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Abstract

Fluidization is used in several industrial processes, for example in waste disposal, food

processing, pharmaceutical applications, energy conversions and so on. Although vir-

tually every industrial plant contains units which treat multiphase polydisperse systems

(MPS), designing them is still subject to great uncertainties; this is because MPS in-

volve many physical and chemical phenomena that occur simultaneously and are hard

to model: particles move in space and may shrink, grow, aggregate or break (in some

cases new particles may also form). The unit behaviour and the product quality strongly

depend on these competing phenomena, on the system fluid dynamics and on the unit

geometry and size. This research project focuses on fluidized beds (FB) and aims to im-

plement, test and validate an advanced computational fluid dynamics (CFD) model able

to describe the behaviour of dense polydisperse fluidized powders and the evolution of

their particle size distribution (PSD) in space by coupling CFD with population balance

modelling (PBM) and by accounting for size-changing phenomena such as aggregation

and breakage. To begin our work, we derived useful mathematical models including the

generalized population balance equation, DQMOM and QMOM multifluid models and

size-based aggregation and breakage kernels based on the kinetic theory of granular flow.

In this work, we have implemented, in the commercial code Fluent, the QMOM Model,

employing quadrature formula based on two, three and four nodes. Our model included

convection in physical space,particle aggregation and breakage. We tested that the model

had been correctly implemented by comparing model results with those reported in Fan

et al. (2004). In terms of trend, results from our simulations showed good agreement with

those reported by Fan et al. (2004). However, we noticed some quantitative differences

in the results. These differences are due to the different constitutive equations used in

CFD codes Fluent and MFIX, employed in this work and Fan et al. (2004) respectively.

Furthermore, for simulations using four-node quadrature approximation, we were unable

to replicate the trend as a result of the corruption of transported moment set. We observed

similar corruption of the moments when we used higher order discretization schemes.



We tackled the problem of moment corruption by implementing moment correction algo-

rithms in Fluent. Nevertheless, we observed that the moment correction algorithm was

effective in the QMOM model with the moment set transported with the same velocity

compared with QMOM model with different velocities for the moment sets. We observed

that in the latter the corrupt moment set is used to compute ’corrupt’ velocity fields for

the quadrature classes which in turn complicates the solution. In other to futher test the

robustness of the implemented model we ran segregation tests using the QMOM model

and compared them with experimental results. Our numerical results for the quadrature

nodes and volume fractions as well as axial segregation profile was in good agreement

with experimental results.
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Impact Statement

Particle technology is a recurrent theme in the chemical engineering industry especially

within the pharmaceutical space where particle size is key to defining the product quality

and properties. The research documented in the pages that follow serves fundamentally

as a bedrock for further researches in the aspect of particle sizing. In the pharmaceutical

industry, a lot of long, arduous processes are involved in moving basic concepts on to the

dispensary shelves of the pharmacists. Among these processes, particle sizing is arguably

one of the salient steps to be concerned about. We know that many industrial units use

multiphase polydisperse systems and designing them is still subject to great uncertainties.

Predicting the size of particles or drug forms pose a big challenge to the process industry.

This research helps to provide an alternative to expensive and time demanding pilot de-

signs for technology innovations. For example the variation in an operating condition and

how it affects the particle size distribution of the multiphase system should, in the future,

be easily ascertained by a working model which has been tested to be reliable and robust.

This research also impacts on the need to further develop a predictive model for particle

sizing - one which can encompass the effects of size-changing phenomena such as aggre-

gation, breakage, growth, nucleation and so on, thereby, presenting a relatively cheaper,

faster and more reliable way to predict the impact of process conditions to particle size

distribution, the process of initiating new technologies and also making existent processes

better.
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Chapter 1

General Introduction

In this chapter we briefly introduce the concept of fluidization, take a look at the computa-
tional modelling of fluidized suspensions, motivate the research work and summarise the
aims of our study. We end this chapter with a brief outline of the thesis.

1.1 The Concept of Fluidization Technology
Fluidization is defined as “the operation by which solid particles are transformed into a
fluidlike state through suspension in a gas or liquid.” In a fluidized bed, stationary solid
particles with sizes within the range 15µm < s < 6mm are placed in a vertical vessel over
a porous base (distributor plate) through which fluid is passed upward. This is referred
to as the fixed bed. The fluid is passed upward at an increasing velocity which makes
the particles vibrate and move apart in restricted regions. This is the expanded bed. At a
point the drag force fd , which refers to the frictional force between the particles and the
fluid, equals the effective weight of the particle We (this equals the real weight fg minus
the bouyancy force fb). This point is the minimum fluidization point. At this point, the
solid particles no longer rest on the base and can be handled like fluids.We say the bed
is fluidized. The minimum fluidization velocity Um f is the minimum velocity of the fluid
needed to fluidize the solid particles. (Kunii and Levenspiel, 2013). Figure 1.1 shows the
forces acting on a single particle in a fluidized bed.

In a liquid-solid fluidized bed, increasing the fluid velocity beyond Um f causes the bed to
expand smoothly and remain statistically homogeneous. We say the bed is homogeneous
or uniform and the corresponding fluidization regime is the homogeneous or particulate
regime. This regime is observed in a gas-solid fluidized bed under special conditions and
for very small and light particles. However, in most gas-solid fluidized beds, increasing
the fluid velocity beyond Um f causes bubbles which refers to regions within the bed that
are void of particles as a result of the excess fluid. This type of system is referred to as
bubbling and the corresponding fluidization regime as bubbling or aggregative regime.
The fluidization velocity at which the first bubbles form is called the minimum bubbling
velocity Umb. The bubbles merge as they rise up the bed. If the bed is deep enough,
the bubbles may eventually grow to fill up the cross-sectional area of the vessel. This is
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1.1. THE CONCEPT OF FLUIDIZATION TECHNOLOGY

Figure 1.1: Primary single forces (Gibilaro, 2001)

called the slugging fluidization regime. Furthermore, increasing the fluid velocity beyond
the terminal velocity will result in the particles moving faster and being mare chaotic.
Streamers and clusters of particles continuously form and break, and the overall structure
of the bed becomes more homogeneous. This refers to the turbulent regime. Any further
increase of the fluidization velocity beyond this point will lead to a lean fluidized bed
with pneumatic transport. Figure 1.2 shows the different fluidization regimes we have
just described.

Fluidization plays a very important role in chemical process industries and in common
processes such as food processing, gasification, combustion, waste disposal and tablet
coating in pharmaceutical industries. Their excellent features such as enhancing good
contact surface areas between the solid and the fluid, efficient heat and mass transfer,
and suitable mixing tendencies make them an attractive technology in process industries
(Mazzei, 2011). For example, processes involving gas/gas reactions catalyzed by the solid
(e.g. the catalytic cracking of oil). Some industrial applications of fluidized beds are sum-
marised in Figure 1.3.

How fluid-particle systems behave is dependent on the physical properties of the materi-
als and on the operating conditions. We have discussed how changes in the fluid velocity
changes the fluidization regimes or behaviour of the particles. Let us also see how the
physical properties of the fluidized powders can play a significant role in characterizing
the behaviour of fluidized suspensions.

By carefully observing the behaviours of several fluidized systems, Geldart (1973) pro-
posed a classification where fluidized solids are classified based on two coordinates, once
the fluid and air temperature are assigned. The coordinates are the mean particle diameter
of the powder and the difference between the particle and the fluid densities. Figure 1.4
shows an example for air at ambient temperature. We shall briefly consider the four dif-
ferent powder classification by Geldart.

Group C solids are cohesive and characterized by very small particles (between 20µm
and 50µm). ‘Normal’ fluidization of this class of powders is extremely difficult. This is

2



1.1. THE CONCEPT OF FLUIDIZATION TECHNOLOGY

Figure 1.2: Fluidization regimes (Kunii and Levenspiel, 2013)

Figure 1.3: Some industrial applications of Fluidized beds (Lettieri, 2014)

3



1.2. COMPUTATIONAL MODELLING OF FLUIDIZED SYSTEMS

Figure 1.4: Some industrial applications of Fluidized beds (Geldart, 1973)

because the existing high inter-particle cohesive forces are greater than those which can
be exerted by the fluid on the particles. Hence, the particles tend to stick together and do
not fluidize properly. Since the fluid cannot separate the particles, fluid bypasses through
channels extending from distributor to bed surface. The use of mechanical stirrers and
vibrators help improve the fluidization quality by breaking the channels as they form.

Group A solids have a small mean size and/or low particle density (less than about 1.4
g/cm3). They expand uniformly before the commencement of bubble formation. They are
referred to as aeratable. The fluidization quality of this group of powders are affected by
fluid dynamics and inter-particle forces. Some researchers report that the uniform struc-
ture found at low fluid velocities is largely due to the inter-particle forces (Massimilla
et al., 1972; Mutsers and Rietema, 1977; Rietema and Piepers, 1990)

Groups B and D solids bubble as they fluidize. Thus, Um f and Umb coincides. These
systems are purely fluid dynamic since the inter-particle forces are negligible. The dif-
ference between these two groups of powders is that whereas in Group B systems most
bubbles rise through the bed more quickly than the interstitial fluid, in Group D systems
the opposite occurs. Figure 1.5 shows the fluidization behaviour of the four groups.

1.2 Computational modelling of fluidized systems
The early development of fluidization technology was mostly characterized by the use of
experimental correlations. This method can only help design standard units which the

4



1.2. COMPUTATIONAL MODELLING OF FLUIDIZED SYSTEMS

Figure 1.5: Fluidization behaviour of the Geldart fluid-particle groups (Kunii and Levenspiel, 2013)

experiments relate to. Moreover, one can unarguably conclude that optimizing a fluidized
system via experiments and correlations is quite a time-consuming and expensive ven-
ture (Buffo and Marchisio, 2014). They lack the flexibility of telling us how changes not
directly related to the experiment can affect fluid dynamics and performance. The use
of experiments to show how certain variables alter the bed performance and behaviour
might be very expensive. For example, how vessel geometry affects the fluidized bed
performance will be financially demanding. Hence, the shift towards more predictive
methods for the behaviour of dense fluidized suspensions.

Recently, there has been an increased understanding of the mechanisms governing the
highly complex fluid flow phenomena in fluidized beds. This is as a result of increased
interest in computational modelling of fluidized bed systems. In order to properly design
and operate fluidized beds, accurate models providing detailed information on important
bed phenomena such as the bed hydrodynamics is necessary (Di Renzo and Di Maio,
2007). Researchers have developed mathematical models that describe the fluid dynam-
ics and, in general, the behaviour of multiphase flows (in this case, of fluidized beds).
These models need to be solved, tested and validated for reliability.

Models that describe multiphase gas-solid flows are based on two major approaches: the
Eularian-Langrangian and the Eulerian-Eulerian approaches. The former is a detailed
and more reliable representation of the gas-solid system as it tracks individual particles
within the system. However, the efficiency of this method is at the expense of high com-
putational cost. For modelling a dense fluidized bed, for example, this method will be
less preferable due to its costly computational demands. The Eulerian-Eulerian model on
the other hand is less computationally expensive and treats both solid and fluid phases as

5



1.3. MOTIVATION AND RESEARCH OBJECTIVES

interpenetrating continua. This model provides the required information by solving aver-
aged equations of motion (Mazzei, 2008).

The numerical solution of the Eulerian averaged transport equations is known as computa-
tional fluid dynamics (CFD). CFD has led to reductions in the cost of product and process
development activities, reduced the need for physical experimentation and increased de-
sign reliability (Davidson, 2003). CFD has become an important tool in solving many
complex problems of both academic and industrial interest. In fluidization engineering, a
better understanding of fluid-solid interactions and macroscopic phenomena in particulate
systems has been made possible via CFD.

1.3 Motivation and Research Objectives
Research efforts to investigate gas-solid fluidized powders have evolved over time: from
studies of monodispersed systems (Sinclair and Jackson, 1989; Ding and Gidaspow, 1990;
Kuipers et al., 1993; Hrenya and Sinclair, 1997; Pain et al., 2001; Lettieri et al., 2002;
Cammarata et al., 2003; Gelderbloom et al., 2003; Lettieri et al., 2004; Mazzei and Let-
tieri, 2008) to bidisperse powders allowing for investigation of segregation and mixing in
fluidized beds (Van Wachem et al., 2001; Wirsum et al., 2001; Howley and Glasser, 2002;
Huilin et al., 2003; Gera et al., 2004; Cooper and Coronella, 2005; Qiaoqun et al., 2005;
Huilin et al., 2007; Owoyemi et al., 2007; Mazzei et al., 2010). Most CFD calculations
for gas-solid fluidized beds assume the solid phase to be monodisperse and in some cases
bidisperse. However, in reality, most fluidized beds feature polydispersity and design-
ing them is still subject to great uncertainties. This is because multiphase polydisperse
systems, for example, in a fluidized bed, involve chemical and physical phenomena that
occur simultaneously and are hard to model. The particles move in space and may shrink,
grow, aggregate or break and in some cases new particles may also form. The unit be-
haviour and the product quality strongly depend on these competing phenomena, on the
system dynamics and on the unit geometry and size.

Recently, researchers have tried to account for polydispersity and other particle-related
phenomena such as aggregation and breakage by coupling the population balance equa-
tion (PBE) with a multi-fluid model. However, very few have considered modelling a
dense polydisperse fluidized bed with focus on both particle and fluid dynamics. One
work which fits this category is that of Fan et al. (2004) where a CFD model for polydis-
perse gas-solid fluidized bed was developed and implemented.

In this work, we will implement a state-of-the-art hybrid CFD-PBE model within the
commercial CFD code, Fluent and verify its ability to predict correctly the evolution of
the particle size distribution (PSD) of dense polydisperse fluidized powders. This study
will focus on the Eulerian modelling approach and the PBE will be solved using quadra-
ture based moment methods. In the process, we will:

1. Derive the Generalized Population Balance Equation from first principles.

2. Analyse the quadrature based method of moments in steps to guide the reader
through the theoretical analysis of the methods. Only the Direct Quadrature Method

6



1.4. THESIS OUTLINE

of Moments (DQMOM) and the Quadrature Method of Moments (QMOM) will be
discussed.

3. Derive the Breakage and Aggregation Modelling equations from first principles.

4. Derive expressions based on the literature for aggregation and breakage kernels to
be used in this work.

5. Implement Quadrature based method of moments in Fluent. (Note: The imple-
mentation of DQMOM and QMOM with same velocity for the quadrature nodes
in Fluent is not part of the scope of this work as these are already implemented as
default models in Fluent 17.2 which we will be using for our simulations in this
work.

6. Implement Moment correction for Quadrature Method of Moments (for quadrature
nodes transported with same and different velocities).

We will also look at the prediction of segregation using the QMOM model.

1.4 Thesis Outline
In Chapter 2, we take a look at principal mathematical theories underlying the mod-
elling of multiphase polydisperse fluidized suspensions, the generalized population bal-
ance equation, QMOM and DQMOM. We also briefly discuss related literature.

In Chapter 3, we discuss the mathematical theories underlying the modelling of birth
and death functions due to aggregation and breakage in gas-solid fluidized beds.

In Chapter 4, we present the methodology for our work. This includes a brief descrip-
tion of the mathematical models employed in this work.

In Chapters 5, we present and analyse simulation results obtained. All simulation re-
sults will be documented in this chapter under relevant sections.

In Chapter 6, we conclude our findings and present recommendations for future work.
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Chapter 2

Review of Related Literature and
Mathematical Modelling of Dense
Polydisperse Fluidized Powders

This chapter is mainly in two parts: a section which briefly reviews related literature and
another which discusses the principal mathematical theories underlying the modelling
of multiphase polydisperse fluidized suspensions. The literature reviewed are those that
have covered the scope of work relevant to our research. The scope of our work include:

1) Gas-solid fluidized bed systems or fluidized suspensions ;

2) Hybrid CFD and Population Balance Models (PBM) ;

3) Quadrature Based Moment Methods;

4) Eularian modelling approach.

Works reviewed in this section are those that have considered all the elements listed above
in a single project or as part of a series of progressive research work.

We present the population balance equation needed to describe the flow of polydisperse
fluidized powders. We also discuss the method of moments for solving the PBE and the as-
sociated problem of closure. To solve the problem of closure, we introduce the quadrature
method of moments.

2.1 Literature Review: Introduction
Predicting the dynamics and behaviour of fluidized beds is a continuing research area.
The processes involved in a fluidized bed are quite complex making it difficult to predict
and control fluidized suspensions. Intricate chemical and physical processes occur at the
same time affecting the properties of the bed: they can shrink, break, aggregate or form
new particles via nucleation. These phenomena affect the product quality to a large extent.
Therefore, in order to design these units, the process engineer should take cognizance of

8



2.1. LITERATURE REVIEW: INTRODUCTION

the effect of these competing phenomena while modelling.

Computational Fluid Dynamics which was introduced in Chapter 1 has played a very
key role in comprehending the behaviour of fluidized bed suspensions and multiphase
flows in general. In this regard, there has been a lot of improvement in terms of accuracy
of fluid dynamic models over the past decade, thereby increasing the interest of industry
in this technique. However, more still need to be done in terms of developing complex
models that can accurately predict the complex systems involved in multiphase systems
(in our case fluidized beds) such as testing, verification and validation of these models to
make CFD utterly reliable as a design tool to mimic the behaviour of fluidized suspen-
sions.

Researchers have made several contributions which has led to CFD models that can repre-
sent the behaviour of fluidized beds that feature polydispersity. As we already know, most
industrial processes feature a PSD that changes in time and space in the light of the chem-
ical and physical processes that characterize them. These changes in PSD are associated
with phenomena like aggregation and breakage which is still an on-going area of research.

We shall briefly review some of the works that have focused on polydisperse fluidized sus-
pensions accounting for size changing phenomena due to aggregation, breakage, growth,
mixing etc. The use of hybrid CFD and population balance models (PBM) in these works
will also be of interest.

2.1.1 Related Literature
Fan et al. (2004) were the first to implement the DQMOM in a CFD environment to study
the evolution of PSD in a fluidized bed. They studied the size changing phenomenon
as a result of aggregation and breakage in fluidized bed polymerization reactors using a
CFD-PBM hybrid model. The evolution of the PSD was modelled using the PBE which
was coupled to both the continuity and the momentum balance equations. The DQMOM,
which shall be discussed in section 2.5.1 of our work, was implemented in MFIX, an open-
source multifluid CFD code, to reproduce the effect of particle aggregation and breakage.
Two different kernels were tested: the constant kernel and a kinetic kernel developed from
the kinetic theory of granular flow (KTGF) and results were obtained for two-, three- and
four- quadrature node approximations. For constant aggregation and breakage, the results
were independent of the number of nodes. Whereas for the kinetic kernel, though the
results for the volume-average mean diameter for two, three and four nodes were similar,
some differences were observed in the defluidization dynamics. Computational time also
increased with increasing number of nodes as expected. The study was mainly qualitative
without subsequent validation with experiments. It was mainly based on proof of con-
cept. The trends from the results obtained showed that the method adopted is effective
in modelling the evolution of the PSD of dense fluidized suspensions due to aggregation
and breakage. Three cases were simulated for the constant kernel: Case 1 - No aggrega-
tion and breakage, Case 2 - Aggregation dominant and Case 3 - Breakage dominant. The
volume-averaged mean particle diameter (d32) was tracked over time for each of these
cases and as expected for Case 1 d32 remained fairly constant, for Case 2 d32 showed
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a gradual increase with time which led to the defluidization of large regions of the bed
and for Case 3, the bed became more dilute as d32 became more and more smaller due
to excessive breakage. For the kinetic kernel, two cases were simulated: Case 4 - Ag-
gregation dominant and Case 5 - Breakage dominant. These settings were achieved by
manipulating the values of the breakage and aggregation success factors. Case 4 showed
an increase in d32 with time leading to defluidization in the bottom part of the bed. Unlike
the constant kernel, where aggregation took place even after most part of the bed became
defluidized, here, aggregation and breakage stopped as the granular temperature at the
point of defluidization was zero. For Case 5 a similar trend as observed in the constant-
kernel-breakage-dominant case was reported.

Mazzei et al. (2009) implemented the DQMOM within Fluent, a commercial CFD code,
to study the mixing of two inert polydisperse fluidized powders initially segregated. A
two-node quadrature approximation was employed where each quadrature node repre-
sented a unique secondary phase advected with its own velocity. A simple case of perfect
mixing in the absence of aggregation and breakage was studied. Hence, the evolution of
the PSD in the study was mainly due to mixing. The investigation comprised both experi-
ments and computational modelling. Initial results obtained from the DQMOM transport
equation correctly predicted the weights whereas the nodes were not. In order to correct
the observed result, a diffusion term was introduced to yield source terms in the transport
equations that ensured that the nodes were correctly predicted.

Mazzei et al. (2012) implemented the DQMOM model based on volume density func-
tion, rather than on number density function, therefore, making it possible to deal with
volume fractions directly instead of number densities. A simple case was tested where
the powders were inert and initially segregated. The particles do not break or aggre-
gate; change in PSD was mainly due to mixing. They considered two-, three-, and four-
quadrature nodes to compare their performances and predictions with experimental data.
The two-node quadrature approximation gave good results with only a 1% maximum
deviation in predicting the weights and nodes. The three-node quadrature predicted the
nodes with a deviation of 6% but predicted the weights poorly with a 60% maximum
deviation. Corruption of higher order moments occurred using the four-node quadrature,
thereby crashing the simulation. This observation worsened with the use of higher order
spatial discretization schemes. The problem was associated with the convective terms in
the moment transport equations. An attempt to correct the problem by implementing a
corrective algorithm by McGraw (2006) was unsuccessful. They suggested finding the
moment flux using only nodes and weights and also using higher-order schemes only for
the weights.

Yan et al. (2012) incorporated the polymeric multilayer model (PMLM), a single particle
growth model, into the CFD-PBM model to simulate olefin polymerization. The PMLM
was introduced to study intraparticle mass and heat transfers which are fundamental in
modelling and can also influence the outcome of simulation results. The integrated CFD-
PBM-PMLM model was solved to predict the evolution of the PSD. Five cases were
studied including pure particle breakage and pure particle aggregation. The bed expan-
sion heights from the simulations were compared to those from experiments and were
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found to be in good agreement. It was concluded that although the model could be used
to simulate flow fields in FB polymerization reactors, the intraparticle mass transfer lim-
itation affected the reactor flow fields. Conversely, fluidization results stayed almost the
same for different intraparticle heat transfer limitations.

Li et al. (2013) studied the behaviour of a turbulent gas-solid flow and the reaction ki-
netics in a polydisperse fluid catalytic cracking (FCC) riser reactor. A CFD-PBM model
was used to simulate the hydrodynamics of the solid catalyst particles and the 14-lump
reaction kinetics model was used to describe the complex FCC reactions that take place in
the unit. The gas-solid flow was modelled using the Eulerian-Eulerian two-fluid model.
They considered two cases: Case1- featuring single component of catalyst particles with
continuous PSD without aggregation and breakage and Case2- PSD of catalyst particles
undergoing aggregation and breakage. For Case1, d32 remained constant with the FCC
process whereas for Case2, a breakage dominant trend was observed as d32 decreased
with time. The PSD behaviours for both cases were also observed. Similar PSD curves
at different times were reported for Case1 whereas for Case2 the PSD curves flatten out
with time. They also observed that particle diameter affected the interphase exchange co-
efficient. Therefore, in Case2, due to aggregation and breakage the particles experience
different drag forces leading to complex particle collisions and the promotion of particle
backmixing. This made it easy to form particle clusters which led to reduced particle
velocity. In conclusion, they reported that aggregation and breakage results in more com-
plex flow fields in the riser.

Akbari et al. (2015) coupled a 2D CFD-PBM/DQMOM model to simulate particle growth
in an industrial gas phase fluidized bed polymerization reactor. The effect of aggregation
and breakage were neglected in this study. Simulation results showed a change in PSD
due mainly to particle growth. Larger particles were observed to settle at the bottom of
the bed while smaller particles migrated to the top. In order to validate the model ac-
curacy and capability, grid independence study and time step analysis were carried out
and results were compared with industrial data sourced from an industrial linear low den-
sity polyethylene (LLDPE) gas-phase polymerization reactor. The minimum fluidization
velocity was also assessed for the polydisperse bed in order to observe the effect of the
PSD on this important hydrodynamic bed design parameter. A graph of pressure drop in
the bed against superficial gas velocities revealed three regions of fluidization. The fixed
bed region where the fluidization velocity is less than the Um f of the small particles. The
transient fluidization region where segregation of small particles is seen to occur. This
transient fluidization results gradually in mixing as the fluidization velocity is further in-
creased. Lastly, a vigorous-bubbling region was also established where the fluidization
velocity was beyond the Um f of the bigger particles leading to a well-mixed bed. The re-
sults reported for the bed were in good agreement with the fluidization structure proposed
by Olivieri et al. (2004)

Che et al. (2015) studied the flow behaviours and PSD of polyehtylene in a pilot-plant flu-
idized bed reactor (FBR) using a CFD-PBM/QMOM modelling approach. The quadrature
method of moments (QMOM) unlike the DQMOM assumes that the secondary phases are
all advected with the same velocity (reader is referred to section 3.4.2). The polymer PSDs
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were tracked using an Euler-Euler two-fluid model with polymerization kinetics coupled
with population balance. Particle growth, aggregation and breakage were accounted for
in the study. The predicted simulation results for the pressure drop and temperature were
compared with experimental data and found to be in good agreement. These results were
used to verify the model as being feasible for describing the flow behaviours of ethylene
polymerization reaction in a fluidized bed reactor. Six cases were tested to assess the
CFD-PBM model , some involving breakage, others involving aggregation. But, none
of the cases considered simultaneous polymer aggregation and breakage. The effects of
ethylene polymerization, the particle kinetics and the non-pelletizing polyethylene pro-
cess (NPPP) on the flow behaviour and the PSD were also reported. Although these results
were not validated with experiments, they helped to understand the flow behaviours and
the evolution of PSDs in industrial scale FBRs. In the case involving breakage, significant
bed expansion was observed compared to the cases involving growth and aggregation of
the polyethylene particles. This obvious change was due to the decrease in polymer par-
ticle size which caused the particles to be easily lifted by the fluidizing gas to a higher
height leading to particle entrainment.

Yao et al. (2015) studied the effect of three different methods of moments for solving
the PBEs in the CFD-PBM model for polydisperse polymerization FBRs characterized
by simultaneous growth and aggregation. The three representative methods used in the
study are: QMOM, DQMOM and a new method recently proposed by Gu et al. (2009)
namely the fixed pivot quadrature method of moments (FPQMOM) in which the charac-
teristic abscissas are specified at the beginning of the simulation and also kept constant
throughout the simulation. In the FPQMOM, an approximation different from that used
in QMOM and DQMOM was used to represent the PSD and based on the approximation,
2N set of moments can be written in matrix form to form the Vandermonde equation set.
A special algorithm different from the product difference (PD) algorithm employed in
QMOM and DQMOM is used to solve the resulting Vandermonde equation set to obtain
the weights. The FPQMOM predicts a faster rate of particle enlargement for bigger par-
ticle size clusters, whereas the QMOM and DQMOM gives the opposite trend. The three
MOMs predicted a reasonable pressure drop variation, time-averaged flow field and tem-
perature distribution. Also, the computational time for the FPQMOM was also compared
with those of DQMOM and QMOM and found to be shortest.

2.2 Modelling of Disperse Multiphase Flows: Introduc-
tion

Real systems in fluidized bed reactors have a PSD which play a significant role in the
performance of fluidized beds. The particles may aggregate or break and this will affect
the product quality and unit behaviour of the system. Therefore such system or particle
behaviour needs to be factored in during design and subsequent scale-up procedures. The
prediction of the evolution of the PSD is cardinal in many engineering applications but
the simulation and scale-up of such processes is very challenging because of the intri-
cate interactions between mixing at different scales, growth, aggregation and breakage
(Marchisio et al., 2003b). The evolution of the particle size distribution is described by
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solving customary continuity and linear momentum balance equations alongside a popu-
lation balance equation (PBE).

A large number of the equipment used in the chemical process industries make use of
multiphase flow systems. For example, fluidized beds, pipelines in the oil and gas indus-
tries, bubble columns and so on, but to mention a few. These systems are also designed,
optimized and scaled up using effective computational tools to simulate their operations.
The modelling of polydisperse multiphase systems is in two parts:

i) accounting for the disperse phases: This includes aggregation, breakage, and col-
lision of particles. Here, the PBE is used to describe the evolution of the discrete
particles in time and space. The PBE is often written in terms of a density func-
tion which provides information on the population of the system distributed over a
particular property of interest in a given volume at time t;

ii) accounting for the multiphase fluid dynamics: This focuses on the interactions be-
tween the disperse (or secondary) phase(s) and the continuous (or primary) phase.
Particles can interact between themselves as well as with the continuous phase.
CFD models are used to describe the flow dynamics between the disperse and con-
tinuous phases. (Marchisio and Fox, 2013).

A bridge between these two approaches will help solve a large variety of polydisperse
multiphase flow problems.

2.3 Basics of Polydisperse Multiphase Flows Modelling
Although the theory explained subsequently has applications in a much wider context
(Chapman and Cowling, 1970; Randolph and Larson, 1971; Ramkrishna, 2000) , we shall
limit our discussion to particulate systems. We shall begin with introducing suitable den-
sity functions.

2.3.1 Definitions
Let us consider a polydisperse system of solid particles placed in a continuous medium
in which each entity in the disperse phase can be identified by a certain set of properties
referred to as coordinates. In this case, similar elements will have identical coordinates.
Otherwise, the entities are distinguishable. These coordinates are classed as:

i) External coordinates, (x): This refers to the spatial coordinates; the three-dimensional
coordinates (x,y,z) in physical space. Here, x is the position vector.

ii) Internal coordinates, (ξ) : This refers to other properties of the particle other than
physical location which completely describe the particle state. For example, size,
age, surface area, volume etc. The symbol ξ represents the internal state vector.

If we consider Ωx and Ωξ to be the domains of the position vector, x and the internal state
vector, ξ respectively, we can define a particle state space (or domain), Ωψ consisting of
both the physical space, Ωx and the internal state space, Ωξ where ψ is the particle state
vector.
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2.3.2 Number Density Function
From an Eularian point of view, the number density function (NDF) is generally used
for describing the disperse phase. It gives information about the properties of interest
of a population of particles and their distribution within a given control volume. For
example, if we consider an infinitesimal control volume in physical space about x(x,y,z)
with physical space volume, dx ≡ dxdydz and N number of internal coordinates, with
internal state vector, ξ ≡ (ξ1,ξ2,ξ3, ...,ξN), the NDF, f̃n (x,ξ, t) will give the number of
particles within the differential particle state space volume, dxdξ. Therefore,

f̃n (x,ξ, t)dxdξ (2.1)

gives the number of particles present within dx at the time t of interest having an inter-
nal state vector in the range dξ around ξ . The number of particles having an internal
coordinate of exactly ξ is zero as the value of ξ is continuous within the internal state
space volume. The NDF is a function of time, internal coordinates and external coordi-
nates. The NDF is an average quantity. That is, it is smooth and can be differentiated with
respect to spatial coordinates, internal coordinates and time.

The differential volume dψ in particle state space corresponds to dxdξ. Therefore, we
can rewrite (2.1) as:

f̃n (ψ, t)dψ (2.2)

This yields the expected number of particles present within the volume dψ around ψ or
the number of particles with particle state vector within the range dψ around ψ, at the
time t of interest. We can say that the NDF is the expected number of particles per unit
particle state space volume at the time t of interest.

In addition, we can also define the volume and mass density functions for the particle
population of the disperse phase. If vp(ξ) represents the volume of the particle of internal
state ξ, then we can define the volume density function (VDF) as

f̃v (x,ξ, t) = f̃n (x,ξ, t)vp(ξ) (2.3)

Similarly, the mass density function (MDF) can be defined as

f̃m (x,ξ, t) = f̃n (x,ξ, t)mp(ξ) (2.4)

where mp(ξ) is the mass of the particle of internal state ξ .

2.3.3 Number Density and Moments of the NDF
It immediately follows from the preceding section that the quantity f̃n (x,ξ, t)dξ is the
number density, which represents the number of particles per unit physical volume with
internal state vector in the range dξ around ξ. If the number density is integrated over all
possible values of the internal state vector ξ within the internal state domain Ωξ,

n(x, t) =
∫

Ωξ

f̃n (x,ξ, t)dξ (2.5)
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we obtain the total number of particles per unit physical volume at a particular time t of
interest. Equation (2.5) coincides with the zeroth-order moment, Mξ,0(x, t) of the density
function.

Mξ,0(x, t) =
∫

Ωξ

f̃n (x,ξ, t)dξ (2.6)

Similarly, we can define other arbitrary moments Mξ,k(x, t) of the NDF by

Mξ,k(x, t) =
∫

Ωξ

ξ
k1
1 . . .ξ kN

N f̃n (x,ξ, t)dξ (2.7)

where k= (k1, ...,kN) is a vector containing the order of the moments with respect to each
of the components of ξ.

When we multiply equation (2.5) by vp(ξ) and mp(ξ), we obtain the volume fraction, φ

and mass density, ρd respectively.

φ(x, t) =
∫

Ωξ

f̃v (x,ξ, t)dξ ; ρd(x, t) =
∫

Ωξ

f̃m (x,ξ, t)dξ (2.8)

2.3.4 Size-based and Volume-based NDF
If we consider a population of particles that is described by only one internal coordinate, in
this case, size s, then we can define a size-based NDF fn(x,s, t) where the only component
of the internal state vector is the particle size. Here, fn(x,s, t)ds represents the expected
number density of particles with size between s and s+ds at a particular time of interest.
As reported in Section 2.3.3, the total number of particles per unit physical volume at a
particular time t of interest can be written as:

n(x, t) = Ms,0(x, t) =
∫

Ωs

fn(x,s, t)ds (2.9)

and the mean particle size is defined as

s̄(x, t) =
1

n(x, t)

∫
∞

0
s fn(x,s, t)ds =

Ms,1

Ms,0
(2.10)

This average property of the distribution is defined with respect to the number of particles
within the local volume dx. Also, other particle size averages can be defined as the ratio
Ms,k+1/Ms,k for any value of k where

Ms,k(x, t) =
∫

∞

0
sk fn(x,s, t)ds (2.11)

is the k-th order integer moment of the size-based NDF. For example, by setting k = 2 we
obtain s32 = Ms,3/Ms,2 the sauter (or volume-averaged) mean particle size.

Another important internal coordinate worth considering for particulate systems is the par-
ticle volume vp. If f̂n(x,vp, t) is the volume-based NDF, then we can define f̂n(x,vp, t)dvp
as the expected number of particles per unit physical volume with volume between vp and
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vp + dvp at a particular time t of interest. If we consider the case where volume scales
with the third power of the size such that vp = kvs3 and dvp = 3kvs2ds , where kv is
the volumetric shape factor, then we can relate the size-based and volume-based NDF as
follows:

f̂n(x,vp, t)dvp = f̂n[x,vp(s), t]3kvs2ds = fn(x,s, t)ds (2.12)

so that:
fn(x,s, t) = f̂n[x,vp(s), t]3kvs2 (2.13)

The ability to move from a volume-based NDF to a size-based NDF at will is useful
because most chemical engineering designs are expressed in terms of system volume.

2.3.5 Convection Velocities in Particle State Space
If we consider the internal state space as being an abstract property space, we can define
vector fields to describe the variation of the particle state vectors (x,ξ) with time. Here,
we are concerned about the changes in the relevant coordinate spaces taking place grad-
ually and continuously. For example, let us consider the size of particles increasing over
time along the size coordinate. Particle size increment or decrease might be viewed as
motion through an abstract size space similar to the particle motion in physical space. We
have referred to this motion as convection making it convenient for us to define “veloc-
ities” v(x,ξ, t) and ξ̇(x,ξ, t) for particles convected in physical and internal state space
respectively. Similarly, the particle acceleration in this case, is change in particle linear
velocity in the velocity state space and is denoted by v̇(x,ξ, t).

2.4 The Generalized Population Balance Equation
The generalized population balance equation (GPBE) is a continuity statement written in
terms of the number, volume or mass density functions. The GPBE basically accounts
for the various ways in which particles can either appear in or disappear from a system.
It is therefore an indispensable framework for studying dispersed phase system. It can be
derived by writing a balance equation on the particles contained in some fixed subregion
of the particle state space (Ramkrishna, 2000).

Here, we shall consider a generalized internal state vector ξ characterised by size space
and velocity state space. Thus making the GPBE under consideration a quadrivariate
(having four internal coordinates because velocity is a 3-dimensional vector). Let us con-
sider a finite control volume Λψ in the particle state space such that Λψ ⊆Ωψ . Similarly,
we can define

Λx ⊆Ωx ; Λs ⊆Ωs ; Λv ⊆Ωv (2.14)

in the physical space, size space and velocity state space respectively. Let each control
volume be bounded by surfaces ∂Λψ , ∂Λx, ∂Λs and ∂Λv respectively. The particle num-
ber balance taken about the finite control volume Λψ per unit time can be expressed from
first principles:

Acc = In−Out +Gen

16



2.4. THE GENERALIZED POPULATION BALANCE EQUATION

where Acc is the accumulation, In − Out is the net convective input and Gen is the gen-
eration. These terms are expressed as rates. The number of particles present N(t) at time
t in the control volume Λψ is:

N(t) =
∫

Λψ

f̃n(ψ, t)dψ (2.15)

The accumulation term represents the rate of change of the number of particles contained
in the control volume Λψ . This is given by:

Acc =
dN
dt

=
d
dt

∫
Λψ

f̃n dψ =
∫

Λψ

∂t f̃n dψ (2.16)

where Liebnitz theorem is applied to the control volume Λψ , which is assumed to be time
independent. Let us account for convection via the boundary of each control volume.
These will add up to give the net convective flow rate of particles entering Λψ . For the
control volume Λx, the net convective flow rate of particles entering through the boundary
∂Λx is given as:

(In−Out)x =−
∫

Λs

∫
Λv

∫
∂Λx

f̃nv ·dSxdsdv (2.17)

where dSx is the differential surface vector normal to ∂Λψ and pointing outwards. Apply-
ing the Gauss theorem to equation (2.17) to transform the surface integral into a volume
integral, we have:

(In−Out)x =−
∫

Λψ

∇x · ( f̃nv)dψ (2.18)

where ∇x· is the divergence operator in the three-dimensional physical space. Although
equation (2.18) can further be manipulated, we shall however leave the equation in its
present form to preserve generality. Similarly, we obtain:

(In−Out)v =−
∫

Λx

∫
Λs

∫
∂Λv

f̃nv̇ ·dSvdsdx=−
∫

Λψ

∇v · ( f̃nv̇)dψ (2.19)

and
(In−Out)s =−

∫
Λx

∫
Λv

∫
∂Λs

f̃nṡ ·dSsdvdx=−
∫

Λψ

∂s ( f̃nṡ)dψ (2.20)

for the net convective flow rate of particles entering Λv and Λs respectively through their
respective boundaries ∂Λv and ∂Λs . In the velocity and size state space, the particles
move with velocities v̇ (acceleration according to Newton’s second law of motion) and ṡ
(size rate of change). Here, the vectors dSs and dSv are the differential surface vectors
respectively normal to their respective boundaries and pointing outwards. The expression
∇v· and ∂s are the divergence operators in the three-dimensional phase space of the veloc-
ity coordinate and one-dimensional phase space of the size coordinate respectively. The
net convective contribution is therefore equal to:

In−Out =−
∫

Λψ

[
∇x · ( f̃nv)+∇v · ( f̃nv̇)+∂s ( f̃nṡ)

]
dψ (2.21)

Within the control volume Λψ, particles can generate due to discontinuous jumps (or
events) such as collisions between particles leading to aggregation and/or breakage. These

17



2.4. THE GENERALIZED POPULATION BALANCE EQUATION

collisions can lead to change in particle velocities within a given phase space without
necessarily crossing its boundaries. We express the rate of generation as:

Gen =
∫

Λψ

h̃n(ψ, t)dψ (2.22)

where h̃n is the number of particles generated per unit volume of particle state space and
unit time owing to discrete events, mainly collisions between particles, and for this reason
the generation term h̃n is also known as the collision integral. A closure hypothesis must
be introduced to define this generation term in terms of the NDF because h̃n is not closed,
for it involves velocity correlations between two particles (Chapman and Cowling, 1970).
Putting equations (2.16), (2.21) and (2.22) together , we obtain:∫

Λψ

[
∂t f̃n +∇x · ( f̃nv)+∇v · ( f̃nv̇)+∂s ( f̃nṡ)− h̃n

]
dψ = 0 (2.23)

For an arbitrary control volume Λψ , equation (2.23) will only hold if the integrand is
zero. Thus the following relationship must hold:

∂t f̃n +∇x · ( f̃nv)+∇v · ( f̃nv̇)+∂s ( f̃nṡ) = h̃n (2.24)

Equation (2.24) is the generalized population balance equation which governs the evolu-
tion of all properties describing a population of particles. Solving this equation will give
information which helps characterize the system. The solution can provide knowledge on
how system features such as particle size, velocity and position changes with respect to
time. Having the form of an integro-differential equation and a dimensionality higher than
classical transport equations, the GPBE will be extremely difficult to solve. An effective
way of handling this difficulty is by using the method of moments which we shall describe
in Section 2.4.2. This procedure turns the single GPBE into a set of transport equations
with less dimensions which can be easily handled by CFD codes. It also results in loss of
information but renders the problem tractable.

2.4.1 Solving the Generalized Population Balance Equation
If properly transformed, the generalized population balance equation takes the form of the
Volterra or Fredholm integral equation of the second order (Ramkrishna, 2000). Solution
of these forms of equations are subjects of mathematical texts (Petrovsky, 1957); so we
can be certain that the GPBE can, at least in principle, be solved.

The method of successive approximation is one of the analytical methods from the litera-
ture. Here, the GPBE is rearranged as an integral equation in the NDF. On the left hand
side of the transformed GPBE equation is an expression in terms of the NDF and on the
right hand side of the equality sign an NDF functional with respect to the particle state.
An approximation for the NDF of order n is substituted into the functional to find the next
approximation of order n+1. We refer the reader to Ramkrishna (2000) for more details.
For GPBE featuring convolution integrals in the collision integral term, the Laplace trans-
form is particularly suitable for obtaining analytical solutions. Ramkrishna (2000) can be
referred to for an example. When the physics are simple, the method of characteristics
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can be used to reduce the GPBE to an ordinary differential equation (ODE) along which
the solution can be integrated from some known initial point. These methods fail when
the physics of the system become complex.

The method of weighted residuals is another procedure for solving the GPBE numerically.
Here, the NDF is approximated by a sum of test (or basis) functions, chosen from a
linearly independent set, whose coefficients are determined so that the linear combination
satisfies the GPBE. The set of test functions are derived from an orthonormal family. The
coefficients are derived from an orthogonal operation on the residuals using the same set
of functions used to expand the distribution or other suitable sets of weighing functions.

An alternative numerical method is the discretized population balance approach, also
referred to as the class method. Here, the generalized internal state space is partitioned
into classes and then the GPBE is integrated over subintervals in these classes. The GPBE
is then transformed into a set of ODEs expressing macroscopic balances for the number
of particles in each interval. The accuracy of the method increases with the number of
classes as well as computational time. The major drawback of the method is that the
number of particles is conserved only in the limit of an infinite number of classes. Also
the number of discretized equations increases with the number of classes, therefore, high
computational time is necessary for solving the GPBE on a sufficiently fine grid since the
solution of the GPBE strongly depends on the adopted computational grid.

A more attractive approach is the method of moments (MOM) which we shall subse-
quently examine in detail. Here, special integral properties of the NDF are tracked to
describe the PSD. These properties are called the moments. The idea is to derive trans-
port equations for the moments of interest by integrating out all the internal coordinates
from the GPBE. The number of scalars required is very small which makes implentation
in CFD feasible. However, this method has been scarcely applied due to the problem of
closure where moment transport equations for a given set of moments involve moments
external to the set. The closure problem for the method of moments was first mentioned
by Hulburt and Katz (1964) and later reviewed by Diemer and Olson (2002).

An alternative approach for solving PBEs is the Monte-Carlo simulations. This approach
is mainly stochastic as specified probabilities are used to describe the particle state and
random variables generated according to appropriate probabilities. The generated vari-
ables are then averaged in order to find the expected system behaviour. For more details
on this approach, the reader is referred to Smith and Matsoukas (1998), Lee and Mat-
soukas (2000), and Rosner and Yu (2001). This technique is extremely powerful and
requires a lot of computing power. With the sort of computational resources available
today, it is still not practical for real applications.

2.4.2 Method of Moments
Reducing the dimensionality of the GPBE to that of classical transport equations is the
idea on which the method of moments (MOM) of Hulburt and Katz (1964) is based. This
is achieved by integrating out all the internal coordinates. In order to further illustrate this
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method we shall consider a population of particles characterized by a one-dimensional
particle state space and a zero collision integral. We also assume that the particles do not
move. Hence, no convection in real space. In this case, equation (2.24) becomes:

∂t f̃n +∂s( f̃nṡ) = 0 (2.25)

Applying the moment transform in equation (2.11) to equation (2.25), we obtain:

d
dt

∫
Ωs

f̃nsk ds +
∫

Ωs

∂

∂ s
( f̃nṡ)sk ds = 0 (2.26)

Equation (2.26) is one-dimensional compared to the original GPBE in (2.25) which is
two-dimensional. Only the time dependence remains when the size coordinate is inte-
grated out. Equation (2.26) contains less information than the GPBE. Rather than a dis-
tributed information of the particle properties as obtained in the GPBE, we now obtain
average values of the system properties. The method of moments therefore represents a
trade-off between complexity and information available. If we represent the domain of
the particle size accordingly, Ωs ≡ [0,+∞], equation (2.26) will yield:

d
dt

∫ +∞

0
f̃nskds = ( f̃nṡsk)

∣∣∣
0
− ( f̃nṡsk)

∣∣∣
+∞

+ k
∫ +∞

0
f̃nṡsk−1ds (2.27)

where the substitution,

∂s( f̃nṡ)sk = ∂s( f̃nṡsk)− k f̃nṡsk−1 (2.28)

have been made in equation (2.26).

According to the regularity condition (Chapman and Cowling, 1970), when s diverges,
f̃n goes to zero faster than any other function. In our case, it means that the number of
particles having infinite size is zero. The term ( f̃nṡsk)

∣∣
+∞

on the right hand side of equa-
tion (2.27) therefore equals zero. The term ( f̃nṡsk)

∣∣
0 also vanishes when s = 0. If this be

the case, then we rewrite equation (2.27) as:

d
dt

∫ +∞

0
f̃nskds = k

∫ +∞

0
f̃nṡsk−1ds (2.29)

Equation (2.29) represents the moment-transport equation of the GPBE in equation (2.25).
The equation (2.29) governs the evolution of the moment of order k of the NDF. We will
have to write equation (2.29) z times if we wish to track the first z integer moments, with
k varying from 0 to z− 1. The resulting set is closed if the right hand side of equation
(2.29) is a function of lower-order moments , that is, moments of order less than k. If
this is the case, additional sets of equations are not required. On the other hand, if the
right hand side contains higher-order moments, irrespective of the number of equations
we choose to consider, the resulting set remains unclosed. In order to further explain this,
let us consider two different cases.

Case 1: The rate of change of particle size is a constant, ṡ = s0. In this case, we can
rewrite equation (2.29) as :

d
dt

∫ +∞

0
f̃nskds = ks0

∫ +∞

0
f̃nsk−1ds (2.30)
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Here, the problem is closed as the moment transport equation of the order k features only
lower-order moments (in this case, k−1).

Case 2: The rate of change of particle size is given by the power law ṡ = s0sα , where s0
and α are positive constants. In this case, we can rewrite equation (2.29) as :

d
dt

∫ +∞

0
f̃nskds = ks0

∫ +∞

0
f̃nsk−1+αds (2.31)

The right hand side of the equation (2.31) contains the moment of order k−1+α of the
NDF. The resulting set is closed only when α is equal to zero or one. If α is greater than
one, the equation becomes unclosed as it involves a higher-order moment.

When the method of moments leads to an unclosed set of equations, which is usually the
case, closure is needed. This will require finding an approximation of high accuracy which
relates the unclosed terms to the available set of moments. Subsequently, we shall present
moment-closure methods in the context of the quadrature-based method of moments.

2.4.3 The Population Balance Equation (PBE) as moment transform
of the GPBE

By using a similar approach to the one in section 2.4 for deriving the generalized pop-
ulation balance equation, we can derive the population balance equation (PBE) which
has only the particle size as internal coordinate. Alternatively we can apply the method
of moments in deriving the population balance equation by integrating over the velocity
phase space in the generalized population balance equation. The GPBE being integro-
differential and with a higher dimensionality than the PBE which we seek to derive, makes
it more difficult to solve compared to the latter. We have seen in section 2.4.2 that the di-
mensionality of the analytical problem can be reduced at the expense of obtaining an
averaged, rather than a distributed, information of the system properties.

Different moment transforms of the GPBE preserves different properties of the NDF
(Mazzei, 2008). The more moments we consider, the more information we retain. Here,
we shall consider the derivation of the PBE as a moment transform of the GPBE.

Let us apply the moment transform:

Mv,k(x,s, t) =
∫ +∞

−∞

vk1
1 vk2

2 vk3
3 f̃n(x,s,v, t)dv (2.32)

to the generalized population balance equation in (2.24). The particle velocity v and the
particle size s are components of the generalized internal state vector ξ. Equation (2.32)
is the moment transform of the NDF of the k1-th, k2-th, and k3-th order with respect to
the velocity coordinates v1, v2 and v3 respectively and of the zeroth order with respect to
the size coordinate s. If we substitute in equation (2.32), k1 = k2 = k3 = 0 and formally
replace f̃n(x,s,v, t) with equation (2.24), we obtain:∫ +∞

−∞

[
∂t f̃n +∇x · ( f̃nv)+∇v · ( f̃nv̇)+∂s ( f̃nṡ)− h̃n

]
dv = 0 (2.33)

21



2.4. THE GENERALIZED POPULATION BALANCE EQUATION

The left hand side is a sum of five different integrals. The first gives :∫ +∞

−∞

∂t f̃ndv = ∂t

(∫
∞

−∞

f̃ndv
)
= ∂t fn (2.34)

where by definition, ∫ +∞

−∞

f̃n(x,s,v, t)dv = fn(x,s, t) (2.35)

We can therefore define a new NDF fn(x,s, t) where fn(x,s, t)dxds gives the number of
particles present within dx at the time t of interest having a size in the range ds around s.

The second integral gives:∫ +∞

−∞

∇x · ( f̃nv)dv = ∇x ·
∫ +∞

−∞

f̃nvdv = ∇x · ( fn〈v|s〉) (2.36)

where 〈v|s〉 is the mean velocity conditioned on the particle size s.

For the third integral:

∫ +∞

−∞

∇v · ( f̃nv̇)dv =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

∂

∂vi
( f̃nv̇i)dv1dv2dv3 (2.37)

Here, vi and v̇i are the i-th components of the vectors v and v̇, respectively with respect to
the Cartesian vector basis {e1,e2,e3}. The limit of integration over the velocity domain
extends to infinity since the Cartesian components of the velocity lies between −∞ and
+∞. We can further decompose (2.37) thus:

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

[
∂

∂v1
( f̃nv̇1)+

∂

∂v2
( f̃nv̇2)+

∂

∂v3
( f̃nv̇3)

]
dv1dv2dv3 (2.38)

The integrands within the brackets can be evaluated separately. In the coordinate direction
e1, we have :

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

∂

∂v1
( f̃nv̇1)dv1dv2dv3 =

+∞∫
−∞

+∞∫
−∞

[
f̃nv̇1
]+∞

−∞
dv2dv3 (2.39)

As v1 diverges, the value of f̃n goes faster to zero than any other function. This is the
regularity condition (refer to Section 2.3.2). Therefore,[

f̃nv̇1
]+∞

−∞
= 0 (2.40)

This same result is true for the other two coordinate directions; hence, the integral in
equation (2.37) is zero. We arrive at the same result if we use a different approach: the
Gauss theorem. Applying the Gauss theorem in the velocity state space:∫ +∞

−∞

∇v · ( f̃nv̇)dv =
∫ +∞

−∞

f̃nv̇ · dSv = 0 (2.41)
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As earlier said, the regularity condition on the boundary ∂Ωv has the same effect (Ωv
stretches out to infinty).

The fourth integral in the equation (2.33) gives:∫ +∞

−∞

∂s( f̃nṡ)dv = ∂s

(∫ +∞

−∞

ṡ f̃n dv
)
= ∂s( fn〈ṡ|s〉) (2.42)

where 〈ṡ|s〉 is the mean velocity in size space conditioned on the particle size s.

And the fifth term can be written thus:∫ +∞

−∞

h̃n dv ≡ hn (2.43)

If we combine all the results obtained, we get:

∂t fn +∇x · ( fn〈v|s〉)+∂s( fn〈ṡ|s〉)−hn = 0 (2.44)

Re-arranging (2.44), we obtain:

∂t fn +∇x · ( fn〈v|s〉)+∂s( fn〈ṡ|s〉) = hn (2.45)

Equation (2.45) is the population balance equation. In the absence of growth in size space
the population balance reduces to:

∂t fn +∇x · ( fn〈v|s〉) = hn (2.46)

Note: During the course of this work we will switch between the size-based NDF fn(x,s, t)
and the volume-based NDF f̂n(x,vp, t). For simplicity, we use the size-based NDF for
most of our derivations and subsequently introduce the volume-based equivalent when
needed.

2.5 Closures based on Quadrature Approximations
In order to simplify the mathematics and clearly describe the methodology for closure,
we shall limit our discussion to the univariate form of the generalized population balance
derived in the previous section. If we were to consider the GPBE in section 2.4, there are
three possible scenarios.

Scenario 1: The particles are motionless: In this case, the internal state space of the
population is fully described by the size coordinate and the system is purely univariate as
the velocity coordinate is absent.

Scenario 2: Particles move at the same velocity: In this case, we assume the particles
move at the same velocity as the fluid if the flow is laminar. For turbulent flows, we
assume a relationship for the particle velocity as a function of time and space.

Scenario 3: The particle velocity is a function of the particle size: Here, particles within
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a particular differential size range move with a certain velocity different from that of
particles external to the set. This is similar to the PBE derived in section 2.4.3.

For the time being, we shall limit our discussion to the univariate PBE derived in the
previous section. From the PBE, the function fn(x,s, t) describes the distribution of the
population over the size coordinate s. We also assume that the velocity 〈v|s〉 of the parti-
cles is an average velocity which is known if particle size is known. Therefore, the NDF
needs not describe the distribution over the velocity. This is because if the number density
of elements with the internal coordinate in the range ds around s is fn(x,s, t)ds, the same
is the number of particles with velocity in the range dv around v(x,s, t). Moreover, the
number of particles with size and velocity external to the range specified is clearly zero.

To overcome the problem of closure described in section 2.4.2, the size-based NDF is
replaced by a finite-mode approximation given by a summation of dirac delta functions:

fn(x,s, t)≈
ν

∑
i=1

ni (x, t)δ [s− si(x, t)] (2.47)

The formula in equation (2.47) is the quadrature approximation referring to a univari-
ate distribution. For a multivariate distribution, the method approximates the NDF as a
summation of multidimensional dirac delta functions. The monovariate distribution repre-
sented in (2.47) represents the disperse phase by ν different classes each having a number
density ni (x, t) and a particle size si(x, t). The scalar functions ni (x, t) and si(x, t) are
the weights and nodes of the quadrature respectively.

The quadrature formula eliminates the closure problem. It is a common factor in the
QMOM and DQMOM methods with the difference in the two methods being the way in
which the nodes and weights are computed. We shall first present the direct quadrature
method of moments, considering scenario 3 above where the particle velocity is condi-
tioned on the particle size.

2.5.1 The Direct Quadrature Method of Moments (DQMOM)
For a univariate distribution, the PBE is represented by equation (2.45):

∂t fn +∇x · ( fn〈v|s〉)+∂s( fn〈ṡ|s〉) = hn

We shall analyse the DQMOM technique in steps to guide the reader through the theoret-
ical analysis of the method.

Step 1 : Substitute the quadrature approximation into the PBE.

We adopt the quadrature formula of equation (2.47) for the PBE by representing the NDF
by ν different classes of particle each having a number density ni (x, t) and a particle size
si(x, t).

The first term of the PBE then becomes:

∂t fn = ∂t

ν

∑
i=1

ni δ (s− si) =
ν

∑
i=1

[
∂tni δ (s− si)−ni∂tsiδ

′(s− si)
]

(2.48)
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where the product chain rule has been applied. The function described by the expression
δ ′(s− si) represents the derivative of δ (s− si) with respect to (s− si) and further defined
by the integral property (Arfken and Weber, 1985):∫ sc

sa

f (s)δ ′(s− sb)ds =−∂s f (sb) ; sa < sb < sc (2.49)

In deriving transport equations from the GPBE , this property becomes very useful as we
must integrate the latter and compute its moments. If we substitute the identity:

ni∂tsi = ∂t(nisi)− si∂tni (2.50)

in equation (2.48), we obtain:

∂t fn =
v

∑
i=1

[
δ∂tni−δ

′
∂t(nisi)+δ

′si∂tni
]

(2.51)

The second term of the PBE can be manipulated in a similar way. If there exist a condi-
tional relationship between the particle velocity and the particle size, then v is a known
function of the variables s, x, t; accordingly, we can write:

fn〈v|s〉=

(
v

∑
i=1

ni (x, t)δ [s− si(x, t)]

)
v(x,s, t)

=
v

∑
i=1

ni (x, t)v[x,si(x, t), t]δ [s− si(x, t)]

=
v

∑
i=1

ni (x, t)vi(x, t)δ [s− si(x, t)] (2.52)

where vi is the velocity of the particles of the quadrature class i. Thus:

∇x · ( fn〈v|s〉) = ∇x ·
v

∑
i=1

nivi δ =
v

∑
i=1

(
∇x · (nivi)δ −nivi ·∇x siδ

′) (2.53)

But:
nivi ·∇x si = ∇x · (nisivi)− si∇x · (nivi) (2.54)

Therefore, we obtain:

∇x · ( fn〈v|s〉) =
v

∑
i=1

(
∇x · (nivi)δ −∇x · (nisivi)δ

′+ si∇x · (nivi)δ
′) (2.55)

The third term which represents convection in size space can be treated in a similar way
as the second term. If there exist a conditional relationship between the particle growth
rate and particle size, then ṡ is a known function of the variables s, x, t; accordingly, we
can write:

fn〈ṡ|s〉=

(
v

∑
i=1

ni (x, t)δ [s− si(x, t)]

)
ṡ(x,s, t)

=
v

∑
i=1

ni (x, t)ṡ[x,si(x, t), t]δ [s− si(x, t)]

=
v

∑
i=1

ni (x, t)ṡi(x, t)δ [s− si(x, t)] (2.56)
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where ṡi is the growth rate of the particles of the quadrature class i. Thus:

∂s( fnṡ) = ∂s

(
v

∑
i=1

niṡiδ

)
=

v

∑
i=1

niṡiδ
′ (2.57)

Putting all the results together, we obtain:

v

∑
i=1

(
cn

i δ − (cs
i − sicn

i )δ
′+niṡiδ

′)= hn (2.58)

where by definition,

cn
i (x, t)≡ ∂tni +∇x · (nivi) ; cs

i (x, t)≡ ∂t(nisi)+∇x · (nisivi) (2.59)

Equation (2.58) expresses the PBE for a univariate distribution of particles whose veloc-
ities is dependent on the particle size and whose NDF fulfils the equation (2.47). The
unknowns are the weights ni (x, t) and nodes si(x, t) of the quadrature approximation.
Equation (2.59) can be regarded as transport equations for the weights and weighted
nodes as they help govern their evolution in time and space. In order to find the source
terms cn

i (x, t) and cs
i (x, t) in (2.59), we have to compute the moment transforms of the

discretized PBE.

Step 2 : Determine the source terms via moment transform.

In order to determine the source terms, we take the moment transform of Eq.(2.58). Equa-
tion (2.58) has 2v unknowns, therefore an equivalent number of moments has to be con-
sidered. Different moments preserve different properties of the NDF. Hence, the source
term depends on the moments selected.

We shall denote the moment transform of the NDF by Mk(x, t). For the first term of the
equation (2.58), we have:

Mk

(
v

∑
i=1

cn
i δ

)
=

v

∑
i=1

cn
i

∫
∞

0
sk

δ ds =
v

∑
i=1

cn
i sk

i (2.60)

Applying the integral property defined in (2.49), the second term of equation (2.58) be-
comes:

Mk

(
v

∑
i=1

(cs
i − sicn

i )δ
′

)
=

v

∑
i=1

(cs
i − sicn

i )
∫

∞

0
sk

δ
′ds =−k

v

∑
i=1

(cs
i − sicn

i )s
k−1
i (2.61)

In like manner, the third term becomes :

Mk

(
v

∑
i=1

niṡiδ
′

)
=

v

∑
i=1

niṡi

∫
∞

0
sk

δ
′ds =−k

v

∑
i=1

ni sk−1
i ṡi (2.62)

Putting all the results together , we obtain :

(1− k)
v

∑
i=1

cn
i sk

i + k
v

∑
i=1

cs
i s

k−1
i = Mk(hn)+ k

v

∑
i=1

nisk−1
i ṡi (2.63)
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Equation (2.63) is an algebraic equation in 2v unknowns: cn
i (x, t) and cs

i (x, t). In order
to solve for these unknowns, we need 2v independent set of equations. To obtain a linear
system of 2v independent equations we write equation (2.63) for 2v independent set of
moments of the PBE. The best choice of moments will depend on the problem at hand.
In this work, we use the first 2v integer moments of the PBE because of their significance
to the problem. For example, the zeroth order size based moment represents the total
number of particles per unit physical volume while the second and third order moments
are related to the total particle area and the total particle volume respectively. Although
fractional-order moments (k ∈ R) can be adopted, here, we use integer-order moments
(k ∈ N).

The linear system of equations derived from using the first 2ν moments can be represented
as a set of matrices in the form Xc = z where X is a 2v× 2v matrix , c and z are both
column matrices. If xp,q are the elements ofX , then the elements of the matrix are:

xp,q = (2− p)sp−1
q ; 1≤ p≤ 2v ; 1≤ q≤ v

xp,q = (p−1)sp−2
q ; 1≤ p≤ 2v ; v+1≤ q≤ 2v (2.64)

The elements cp of the column vector c are:

cp = cn
p ; 1≤ p≤ v

cp = cs
p ; v+1≤ p≤ 2v (2.65)

and the elements zp of the column vector z are:

zp = Mp−1(hn)+(p−1)
v

∑
i=1

ni sp−2
i ṡi ; 1≤ p≤ 2v (2.66)

If the determinant of X is non-zero, then we can obtain cn
i (x, t) and cs

i (x, t) by simply
invertingX . Sometimes, the nodes are not unique and the matrixX may not be full rank
making it impossible to invert X . This may be due to a redundant subset of the v delta
functions representing the NDF. To overcome this, a little perturbation is introduced to the
indistinct node so that X becomes full rank. The perturbations introduced in X leaves
the weights ni(x, t) unchanged (Marchisio and Fox, 2005).

The 2v transport equations from equation (2.59) that govern the evolution of the weights
and weighted nodes in time and space are now closed provided that the collision integral
hn and the particle size growth rate ṡ are known. The theory of transport phenomena pro-
vides constitutive expressions that can describe the growth rate for the particle size. The
reader is referred to Levenspiel (1999) for more on this subject. Modelling the collision
integral hn is the subject of the next chapter.

Step 3: Assign Boundary and Initial Conditions.

We must assign both boundary and initial conditions in order to solve the problem in
equation (2.59). To initialize the quadrature weights and weighted nodes the initial values
of at least 2v moments of the NDF has to be known. If we plug these known moments into
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a discretized moment equation, we obtain a set of non-linear algebraic equations whose
solutions yield ni(x, t) and si(x, t). On the boundaries of the system, we can specify any
one of the following: the weights, the weighted nodes or their fluxes.

We can assign the initial conditions if we know at least 2v independent moments of the
NDF at time t0. If we assume to know the function fn(x,s, t), we can calculate its mo-
ments as:

Mk(x, t0) =
∫

∞

0
fn (x,s, t0)sk ds (2.67)

Using equation (2.47), we can write:

Mk(x, t0) =
v

∑
i=1

ni (x, t0)sk
i (x, t0) (2.68)

Equation (2.68) is a non-linear equation in 2ν unknowns ni(x, t0) and si (x, t0). For any
value of ν the equation has 2ν unknowns which can be found by writing and solving 2v
equations for 2v different values of k. Any set of moments can be chosen. However, the
resulting algebraic system and initial conditions will depend largely on our choice of k.

Step 4: Solve the resulting non-linear algebraic system using an appropriate method.

For a univariate system, the solution for the resulting algebraic system will be based on
the product-difference algorithm by Gordon (1968). This method uses the 2v NDF mo-
ments to construct a real symmetric tridiagonal matrix whose eigenvalues coincide with
the quadrature nodes and the eigenvectors allow for the determination of the quadrature
weights.

Say we choose the first 2v moments of the NDF, then it follows that:∫
∞

0
fn (x,s, t0)sk ds =

v

∑
i=1

ni (x, t0)sk
i (x, t0) (2.69)

for any integer value of k from 0 to 2v−1. Hence, it must also be:∫
∞

0
fn (x,s, t0)pk(s)ds =

v

∑
i=1

ni (x, t0) pk [si(x, t0)] (2.70)

for any polynomial pk(s) of degree k with 0≤ k ≤ 2v−1. This holds if the integration is
distributive and pk(s) is a linear combination of polynomials sk with 0 ≤ k ≤ 2v− 1. If
this is the case, then the choice of nodes and weights makes equation (2.47) a Gaussian
quadrature. Instead of an accuracy of v− 1 yielded by a normal quadrature formula
for v nodes, the Gaussian quadrature reaches an accuracy of order 2v− 1. If we had
made a different choice of moments in equation (2.68) other than the first 2v moments,
equation (2.47) would no longer be a Gaussian quadrature because our choice would
lead to different nodes and weights. Therefore, it is important from the standpoint of
mathematical accuracy that we preserve the first 2v moments of the NDF.
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2.5. CLOSURES BASED ON QUADRATURE APPROXIMATIONS

This important property suggests an efficient alternative of calculating the quadrature co-
efficients si(x, t0). These, in fact, are the roots of the monic polynomial πv(x,s, t0) of
degree v based on the inner product definition:

〈pi, p j〉 ≡
∫

∞

0
fn (x,s, t)pi(s)p j(s)ds ; ∀pi, p j ∈ Pn(s) (2.71)

that adopts as weighing function the NDF itself. fn (x,s, t) is positive-defined as required
by the inner product definition. Here, pi(s) and p j(s) are polynomials of the vector space
Pn(s) of real polynomials p(s) of degree at most n.

We can find the nodes by constructing a sequence of monic orthogonal polynomials by
relating any three consecutive polynomial in the following sequence:

πk+1(s) = (s−αk)πk(s)−βkπk−1(s) (2.72)

where the following definition holds:

π−1(s)≡ 0 ; π0(s)≡ 1 ; αk ≡
〈πk,sπk〉
〈πk,πk〉

; βk ≡
〈πk,πk〉
〈πk−1,πk−1〉

> 0 (2.73)

(2.72) is the recursive relation. This relationship can be re-arranged thus:

sπk(s) = αkπk(s)+βkπk−1(s)+πk+1(s) (2.74)

Combining equations (2.73) and (2.74) helps us generate a linear system of polynomials
whose roots provide the abscissas si(x, t0). Although finding the roots of these set of
polynomials is not a trivial task as the problem is often ill-conditioned (Press et al., 2002)
and numerically do not converge easily to give a solution, the product-difference algo-
rithm of Gordon (1968) makes all the difference by solving an eigenproblem involving a
real symmetric tridiagonal matrix to compute the roots of πv(x,s, t0) and simultaneously
the weights and nodes. The linear system generated is given as :

sπv−1(s) =Aπv−1(s)+rv(s) (2.75)

WhereA is a matrix of the coefficients of the polynomial given by:

A=



α0 1 0 · · · 0 0 0 · · · 0 0 0
β1 α1 1 · · · 0 0 0 · · · 0 0 0
...

...
... · · · ...

...
... · · · ...

...
...

0 0 0 · · · βk αk 1 · · · 0 0 0
...

...
... · · · ...

...
... · · · ...

...
...

0 0 0 · · · 0 0 0 · · · βv−2 αv−2 1
0 0 0 · · · 0 0 0 · · · 0 βv−1 αv−1


(2.76)

The vector πv−1(s) of the polynomials πk(s) of degree k smaller than v is:

πv−1(s) = ( π0 π1 π2 · · · πk · · · πv−2 πv−1 )T (2.77)
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and the residual vector rv(s) is:

rv(s) = ( 0 0 0 · · · 0 0 · · · πv )T (2.78)

The quadrature nodes are the roots of the polynomial πv(s), for any si(x, t0) the vector
rv(si) vanishes and the (2.75) reduces to:

siπv−1(si) =Aπv−1(si) (2.79)

We can say from (2.79) that the eigenvalues of the matrixA coincide with the quadrature
nodes si(x, t0). In our case, A is an unsymmetrical real tridiagonal matrix. It is therefore
convenient to transform the matrix A into a symmetric one having same eigenvalues. To
do this we refer to Lipschutz and Lipson (2001) and carry out a diagonalization procedure
by finding an invertible matrixD that satisfies the similarity condition:

B =DAD−1 (2.80)

where B is a real symmetric matrix. If such a matrix as D exists, then A and B are
similar having the same eigenvalues and characteristic equation. On the other hand, their
eigenvectors differ and are related thus:

τ (si) =D
−1πv−1(si) (2.81)

where τ (si) is the eigenvector of B for the value of the eigenvalue corresponding to
si(x, t0). For tridiagonal matrices the transformation in (2.80) is always possible and D
is diagonal with diagonal elements dk given by:

d1 = 1 ; dk =

(
k−1

∏
i=1

√
βi

)−1

; 2≤ k ≤ v (2.82)

On performing the transformation in (2.78), we obtain:

B =



α0
√

β1 · · · 0 0 0 · · · 0 0√
β1 α1 · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

0 0 · · ·
√

βk αk
√

βk+1 · · · 0 0
...

... · · · ...
...

... · · · ...
...

0 0 · · · 0 0 0 · · · αv−2
√

βv−1

0 0 · · · 0 0 0 · · ·
√

βv−1 αv−1


(2.83)

We therefore have a new eigenproblem which enables us to solve for the quadrature nodes:

Bτ (si) = siτ (si) (2.84)

In order to proceed with solving for the eigenvalues of B, the elements of the matrix
itself, αk and βk, have to be evaluated using the recursive relation of equations (2.72) and
(2.73). This could be a very laborious task to accomplish. Therefore we turn to a more
effective method: the product-difference algorithm of Gordon (1968). The algorithm is
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as follows: First, the elements gp,q of the Gordon matrixG, a square matrix of dimension
2v+1, must be determined. The elements of the first column of the matrix are given by:

g1,1 = 1 ; gp,1 = 0 ; 2≤ p≤ 2v+1 (2.85)

The elements of the second column are:

gp,2 = Mp−1(x, t0)(−1)p−1 ; 1≤ p≤ 2v ; gp,2v+1 = 0 (2.86)

The remaining elements are found using the product-difference algorithm:

gp,q = g1,q−1 gp+1,q−2 − g1,q−2 gp+1,q−1 ;
{

1≤ p≤ 2(v+1)−q
3≤ q≤ 2v+1 (2.87)

gp,q = 0 ;
{

2(v+1)− (q−1)≤ p≤ 2v+1
3≤ q≤ 2v+1

The coefficients αk and βk are then given by :

αk = ς2k + ς2k+1 ; 0≤ k ≤ v−1
βk = ς2kς2k−1 ; 1≤ k ≤ v−1 (2.88)

where ςk is defined as:

ς0 = 0 ; ςk =
g1,k+2

g1,k+1g1,k
; 1≤ k ≤ 2v−1 (2.89)

Once the elements of B are determined, the eigenvalues and eigenvectors can be found.
The eigenvector is needed to compute the quadrature weights. The quadrature weight can
be derived from the product-difference scheme as follows:

ni(x, t0) = M (x, t0)τ
2
1 (x,si, t0) (2.90)

where τ1(x,si, t0) is the first component of the eigenvector τ (x,si, t0) of matrix B. In
equation (2.90), the eigenvectors are assumed of unit magnitude. Note that in general the
eigenvectors are defined up to a proportionality constant, therefore only ratios between
their components and not the components are meaningful (Mazzei, 2008).

2.5.2 Quadrature Method of Moments (QMOM)
In order to track the moments of the NDF, the quadrature method of moments back-
calculates the quadrature nodes and weights by solving the system of non-linear alge-
braic equations generated from equation (2.68). For univariate distributions, the product-
difference algorithm described in section 2.5.1 can similarly be applied to obtain a solu-
tion. However, the main difference between the DQMOM and QMOM methods is that
whereas the former runs the algorithm once to initialize the quadrature variables, the lat-
ter runs it at every time step of the numerical simulation and at each grid point of the
computational domain.
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To derive the transport equations of the NDF moments, we use a similar transformation as
described in Section 2.3.3. Let us recall the PBE, where a conditional relationship exists
between the particle velocity and the particle size:

∂t fn +∇x · ( fn〈v|s〉)+∂s( fn〈ṡ|s〉) = hn

Let us apply the moment transform to the PBE. For the first term, we write:

Mk (∂t fn) =
∫

∞

0
(∂t fn)sk ds =

∫
∞

0
∂t( fnsk)ds = ∂t

∫
∞

0
fnskds = ∂tMk (2.91)

For the second term, we write :

Mk[∇x · ( fnv)] =
∫

∞

0
∇x · ( fnv)sk ds =

∫
∞

0
∇x · ( fnskv)ds (2.92)

= ∇x ·
∫

∞

0
fnskvds = ∇x · (Mkvk) (2.93)

where the velocity vk(x, t) with which the k-th moment is convected is a mean velocity
defined by:

vk(x, t)≡
1

Mk(x, t)

∫
∞

0
fn(x,s, t)skv(x,s, t)ds (2.94)

Here, v(x,s, t) is the particle mean velocity conditioned on the particle size. Applying
the quadrature approximation, we have:

fn(x,s, t)skv(x,s, t) =
v

∑
i=1

ni(x, t)sk
i (x, t)vi(x, t)δ [s− si(x, t)] (2.95)

substituting the relation (2.95) into equation (2.94) we have :

vk(x, t) =
1

Mk(x, t)

v

∑
i=1

ni(x, t)sk
i (x, t)vi(x, t) (2.96)

We have previously evaluated the moments of the third and fourth term. The reader is
referred to equations (2.57), (2.62) and (2.63). If we make all necessary substitutions, we
obtain:

∂tMk +∇x · (Mkvk) = Sk(x, t) (2.97)

where Sk is the source term given by:

Sk ≡Mk(hn)+ k
v

∑
i=1

ni sk−1
i ṡi (2.98)

The relationship in Eq. (2.97) governs the evolution of the moment of the NDF, Mk(x, t).
The quadrature nodes and weights are the functions of real interest which can be back-
calculated from the product-difference algorithm. We have 2v unknowns which will re-
quire 2v equations to solve. As before we refer to equation (2.68), which relates the nodes,
weights and the moments making it possible for 2v moments to be tracked. So, in this
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case, for each time step of the numerical simulation and at each grid point of the computa-
tional domain, the Gordon matrix G can be generated once the moments are determined.
The matrix G is generated using the equations (2.85), (2.86) and (2.87). Consequently,
a tridiagonal symmetric matrix B can be built and its eigenvalues and eigenvectors com-
puted. These further gives results for the quadrature weights ni(x, t) and nodes si(x, t).

In theory we can say QMOM and DQMOM are similar, but numerically, the latter poses
several advantages over the former: QMOM is computationally expensive as it has to
run the PD algorithm for each time step, track the NDF and then back-calculate to deter-
mine the functions of interest whereas for DQMOM, the quadrature nodes and weights
are tracked directly. Also, the moment equations are not as numerically stable as those in-
volving the nodes and weights. This makes DQMOM a preferred method and the method
of choice when dealing with multivariate distributions.
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Chapter 3

Mathematical Modelling of Aggregation
and Breakage

In this chapter we discuss the principal mathematical theories underlying the modelling
of birth and death functions due to aggregation and breakage in gas-solid fluidized beds.
In an attempt to close the generation term hn encountered in chapter two:

1) we shall show a detailed derivation of the breakage and aggregation equations;

2) we shall discuss a few modelling aspects to the aggregation and breakage kernel.

3.1 Introduction
Most chemical and mechanical processes involve change in size and shape of the dis-
persed phase or solid matter. Changes in size can be as a result of particle breakage (or
size reduction) and/or aggregation (or size enlargement). In fluidized beds, these phe-
nomena (breakage and aggregation) contribute a great deal to the eventual properties of
the system and should be accounted for while modelling. We account for aggregation and
breakage in the generation term hn of the population balance equation.

We can write equations to describe aggregation and breakage in the disperse phase and
incorporate same in the PBE. The aggregation and breakage equations contain grouped
terms in their expressions referred to as kernels. These kernels are major parameters in
the aggregation and breakage equations.

There are three basic approaches to modelling these kernels: theoretical, empirical and
experimental (Narni et al., 2012). Smoluchowski (1918) derived the shear and brown-
ian aggregation kernel via theoretical considerations whereas Sastry (1975) and Kapur
(1972) employed empirical approach to obtain their kernels. Peglow (2005) fitted exper-
imental data to modify the empirical kernel proposed by Kapur (1972). Recently, due to
the advancement of computational methods, some authors have extracted kernels using
computer simulations (Tan et al., 2004; Gantt et al., 2006).
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3.2. BREAKAGE AND AGGREGATION EQUATIONS

These kernels are usually expressed as a product of two terms: the collision frequency
and the collision efficiency. In this work, we shall try to select or develop appropriate
kernels which can help to best describe a dense polydisperse fluidized bed.

3.2 Breakage and Aggregation Equations
Aggregation and breakage play an important role in several chemical processes: precipita-
tion, crystallization, separation, granulation and reaction in multiphase systems (Marchi-
sio et al., 2003a). The evolution of the PSD is not fully described if the contributions of
aggregation and breakage are not considered.

Particles generate as a result of collisions. If we no longer regard the velocity as an
internal coordinate, we will need to account for this effect indirectly. Collisions make
particles aggregate and break; we can consequently write:

hn(x,s, t) = hb
n(x,s, t)+ha

n(x,s, t) (3.1)

where hb
n(x,s, t) and ha

n(x,s, t) are the breakage and aggregation source terms respec-
tively.

3.2.1 The Breakage Equation
The generation term hn in the PBE in part accounts for breakage. The first step in closing
the breakage term is to define the source and sink terms due to breakage. Consequently
we can write:

hb
n(x,s, t) = Bb(x,s, t)−Db(x,s, t) (3.2)

where
Bb(x,s, t) = the rate of birth of particles of size s due to breakage; and
Db(x,s, t) = the rate of death of particles of size s due to breakage.

Consider a differential volume dx around x in physical space Ωx and dr around r in
size space Ωs. If we assume that particles break up independent of each other and assign
b(x,r, t) to be the fraction of the number of particles with size range dr around r per unit
volume of physical space breaking per unit time, we can define the number of particles of
size range dr around r breaking per unit time per unit volume of physical space as:

b(x,r, t) fn(x,r, t)dr (3.3)

where b(x,r, t) is also referred to as the breakage frequency. When a particle breaks it
disintegrates into a number of smaller fragments equal to γ(x,r, t); notice that this number,
like the breakage frequency, depends on the position vector x and, more importantly, on
the particle size r. If we know these functions, we can determine the total number of
particles that breakage yields per unit time per unit volume of physical space dx, which
is given by:

γ(x,r, t)b(x,r, t) fn(x,r, t)dr (3.4)
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These fragments do not share the same size; hence, there exists a probability density func-
tion p(s, |x,r, t) that describes how the fragments are distributed over the state coordinate
s. If we know this function we can write:

γ(x,r, t)b(x,r, t) fn(x,r, t)p(s, |x,r, t)drds (3.5)

to represent the number of particles with size range ds around s formed from the breakage
of particles of size range dr around r per unit volume of physical space. If we only
consider sizes greater than s breaking to give us fragments in the size range ds around s,
then we can close the term Bb(x,s, t) thus:

Bb(x,s, t)ds =
∫ +∞

s
γ(x,r, t)b(x,r, t) fn(x,r, t)p(s, |x,r, t)drds

Bb(x,s, t) =
∫ +∞

s
γ(x,r, t)b(x,r, t) fn(x,r, t)p(s, |x,r, t)dr (3.6)

The breakage term Db(x,s, t) defined above can also be closed thus:

b(x,s, t) fn(x,s, t) (3.7)

where b(x,s, t) fn(x,s, t)ds represents the average number of particles of size range ds
around s breaking per unit time per unit volume of physical space. Putting the results in
(3.6) and (3.7) together, we close the source term due to breakage hb

n(x,s, t) thus :

hb
n(x,s, t) =

∫ +∞

s
γ(x,r, t)b(x,r, t) fn(x,r, t)p(s, |x,r, t)dr−b(x,s, t) fn(x,s, t) (3.8)

The expression is closed for it is written in terms of the density function and the particle
state coordinates.

3.2.2 The Aggregation Equation
The generation term hn in the PBE in part also accounts for aggregation. The first step
in closing the aggregation term is to define the source and sink terms due to aggregation.
Consequently we can write:

ha
n(x,s, t) = Ba(x,s, t)−Da(x,s, t) (3.9)

where
Ba(x,s, t) = the rate of birth of particles of size s due to aggregation; and
Da(x,s, t) = the rate of death of particles of size s due to aggregation.

We summarise the assumptions made for the derivation of the aggregation equation as
follows:

1) The possibility of having more than two particles simultaneously aggregating is
extremely small and thus negligible;

2) No statistical correlation between the two aggregating particles is present.
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Consider two particles with sizes dr around r and du around u colliding in such a way as
to aggregate to yield another particle of size ds around s. If we define a(x,u,r, t) as the
aggregation frequency which gives the fraction of ordered pairs aggregating per unit time,
then the number of particles (of size in the range ds) that generate for any given pair of
particles of sizes in the range du and dr in physical space is:

a(x,u,r, t) fn(x,u, t) fn(x,r, t)dudr (3.10)

We assume that given the particle state of one of the aggregating pair and that of the new
particle, it is possible to solve for the particle state of the other aggregating pair. In this
case, given the values of r and s, u is a function of the other two sizes: u = u(s,r). For
fixed r, we can write:

a[x,u(s,r),r, t] fn[x,u(s,r), t] fn(x,r, t)
du
ds

dsdr (3.11)

Only particles with complementary sizes below s can aggregate to yield a new particle of
size s. Hence, we integrate over r for 0 < r < s:{∫ s

0
a[x,u(s,r),r, t] fn[x,u(s,r), t] fn(x,r, t)

∂u
∂ s

dr
}

ds (3.12)

The expression (3.12) is equal to Ba(x,s, t)ds. Hence,

Ba(x,s, t) =
∫ s

0
a[x,u(s,r),r, t] fn[x,u(s,r), t] fn(x,r, t)

∂u
∂ s

dr (3.13)

On the right hand side of (3.13), identical size pairs have been considered twice within
the interval of integration so that multiplying by 1

2 corrects for the redundancy. Therefore
we write:

Ba(x,s, t) =
1
2

∫ s

0
a[x,u(s,r),r, t] fn[x,u(s,r), t] fn(x,r, t)

∂u
∂ s

dr (3.14)

Similarly, we can close the term Da(x,s, t) as follows:

Da(x,s, t)ds = fn(x,s, t)
∫ +∞

0
a(x,s,r, t) fn(x,r, t)drds

Da(x,s, t) = fn(x,s, t)
∫ +∞

0
a(x,s,r, t) fn(x,r, t)dr (3.15)

Hence we can close the source term due to aggregation ha
n(x,s, t) thus:

ha
n(x,s, t) =

1
2

∫ s

0
a[x,u(s,r),r, t] fn[x,u(s,r), t] fn(x,r, t)

∂u
∂ s

dr−

fn(x,s, t)
∫ +∞

0
a(x,s,r, t) fn(x,r, t)dr (3.16)
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3.2.3 The Population Balance Equation with Aggregation-Breakage
Equation

For simplicity, let us consider a population of particles that can only aggregate. Conse-
quently, the population balance equation includes only the accumulation and the aggrega-
tion terms. We assume that the state of the particles is characterized solely by the particle
volume and that the system is uniform in real space. Consequently, the number density
function f̂n(vp, t) depends only on the time t and on the particle volume vp . In terms of
this distribution function, the population balance equation reads :

∂t f̂n(vp, t) = B̂a(vp, t)− D̂a(vp, t) (3.17)

where:
B̂a(vp, t) =

1
2

∫ vp

0
a(vp− ε,ε) f̂n(vp− ε, t) f̂n(ε, t)dε (3.18)

Note:
∂ (vp− ε)

∂vp
which is the volume equivalent of

∂u
∂ s

is equal to 1 in the above expres-

sion.

D̂a(vp, t) = f̂n(vp, t)
∫ +∞

0
a(vp,ε) f̂n(ε, t)dε (3.19)

B̂a(vp, t) = rate of birth of particles of volume vp due to aggregation of smaller particles.
D̂a(vp, t) = rate of death of particles of volume vp due to aggregation with other particles.

Let us assume that we prefer to work in terms of particle size s instead of particle volume
vp. The NDF of interest is then a function of the time and the particle size; we denote it
as fn(s, t). We now need to derive the PBE in terms of the size-based NDF. First, we let :

vp(s)≡ kvs3 ; ε(r)≡ kvr3 ; vp(s)− ε(r)≡ kvu3 (3.20)

where kv represents the particle shape factor (assumed to be the same for all the particles
of the population; this is consistent with the assumption that the particle size or volume is
the only coordinate characterizing the particle state). Then, since it is :

fn(s, t)ds = f̂n[vp(s), t]dvp(s) = f̂n[vp(s), t]3kvs2ds (3.21)

we obtain:

f̂n[vp(s), t] =
fn(s, t)
3kvs2 ; f̂n[ε(r), t] =

fn(r, t)
3kvr2 ; f̂n[vp(s)− ε(r), t] =

fn(u, t)
3kvu2 (3.22)

Hence we can write:

B̂a[vp(s), t] =
1
2

∫ s

0
{a[vp(s)− ε(r),ε(r)]/3kvu2} fn(u, t) fn(r, t)dr

D̂a[vp(s), t] =
fn(s, t)
3kvs2

∫ +∞

0
a[vp(s),ε(r)] fn(r, t)dr (3.23)
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Accordingly, the original PBE:

∂t f̂n(vp(s), t) = B̂a(vp(s), t)− D̂a(vp(s), t) (3.24)

results to:

∂t fn(s, t) = 3kvs2B̂a[vp(s), t]−3kvs2D̂a[vp(s), t] = Ba(s, t)−Da(s, t) (3.25)

where:
Ba(s, t) =

1
2

s2
∫ s

0
{a[vp(s)− ε(r),ε(r)]/u2} fn(u, t) fn(r, t)dr (3.26)

Da(s, t) = fn(s, t)
∫ +∞

0
a[vp(s),ε(r)] fn(r, t)dr (3.27)

Similarly, if we consider a population of particles undergoing breakage only. Conse-
quently, the population balance equation includes only the accumulation and the break-
age terms. We assume that the state of the particles is characterized solely by the particle
volume and that the system is uniform in real space. Consequently, the number density
function f̂n(vp, t) depends only on the time t and on the particle volume vp . In terms of
this distribution function, the population balance equation reads :

∂t f̂n(vp, t) = B̂b(vp, t)− D̂b(vp, t) (3.28)

where:
B̂b(vp, t) =

∫ +∞

vp

b̂(ε, t) f̂n(ε, t) P̂(vp|ε, t)dε (3.29)

D̂b(vp, t) = b̂(vp, t) f̂n(vp, t) (3.30)

B̂b(vp, t) = rate of birth of particles of volume vp due to fragmentation of bigger particles.
D̂b(vp, t) = rate of death of particles of volume vp due to fragmentation.

In equation (3.26), P̂(vp|ε, t) contains information on the fragments produced by a break-
age event. This is the daughter distribution function. Where 3kvs2P̂(vp|ε, t) = P(s|r, t) and
b̂(vp, t) = b(s, t), we can re-write equations (3.29) and (3.30) as follows:

Bb(s, t)
3kvs2 =

∫ +∞

s
b(r, t)

fn(r, t)
3kvr2

P(s|r, t)
3kvs2 3kvr2dr

Bb(s, t) =
∫ +∞

s
b(r, t) fn(r, t)P(s|r, t)dr (3.31)

Db(s, t)
3kvs2 = b(s, t)

fn(s, t)
3kvs2

Db(s, t) = b(s, t) fn(s, t) (3.32)

Hence the PBE with aggregation and breakage equations is written as:

∂t fn +∇x · ( fn〈v|s〉)+∂s( fnṡ|s) = Ba(s, t)−Da(s, t)+Bb(s, t)−Db(s, t) (3.33)
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3.2. BREAKAGE AND AGGREGATION EQUATIONS

after substituting (3.26), (3.27), (3.31) and (3.32), equation (3.33) becomes:

∂t fn +∇x · ( fn〈v|s〉)+∂s( fnṡ|s) = s2

2

∫ s

0
{a[vp(s)− ε(r),ε(r)]/u2} fn(u, t) fn(r, t)dr

− fn(s, t)
∫

∞

0
a[vp(s),ε(r)] fn(r, t)dr+

∫
∞

s
b(r, t) fn(r, t) P(s|r, t)dr−b(s, t) fn(s, t)

(3.34)

While trying to find a solution for the left hand side of equation (3.34), assuming hn
is closed, we applied the DQMOM where the quadrature approximation was employed
and the moment transform of the resulting expression was found. The next section shall
consider the moment of the generation term hn.

3.2.4 Moment Equation of the Generation term hn

This section resumes from equation (2.63). We recall this equation here:

(1− k)
v

∑
i=1

cn
i sk

i + k
v

∑
i=1

cs
i s

k−1
i = Mk(hn)+ k

v

∑
i=1

nisk−1
i ṡi

hn is the generation term. We can now evaluate this expression knowing that hn can be
written in terms of the NDF. Recall:

hn(s) = Ba(s)−Da(s)+Bb(s)−Db(s) (3.35)

Let us consider the first term on the right hand side of equation (3.35):

Ba(s) = (s2/2)
∫ s

0

{a[u(s,r),r]}
u2(s,r)

fn[u(s,r)] fn(r)dr (3.36)

with:

u(s,r) = (s3− r3)1/3 (3.37)

The function a(u,r) denotes the fraction of particles of sizes u and r that aggregate per unit
time. Of course, this function is zero for negative values of the particle size; in particular,
a(u,r)≡ 0 for u < 0. Accordingly, we can write Eq. (3.36) equivalently as:

Ba(s) = (s2/2)
∫ +∞

0

{a[u(s,r),r]}
u2(s,r)

fn[u(s,r)] fn(r)dr (3.38)

This is because for r > s the value of u is negative, and therefore a(u,r) is zero. In other
words, the added part of the integral (with integration limits between s and infinity) is
zero; so, including it does not alter the final result. We just have to ensure that a(u,r) is
properly defined.

Let us consider the moment of order k of the function Ba(s). To calculate it we integrate
the function skBa(s) over s between zero and infinity. Thus, it is:

Mk{Ba(s)}= (1/2)
∫ +∞

0
s2+k

[∫ +∞

0

{a[u(s,r),r]}
u2(s,r)

fn[u(s,r)] fn(r)dr
]

ds (3.39)
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3.2. BREAKAGE AND AGGREGATION EQUATIONS

Here, we first calculate the inner integral ( the one between brackets; doing so yields a
function of s) and then the outer integral. We find it convenient, however, to change the
integration variable s into u. To this end, from Eq. (3.37), we see that ds = u2/(u3 +
r3)2/3du. In this expression, we regard r as fixed. When s tends to infinity, u tends to
infinity; when s tends to zero, u tends to a negative value, and therefore - since for u < 0
the function a(u,r) is zero by definition - the lower integration limit can be set to zero.
So, after changing the integration variable, the integral above becomes:

Mk{Ba(s)}= (1/2)
∫ +∞

0
fn(r)

∫ +∞

0
sk(u,r)a(u,r) fn(u)dudr (3.40)

To calculate the integrals, we write:

fn(u) =
ν

∑
i=1

niδ (u− si) ; fn(r) =
ν

∑
j=1

n jδ (r− s j) (3.41)

Thus, it is :

∫ +∞

0
sk(u,r)a(u,r) fn(u)du =

ν

∑
i=1

ni

∫ +∞

0
sk(u,r)a(u,r)δ (u− si)du

=
ν

∑
i=1

nisk(si,r)a(si,r) (3.42)

Similarly, we write:

Mk{Ba(s)}= (1/2)
ν

∑
i=1

ν

∑
j=1

nin j

∫ +∞

0
sk(si,r)a(si,r)δ (r− s j)dr

= (1/2)
ν

∑
i=1

ν

∑
j=1

nin jsk(si,s j)a(si,s j) (3.43)

Let us consider the second term on the right hand side of Eq. (3.35)

Da(s) = fn(s)
∫ +∞

0
a(s,r) fn(r)dr (3.44)

The function a(s,r) denotes the fraction of particles of sizes s and r that aggregate per
unit time. Let us consider the moment of order k of the function Da(s). To calculate it we
integrate the function skDa(s) over s between zero and infinity. Thus it is:

Mk{Da(s)}=
∫ +∞

0
sk(s) fn(s)

[∫ +∞

0
a(s,r) fn(r)dr

]
ds (3.45)

Here, we first calculate the inner integral (the one between the brackets; doing so yields a
function of s) and then the outer integral. To calculate the integrals, we write:

fn(s) =
ν

∑
i=1

niδ (s− si) ; fn(r) =
ν

∑
j=1

n jδ (r− s j) (3.46)
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Thus it is: ∫ +∞

0
a(s,r) fn(r)dr =

ν

∑
j=1

n j

∫ +∞

0
a(s,r)δ (r− s j)dr

=
ν

∑
j=1

n ja(s,s j) (3.47)

Similarly, we write:

Mk{Da(s)}=
ν

∑
i=1

ν

∑
j=1

nin j

∫ +∞

0
sk(s)a(s,s j)δ (s− si)ds

=
ν

∑
i=1

ν

∑
j=1

nin jsk(si)a(si,s j) (3.48)

Let us consider the third term on the right hand side of Eq. (3.35)

Bb(s) =
∫ +∞

s
b(r) fn(r)P(s|r)dr (3.49)

Here, the lower limit of integration can be set to zero. This is because the function P(s|r)
is zero for values of s < 0. Particles with sizes less than s can only break to form particles
with sizes less than s. Hence, the probability of P(s|r) automatically equal zero. We can
therefore write:

Bb(s) =
∫ +∞

0
b(r) fn(r)P(s|r)dr (3.50)

Let us consider the moment of order k of the function Bb(s). To calculate it, we integrate
the function skBb(s) over s between zero and infinity. Thus it is:

Mk{Bb(s)}=
∫ +∞

0
sk(s)

[∫ +∞

0
b(r) fn(r)P(s|r)dr

]
ds (3.51)

To calculate the integrals, we write:

fn(r) =
ν

∑
i=1

niδ (r− si) (3.52)

We first calculate the inner integral.∫ +∞

0
b(r) fn(r)P(s|r)dr =

ν

∑
i=1

ni

∫ +∞

0
b(r)P(s|r)δ (r− si)dr

=
ν

∑
i=1

nib(si)P(s|si) (3.53)

and then the outer integral whose integrand is now a function of s

Mk{Bb(s)}=
ν

∑
i=1

nib(si)
∫ +∞

0
skP(s|si)ds

=
ν

∑
i=1

nib(si)P
(k)
i (3.54)
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where

P(k)
i =

∫ +∞

0
skP(s|si)ds (3.55)

The fourth term of Eq. (3.35) is given as:

Db(s) = b(s) fn(s) (3.56)

Let us consider the moment of order k of the function Db(s). To calculate it, we integrate
the function skDb(s) over s between zero and infinity. Thus it is:

Mk{Db(s)}=
∫ +∞

0
sk(s)b(s) fn(s)ds (3.57)

To calculate the integral, we write:

fn(s) =
ν

∑
i=1

niδ (s− si) (3.58)

Therefore we write:

Mk{Db(s)}=
ν

∑
i=1

ni

∫ +∞

0
sk(s)b(s)δ (s− si)ds

=
ν

∑
i=1

nisk(si)b(si) (3.59)

Therefore we can write an expression for Mk(hn) in equation (2.61) as follows:

Mk(hn) = (1/2)
ν

∑
i=1

ν

∑
j=1

nin jsk(si,s j)a(si,s j)−
ν

∑
i=1

ν

∑
j=1

nin jsk(si)a(si,s j)+
ν

∑
i=1

nib(si)P
(k)
i −

ν

∑
i=1

nisk(si)b(si)

= (1/2)
ν

∑
i=1

ν

∑
j=1

nin ja(si,s j)
[
sk(si,s j)−2sk(si)

]
+

ν

∑
i=1

nib(si)
[
P(k)

i − sk(si)
]
(3.60)

3.3 Modelling the Aggregation and Breakage Kernel
In the outgoing section we were able to write a full PBE including the aggregation and
breakage equations. In equation (3.60), we encountered the aggregation and breakage
kernels which are effective parameters in the PBE. These parameters are mainly made of
two parts:

1) a part which informs us of the number of particle pairs available for collision or
the number of collisions undergone by each particle per time. This is the collision
frequency.

2) a second part which gives information on the success of aggregation or breakage re-
sulting from these collisions. This is the success factor for aggregation or breakage.
We also refer to this as the aggregation or breakage efficiency in this work.
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Hence the aggregation or breakage kernel takes the generic form:

k(s) =Ψ0 k∗(s) (3.61)

where Ψ0 is the success factor for aggregation or breakage which is dependent on the
operating conditions and various process parameters like kinetic energy trajectories, coa-
lescence mechanism, binder properties, particle characteristics, collision orientation etc.
k∗(s) is the collision frequency which is size-dependent. Developing apriori expressions
from a theoretical standpoint alone to represent k(s) is a difficult task. The ultimate
functional form of k(s) must be determined with the aid of experimental data. Differ-
ent forms of the collision frequency k∗(s) exists in the literature. In this work, we adopt
the kinetic theory of granular flow (KTGF) collision model. Previous work conducted by
Goldschmidt (2001) shows that we can confidently rely on the KTGF approximation to
describe the behaviour of particle motion in a fluidized bed. The reader is referred to the
work of Goldschmidt (2001) for more details.

3.3.1 The Aggregation Kernel
From the work of Goldschmidt (2001) we can derive an aggregation kernel from the
KTGF expression which describes the collision rate for particles in a multi-component
mixture. The number of collisions per unit physical volume and time between particles
of sizes si and s j can be written as (Goldschmidt, 2001; Fan et al., 2004) :

Ni j = πnin jσ
3
i jgi j

[
4

σi j

(
θs

π

mi +m j

2mim j

) 1
2

− 2
3
(∇ · v̄)

]
(3.62)

where σi j is the inter-particle distance between the two colliding particles of sizes si and
s j, gi j is the radial distribution for the mixture, θs is the mixture granular temperature, mi
and m j are the masses of particle sizes si and s j respectively and v̄ is the ensemble aver-
age particle velocity. From the law of conservation of linear momentum, v̄ = φivi +φ jv j,
where φi, vi and φ j, v j are the volume fractions and velocities of particles i and j respec-
tively.

If we compare Eq.(3.43) to Eq.(3.62), we can say that the product ni n j gives informa-
tion on the total number of ordered pairs of particles with sizes si and s j available for
collision/aggregation per unit physical space volume. Thus, the aggregation kernel can be
expressed as:

Ψaπσ
3
αβ

gαβ

[
4

σαβ

(
θs

π

mα +mβ

2mαmβ

) 1
2

− 2
3
(∇ ·v)

]
(3.63)

where the expression

πσ
3
αβ

gαβ

[
4

σαβ

(
θs

π

mα +mβ

2mαmβ

) 1
2

− 2
3
(∇ ·v)

]
is the collision frequency which gives the number of collisions per unit time between par-
ticles of sizes si and s j. Ψa is the success-factor for aggregation which we shall refer to
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Table 3.1: Constitutive relations for the solids collision parameters

Solids Collision Parameters

gi j =
sig j + s jgi

si + s j

σi j = (si + s j)/2

θs =
φiρiθi +φ jρ jθ j

φiρi +φ jρ j
(mi +m j)

mi = ρiπs3
i /6

as the aggregation efficiency in this work and it is dependent on the operating conditions
and material properties that contribute to particle aggregation such as the binder viscosity,
particle size, particle velocity, fluidizing velocity and bed temperature.

If we neglect the divergence of the particle velocity field and assume that particles have
same density while substituting for the inter-particle distance, σi j equation (3.63) reduces
to:

a(si,s j) =Ψagi j

(
3θs

ρs

) 1
2

(si + s j)
2

(
1
s3

i
+

1
s3

j

) 1
2

(3.64)

The equation (3.64) represents the kinetic aggregation kernel. Refer to Table 3.1 for a
summary of the solids collision parameters. Other associated parameters, for example,
the granular temperature of the solid (θi), are defined in section 4.1.

3.3.2 The Breakage Kernel
The breakage kernel b(si) can be written in the form of Eq. (3.61) as a product of the
size-dependent collision frequency b∗(si) and a breakage efficiency Ψb. Thus

b(si) =Ψb b∗(si) (3.65)

Here, we have assumed fragmentation to be a direct result of collision. From the kinetic
theory of granular flow, the average number of collisions undergone by each particle per
time is called the collision frequency. The frequency of collisions for a particle of size si
with particles of different sizes is given by:

Ni1 +Ni2 +Ni3 + · · ·
ni

=
1
ni

ν

∑
j=1

Ni j (3.66)

Substituting equation (3.62) into (3.66) we have :

b∗(si) =
1
ni

ν

∑
j=1

πnin jσ
3
i jgi j

[
4

σi j

(
θs

π

mi +m j

2mim j

) 1
2

− 2
3
(∇ · v̄)

]
(3.67)
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which reduces to:

b∗(si) =
ν

∑
j=1

πn jσ
3
i jgi j

[
4

σi j

(
θs

π

mi +m j

2mim j

) 1
2

− 2
3
(∇ · v̄)

]
(3.68)

Therefore the breakage kernel can be expressed as:

b(si) =Ψb

ν

∑
j=1

n jπσ
3
i jgi j

[
4

σi j

(
θs

π

mi +m j

2mim j

) 1
2

− 2
3
(∇ · v̄)

]
(3.69)

where Ψb is the success factor for breakage or the breakage efficiency.

If we neglect the divergence of the particle velocity field and assume that particles have
equal density, we can write the breakage kernel as :

b(si) =Ψb

ν

∑
j=1

n j gi j

(
3θs

ρs

) 1
2

(si + s j)
2

(
1
s3

i
+

1
s3

j

) 1
2

(3.70)

3.3.3 The Daughter Distribution Function
While deriving the breakage equation in § 3.2.1, we introduced the probability density
function (PDF) p(s, |x,r, t) to quantify the rate of formation of particles due to the first-
order breakage process; First-order because only one particle takes place in the discontin-
uous event and so far in this work the breakage rate has been assumed to be proportional
to the NDF. The conditional PDF p(s, |x,r, t) states the probability of forming a daughter
particle of size s from a parent particle of size r. However, this PDF inherits certain prop-
erties from the conservation law which helps to guide the breakage process. One of these
constraints is the normalization condition given as:∫

Ωs

p(s, |x,r, t)ds = 1 (3.71)

which states that the probability of forming the daughter particles is unity.

In most cases a closely similar conditional PDF is used instead. This corresponding con-
ditional PDF was introduced in § 3.2.4. It is the daughter distribution function which in
addition to giving the probability of forming a daughter particle of a given size from a
particular parent particle size, also contains information on the number of daughter parti-
cles formed from a breakage event. Let P(s|x,r, t) be the daughter distribution function,
then a simple renormalization of the PDF constraint will yield:∫

Ωs

P(s|r)ds = γ(r) (3.72)

where γ(r) is the number of new particles formed from the breakage event (Note: here
we have suppressed the x and t dependencies for clarity).

Different scenarios are possible in considering a suitable daughter distribution function.
The simplest functional form being a summation of dirac deltas:
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Figure 3.1: The additive nature of volume-based vs. size-based intrinsic particle property

P(s|r) =
γ

∑
i=1

δ [s− si(r)] (3.73)

where γ is the total number of daughter particles and si relates the size of the ith daughter
particle to that of the parent r. In order words Eq. (3.73) states that when a particle breaks,
γ fragments are formed and si is the size characterizing each fragment. With respect to
the size of the fragments and the parent particle some additional constraints have to be
introduced. In order to introduce these constraints we first introduce volume-based sizes
as the intrinsic particle property. This is because particle volume is additive whereas
particle size ( for example diameter) is not. That is v3 = v1 + v2 and s3 , s1 + s2 where
the subscripts 1 and 2 refer to the daughter particles and 3 to the parent particle. See
schematic representation in Figure 3.1. We can therefore write:∫

Ωε

vp(s)P̂[vp(s)|ε(r)]dvp ≤ ε(r) (3.74)

The equality sign holds if there were no loss of mass (or volume) during breakage. In this
work, we shall assume this to be the case.

If the jth moment of the daughter distribution (P̂j) is written as a function of the vol-
ume of the particle. Then, we can write:

P̂j =
∫

Ωε

v j
p(s)P̂[vp(s)|ε(r)]dvp (3.75)

and the number and mass balance imposed constraints in Eqs. (3.72) and (3.74) will rep-
resent the zeroth and first moment respectively. To impose the positiveness of the distri-
bution and conservation of mass,we introduce one more constraint as follows (Marchisio
and Fox, 2013):
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P̂[vp(s)|ε(r)] =

{
0 if vp < 0
0 if vp > ε

where the probability of forming fragments with volume greater than that of the parent
or less than zero is null. If we substitute the relation vp = kvs3 and dvp = 3kvs2ds into
equations (3.74) and (3.75) we get their equivalent expressions in terms of particle sizes.

In the literature, there are many daughter distribution functions. In principle, since we
do not know apriori which daughter distribution function best describes our system, we
will need to consider a number of daughter distribution functions from literature and test
them with our model and compare the results with experimental data to ascertain which
gives an accurate description of our system. However, at the moment, we shall employ a
closure which makes the problem more tractable. We shall employ a daughter distribu-
tion function with binary breakage. There are two possibilities: The first is a symmetric
breakage where the two fragments are identical. Here, m = n where m and n are the mass
ratios between the two daughter particles formed (for example, if m = 1 and n = 1, the
two fragments have the same volume and symmetric fragmentation can be considered).
The second is asymmetric breakage where m >> n or vice-versa. As regards the daughter
distribution function, the following relation will be used (Marchisio et al., 2003b):

P(k)
i =

∫ +∞

0
skP(s|r)ds = rk mk/3 +nk/3

(m+n)k/3 (3.76)

In this work, we shall consider the symmetric breakage in which m = 1 and n = 1.
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Chapter 4

Model Description and Methodology

4.1 Mathematical Models
Modelling the behaviour of dense fluidized bed suspensions is a very complex task in-
volving a lot of related phenomena and interactions such as mass transfer, heat transfer,
chemical reactions, growth, breakage, aggregation and so on. Numerical solutions for the
continuity, momentum, energy and chemical species equations will therefore be needed
(Fan et al., 2004). As earlier reported in § 2.2, the disperse phase also needs to be modelled
using the PBE. To render our work less complex we shall assume isothermal condition for
the fluidized bed with no chemical reactions. The PSD changes mainly due to aggregation
and breakage and no growth in size space. Fan et al. (2004) used the MFIX (Multiphase
Flow with Interphase eXchanges) open source CFD code and models/constitutive equa-
tions customary to the software in their work. Some of these constitutive relationships are
however not available in Fluent. Therefore, we shall select closely related formulations in
Fluent and also implement some of the models using User Defined Functions (UDFs).

4.1.1 The Multi-Fluid Model for Gas-Solid Flow
The gas and solid phases will be modelled using the Eulerian modelling approach where
both the primary phase (gas) and the secondary or dispersed phases (solids) are treated
as inter-penetrating continua. Each solid phase has its discrete properties e.g. size. The
volume fractions of both phases (primary and secondary) sums up to unity.

φg +
ν

∑
i=1

φsi = 1 (4.1)

where φg is the gas volume fraction, φsi is the volume fraction of the ith solid phase, and
ν is the total number of solid phases. The continuity equations for the gas and ith solid
phase are:

∂t(φgρg)+∇ · (φgρgug) = 0 (4.2)

∂t(φsiρsi)+∇ · (φsiρsiusi) = 0 (4.3)

where ρsi, ρg and usi, ug are the densities of the ith solid phase and gas phase and the
velocities of the ith solid phase and the gas phase respectively. The right-hand side of
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equation (4.3) is not equal to zero when aggregation and breakage are considered. The
momentum balance for the gas phase is

∂t(φgρgug)+∇ · (φgρgugug) = ∇ ·Sg +
ν

∑
i=1
fgi +φgρgg (4.4)

Similarly, for the solid phases, the momentum balances are

∂t(φsiρsiusi)+∇ · (φsiρsiusiusi) = ∇ ·Ssi−fgi +
ν

∑
j=1
fi j +φsiρsig (4.5)

where Sg and Ssi are the stress tensors for the gas and the solid phases respectively, g
is gravitational acceleration, fgi is the interaction force between the gas phase and the ith
solid phase whereas the interaction force between the ith and jth solid phases is denoted
by fi j.

The gas-solid interaction forces consists of buoyancy, drag, lift, Faxen, virtual mass and
an history-dependent force similar to the Basset force for the motion of single particles.
In this work only the drag and buoyancy forces are accounted for. The additional contri-
butions are neglected for reasons already discussed in Owoyemi et al. (2007). We close
the drag correlation for the fluid-particle interaction using the expression of Gidaspow
(1994):

fgi =−φsi∇Pg−Fgi(usi−u) (4.6)

where

Fgi =


150

φ 2
siµg

φgs2
i
+1.75

φsiρg|ug−usi|
si

if φg 6 0.8

3
4

CD
φsiρgφg|ug−usi|

si
φ
−2.65
g if φg 6 0.8

(4.7)

and

CD =


24

Resi
(1+0.15Re0.687

si ) if Resi 6 1000

0.44 if Resi > 1000
(4.8)

where Resi and CD are the Reynolds number and drag co-efficient respectively. The Parti-
cle Reynold’s number is calculated thus:

Resi =
φgρg|ug−usi|si

µg
(4.9)

We have also assumed that the interaction force between particles of the different solid
phases include only the drag contribution described by Syamlal et al. (1993):

fi j =−Fi j(us j−usi) (4.10)

50



4.1. MATHEMATICAL MODELS

where

Fi j =
3(1+ ei j)(

π

2 +
C f i jπ

2

8 )φsiρsiφs jρs j(si + s j)
2gi j|usi−us j|

2π(ρsis3
i +ρs js3

j)
(4.11)

ei j is the co-efficient of restitution set at 0.8, C f i j is the co-efficient of friction equal to 0.15
and gi j is the radial distribution obtained by combining the radial distribution functions
gi and g j of the i-th and j-th solid particles phases respectively. The radial distribution
employed in MFIX and used in Fan et al. (2004) is derived by Lebowitz (1964) and
expressed as:

gi =
1
φg

+
3si

2φ 2
g

v

∑
λ=1

φsλ

sλ

; gi j =
1
φg

+
3sis j

φ 2
g (si + s j)

v

∑
λ=1

φsλ

sλ

(4.12)

for each solid phase. In the literature, there is no unique formulation for the radial dis-
tribution and in ANSYS Fluent a number of options are available. For this work, we use
the expression derived by Iddir and Arastoopour (2005). Equation 5.7 is a generalization
of the Percus-Yevick equation for a mixture of hard spheres which takes into account a
direct and indirect influence of particle i on particle j and all other particles respectively.
At high solid volume fraction (when φsλ aproaches φs,max the maximum packing limit),
gi diverges. Eq. 5.7 was modified by Iddir and Arastoopour (2005) to correctly mimic the
results from Alder and Wainwright molecular dynamic simulations as follows:

gi = [1− (
φs

φs,max
)]−1 +

3si

2

N

∑
λ=1

φsλ

sλ

(4.13)

where N is the total number of solid phases, φs,max is the packing limit and

φs =
N

∑
λ=1

φsλ

λ refers to the solid phases only and gi j is evaluated as reported in Table 3.1.

The effective stress tensors for the gas-phase and solid phase is closed using customary
Newtonian constitutive equations (Jackson, 2000) as follows:

Sg =−PgI+ τg ; τg = 2κgµgDg−2/3κgµgTr(Dg)I ; Dg = 1/2[∇ug +(∇ug)
T]

(4.14)

Ssi =−PsiI+ τsi ; τsi = 2κsiµsiDsi−2/3κsiµsiTr(Dsi)I ; Dsi = 1/2[∇usi +(∇usi)
T]

(4.15)

where Pg, Psi, κg, κsi, µg, µsi Dg, Dsi, are the average pressures, the dilatational viscosities,
the shear viscosities and the rate of deformation (or strain) tensor of the fluid and solid
phases respectively. I is the identity tensor. The strain tensor is defined as:

Dg = 1/2[∇ug +(∇ug)
T] ; Dsi = 1/2[∇usi +(∇usi)

T] (4.16)
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Basically, closing the stress tensors will mean finding appropriate closures for the pres-
sure, shear viscosities and the dilatational viscosities. The fluid is modelled using the
ideal gas law and is treated as incompressible. Since the fluid density is constant and the
pressure equation greatly simplified, we will not specify the fluid pressure constitutively.
In addition, we assume that µg is constant and κg negligible. However, for the solid phase
we shall employ two different methods to calculate the solid stress tensor in two differing
regimes: the viscous and the plastic regimes. Theories from soil mechanics are used for
the plastic or slowly shearing regime whereas for the viscous regime the kinetic theory is
used.

In both regimes, each granular phase is usually characterized by a viscous solid pres-
sure Pv

si, a plastic solid pressure, Pp
si , a viscous shear viscosity µv

si, a plastic shear viscosity
µ

p
si, a viscous dilatational viscosity κv

si and a plastic dilatational viscosity κ
p
si. Generally, if

in the viscous regime a solid property xsi exists and equals xv
si, it follows that in the plastic

regime that same property equals xv
si + xp

si. We adopt the foregoing.

In this work, we use the expression of Syamlal et al. (1993) for the solid viscous shear
viscosity:

µ
v
si =

φssiρsi
√

Θsiπ

6(3− ei j)
[1+

2
5
(1+ ei j)(3ei j−1)φsgi]+

4
5

φ
2
s ρsisigi(1+ ei j)

√
Θsi

π
(4.17)

and the viscous dilatational (or granular bulk viscosity) viscosity is that of Lun et al.
(1984):

κ
v
si =

4
3

φ
2
s siρigi(1+ ei j)

√
Θsi

π
(4.18)

where Θsi is the solid granular temperature defined as one-third of the mean square veloc-
ity of the solid’s random motion.

Θsi =
1
3
〈v′2si〉

where v′si refers to the random fluctuating particle velocity. The granular temperature is
governed by balance equations for the pseudointernal energies related to v′si. This equation
is given as (Ding and Gidaspow, 1990):

3
2
[∂t(ρsiφsΘsi)+∇ · (ρsiφsΘsiusi] = ∇ · (kΘs∇Θsi)+Ssi : ∇usi− γΘ i +ϕik (4.19)

where the left hand side of the equation represents the transport equation for the fluctuat-
ing energy with a source term right hand side. The first term on the right hand side is the
diffusion of energy and kΘs is the diffusion co-efficient, γΘ i is the collisional dissipation
energy and ϕik is the energy exchange between i-th solid phase and a k-th solid phase or
fluid phase. The diffusion co-efficient for granular energy kΘs is given by Syamlal et al.
(1993):

kΘs =
15φssiρsi

√
Θsiπ

(41−33η)

[
1+

12
5

η
2(4η−3)φsgi +

16
15π

(41−33η)ηφsgi

]
(4.20)
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where
η = 1/2(1+ ei j) (4.21)

the collisional dissipation energy and γΘ i which is the rate of energy dissipation within
the i-th solid phase due to collisions between particles. This term is modelled using the
expression of Lun et al. (1984):

γΘ i =
12(1− e2

i j)gi

siπ1/2 ρsiφ
2
s Θ

1.5 (4.22)

ϕik is given by Gidaspow et al. (1991):

ϕik =−3Fi jΘsi (4.23)

where Fi j is the momentum exchange co-efficient between phase (solid or liquid) i and
phase (solid) j. In this work, we adopt the algebraic expression for the granular tempera-
ture which neglects diffusion and convection in the transport equation in Eq. 4.19 (in other
words, the production and dissipation of granular energy is in equilibrium), therefore we
may write:

0 = Ssi : ∇usi− γΘ i +ϕik (4.24)

The normal viscous solid pressure Pv
si is based on the kinetic theory concepts and given

by the expression of Syamlal et al. (1993) which is an extension of Lun et al. (1984):

Pv
si = 2ρsi(1+ ei j)φ

2
s giΘsi (4.25)

In the plastic regime, the solid stress is modelled using arbitrary functions which permits
a certain level of compressibility in he solid phase. A closure for the plastic solid pressure
which is frequently adopted by modellers is of the form:

Pp
si = φsiP∗ ; P∗ ≡ A(φs−φg)

B (4.26)

However, we shall ignore this term as it leads to big pressure fluctuations and large nu-
merical instabilities that could result in the simulation crashing. This is because A and B
have typical high values (A = 1025 and B = 10 ) causing huge deviations in φs and φg.

For the plastic shear viscosity µ
p
si we adopt the expression of Schaeffer (1987):

µ
p
si =

Pv
si sinς

2
√

I2(Di)
; I2(Di)≡

1
2
[(TrDi)

2−TrD2
i ] (4.27)

where ς is the angle of internal friction of the i-th solid phase and I2(Di) refers to the
second invariant of the strain tensor Di.

4.1.2 DQMOM Multi-Fluid Model
The polydisperse solid phase is modelled by a density function fn(x,s, t) which defines
the particle size distribution and whose transport equation is given by the PBE derived in
chapter 2 and also reported here in equation 4.28.

∂t fn(x,s, t)+∇x · [ fn(x,s, t)〈v|s〉] = hn(x,s, t) (4.28)
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where s is the particle size, x is the position vector and t is time. In the expression
above, hn is the ‘generation’ term representing discontinuous jumps in size space (i.e.
aggregation and breakage). Using DQMOM, the NDF, fn(x,s, t), can be replaced by the
quadrature approximation given by a summation of dirac delta functions:

fn(x,s, t)≈
ν

∑
i=1

ni (x, t)δ [s− si(x, t)] (4.29)

where ni is the weight of the delta function corresponding to the characteristic particle size
or node si. By substituting equation 4.29 into 4.28 one obtains the transport equations for
the weights ni and weighted nodes nisi written as:

cn
i (x, t)≡ ∂tni +∇x · (nivi) ; cs

i (x, t)≡ ∂t(nisi)+∇x · (nisivi) (4.30)

where cn
i (x, t) and cs

i (x, t) can be found from a linear system of the first 2ν moments
written in matrix form. The rigorous derivation of the transport equations for the weight
and weighted nodes is given in § 2.5.1. The source terms cn

i (x, t) and cs
i (x, t) are defined

via a linear system involving the first 2ν moments (e.g. k = 0,1,2 · · · ,2ν−1)of the PSD.
The linear system generated can be written in matrix form as:

Xc= z

whereX is a 2ν×2ν matrix, c is a column matrix with its elements being the the source
terms [cn

1,c
n
2, · · · ,cn

ν ,c
s
1,c

s
2, · · · ,cs

ν ]
T and can be found by simply inverting X where z

is also a column matrix with its elements being the moments of the generation term
[M0(hn),M1(hn) · · ·M2ν−1(hn)]

T .

For ν = 2,

X =


1 1 0 0
0 0 1 1
−s2

1 −s2
2 2s1 2s2

−2s3
1 −2s3

2 3s2
1 3s2

2


and the source terms are derived by inverting as shown:

cn
1

cn
2

cs
1

cs
2

=
1

(s1− s2)3


(3s1− s2)s2

2 −6s1s2 3(s1 + s2) −2
(s1−3s2)s2

1 6s1s2 −3(s1 + s2) 2
2s2

2s2
1 −(4s2

1 + s1s2 + s2
2)s2 2(s2

1 + s1s2 + s2
2) −s1− s2

−2s2
2s2

1 (s2
1 + s1s2 +4s2

2)s2 −2(s2
1 + s1s2 + s2

2) s1 + s2




M0(hn)
M1(hn)
M2(hn)
M3(hn)


If the matrix is singular, then it becomes impossible to invert. To overcome this, a small
pertubation can be added to the nodes to make X full rank. This method however, tends
to fail as the number of nodes increases. Therefore, alternative approaches to solving
theproblem are proffered.

In this work we shall set the source vector c to be zero in the computational cells where
singularity takes place.
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For consistency with variables used in the gas-solid multi-fluid model, we relate the
weights and nodes to the solid fraction φsi and the weighted node φsisi for each solid
phase. The volume fraction of each solid phase is related to the node and weight thus:

φsi = kvs3
i ni (4.31)

and the weighted node is:
φsisi = kvs4

i ni (4.32)

where kv is the volumetric shape factor (for spherical particles kv = π/6). Using the
relations in equations 4.31 and 4.32, we can write the transport equations as:

∂t(φsiρsi)+∇ · (φsiρsiusi) = 3kvρsis2
i cs

i −2kvρsis3
i cn

i (4.33)

∂t(φsisiρsi)+∇ · (φsisiρsiusi) = 4kvρsis3
i cs

i −3kvρsis4
i cn

i (4.34)

Reader is referred to Appendix B.1.1 and B.1.2 for the derivation of equations 4.33 and
4.34. Equation 4.33 represents the continuity equation for the ith solid phase in the pres-
ence of aggregation and breakage (compare with equation 4.3). The volume fraction of
each phase will change according to the characteristic length si as a result of aggregation
and breakage in order to imitate the evolution of the PSD. Equation 4.34 is solved in the
multi-fluid model as a user-defined scalar. Therefore the DQMOM Multi-Fluid model for
the polydisperse solid phase consists of the equations 4.5, 4.33 and 4.34. Also, we need
to account for the change in the PSD due to aggregation and breakage. Therefore, hn in
Eq. 4.28 needs to be related to known expressions of aggregation and breakage from the
theory of population balances.

It is also important to note that previous validation studies of DQMOM carried out by
Marchisio et al. (2003b), Marchisio et al. (2003c) and Marchisio and Fox (2003) have
demonstrated that by using two or three nodes, the lower-order moments of the PSD
are tracked with surprisingly small errors and that the quadrature approximation actually
mimics the the evolution and shape of the investigated PSD (McGraw, 1997). The DQ-
MOM model describes the model used by Fan et al. (2004) in their work. For QMOM
model implemented in Fluent for our work, please refer to section 2.5.2.

4.1.3 Aggregation and Breakage Models
Our investigation considers changes in PSD due only to aggregation and breakage for
which we can express hn as:

hn(x,s, t) = hb
n(x,s, t)+ha

n(x,s, t) (4.35)

where hb
n(x,s, t) and ha

n(x,s, t) are the breakage and aggregation source terms respectively
and are defined as follows:

hb
n(x,s, t) =

∫ +∞

s
b(x,r, t) fn(x,r, t)P(s, |x,r, t)dr−b(x,s, t) fn(x,s, t) (4.36)
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ha
n(x,s, t) =

1
2

∫ s

0
a[x,u(s,r),r, t] fn[x,u(s,r), t] fn(x,r, t)

∂u
∂ s

dr−

fn(x,s, t)
∫ +∞

0
a(x,s,r, t) fn(x,r, t)dr (4.37)

where a(x,s,r, t), b(x,r, t) and P(s, |x,r, t) are the aggregation kernel, breakage kernel
and daughter distribution function respectively. The moment transform of the source term
hn is given as (details in § 3.2.4):

Mk(hn)= (1/2)
ν

∑
i=1

ν

∑
j=1

nin jsk(si,s j)a(si,s j)−
ν

∑
i=1

ν

∑
j=1

nin jsk(si)a(si,s j)+
ν

∑
i=1

nib(si)Pk
i −

ν

∑
i=1

nisk(si)b(si)

(4.38)
We shall use the aggregation and breakage kernels derived from the kinetic theory of
granular flow and the binary breakage daughter distribution functions already introduced
in chapter three.

a(si,s j) =Ψagi j

(
3θs

ρs

) 1
2

(si + s j)
2

(
1
s3

i
+

1
s3

j

) 1
2

(4.39)

b(si) =Ψb

ν

∑
j=1

n j gi j

(
3θs

ρs

) 1
2

(si + s j)
2

(
1
s3

i
+

1
s3

j

) 1
2

(4.40)

P(k)
i = rk mk/3 +nk/3

(m+n)k/3 (4.41)

With these approximations, the source term hn is closed.
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Chapter 5

Results and Discussions

In this chapter, we shall proceed to replicate the work of Fan et al. (2004) using the
QMOM approach. It is worth mentioning that the work of Fan et al. (2004) was based
on DQMOM. In theory, QMOM and DQMOM are equivalent. Based on this equivalence,
we shall carry out a preliminary validation of our model by comparing our results with
the results of Fan et al. (2004).

5.1 Model Implementation
We employed the commercial CFD code Fluent to run the simulations. With the use of
user-defined functions (UDFs) and sub-routines we were able to implement the QMOM,
aggregation and breakage source terms as well as post-processing within Fluent. We
tracked the evolution of the first four, six and eight integer moments of the NDF, thus
defining three, four and five phases respectively in the multi-fluid model. In each of these
cases, one of the phases represents the fluid phase. The quadrature weights and nodes
(referring to the number densities and particle sizes respectively) were derived from the
moments via the PD algorithm. The transport equations for the NDF moments were added
to the code as user-defined scalars but not without some simple manipulations of the de-
fault user-defined scalar (UDS) equation in Fluent.

In Fluent, the user defined scalar is associated with either the disperse phase or the mixture
phase. In the first case, Fluent solves the following equation:

∂t(φkMk)+∇x · (φkMkvk) = Sk(x, t) (5.1)

whereas in the second case Fluent solves:

∂t(ρmMk)+∇x · (ρmMkvm) = Sk(x, t) (5.2)

where

ρm ≡ φgρg +ρs

ν

∑
s=1

φs ; ρmvm ≡ φgρgug +ρs

ν

∑
s=1

φsvs (5.3)

The above equations are different from the equation we propose to solve i.e.
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∂tMk +∇x · (Mkvk) = Sk(x, t)

where

vk(x, t) =
1

Mk(x, t)

v

∑
i=1

ni(x, t)sk
i (x, t)vi(x, t)

We simply replaced vk in (5.1) with the expression for the velocity of the k-th moment
of the distribution as defined above using the DEFINE UDS FLUX macro (Fluent, 2009)
available in Fluent (the reader is referred to the Fluent UDF manual). In addition, the
user defined scalar was defined as Mk/φk, so that this ratio is multiplied by the volume
fraction thus reducing the equation to the correct one which we intend to solve. The PD
algorithm was implemented using the DEFINE ADJUST macro. Other multi-fluid mod-
els described in chapter 4 are available in Fluent as default and as such did not require
implementation via UDFs. The breakage and aggregation source terms were implemented
using the DEFINE SOURCE macro in Fluent. For each of the user defined equations we
included two source terms: one for aggregation and another for breakage. Fluent adopts
the finite-volume discretization scheme and we employed the pressure-based solver rec-
ommended for low-speed incompressible flows. At every time step we used a maximum
of 150 iterations and an average time step to 1×10−4 s for most of the simulations.

5.2 Implementation Check
In order to check that the model has been implemented properly within Fluent, we try
duplicating the results of Fan et al. (2004). In their work, they employed both constant
and kinetic kernels. Five cases were investigated, three with the constant kernels and two
using the kinetic kernels. They investigated no-aggregation-no-breakage, aggregation-
dominant and breakage-dominant cases for the constant kernel. For the kinetic kernels,
they only tested breakage-dominant and aggregation dominant cases. We shall present the
results starting from the constant kernel to the kinetic kernel.

5.2.1 Constant Kernel
In the first set of simulations, we employed the constant aggregation and breakage ker-
nels. Thus the aggregation kernel, a(si,s j) and the breakage kernel b(si) were assumed
to be independent of particle diameter, velocity and other properties. Values of the model
parameters used are listed in Table 5.1.

Three cases were investigated. In Case 1, the aggregation and breakage kernels were both
set to zero. Case 2 is aggregation dominant while Case 3 is breakage dominant.

In Case 1, setting both the aggregation and breakage kernels to zero indicates that no
aggregation and breakage are present. We expect that the volume-average mean particle
size d32 (refer to Appendix C.1.1 for the passages leading to the mathematical definition
of d32), namely the ratio between the third moment m3 and the second moment m2 of the
PSD, to remain constant. This is because the third order moment and the second order
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Table 5.1: Initial values of particle diameter(si) and solid-phase volume fractions (φsi)

Nodes i = 1 i = 2 i = 3 i = 4
particle diameter si (µm) 2 183 356

3 174 263 409
4 171 225 316 420

phase volume fraction, φsi 2 0.274 0.356
3 0.196 0.229 0.205
4 0.157 0.157 0.157 0.157

* m0 = 100873.042cm−3 m1 = 2103.820cm−2 m2 = 47.740cm−1 m3 = 1.204
m4 = 3.4×10−2cm m5 = 1.07×10−3cm2

moment corresponding to the volume and surface area respectively remain unchanged.
Let us first consider the results obtained with the two-node and the three-node quadrature
approximations by using the first order upwind discretization scheme. Figures 5.1 and 5.2
report the profiles of the quadrature nodes and volume fractions for two-node quadrature
approximation at the start of the simulation and at pseudostationary conditions. The sim-
ulation based on the two-node and three-node quadrature formula ran smoothly. Figure
5.3 shows the graph of d32 against time for 2-node and 3-node quadrature approximation
for first order upwind discretization scheme. Our results show a good agreement with the
work of Fan et al. (2004). Similar results using the second order upwind discretization
scheme were obtained for the two-node quadrature approximation but for the three-node
quadrature approximation we observed a decrease in d32 with time. In the case of the
latter, we suspected that the wrong prediction may have been due to corruption of the in-
dependently transported moments of the PSD. We do not expect that numerical diffusion
should be a problem in this case. However, to rule out all possible doubts, we have gone
ahead to check whether numerical diffusion plays a role or not in the wrong prediction.
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Figure 5.1: [A] Nodes and [B] Volume fractions for Case 1 at time 0s for N = 2

Figure 5.2: [A] Nodes and [B] Volume fractions for Case 1 at time 10s for N = 2
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Figure 5.3: volume-average mean particle size vs. time for Case 1 and N = 2 and 3

Numerical diffusivity depends on the discretization scheme and the computational grid
employed. We cannot eliminate numerical diffusion as it is always present when one inte-
grates purely convective equations with CFD codes, however we can minimize numerical
diffusivity by reducing the computational grid and employing higher order discretization
schemes. We therefore employed a 5mm x 5mm computational grid to re-run the three-
node quadrature approximation using second-order discretization. This did not change
the results significantly. Hence, the implementation of a code to check for presence of
moment corruption.

For the four node quadrature formula, we observed moment corruption while using both
first- and second- order upwind schemes before the simulation eventually crashed at about
0.4s. The corrupted moments caused the values of d32 to decrease over time instead of
staying constant. Also we observed that as the number of nodes increased, so did the
complexity of computation within Fluent, run time and the simulation sensitivity to the
choice of time step size.

When we couple the CFD solution with the PBE through the solution of moment trans-
port equations, the calculated moments have a tendency to form invalid sequences as a
result of numerical simplifications made to solve the moment transport equations. The
conventional transport algorithms treat each moment independently from one another and
cannot guarantee to preserve inter-relations within members of a moment set, especially
when using high order discretization schemes (Acher et al., 2013; Mazzei et al., 2012;
McGraw, 2012; Petitti et al., 2010; Wright, 2007). When the moment transport equations
are solved independently, the resulting moments obtained through the inversion proce-
dure might not preserve the relationships, leading to invalid moment sets (McGraw, 2006;
Wright, 2007). A valid moment set contains crucial information about a physical distribu-
tion, whereas, an invalid moment sequence does not represent any physical distribution.
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We therefore employed two methods to check the validity of the moment sequence. The
first method involved constructing a difference table. By taking the natural logarithm of
the raw moments obtained from the simulation, an i−th order difference column can be
constructed. The convexity requirement, which is only a necessary condition for valid
moment sequence, is satisfied if and only if the second-order differences are non-negative
(the reader is referred to McGraw (1997, 2012) and Appendix D1.1 for more details of
the method). Once the moment satisfies the convexity condition, which is a necessary
condition for the moment sequence validity, the moment sequence is then subjected to
the positive alpha sequence enforcement (PASE) test, which forms the sufficient condi-
tion. The PASE convexity check consists of “alpha sequences” which are mathematical
quantities introduced by Gordon (1968) that are related to the Hankel-Hadamard deter-
minant sequence (refer to McGraw (2006) and Appendix D1.2 for detail of the PASE
check). Figure 5.4 shows the results of the “difference-check” and the “PASE-check”
for the three-node quadrature simulation at pseudostationary condition using the second-
order discretization scheme. As we can see, the variable of the ”difference-check” is equal
to one every where in the computational domain meaning that the moment sequence gen-
erated from the simulation at 0.05s pass the necessary convexity check. However when
subjected to a more rigorous PASE check, we observe that the computational domain have
values equal to one and zero. The value of zero within the bed shows that the convexity
requirement was not satisfied. Hence, not satisfying the sufficient condition for valid mo-
ment set.

We intend to implement correction algorithms within Fluent to try overcome the prob-
lem of moment corruption.
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Figure 5.4: difference- and PASE- checks for three-node quadrature approximation using second-order
upwind discretizaion scheme at 0.05s - Case 1

For Case 2, we set the aggregation kernel to 1× 10−5m3/s and the breakage kernel to
0.1 s−1. Here, aggregation is dominant and the particles become larger, so the volume-
average mean particle size increases with time. For the two-quadrature node simulation
using both first- and second- order upwind schemes, we observed d32 increased with
time (see Figure 5.5) while the value of the NDF moments decreased except for the third
order moment which stayed constant for the duration of the simulation. Figure 5.7 shows
the volume-average normalized moments for Case 2 using two-node quadrature formula.
The normalized moments are calculated by dividing the volume-average moments by
their values at time t = 0s (refer to appendix C for passages leading to the mathematical
definition of m̄k).

Mk(t) =
m̄k(t)
m̄k(0)

Some moments have particular meaning. For example, m0 represents the total particle
number density, whereas m2 relates to the total particle area, and m3 is related to the total
particle volume. In Figure 5.7, the expected effects of aggregation are observed: the total
number of particles indicated by m0 decreases, as do m1 and m2, whereas the total particle
volume m3 remains constant.

For the three-quadrature node simulations, we obtained similar results as in the case for
two-node quadrature formula (see Figure 5.6). However, we observed the values of d32
decreased with time as a result of moment corruption when we ran the simulation us-
ing the second-order upwind scheme. Likewise, we observed similar moment corruption
when we ran the simulation for the four-node quadrature formula.
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Figure 5.5: volume-average mean particle size vs time for Case 2, second order upwind scheme (2 Nodes)

Figure 5.6: volume-average mean particle size vs time for Case 2, first order upwind scheme (3 Nodes)
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Figure 5.7: volume-average normalized moments for case 2 for two-node quadrature formula

We compare the particle size and volume fractions at the middle of the bed based on the
first four and six NDF moments. In Tables 5.2 and 5.3, we report the particle size and
the volume fractions at pseudostationary condition at 10s. In order to compare with the
values from Fan et al. (2004), we calculated the first eight moments from the results they
presented and using the PD algorithm implemented in MATLAB, we back-calculated the
nodes and weights for three- and two- quadrature formula using the first six and four mo-
ments respectively. From the weights of the quadrature formula we were able to determine
the volume fractions.

Table 5.2: PSD at the middle of the bed at time 10s for Case 2 using N=3

Fan et. al. (2004)
s1(µm) s2(µm) s3(µm) φ1(−) φ2(−) φ3(−)

52 284 643 0.0150 0.2432 0.3797
This work

s1(µm) s2(µm) s3(µm) φ1(−) φ2(−) φ3(−)
94 294 631 0.0208 0.2510 0.3600

Table 5.3: PSD at the middle of the bed at time 10s for Case 2 using N=2

Fan et. al. (2004)
s1(µm) s2(µm) φ1(−) φ2(−)

225 539 0.1137 0.5097
This work

s1(µm) s2(µm) φ1(−) φ2(−)
215 567 0.1112 0.5310
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We observe that the predictions of the particle sizes and volume fractions obtained from
both works differ quantitatively. However, we observe that in terms of trends, the results
are similar. As we can see in Figures 5.5 and 5.6, the results mimic those of Fan et al.
(2004) up till about 2s and then begin to deviate. Fan et al. (2004) stated in their work that
“the simulation results found using other polydisperse models may differ quantitatively
from those reported here”. In order words, modifications of models, for example the drag
formulation or the stress tensors can alter the quantitative replication of the results. In this
work we have used the commercial CFD code Fluent with constitutive equations differ-
ing from those of MFIX used in the work of Fan et al. (2004). For example, the granular
temperature and the radial distribution formulation in MFIX completely differ from those
in Fluent. Therefore transitioning from MFIX to Fluent may have caused the disparities
observed in the quantitative values for the particle sizes and volume fractions.

For Case 3, we set the aggregation and breakage kernels to 1×10−5m3/s and 1s−1.Breakage
is dominant and the particles reduce in size, so the volume-average mean particle size de-
creases with time. For the two-quadrature node simulation using both first- and second-
order upwind schemes, we observed d32 decreased with time (see Figure 5.8) while the
value of the NDF moments increased except for the third order moment which stayed
constant for the duration of the simulation. For the three-quadrature node simulations,
we obtained similar results as in the case for two-node quadrature formula (see Figure
5.9). Tables 5.4 and 5.5 show the particle sizes and volume fractions at the middle of the
fluidized bed for three- and two- quadrature formula respectively.

Figure 5.8: volume-average mean particle size vs time for Case 3, second order upwind scheme (2 Nodes)
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Figure 5.9: volume-average mean particle size vs time for Case 3, first order upwind scheme (3 Nodes)

However, we observed the values of d32 decreased rapidly to about 94µm after 0.5s when
we ran the three-node quadrature simulation using second order upwind scheme. We
observed that the large deviation in the result obtained was due to the corruption of the
moments which we will try to correct using correction algorithms implemented in Fluent.

Figure 5.10: volume-average mean particle size vs time for Case 3, second order upwind scheme (3
Nodes)
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Table 5.4: PSD at the middle of the bed at time 10s for Case 3 using N=3

Fan et. al. (2004)
s1(µm) s2(µm) s3(µm) φ1(−) φ2(−) φ3(−)

27 62 110 0.0128 0.1912 0.1449
This work

s1(µm) s2(µm) s3(µm) φ1(−) φ2(−) φ3(−)
38 84 124 0.0300 0.1510 0.1721

Table 5.5: PSD at the middle of the bed at time 10s for Case 3 using N=2

Fan et. al. (2004)
s1(µm) s2(µm) φ1(−) φ2(−)

34 85 0.0424 0.3068
This work

s1(µm) s2(µm) φ1(−) φ2(−)
29 72 0.0321 0.4910

5.2.2 Kinetic Kernel
Two cases were investigated for the kinetic kernel model. Case 4 is aggregation dominant
and Case 5 is breakage dominant.

Figures 5.11 and 5.12 show how the volume-average mean particle size d32 for Case 4
varies with time for two- and three- node quadrature approximations respectively. It is
possible to observe, that our results show a similar trend with that of Fan et al. (2004)
but differ quantitatively as already observed in the cases involving constant kernels. The
latter is expected for reasons already explained such as the different constitutive equations
employed in MFIX and ANSYS Fluent.

Figure 5.11: volume-average mean particle size vs time for Case 4, 1st and 2nd order upwind scheme (2
Nodes)
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For example the radial distribution by Iddir and Arastoopour (2005) which we employed
in Fluent represents a realistic densely packed bed when the total volume fraction of the
solids approach the maximum packing limit. First, the particles aggregate, particles in-
crease in size and the rate of aggregation reduces as the particles increase in size which is
expected. The aggregates tend to move to the bottom of the bed causing possible deflu-
idizatiion as aggregation continues. As defluidization sets in, the granular temperature θs
approaches zero thereby stopping further aggregation from occurring. Figure 5.13 shows
the contour of the granular temperature at 10s for the two dispersed phases. We observe
from figure 5.13 that the granular temperature at the bottom of the bed approaches zero
while the value is significant at the top of the bed. In this case, whereas aggregation stops
at the bottom of the bed due to defluidization, it continues at the top thereby reducing
the rate of aggregation. We also observe that the graph in Figure 5.11 shows a further
decrease in the slope from 9s to show the decrease in aggregation as the process proceeds.
In contrast, Case 2 which is aggregation dominant using the constant kernel continues ag-
gregating irrespective of defluidization because there is no variable in the kernel to trigger
the on-set of defluidization at the bottom of the vessel.

Figure 5.12: volume-average mean particle size vs time for Case 4, first order upwind scheme (3 Nodes)

69



5.2. IMPLEMENTATION CHECK

Figure 5.13: contour of granualar temperature for (a)solid 1 (b) solid 2 at 10s for Case 4 (2 Nodes)

Results for Case 5 are reported in Figure 5.14. We observe that generally the the volume-
average mean particle diameter decreases with time. In this case we notice that the results
obtained using both two- and three- nodes are very similar to those obtained by Fan et al.
(2004) with differences in the quantitative values of d32 especially after 4s. We observe
in Figure 5.15 that the value of d32 decreases rapidly within 1s when case simulation
was run using a four-node quadrature formula. This is as a result of corruption of the
transported moments which was observed in previous simulations using the four-node
quadrature formula.

Figure 5.14: volume-average mean particle size vs time for Case 5
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Figure 5.15: volume-average mean particle size vs time for Case 5 using N=4

5.3 Correcting Corrupted Moments
We reported the problem of moment corruption especially for higher order upwind scheme
simulations and for simulations tracking more than six NDF moments. When the CFD is
coupled with the PBE through the solution of moment transport equations, the calculated
moments have a tendency to form invalid sets because in QMOM, the moment transport
equations are solved independently. Hence, the resulting moments obtained via the in-
version procedure might not preserve the relationships between the moments which make
them part of a valid set. A valid moment set provides crucial information about a physical
distribution, whereas an invalid sequence does not represent any valid physical distribu-
tion. Vikas et al. (2010) specifically proposed the so-called “quasi-high-order” advection
scheme for the QMOM to preserve realizability of moment sets. However, owing to the
fact the QMOM model used in this work is built on an already existing numerical solver,
modifying the available advection scheme is either impossible or not desired (Afzalifar
et al., 2017). Therefore, we shall consider alternative solutions presented in the literature.
We already introduced two ways of checking the validity of a moment sequence. Going
forward, we intend to implement an algorithm to solve the problem of nonrealizable mo-
ment sequence while tracking more than six moments or using higher order discretization
schemes with the quadrature method of moments.

One of the solutions reported in the literature is the McGraw (2006) correction proce-
dure also referred to as the filter method (McGraw, 2012). Because moment corruption
is likely as a result of improper assignment of one, or at most a few of the moments in
the sequence, we would like to adjust only those moments. For a sufficiently long se-
quence the filter method is the way to achieve this goal. In this method a difference table
(see Appendix D.1.1) is constructed and used to identify the order of the moment that is
corrupted and then provide an optimal correction by minimizing the sum of the squared
differences of the second order differences, which through correction ensures the smooth-
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ness of ln(mk) sequence. This correction method by McGraw (2006) only takes account
of the convexity condition, which is only necessary but not a sufficient condition. The
convexity condition is satisfied if and only if all the elements of the second-order differ-
ence vector are non-negative.In some cases, the convexity test is passed but the moment
set is still unphysical. In this case we will need to subject the moments to a test that
identifies both necessary and sufficient conditions such as the positivity of the Hankel-
Hadamard determinants constructed from the moments.

In place of the Hankel-Hadamard determinants, we will use another set of non-negative
quantities, the alpha sequence (see Appendix D.1.2), investigated by Gordon and gener-
ated by him using the P-D algorithm (Gordon, 1968), to investigate the validity of the
moment set.

Wright (2007) replaced nonrealizable moment set using a log-normal distribution or the
arithmetic average of two log-normal distributions by retaining the zeroth and third mo-
ments from the original moment sequence. For a log-normal distribution, a generic mo-
ment can be written as:

mk = NT exp
(

kµ +
k2σ2

2

)
(5.4)

where NT is the number density, µ and σ correspond to the mean and variance of the PSD.

We intend to use a combination of these methods to achieve correction of corrupted mo-
ments as shown in Figure 5.16 :
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Figure 5.16: Flowchart to show how the invalid moments are identified and corrected

5.3.1 Implementation of Moment Correction Algorithm
The correction algorithm was implemented within Fluent using the DEFINE ADJUST
macro. The moments calculated in Fluent were retrieved and a difference table was con-
structed in lnk. We defined the response vectors bk according to McGraw (2006) moment
correction procedure (reader is referred to text for full reference and description of pro-
cedure). The moment sets are then tested for convexity of the function lnk using both the
difference table and the positive alpha sequence enforcements. If the moment set fails
both or any of the validity tests then the Mcgraw moment correction is applied. In cases
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where the moment set cannot be corrected in a reasonable amount of iterations, we have
limited the number of iterations to 10 after which the recommendation of Wright (2007)
is applied.

5.3.2 Results from Moment Correction
So we ran simulations which had previously crashed or produced wrong results with the
moment correction algorithm implemented. We present the results here.

We ran simulations with the implemented correction algorithm for Case 1 using the four-
quadrature node which had initially shown a decrease in d32. The results showed a con-
stant value of d32 for about 0.6s before gradually decreasing in value. The simulation
eventually crashed at about 1.7s compared to 0.4s without the moment correction algo-
rithm ( See Figure 5.17).

Figure 5.17: Graph to show how d32 varies with time for Case 1 with moment correction algorithm

Similar to results observed in Case 1, we noticed a delay in the time it takes the simu-
lations to crash after the correction algorithm was implemented for Case 2 to Case 5 for
four quadrature nodes. The algorithm also failed to curtail divergence while using the
second order upwind for three quadrature nodes for Cases 2 to 5.

In order to be sure the correction algorithm was correctly implemented, we implemented
it in the default ANSYS Fluent QMOM model. However, we were only able to run Case
1 , Case 2 and Case 3 because of the restrictions in modifying the aggregation and break-
age kernels in the default QMOM fluent model to represent the kinetic aggregation and
breakage models we have chosen for this work. The default QMOM model differs from
the model we had initially implemented in that it does not afford the phases to be trans-
ported with different velocities. The implication of this is that the particles move with the
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same velocity and hence cannot freely segregate. We only present second order upwind
results because from the literature,second order upwind discretrization schemes for sim-
ulating QMOM-PBE models are more prone to moment corruption.

First, we will run a test case without the correction algorithm after which we will run
the same simulation with the correction algorithm implemented in every control volume
of the computational domain at every solution iteration. We see from Figure 5.18 that
without the correction algorithm, the two-node and three-quadrature gave us the required
trend we expected. However, with the four-node quadrature, we experienced a similar
trend as in the case with different velocities: decreasing values of d32 with time. In this
case, we did not experience any crash in simulation for the four-node quadrature simula-
tion even with moment corruption leading to decrease in the value of d32. When we ran
the same simulation with the correction algorithm implemented, we noticed that we were
able to capture the expected trend where d32 remains constant throughout the simulation
for two-, three-, and four-quadrature nodes.

Figure 5.18: Graph to show how d32 varies with time for Case 1 without moment correction algorithm

For Case 2 and Case 3, we observed that simulations involving two-quadrature nodes
were void of moment corruption while simulations with three- and four- quadrature nodes
showed moment corruption which affected the results and eventually led to the simula-
tions crashing. We can see in Figure 5.19 negative results for the values of the volume
fraction for Node 1 for the four-node quadrature simulation at 0.91s for Case 2. This
indicates the presence of moment corruption leading to inaccurate results. Figures 5.20
and 5.22 show the results for the three- and four- node quadrature results for Case 2 and
Case 3 respectively with the moment correction implemented.
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Figure 5.19: Contour of volume faction of Node 1 for four-node quadrature Case 2 at 0.50s and 0.91 s.
(White contours show the presence of moment corruption in the affected cells)

Figure 5.20: Graph to show how d32 varies with time after implementing moment correction for Case 2
simulations (particles transported at same velocity)
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Figure 5.21: Graph to show how d32 varies with time after implementing moment correction for Case 3
simulations (particles transported at same velocity)

We have been able to establish that the correction algorithm was implemented correctly
and that QMOM models with the quadrature nodes transported with same velocity are
easily corrected compared to similar simulations involving quadrature nodes transported
with different velocities.

From the literature, we mostly see simulations involving quadrature nodes with same
velocities. There is no available literature, to the best of our knowledge, with a success-
fully functional correction algorithm for QMOM models with different velocities for the
quadrature nodes. We suspect that this feature in the model allowing the quadrature nodes
to be transported at different velocities may have contributed to the complication of cor-
recting the moments. We take a closer look at the two models: the QMOM model with
the quadrature nodes transported with same velocity and that with different velocities for
the quadrature nodes.

∂tMk +∇x · (Mkvm) = Sk(x, t) (5.5)

∂tMk +∇x · (Mkvk) = Sk(x, t) (5.6)

where

vk(x, t) =
1

Mk(x, t)

v

∑
i=1

ni(x, t)sk
i (x, t)vi(x, t) (5.7)

We see from equation 5.7 that the velocity at which the individual moments are trans-
ported is indirectly related to the value of the moments, where ni and sk

i are the weight
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and nodes respectively derived from the moment Mk via the product-difference algo-
rithm. This implies that a corrupt moment will replicate ‘corrupt’ velocity value which in
turn complicates the solution. In contrast, the mixture model which Fluent uses in solv-
ing equation 5.5 does not relate to the moment. Fluent uses the relative (slip) velocity,
vi−vg(vi being the velocity of the secondary phase and vg the velocity of the primary
phase) to prescribe an algebraic relation for the relative velocity, with the basic assump-
tion that a local equilibrium between the phases is reached over a short spatial length
scales. The consequence of this is that the resulting solution is simplified in terms of the
velocity without amplifying the moment corruption problem.

5.4 Segregation of Fluidized Powders
One important aspect of modelling is that of checking for robustness of the model. In this
case, we ask if the model is able to capture the segregation pattern exhibited by fluidized
powders at low fluidization velocities. Mixing and segregation play a very important
role in fluidization technology. The difference in particle sizes makes segregation pos-
sible. The literature is rich with articles on segregation behaviours of fluidized powders
differing in size and density. However, the segregation patterns of these particles were
mostly reported from the perspective of binary mixtures, that is, bidisperse powders dif-
fering in size and/or density. In these studies (Marzocchella et al., 2000; Nienow et al.,
1987; Formisani et al., 2001; Van Wachem et al., 2001; Cooper and Coronella, 2005), the
smaller and lighter particles referred to as the flotsam accumulates at the top of the bed
while the relatively bigger and heavier particles referred to as the jetsam tend to migrate
to the bottom part of the bed. Here, we want to approach segregation studies from the
perspective of continuous PSD.

To investigate segregation using the QMOM model, we will compare our results with
the experimental results of Mazzei (2008). The system comprise two superposed pow-
ders with different PSDs with the lower mean size particles placed beneath the particles
having a higher mean size. This would mean that small and large particles were free to
move to the top and bottom of the bed respectively. Reader is referred to Mazzei (2008)
for details of the experiment apparatus and procedure. Figure 5.22 shows a diagrammatic
representation of the experiment and Table 5.6 shows the PSD of the two powders A and
B at the bottom and top of the bed respectively at t = 0s.
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Figure 5.22: Diagrammatic representation of the segregation experiment

Table 5.6: Initial values of the quadrature nodes and weights obtained experimentally at t = 0s with
voidage of 0.4 (Mazzei et al., 2009)

Powder A
s1(µm) s2(µm) s3(µm) φ1(−) φ2(µm) φ3(−)

61 89 112 0.069 0.400 0.131
Powder B

s1(µm) s2(µm) s3(µm) φ1(−) φ2(µm) φ3(−)
208 287 395 0.143 0.376 0.081

5.4.1 Boundary and Initial Conditions
Two-dimensional bed with initial height of 300mm in a 600mm x 350mm vessel; Initial
bed height for each of the powders were 150mm each with powder A beneath powder
B as shown in Figure 5.22. The initial quadrature nodes and weights are summarised
in Table 5.6. Void fraction of 0.4 was applied everywhere in the bed. A uniform inlet
gas of 0.10 m/s was applied from the bottom of the fluidized bed, low enough to fluidize
the powders but not high enough to cause mixing. A 5mm square cell computational
grid was employed in the simulation. To run the simulations, we used Fluent 17.2. We
ran simulations using the second-order upwind scheme. At each time step, we used a
maximum of 100 iterations to compute the flow variables and tolerance was set to 10−5.
The time step was set to 10−4s and under-relaxation factors of 0.20 were adopted for all
the variables. The multifluid modelling approach is employed with closure relationships
defined for the averaged equations of motion as reported in chapter 4. We divided the bed
into five horizontal layers of equal heights in order to derive the axial segregation profiles.

5.4.2 Fluidized Bed Segregation Results
We simulated the fluidized beds under conditions that should promote segregation. As
mentioned earlier, the system modelled is the same as that presented by Mazzei (2008)
but we only considered a low fluidization velocity of 0.10 m/s; low enough to fluidize
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the bed without causing mixing. In the experiment, the bed was divided into five layers
of equal height and the PSD of each layer was analysed via sieving. From the PSD, the
volume density function integer moments were calculated and the quadrature nodes and
weights were obtained. The reader is again referred to Mazzei (2008) for details of the
experiment.

We present the results of our simulations at pseudo-stationary conditions at 10s of running
the simulation using the three-node quadrature method of moments. The bed was divided
into five layers and the average NDF moments, weights and nodes were computed for
each layer. The quadrature weights however were converted from number of particles to
volume fraction using the relationship

〈φsk〉= kv〈sk〉3〈nsk〉

.
We can see from Figure 5.23 that the computational values of the quadrature nodes are
uniform everywhere within the bed. This differs a little bit from the experimental values
which are also spatially uniform except for the bottom of the bed (layer 0 corresponds to
the distributor plate while layer 5 represents the top layer of the bed) where the particles
are slightly larger. We observe no more than 13% variation in the numerical values of the
quadrature nodes from those obtained via experiment.

Figure 5.23: Quadrature Nodes for experimental and simulation results at pseudo-stationary conditions (t
= 0s) for fluidization velocity = 0.10m/s

The experiment was a simple case of segregation not influenced by size-changing phe-
nomena such as growth, aggregation and breakage. Segregation was purely as a result of
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the particle size distribution and the fluidizing velocity. To this end, our expectation is that
an axial non-uniform spatial profile of the volume fraction (derived from the quadrature
weights) will exist in the bed if segregation takes place. This is exactly what we observe
from Figure 5.24.We expect that quadrature node 3 being the largest in size and heaviest
will decrease in number as we move from bottom to top of the bed. This is exactly what
we observe from Figure 5.25 which shows the contour of volume fraction for quadrature
node 3 at pseudo-stationary conditions. Figure 5.24 shows the axial segregation profile
for quadrature node 3 at pseudo-stationary conditions. This shows a good agreement with
experiment except for the top of the bed where quadrature node 3 is over-predicted by
approximately about 25%.

Figure 5.24: Axial Segregation Profile for Quadrature Node 3 at Pseudo-stationary conditions (t = 10s) for
fluidization velcity = 0.10 m/s
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Figure 5.25: Contour of Volume fraction for Quadrature Node 3 at pseudo-stationary conditions (t = 10s)
for fluidization velocity = 0.10 m/s

Similarly, quadrature node 1 being the smallest in size is expected to decrease in number
as we move from top to bottom of the bed. This is exactly what we observe from Figure
5.26 which shows the axial profile of quadrature node 1 at pseudo-stationary conditions.
We observe good agreement with experiment except for the bottom of the bed where
quadrature node 1 is over-predicted by approximately about 30%.
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Figure 5.26: Axial Segregation Profile for Quadrature Node 1 at Pseudo-stationary conditions (t = 10s) for
fluidization velcity = 0.10 m/s

The above results were derived from the implementation of QMOM model with moments
being transported with different velocities. From the literature, QMOM model with the
quadrature classes advected by the same velocity field such that the particles share the
same velocity will not be suitable for simulating segregation.
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Chapter 6

Conclusions and Future Work

Fluidization is used in several industrial processes, for example in waste disposal, food
processing, pharmaceutical applications, energy conversions and so on. The task of de-
signing fluidized bed reactors is prodigious as a result of numerous considerations which
significantly affects the suspension fluid dynamics and in turn the product. Some of these
considerations include but are not limited to fluid and particle properties, process vari-
ables, geometry change, aggregation, growth , breakage e.t.c. With the advances recorded
in computational softwares and processes, CFD has become a very useful tool for re-
searchers and design engineers alike in modelling fluidized bed reactors. However, the
numerical simulations are as good as the mathematical models that the code solves. In
modelling, these three aspects avail: the mathematical models, their implementation and
the level of accuracy at which they predict real systems. The simulations have to be accu-
rate enough to provide reliable information.

In this work, we have recognised that designing multiphase polydisperse systems are
still subject to great uncertainties; reason being that the multiphase polydisperse systems
(in our case fluidized beds) involve many physical and chemical phenomena occurring
simultaneously and are hard to model. In chapter one, we presented a brief introduction
to the theoretical concept and computational modelling of fluidized systems. This chap-
ter was concluded with an introduction of the motivations and the objectives we seek to
achieve at the completion of the project. In chapter two, we carried out a brief literature
review on past work. We considered works involving gas-solid fluidized bed systems,
hybrid CFD-PBM models and quadrature based method of moments. We then proceeded
to present the generalized population balance equation (GPBE) which governs the distri-
bution of the population of particles over any property of interest. The GPBE captures
the physics of the continuous changes of the PSD in time and space associated with our
system such that no additional conservation equations are needed. But its dimensionality
is higher than that of classical transport equations. We therefore replace the GPBE with
a set of three-dimensional averaged transport equations that govern the moments of the
distribution using the method of moments but the set is often unclosed and must be made
self-sufficient. We presented two methods to overcome the problem: the direct quadra-
ture method of moments (DQMOM) and the quadrature method of moments (QMOM).
Both represent the population by a finite number of classes, each with a number den-
sity and a specific set of internal properties; we therefore have a population distribution
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approximated by a quadrature formula that turns integrals into summations posing a so-
lution to the problem of closure. Whereas QMOM tracks the moments of the distribution
and back-calculates the quadrature nodes and weights, the DQMOM on the other hand
directly tracks the nodes and the weights. We described the working principle of the DQ-
MOM model to better understand how, in principle, it is similar to the QMOM model.
This was the basis for comparing the results from our work with those of Fan et al. (2004)
derived from DQMOM implemented in MFIX.

One of the success factors for modelling a dense polydisperse system with a changing
PSD lies in choosing appropriate aggregation and breakage functions that correctly de-
pict the system. In chapter three, we presented aggregation and breakage kernels from
the kinetic theory of granular flow (KTGF) to describe the changes in size resulting from
breakage and aggregation in the disperse phase and incorporated same in the PBE. These
kernels which are effective parameters in the PBE consist of two parts: the collision fre-
quency which informs us of the number of particle pairs available for collision or the
number of collisions undergone by each particle per time and a second part that tells us
the success of aggregation and breakage resulting from these collisions. These kernels
are dependent on a number of operating conditions and various process parameters. So
developing apriori expressions from a theoretical stand-point is a difficult task. In chapter
4, we presented a brief description of the modelling equations implemented in Fluent and
MFIX (for the work of Fan et al. (2004))

In chapter 5, while presenting simulation results, we reported the problem of moment
corruption especially for simulations using higher order upwind scheme and those track-
ing more than six NDF moments. When the CFD is coupled with the PBE through the
solution of moment transport equations, the calculated moments have a tendency to form
invalid sets because in QMOM, the moment transport equations are solved independently.
Hence, the resulting moments obtained via the inversion procedure might not preserve
the relationships between the moments which make them part of a valid set. A valid
moment set provides crucial information about a physical distribution, whereas an in-
valid sequence does not represent any valid physical distribution. Vikas et al. (2010)
specifically proposed the so-called “quasi-high-order” advection scheme for the QMOM
to preserve realizability of moment sets. However, owing to the fact the QMOM model
used in this work is built on an already existing numerical solver, modifying the available
advection scheme is either impossible or not desired (Afzalifar et al., 2017). Therefore,
we considered and also implemented alternative solutions as seen in the literature.

One of the solutions reported in the literature is the McGraw (2006) correction method
referred to as the filter method (McGraw, 2012). Because moment corruption is likely as
a result of improper assignment of one, or at most a few of the moments in the sequence,
we adjusted only those moments. For a sufficiently long sequence the filter method is the
way to achieve this goal. In this method a difference table (see Appendix D.1.1) is con-
structed and used to identify the order of the moment that is corrupted and then provide
an optimal correction by minimizing the sum of the squared differences of the second
order differences, which through correction ensures the smoothness of ln(mk) sequence.
This correction method by McGraw (2006) only takes account of the convexity condition,
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which is only necessary but not a sufficient condition. The convexity condition is satisfied
if and only if all the elements of the second-order difference vector are non-negative.In
some cases, the convexity test is passed but the moment set is still unphysical. In this case
we will need to subject the moments to a test that identifies both necessary and sufficient
conditions such as the positivity of the Hankel-Hadamard determinants (see Appendix
D.1.2) constructed from the moments.

McGraw (2012) also proposed correcting invalid moment sets using the positive alpha
sequence enforcement (PASE) method. This method first subjects the moment set to a
check to ascertain its validity. In this case, in place of the Hankel-Hadamard determi-
nants, another set of non-negative quantities, the alpha sequence, investigated by Gordon
and generated by him using the P-D algorithm (Gordon, 1968) is used to investigate the
validity of the moment set. Inspection of the alpha sequence will indicate immediately
whether or not a given moment sequence is valid and provide a recipe for correction if the
tested sequence proves to be invalid. To obtain the alpha sequence, the widely available
Numerical Recipes subroutine ORTHOG is used to first obtain a tridiagonal Jacobi matrix
from the moment sequence. The method of PASE correction is to set the first negative
entry and all higher values of the alpha sequence to zero. The modified alpha sequence
generates a valid sequence. The quadrature abscissas and weights are obtained by solving
the eigenvalue problem associated with the Jacobi matrix.

Wright (2007) replaced nonrealizable moment set using a log-normal distribution or the
arithmetic average of two log-normal distributions by retaining the zeroth and third mo-
ments from the original moment sequence. For a log-normal distribution, a generic mo-
ment can be written as:

mk = NT exp
(

kµ +
k2σ2

2

)
(6.1)

where NT is the number density, µ and σ correspond to the mean and variance of the PSD.

We employed a systematic blend of these methods to achieve correction of corrupted
moments. However, we observed that the correction algorithm was only effective when
the quadrature classes were transported in the same velocity field compared to when they
had different velocities.

We further probed the robustness of the model by checking its ability to predict segrega-
tion of fluidized powders. The results obtained were in good agreement with experiment.

6.1 Future Work
1. Experimental Investigations : In chapter 3 and 4, we presented the aggregation

and breakage kernels. The equations 3.64, 3.70 and 3.76 represent the aggregation
kernel, breakage kernel and daughter distribution function respectively and they
were implemented in the different CFD codes employed in our work. In order to
accurately predict the aggregation and breakage contributions, we need to be able
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6.1. FUTURE WORK

to determine the values of Ψa and Ψb. One way to do this is to run an experi-
ment to achieve steady-state in which the system is fully mixed and the NDF is the
same at every point in space. Afterwards, a CFD simulation with guessed values
of Ψa and Ψb is initiated and the results compared with experiment to know if the
NDF predicted is similar to that obtained from experiment. If the guessed values
fail to predict accurately the system under investigation, another simulation is run
with new values of Ψa and Ψb until we are able to obtain values of the aggregation
and breakage efficiencies which mimic the NDF obtained from experiment. This
method is prohibitive because the CFD simulations take long to run and we might
also have to run several simulations before we achieve correct estimated values for
Ψa and Ψb which gives a decent estimate of the system under investigation. In view
of this, one future work to anticipate is a scientific methodology to approximate
values of Ψa and Ψb that is at the same time not time demanding. In this case the
experimental conditions can be modified to determine their influence on the PSD
and the aggregation and breakage efficiencies.

2. Modelling other vessel configurations using quadrature based methods : In math-
ematical modelling, there is the need for the model to be robust. In other words,
when variables or assumptions are altered the model is able to give correct predic-
tions without failure. Altering the geometrical considerations of the vessel: cylin-
drical to tapered and finally to spout beds is another work that can be done to test
the robustness of these models. Wormsbecker et al. (2009) studied the influence of
vessel geometry on the hydrodynamic behaviour and final quality of the product of
cylindrical and conical fluidized bed dryers by maintaining the same drying rates.
Proportional volumetric rates of the fluid phase per unit mass of granule dried were
maintained for both vessel configurations. However, results showed that while the
cylindrical bed defluidized at the bottom due to cohesive granules forming aggre-
gates, the conical bed generated a spout-like circulation pattern even while bubbling
was maintained at the core of the bed. This is a work that can be independently pur-
sued by researchers in the particle technology field.
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Appendix A
A.1 Population Balance Equation for
Well-Mixed Systems

Most engineering systems involving dispersed-phase are mostly treated as well-mixed.
In such cases, we are not interested in the spatial distribution of particles but rather in
knowing how the particles are distributed over the internal space coordinates (e.g size
space in our case). We shall refer to Equation 2.46:

∂t fn(x,s, t)+∇x · ( fn(x,s, t)〈v|s〉) = hn(x,s, t) (2)

which is distributed in external phase space and then we shall average over the external
phase space to transform Eq.2 to a more useful equation for mixed systems.

Let us consider a differential volume dx in a suitable finite volume Λx(t) in external
phase space and then integrate Eq.2 over this region. This yields:∫

Λx

[∂t fn(x,s, t)+∇x · ( fn(x,s, t)〈v|s〉)−hn(x,s, t)]dx= 0 (3)

Since the suspension is mixed, fn and hn are functions only of time and size and can be
taken out of the integration. Therefore the first term in Eq. 3 may be written as:

∂t fn(s, t)
∫

Λx

dx= ∂t fn(s, t)Λx (4)

Similarly, the third term in Eq. 3 may be written as:

hn(s, t)
∫

Λx

dx= hn(s, t)Λx (5)

The second term in Eq.3 can be expressed as a surface integral of the population flux
(Gauss theorem): ∫

Λx

∇x · ( fn〈v|s〉)dx=
∫

∂Λx

fn 〈v|s〉 ·dSx (6)

where dSx and 〈v|s〉 are the differential surface vector and the size-dependent mean
particle velocity normal to ∂Λx, the surface bounding the control volume Λx(t). The
volume can be considered to have arbitrary number of input and output streams of flow
rate vk ·dSk = Qk and population density fk(s, t), assumed to be independent of position .
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Thus, we can represent this term as the integral of fkvk ·dSk of all the individual streams
k in and out of the system via the system boundary as:∫

∂Λx

fkvk ·dSk = ∑
k

Qk fk (7)

where Qk is negative for flow into the volume and positive for flow out of the volume
(sign convention assumes that outward-directed normal to the surface is positive).

Also we can consider a change in volume as a result of accumulation at the free inter-
face. If we integrate over the entire control volume, we can represent the contribution of
this term as:

fn(s, t)
∫

Λx

∂t dx= fn(s, t)∂t

∫
Λx

dx= fn(s, t)∂t Λx (8)

Hence, the total contribution of the spatial population flux divergence term is given as:∫
∂Λx

fn 〈v|s〉 ·dSx = ∑
k

Qk fk + fn(s, t)∂t Λx (9)

and the spatial-averaged population balance equation may be written as:

∂t fn(s, t)Λx+ fn(s, t)∂t Λx = hn(s, t)Λx−∑
k

Qk fk (10)

For a constant-volume system with no input and output streams, Eq.10 reduces to:

∂t fn(s, t) = hn(s, t) (11)
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Appendix B
B.1 Derivation of the DQMOM
Multi-Fluid Model Equations

In order to remain consistent with the variables used in the multi-fluid model, the weight
and nodes will be related to the volume fraction φsi and weighted node φsisi of each of
the solid phase. The volume fraction and the weighted node of the i-th solid phase can be
related to the weights and nodes as follows:

φsi = kvs3
i ni (12)

and
φsisi = kvs4

i ni (13)

where kv is the volumetric shape factor which equals π/6 for spherical particles, si and ni
represent the nodes and weights respectively.

B.1.1 Transport Equation for the Volume Fraction φsi

If we substitute Eq.12 into the transport equation for the volume fraction φsi we get:

∂t(φsiρsi)+∇x · (φsiρsiusi) = ∂t(kvs3
i niρsi)+∇x · (kvs3

i niρsiusi)

= kvρsi[∂t(s3
i ni)+∇x · (s3

i niusi)] (14)

where the density of the solid particles ρsi is treated as a constant. We can expand the first
term in the bracket in Eq.14 thus:

∂t(s3
i ni) = ni∂ts3

i + s3
i ∂tni

= 3s2
i ni∂tsi + s3

i ∂tni

= 3s2
i [∂t(nisi)− si∂tni]+ s3

i ∂tni

= 3s2
i ∂t(nisi)−3s3

i si∂tni + s3
i ∂tni

= 3s2
i ∂t(nisi)−2s3

i ∂tni (15)
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and the second term in the bracket in Eq.14 is expanded thus:

∇x · (s3
i niusi) = usi∇x(s3

i ni)+ s3
i ni∇x ·usi

= usi(s3
i ∇xni +ni∇xs3

i )+ s3
i ni∇x ·usi

= usi(s3
i ∇xni +3s2

i ni∇xsi)+ s3
i ni∇x ·usi

= usi[s3
i ∇xni +3s2

i (∇x(nisi)− si∇xni)]+ s3
i ni∇x ·usi

= s3
i usi∇xni +3s2

i usi∇x(nisi)−3s3
i usi∇xni + s3

i ni∇x ·usi

= 3s2
i usi∇x(nisi)−2s3

i usi∇xni + s3
i ni∇x ·usi (16)

Substituting Eqs.15 and 16 in to Eq.14 we have:

∂t(φsiρsi)+∇x · (φsiρsiusi)

= usi(s4
i ∇xni +ni∇xs4

i )+ s4
i ni∇x ·usi

= usi(s4
i ∇xni +4s3

i ni∇xsi)+ s4
i ni∇x ·usi

= usi[s4
i ∇xni +4s3

i (∇x(nisi)− si∇xni)]+ s4
i ni∇x ·usi

= s4
i usi∇xni +4s3

i usi∇x(nisi)−4s4
i usi∇xni + s4

i ni∇x ·usi

= 4s3
i usi∇x(nisi)−3s4

i usi∇xni + s4
i ni∇x ·usi (17)

Substituting Eqs.28 and 22 in to Eq.25 we have:

∂t(φsisiρsi)+∇x · (φsisiρsiusi)

= kvρsi[3s2
i ∂t(nisi)−2s3

i ∂tni +3s2
i usi∇x(nisi)−2s3

i usi∇xni + s3
i ni∇x ·usi]

= kvρsi[3s2
i ∂t(nisi)−2s3

i ∂tni +3s2
i usi∇x(nisi)−2s3

i usi∇xni +3s3
i ni∇x ·usi−2s3

i ni∇x ·usi]

= kvρsi[3s2
i ∂t(nisi)+3s2

i usi∇x(nisi)+3s3
i ni∇x ·usi−2s3

i ∂tni−2s3
i usi∇xni−2s3

i ni∇x ·usi]

= 3s2
i kvρsi[∂t(nisi)+usi∇x(nisi)+ sini∇x ·usi]−2s3

i kvρsi(∂tni +usi∇xni +ni∇x ·usi)

= 3s2
i kvρsics

i −2s3
i kvρsicn

i (18)

where by definition,

cs
i = ∂t(nisi)+usi∇x(nisi)+ sini∇x ·usi ; cn

i = ∂tni +usi∇xni +ni∇x ·usi (19)

B.1.2 Transport Equation for the Weighted Node φsisi

If we substitute Eq.13 into the transport equation for the the weighted node φsisi we get:

∂t(φsisiρsi)+∇x · (φsisiρsiusi) = ∂t(kvs4
i niρsi)+∇x · (kvs4

i niρsiusi)

= kvρsi[∂t(s4
i ni)+∇x · (s4

i niusi)] (20)
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where the density of the solid particles ρsi is a constant. We can expand the first term in
the bracket in Eq.25 thus:

∂t(s4
i ni) = ni∂ts4

i + s4
i ∂tni

= 4s3
i ni∂tsi + s4

i ∂tni

= 4s3
i [∂t(nisi)− si∂tni]+ s4

i ∂tni

= 4s3
i ∂t(nisi)−4s4

i si∂tni + s4
i ∂tni

= 4s3
i ∂t(nisi)−3s4

i ∂tni (21)
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and the second term in the bracket in Eq.25 is expanded thus:

∇x · (s4
i niusi) = usi∇x(s4

i ni)+ s4
i ni∇x ·usi

= usi(s4
i ∇xni +ni∇xs4

i )+ s4
i ni∇x ·usi

= usi(s4
i ∇xni +4s3

i ni∇xsi)+ s4
i ni∇x ·usi

= usi[s4
i ∇xni +4s3

i (∇x(nisi)− si∇xni)]+ s4
i ni∇x ·usi

= s4
i usi∇xni +4s3

i usi∇x(nisi)−4s4
i usi∇xni + s4

i ni∇x ·usi

= 4s3
i usi∇x(nisi)−3s4

i usi∇xni + s4
i ni∇x ·usi (22)

Substituting Eqs.28 and 22 in to Eq.25 we have:

∂t(φsisiρsi)+∇x · (φsisiρsiusi)

= kvρsi[4s3
i ∂t(nisi)−3s4

i ∂tni +4s3
i usi∇x(nisi)−3s4

i usi∇xni + s4
i ni∇x ·usi]

= kvρsi[4s3
i ∂t(nisi)−3s2

i ∂tni +4s3
i usi∇x(nisi)−3s4

i usi∇xni +4s4
i ni∇x ·usi−3s4

i ni∇x ·usi]

= kvρsi[4s3
i ∂t(nisi)+4s3

i usi∇x(nisi)+4s4
i ni∇x ·usi−3s4

i ∂tni−3s4
i usi∇xni−3s4

i ni∇x ·usi]

= 4s3
i kvρsi[∂t(nisi)+usi∇x(nisi)+ sini∇x ·usi]−3s4

i kvρsi(∂tni +usi∇xni +ni∇x ·usi)

= 4s3
i kvρsics

i −3s4
i kvρsicn

i (23)

where by definition,

cs
i = ∂t(nisi)+usi∇x(nisi)+ sini∇x ·usi ; cn

i = ∂tni +usi∇xni +ni∇x ·usi (24)
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Appendix C
C.1 Calculation of Sauter-Mean Particle
Size, Nodes and Volume Fractions from
Results of Numerical Simulations

The numerical simulation results give solutions for the weights and nodes. We have al-
ready shown how we can relate the weight to the volume fraction so that we can associate
each node with the volume fraction and describe the PSD using the nodes and the volume
fractions (the modified weight). However, in our simulation results these values differ
from cell to cell as expected and we therefore need to work with an average value. The
average value on the other hand can be calculated in different ways. Hence, we have to
select an average with physical significance to our system. The average values reported in
this work for the sauter-mean particle size, the volume fractions and nodes are calculated
as follows:

C.1.1 The Sauter-Mean Particle Size d32

The sauter-mean particle size (also the volume -average mean particle size) d32, is the
ratio between the third moment m3 and the second moment m2 of the PSD. This may be
written as:

d32 =
m3

m2
=

∫
Λs

s3 fn(s)ds∫
Λs

s2 fn(s)ds
(25)

To define fn(s), we consider a simple case where the domain is made up of two cells with
volumes v1 and v2. We can therefore write:

v1 f1(s)ds+ v2 f2(s)ds = (v1 + v2) fn(s)ds (26)

which means that the total number of particles in the computational domain is conserved.
Hence, we may write:

fn(s) =
v1 f1(s)+ v2 f2(s)

v1 + v2
(27)

Generally,

fn(s) =

N
∑

i=1
vi fi(s)

N
∑

i=1
vi

(28)
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From the quadrature approximation,

fi(s) =
M

∑
k=1

ni,kδ (s− si,k) (29)

Substituting Eqs. 28 and 29 into Eq. 25 we have

d32 =

∫
Λs

s3[
N

∑
i=1

vi fi(s)/
N

∑
i=1

vi]ds

∫
Λs

s2[
N

∑
i=1

vi fi(s)/
N

∑
i=1

vi]ds

=

∫
Λs

s3[
N

∑
i=1

vi fi(s)]ds

∫
Λs

s2[
N

∑
i=1

vi fi(s)]ds

=

N

∑
i=1

vi

∫
Λs

s3
M

∑
k=1

ni,kδ (s− si,k)ds

N

∑
i=1

vi

∫
Λs

s2
M

∑
k=1

ni,kδ (s− si,k)ds

(30)
So that,

d32 =

N

∑
i=1

vi

M

∑
k=1

ni,k

∫
Λs

s3
δ (s− si,k)ds

N

∑
i=1

vi

M

∑
k=1

ni,k

∫
Λs

s2
δ (s− si,k)ds

=

N

∑
i=1

vi

M

∑
k=1

ni,ks3
i,k

N

∑
i=1

vi

M

∑
k=1

ni,ks2
i,k

(31)

Hence,

d32 =

N
∑

i=1
m3,ivi

N
∑

i=1
m2,ivi

(32)

where N refers to the number of cells in the computational domain and M is the number
of particle size class.

C.1.2 The average node, 〈si〉 and average volume fraction,
〈φsi〉
These are the average values of the nodes and volume fractions of the entire distribution
characterised by fn(s).We have already shown that

fn(s) =

N
∑

i=1
vi fi(s)

N
∑

i=1
vi

Also we can write:

fn(s) =
M

∑
k=1
〈nk〉δ (s−〈sk〉) (33)

If we consider the size-based volume-averaged moment of order p, 〈mp〉:

〈mp〉=
∞∫

0

sp fn(s)ds (34)

96



Substituting the quadrature approximation of Eq. 33 in Eq. 34, we have:

〈mp〉=
∞∫

0

sp
M

∑
k=1
〈nk〉δ (s−〈sk〉)ds =

M

∑
k=1
〈nk〉

∞∫
0

sp
δ (s−〈sk〉)ds (35)

This becomes

〈mp〉=
M

∑
k=1
〈nk〉〈sk〉p (36)

Note that 〈mp〉 is calculated thus:

〈mp〉=
∞∫

0

sp fn(s)ds =
1

VT

∞∫
0

sp
N

∑
i=1

vi fi(s)ds (37)

where

VT =
N

∑
i=1

vi

vi is the volume of the i−th cell in the computational domain and N the number of com-
putational cells in the domain.

〈mp〉=
1

VT

∞∫
0

sp
N

∑
i=1

vi

M

∑
k=1

ni,kδ (s− si,k)ds

=
1

VT

N

∑
i=1

vi

M

∑
k=1

ni,k

∞∫
0

sp
δ (s− si,k)ds

=
1

VT

N

∑
i=1

vi

M

∑
k=1

ni,ksp
i,k ≡

1
VT

N

∑
i=1

vimi,p (38)

Equation 36 is a non-linear equation in 2M unknowns, 〈nk〉 and 〈sk〉p. For any value of M,
the equation has 2M unknowns which can be found by writing and solving 2M equations
for 2M different values of p. If we choose the first 2M volume-averaged moments we can
construct a real symmetric tridiagonal matrix whose eigenvalues and eigenvectors coin-
cide with the average quadrature nodes and weights respectively. This is possible using
the product-difference algorithm already introduced in section 2.5.1. The reader is also
referred to Marchisio and Fox (2013) for details on the PD algorithm.

Hence, the average volume fraction of the node k, 〈φsk〉 can be derived from the values of
the average weights of the the quadrature nodes by using the relation:

〈φsk〉= kv〈sk〉3〈nsk〉
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Appendix D
Description of the convexity checks for
valid moment sets

D.1.1 Difference Tables
The difference table is useful in spotting isolated errors in an ordered set of data,which is
what the nonrealizable moment set problem requires (Lanczos, 1988). The construction
of the difference table is straightforward. Table D1 shows the difference table for a six-
moment sequence. The first column identifies the order of the moment in the moment
set. The second column is the natural logarithm of the moment, ln mk. The subsequent
columns are the i-th order differences respectively. The third column is the first order
difference which is the difference of the elements in column 2. Column 4 which contains
the second-order differences are the first-order differences of elements of column 3 and
so on.

Table D1. Difference table showing the i-th
order differences (dk) for (a) uncorrupted and (b) corrupted moment sets

k ln mk d1 d2 d3 d4 d5

(a)
0 0 1 2 0 0 0
1 1 3 2 0 0
2 4 5 2 0
3 9 7 2
4 16 9
5 25

k ln mk d1 d2 d3 d4 d5

(b)
0 0 1 2 -3 12 -30
1 1 3 -1 9 -18
2 4 2 8 -9
3 6 10 -1
4 16 9
5 25
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A necessary but not sufficient condition for the moment set to be valid is that ln mk is a
convex function of index k (Feller, 1971) which is satisfied if and only if the second-order
differences are non-negative. In Table D1 (a), ln mk was assigned a quadratic function of
k and we notice that the non-negative entries in for d2 indicates that we can reasonably
expect a smooth function of the index k and ln mk. In other words, the moment set is valid.
However in Table D1 (b), the moment sequence was modified to corrupt the third order
moment. We can see from the negative entries in the d2 column that the modified moment
set violates convexity and the error spreads across the difference table as we move on to
higher order differences.

D.1.2 Positive Alpha Sequence Enforcement (PASE)
The Hankel-Hadamard determinants constructed from he moments identifies the neces-
sary and sufficient conditions for a valid moment sequence.

∆n =

∣∣∣∣∣∣∣∣
m0 m1 · · · mn
m1 m2 · · · mn+1
· · · · · · · · · · · ·
mn mn+1 · · · m2n

∣∣∣∣∣∣∣∣ > 0

∆
1
n =

∣∣∣∣∣∣∣∣
m1 m2 · · · mn+1
m2 m3 · · · mn+2
· · · · · · · · · · · ·

mn+1 mn+2 · · · m2n+1

∣∣∣∣∣∣∣∣ > 0

We can replace the determinants above by another set of non-negative quantities, referred
to as the alpha sequence, investigated and generated by Gordon (1968) using the PD al-
gorithm. The moment sequence derived after an advection step of a model simulation can
be inspected for the presence of unphysical moments by inspecting the alpha sequence.
If any entry in the alpha sequence is negative, this is proof positive that the moment set is
invalid. We construct the alpha sequence from the Hankel-Hadamard determinants. First,
we consider ordering the determinants as follows:

e = {∆0,∆
1
0 ,∆1,∆

1
1 ,∆2,∆

1
2 , · · ·}

By inspection, we notice that the k-th member of this sequence introduces the (k−1)-th
moment. The alpha sequence has a lot of useful properties which can be used in iden-
tifying and correcting the corrupted moment in the moment sequence. Where the alpha
sequence is defined as:

α = {α1,α2,α3, · · ·}

where we define αn as follows:
α1 = m0

α2 = ∆
1
0 =

m1

m0

α3 =
∆1

∆ 1
0
=

m2m0−m2
1

m1m0
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α4 =
∆ 1

1
∆1∆ 1

0
=

e4e1

e3e2
=

m0(m1m3−m2
2)

m1(m0m2−m2
1)

when n is even and greater than 4

αn =
enen−3

en−1en−2
=

∆ 1
(n/2)−1∆(n/2)−2

∆ 1
(n/2)−2∆(n/2)−1

but when n is odd and greater than 5

αn =
enen−3

en−1en−2
=

∆(n−1)/2∆(n−3)/2

∆ 1
(n−3)/2∆ 1

(n−5)/2

The condition for a valid moment sequence is satsfied if and only if:

αn > 0 (n = 1,2, · · ·)
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