluded due to a diagnosis of MCI
or dementia during the study.We compared the average IISD
for each outcome in this sample to the main findings and
evaluated the differences in mean IISD between impaired
and unimpaired individuals. In this expanded sample, we
also compared IISD of all outcomes for a variety of risk
groups to that observed in a lower-risk comparison group,
as others have reported fluctuations in cognitive status in
similar risk groups [4]. Parallel sensitivity analyses exam-
ined the robustness of the criterion validity findings to the
removal of those with clinical impairment.
3. Results

3.1. Participants

Demographic information for the whole sample, the sub-
set with CSF or PiB amyloid data, and the set who did not
meet inclusion criteria are summarized in Table 1.
3.2. Convergent and discriminant validity

Intercorrelations among raw and composite scores are
illustrated in Fig. 1. In general, scores related to executive
function (STROOP, TMT-A, TMT-B, DIGSYM,
THEO-EXEC-FN, EMP-EXEC-FN) were only weakly
related to those in the episodic memory domains (AVLT-T,
AVLT-D, LM-I, LM-II, BVMT-T, BVMT-D, THEO-IMM-
LRN, THEO-DEL-REC, EMP-IMM-LRN, EMP-DEL-
REC; median5 0.27, range5 0.07–0.41). Intercorrelations
between memory-domain scores were stronger
(median 5 0.51, range 5 0.27–0.97). Two raw scores in
particular, MMSE and CFL, exhibited low correlations
with all outcomes other than the related global
composites (median 5 0.24, range excluding related
composites 5 0.14–0.36). Intercorrelations were quite
high among global composites (PACC4-MMSE,
PACC4-CFL, PACC4-TMTB, PACC3, PACC3-TMTB;
median 5 0.9, range 5 0.82–0.94) and between global and
domain-specific composites (THEO-IMM-LRN, THEO-
DEL-REC, THEO-EXEC-FN; median 5 0.75,
range 5 0.62–0.86).
The matrix in Table 3 illustrates reliability and discrimi-
nant validity measures for three cognitive domains. Intra-
class measures of reliability (within-domain, within-test)
were reasonably high. However, the pattern of intercorrela-
tions suggests a strong methods effect and relatively weak
discriminant validity for the twomemory domains. For exec-
utive function, within-domain, between-test correlations
were similarly low, in line with other reports of high disper-
sion among executive function measures [38].
3.3. Intraindividual longitudinal variability

Fig. 2A illustrates intraindividual variability in each score
over time, using the standardization sample of cognitively
unimpaired individuals (N 5 1063). Within domains, com-
posites had lower IISDs than individual test raw scores.
However, executive function raw and composite scores
were less variable than scores from other domains, and
some global composites as well. The MMSE raw score ex-
hibited the largest IISD.
3.4. Criterion validity

Age-related slope estimates (Fig. 2B) for all outcomes
were negative, indicating general decline with age. The
two executive function composites (EMP-EXEC-FN and
THEO-EXEC-FN), the DIGSYM raw score showed the
most age-related change; slightly less was observed for the
four global composites. The remaining composites and
raw scores had slopes closer to zero.

The biomarker subsample (N 5 226) showed a very
similar IISD pattern (Fig. 3A). Fig. 3B–C illustrates two
quantities related to criterion validity of each score. In few
cases did the proportion of variance (generalized R2) attrib-
utable to Ab positivity and its interaction with age exceed
0.02, indicating weak relationships between Ab positivity,
cognition, and cognitive change in this largely cognitively
unimpaired sample (Fig. 3B). Parameter estimates for the
Ab positivity ! age interaction (Fig. 3C) generally indi-
cated worse age-related change in the Ab-positive group,
but group differences were modest, with most confidence in-
tervals including zero. Confidence intervals were smallest
for executive-function measures and larger for other raw
scores and empirical composites. All theoretical composites
had point estimates on the larger end, and most global com-
posites performed similarly.

In exploratory analyses (Supplementary Fig. 1),
Spearman correlations between individual random slope
estimates and three continuous Ab biomarkers were also
most consistently visible for executive function measures
(rCSF2Ab42;DIGSYM

5 0.26; rCSF2Ab42=Ab40;DIGSYM
5 0.24;

rCSF2Ab42=Ab40;EMP2EXEC2FN 5 0.21; rPiB2DVR;STROOP

5 20.23) The remaining correlations were smaller
(2 0:2,r,0:2) and/or confined to a single biomarker
(rCSF2Ab42;EMP2LM 5 0.25; rCSF2Ab42;LM2I 5 0.22), although
all were in the expected direction, with better scores



Fig. 1. Correlogram illustrating relationships between all outcomes. Darker shading indicates correlations closer to 1. Abbreviations: AVLT, Auditory-Verbal

Learning Test; BVMT-R, Brief Visuospatial Memory Test–Revised; DEL-REC, delayed recall; EMP, empirical composites; EXEC-FN, executive function;

IMM-LRN, immediate learning; LM, Logical Memory; MMSE, Mini-Mental State Exam; PACC, preclinical Alzheimer’s cognitive composite; THEO, theo-

retical composites; TMT, Trail Making Test; DIGSYM, Digit Symbol subtest of the Wechsler Memory Scale–Revised.
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associated with larger CSF-Ab biomarker values and smaller
[11C]PiB distribution volume ratio values.
3.5. Sensitivity analyses

We recalculated IISD on a larger data set including partic-
ipants with at least one diagnosis of clinical MCI or worse at
any point during the study (N 5 1115). Mean IISDs in this
supersample were very similar to the standardization sample
(r 5 0.997), indicating low sensitivity of our results to this
exclusion criterion. However, IISD values tended to be
higher for the added participants, with greater discrepancies
for some outcomes (e.g., TMT-B, DIISD 5 0.57) than others
(STROOP, DIISD z 0). Supplementary Fig. 2 illustrates the
relationships between mean IISD in this sample and the
group difference in IISDs between cognitively unimpaired
participants and those with clinically significant cognitive
impairment. The global composites tend to cluster in the
quadrant with lower mean IISD and greater discrepancies
between the clinical and nonclinical samples.

Supplementary Fig. 3 illustrates IISD for each outcome in
a healthy subgroup (APOEε3=ε3 participants who were in
good health at last visit and reported no clinical or psychiat-
ric diagnosis at any point; Supplementary Fig. 3, top row)



Table 3

Multitrait, multimethod matrix [32] evaluating the convergent and discriminant validity of the constructs represented by the immediate learning, delayed recall,

and executive function theoretically derived composites

Raw scores AVLT-T AVLT-D LM-I LM-II BVMT-T BVMT-D TMT-B STROOP DIGSYM

AVLT-T 0.68 0.42 0.14 0.15 0.12 0.07 0.03 0.05 0.06

AVLT-D 0.68 0.15 0.17 0.12 0.05 0.03 0.06 0.01

LM-I 0.63 0.74 0.13 0.08 0.04 0.07 0.09

LM-II 0.68 0.16 0.11 0.05 0.05 0.06

BVMT-T 0.59 0.61 0.08 20.02 0.02

BVMT-D 0.55 0.06 0.01 0.03

TMT-B 0.64 0.06 0.11

STROOP 0.82 0.22

DIGSYM 0.84

Abbreviations: AVLT, Auditory-Verbal Learning Test; BVMT, Brief Visuospatial Memory Test–Revised; LM, Logical Memory; TMT, Trail Making Test;

STROOP, Stroop test, Color–Word Interference; DIGSYM, Digit Symbol subtest of the Wechsler Adult Intelligence Scale–Revised.

NOTE. Main diagonal represents intraclass correlation (ICC) for within-subject variability. Off-diagonal represents repeated measures correlations between

tests, adjusting for subject-level variance. Cells denoting pairwise comparisons within a test are bolded; cells denoting comparisons within a domain are

italicized.
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and several risk groups (APOEε4 carriers; those reporting a
major psychiatric diagnosis; those reporting fair or poor
health at last visit; and those receiving a clinical consensus
diagnosis at any time). In our sample, those with clinical
MCI or worse appeared to have slightly elevated IISD on
some outcomes. In contrast to Sugarman [4], other sub-
groups showed variability similar to the healthy subgroup.

Sensitivity analyses for our criterion validity findings,
in which clinically impaired individuals were removed from
the biomarker subset, also showed little difference from
the primary analyses, with high correlations between two esti-
mates of IISD (0.997), generalized R2 (0.988), and bAb!age

(0.984).
4. Discussion

In a sample of over 1000 cognitively unimpaired late
middle-aged adults, we observed that global and theoreti-
cally derived domain-specific composites generally ex-
hibited lower variability and stronger relationships with
age and Ab compared with raw scores or to empirically
derived composites [11,29]. This is broadly consonant
with other findings [8,10]. Although the global composites
excluding MMSE exhibited slightly smaller IISDs
(Fig. 2A, 3A) and stronger relationships with Ab (Fig. 3B,
C), these differences might not replicate in other samples.
The key feature distinguishing global and theoretical com-
posites from other scores is that these composites average
across tests which load on distinct factors [11,29].
Variability induced by poor performance on only one test
from a given theoretical domain is reduced, allowing time
trends to become more visible.

Others have reported associations between intraindivid-
ual variability and cognitive impairment [1–3] or other
neuropsychiatric problems [4]. We therefore conducted pri-
mary analyses in a sample without clinically significant
cognitive impairment to simplify the interpretation of vari-
ability. In follow-up analyses, we wondered whether those
measures with low mean IISD values in a healthy sample
would be sensitive enough to early change in those who
are impaired. Indeed, in a sensitivity analysis on an
expanded sample, mean IISD values for each outcome
were quite similar, and some lower-IISDmeasures neverthe-
less evinced higher intraindividual variability in a subsample
receiving a clinical diagnosis of MCI or worse during
follow-up. However, no evidence of greater cognitive vari-
ability in other risk groups was observed.

The discriminant validity evidence for separate immedi-
ate learning and delayed recall factors in this data set is quite
weak (Table 3). This was moderately surprising, as previous
analyses in this sample suggested separate immediate and
delayed memory components for the AVLT [29]. A reanaly-
sis incorporating single-trial-level data for each memory test
might more closely mirror the earlier result. However, given
the high correlation observed between the two theoretical
memory composites (Fig. 1), it may be worth considering
a memory composite incorporating both immediate and de-
layed information.

The strong correlations among global composites are of
practical importance for researchers wishing to compare re-
sults across studies, as variation across neuropsychological
testing batteries is a common feature. These results confirm
and extend the work of Donohue and colleagues to create a
composite that can be used with modification in multiple
cohorts [13]. The scientific community has recently
acknowledged the importance of replication studies in
neuropsychology [7]; thus, having a class of lower-
inconsistency, high-criterion-validity composites that can
be modified based on availability of inputs is beneficial.

The superiority of executive function measures on both
consistency and some criterion validity measures was unex-
pected, as changes in memory are often thought to be the



Fig. 2. Performance of individual cognitive scores on two metrics of interest in entire sample (N5 1063). The y-axis is ordered by ascending mean IISD. Each

x-axis has been oriented such that scores further to the right indicate more favorable measurement characteristics (A: lower IISD; B: greater sensitivity to age-

related decline). (A) Mean intraindividual standard deviation (IISD) for all outcomes, with bootstrapped 95% confidence intervals. (B) Parameter estimate

describing age-related change from full models of cognitive outcomes including other covariates (sex, education, baseline literacy, and prior practice with

the battery). Error bars represent parametric 95% confidence intervals around the estimate. Abbreviations: AVLT, Auditory-Verbal Learning Test; BVMT-R,

Brief Visuospatial Memory Test–Revised; DEL-REC, delayed recall; EMP, empirical composites; EXEC-FN, executive function; IMM-LRN, immediate

learning; LM, Logical Memory; MMSE, Mini-Mental State Exam; PACC, preclinical Alzheimer’s cognitive composite; THEO, theoretical composites;

TMT, Trail Making Test; DIGSYM, Digit Symbol subtest of the Wechsler Memory Scale–Revised.
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earliest cognitive signal associated with AD [9]. Some other
reports suggest executive function changes in early AD
[39,40], and the relationship between lower executive
function and biomarkers of brain amyloidosis has been
observed before in this preclinical cohort [12]. However,
we caution that some of what appears in this article to be a
consistency advantage of executive function tests may be
principally a function of normal aging [41], rather than
disease-related processes, as outcomes that change more
reliably with age will look superior by our inconsistency
metric. The slight apparent advantage of executive function
scores in relating to biomarkers (Fig. 3B; Supplementary
Fig. 1) was not consistent across all metrics (Fig. 3C) [12]
and should not be overinterpreted, except as evidence that
such measures are appropriate to include in a comprehensive
cognitive battery. We will re-examine this question directly
once more of the WRAP cohort has reached a clinical
endpoint.
4.1. Limitations

In these analyses, we did not perform formal hypothesis
tests comparing composites to each other, and the confi-
dence intervals we present (e.g., around beta estimates)
have not been adjusted for multiple comparisons. We chose
this approach because in a clinical trial setting, one or two
outcomes would be selected as primary, so what re-
searchers most need is not the proof that these outcomes
are statistically distinguishable—they may not be—but
instead, an understanding of the range of longitudinal



Fig. 3. Performance of individual cognitive scores on three metrics of interest in the subsample having biomarkers (N5 226). The y-axis preserves the order of

Fig. 2A. Each x-axis has been oriented such that scores further to the right indicate more favorable measurement characteristics (A: lower IISD; B-C: greater

sensitivity to age-related decline). (A) Mean intraindividual standard deviation (IISD) for all outcomes, with bootstrapped 95% confidence intervals. (B) The

proportion of variance (R2
GLMM) [37] in cognitive outcomes attributable to Ab and its interaction with age, after adjusting for standard covariates (age, sex, ed-

ucation, baseline literacy, and prior practice with the battery). (C) Parameter estimate describing age! Ab interaction from full models of cognitive outcomes

including covariates and Ab. Larger negative values for this parameter estimate suggest worse age-related change in Ab-positive individuals. Error bars repre-

sent parametric 95% confidence intervals around the estimate. Abbreviations: AVLT, Auditory-Verbal Learning Test; BVMT-R, Brief Visuospatial Memory

Test–Revised; DEL-REC, delayed recall; EMP, empirical composites; EXEC-FN, executive function; IMM-LRN, immediate learning; LM, Logical Memory;

MMSE, Mini-Mental State Exam; PACC, preclinical Alzheimer’s cognitive composite; THEO, theoretical composites; TMT, Trail Making Test; DIGSYM,

Digit Symbol subtest of the Wechsler Memory Scale–Revised.
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variation and strength of relationship with criterion vari-
ables that they might expect for each, in samples similar
to WRAP.

The tests covered by our analyses also did not span the
entire range of cognitive function. In particular, confronta-
tion naming, assessed in WRAP using the Boston Naming
Test [42], was not considered. Previous analyses in this
cohort have suggested there is not yet enough variability in
this measure for it to be a meaningful differentiator [43].
Instead, we focused on measures that were components of
one of several composites of interest to us, so that we could
more easily make relevant comparisons.
4.2. Conclusion and future directions

These results reinforce the need for careful selection of
cognitive outcomes when designing studies, and provide
support for composite over raw scores because of lower lon-
gitudinal intraindividual variability and stronger relation-
ships with AD biomarkers. Future work building on these
findings will examine the relevance of this inconsistency
measure to clinical trial planning.
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RESEARCH IN CONTEXT

1. Systematic review: We used PubMed to find articles
discussing intraindividual variability and the con-
struction of composite scores. Interest in composites
in particular is growing and several key articles are
cited, with special emphasis on the work by Donohue
et al. describing the Preclinical Alzheimer’s Cogni-
tive Composite.

2. Interpretation: We used the longitudinal intraindivid-
ual standard deviation to quantify the variability of
different scores in the same set of participants. Like
other research groups using different metrics, we
found composites to be advantageous.

3. Future directions: Assessing criterion validity in a
middle-aged cohort is difficult because of the lack
of true clinical endpoints. Future work should
examine whether low-IISD measures like the
selected composites are also good prognostic in-
dicators of the eventual development of dementia.
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