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Abstract. We prove Szegő-type trace asymptotics for translation-invariant operators on poly-

gons. More precisely, consider a Fourier multiplier A = F∗σF on L2(R2) with a sufficiently

decaying, smooth symbol σ : C → C. Let P ⊂ R2 be the interior of a polygon and, for L ≥ 1,

define its scaled version PL := L · P . Then we study the spectral asymptotics for the operator

APL = χPLAχPL , the spatial restriction of A onto PL: for entire functions h with h(0) = 0

we provide a complete asymptotic expansion of trh(APL) as L→∞. These trace asymptotics

consist of three terms that reflect the geometry of the polygon. If P is replaced by a domain with

smooth boundary, a complete asymptotic expansion of the trace has been known for more than

30 years. However, for polygons the formula for the constant order term in the asymptotics is

new. In particular, we show that each corner of the polygon produces an extra contribution; as a

consequence, the constant order term exhibits an anomaly similar to the heat trace asymptotics

for the Dirichlet Laplacian.

1. Introduction

Let A be a bounded and translation-invariant operator on L2(Rd). In other words, consider a
Fourier multiplier

A = A(σ) = F∗σF

with a bounded, complex-valued symbol σ ∈ L∞(Rd). Here, the Fourier transform F is chosen
to be unitary on L2(Rd). For any measurable set Ω ⊆ Rd, introduce the spatial restriction of
the operator A onto Ω,

AΩ := AΩ(σ) := χΩF
∗σFχΩ,

where χΩ denotes the characteristic function for the set Ω and both χΩ and σ are interpreted
as multiplication operators on L2(Rd). In analogy to the one-dimensional case, we refer to such
an operator AΩ as (multidimensional) truncated Wiener-Hopf operator. Throughout this paper,
the variable L ≥ 1 is used as a scaling parameter and

ΩL := L · Ω

denotes the scaled version of the set Ω. For the sake of discussion, assume that the set Ω ⊂ Rd is
bounded and the symbol σ of A belongs to the class of smooth and rapidly decreasing functions,
i.e. σ ∈ S(Rd). Moreover, let h : C → C be an entire function with h(0) = 0. Under these
assumptions, it is well-known that the operator h(AΩ) is trace class and the function h is also
called test function. If in addition ∂Ω is smooth, then [41] provides a complete asymptotic
expansion of

trh(AΩL
) (1.1)

as L→∞. More precisely, for any K ≥ −d there exist constants Bj = Bj(Ω, h, σ) such that

trh(AΩL
) =

d∑
j=−K

LjBj + o(L−K), (1.2)
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as L → ∞. These trace asymptotics for truncated Wiener-Hopf operators can be seen as a
continuous multi-dimensional analogue of Szegő’s famous limit theorem for Toeplitz matrices,
see [35]. While

Bd =
|Ω|

(2π)d

∫
Rd

dξ (h ◦ σ)(ξ) (1.3)

only depends on Ω through its volume |Ω|, the coefficients Bj for j ≤ d − 1 contain geometric
information on the boundary ∂Ω: Bd−1 arises from a hyperplane approximation at each point of
∂Ω and Bd−2 contains the curvature and the second fundamental form of ∂Ω, see also [26]. As
a general principle, the coefficient Bd−k depends on Ck-attributes of ∂Ω; more precise formulae
in terms of the geometric content are collected in [27].

The asymptotics of (1.1) have also been intensively studied for non-smooth symbols σ, even
though, for d ≥ 2, only two terms are known in this situation: for a symbol with a jump
discontinuity, the leading order term in (1.2) remains unaffected, whereas the sub-leading term
gets enhanced to order log(L)Ld−1. The one-dimensional case is covered in [15, 39] and the works
[30–33] provide the extension to any dimension. An interdisciplinary interest in (1.1) originates
in its relation to the bipartite entanglement entropy for a non-interacting Fermi gas, see [10, 11,
16, 17]. In this context, recent literature contains asymptotic formulae for a generalised version
of the trace (1.1): the operator A is replaced by a(H) where H = −∆ + V is a Schrödinger
operator with a real-valued potential V and a : R → R is a bounded function, for instance a
step function. Here, the focus lies on (random) ergodic potentials in [7, 9, 13, 22] and periodic
potentials in [23].

We are interested in the asymptotic behaviour of (1.1) for smooth symbols σ but for a set Ω
with non-smooth boundary. As before, assume that σ ∈ S(Rd) and that h is an entire function
with h(0) = 0. In [37] the author dealt with polytopes Ω and proved a two-term asymptotic
expansion of the trace (1.1). Recently, this result was extended to a larger class of domains,
see [34]. Namely, let Ω be a bounded Lipschitz region with piecewise C1-boundary. Then [34]
contains the asymptotics

trh(AΩL
) = LdBd + Ld−1Bd−1 + o(Ld−1), (1.4)

as L→∞, where the coefficients Bj = Bj(Ω, h, σ), j = d, d− 1, are given via the same formulas
as in the smooth boundary case. The coefficient Bd agrees with (1.3) and a formula for Bd−1

can be found, for instance, in [26, Thm. 1.1]. In particular, one observes that the edges (or if
d = 2 the corners) of Ω do not enter the trace asymptotics up to order Ld−1. In the special case
of cubes Ω, [7, Thm. 2.2] actually implies complete asymptotics for (1.1), consisting of d + 1
terms. However, the latter result is established in the more general framework of Zd-ergodic
operators. This entails an exclusively abstract formulation of the asymptotic coefficients, which
makes it difficult to relate them to the smooth boundary case. In addition, [7, Thm. 2.2] makes
for the Wiener-Hopf case unnecessary symmetry assumptions; for instance, it is applicable to
radially symmetric symbols σ. Within the context of our discussion, let us also mention the
works [19, 20], which identify the limits of norms of inverses and the limits of pseudospectra for
Wiener-Hopf operators on convex polytopes ΩL as L→∞.

Similar results have been obtained in the discrete setting, where AΩL
is replaced by the

doubly-infinite d-dimensional Toeplitz matrix T restricted to a scaled lattice subset ΛL ⊂ Zd,
see [3, 4] for an introduction to Toeplitz matrices. For polytopes Λ, the work [8] provides a
two-term asymptotic formula for trh(TΛL

), analogous to the result in [37]. When Λ is a cuboid,
the authors of [28] and [36] proved a (d + 1)-term asymptotic formula for trh(TΛL

), under the
additional assumption that the symbol of the Toeplitz matrix allows a specific factorisation.
In [12] these results were recovered and further insights were given on the inverses of Toeplitz
matrices on convex polytopes. Moreover, the recent work [25] treats triangles Λ ⊂ Z2 and
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provides a two-term asymptotic formula for trT−1
Λ with a new formula for the sub-leading

coefficient.
In this paper, our objective is to investigate further the term of order Ld−2 in (1.4). We

restrict ourselves to dimension two and deal with the case that Ω = P ⊂ R2 is the interior of
a polygon. By the latter we mean that P is bounded and ∂P is the finite disjoint union of
piecewise linear, closed curves; we do not require that P be (simply) connected or convex. In
particular, and in contrast to all previous works on the complete asymptotics of (1.1), we shall
deal with corners of any angle. With h as above and slightly relaxed assumptions on σ we obtain
complete asymptotics for trh(APL

), consisting of three terms, see Theorem 2.1. More precisely,
we provide constants cj = cj(P, h, σ) such that

trh(APL
) = L2c2 + Lc1 + c0 + O(L−∞), (1.5)

as L → ∞. As it can be inferred from formula (1.4), the coefficient c2 incorporates the area
of the polygon P and c1 depends on the lengths of its edges and their directions. However,
our main focus lies on the constant order coefficient c0, which contains contributions from each
corner of the polygon. In Theorem 2.1 we provide a formula for c0 given in terms of abstract
traces, similarly to [7, Thm. 2.2]. Yet, in the polygon case c0 includes additional terms due
to the presence of non-parallel edges. Furthermore, we compute c0 explicitly as a function of
the polygon’s interior angles for radially symmetric symbols σ and quadratic test functions h,
see Theorem 2.5. As a consequence, one can compare c0 with the corresponding coefficient in
the smooth boundary case and we obtain the following result: for a two-dimensional domain
Ω, one can determine from the constant order term of the trace asymptotics (1.4) whether Ω
has a smooth boundary or it is a polygon, see Corollary 2.7. In addition, the coefficient c0 for
the polygon P can not be obtained from (1.2) via approximation of P by domains with smooth
boundary. This anomaly resembles the analogous result for the constant order term in the heat
trace asymptotics for the Dirichlet Laplacian on a two-dimensional domain with corners, see [21].

A few remarks on the structure of the paper are in order. We start by formulating our
main results: Theorems 2.1 and 2.3 state the asymptotics (1.5) with various formulae for the
coefficients cj and Theorem 2.5 deals with the radially symmetric case. The trace norm estimates
that enter the proofs of Theorems 2.1 and 2.3 are collected in Section 3. In Section 4 we apply
these trace norm bounds to extract the leading order term of the asymptotics (1.5). Moreover,
we reduce the remaining part to individual corner contributions, which only depend on the
corner angle and the lengths and directions of the enclosing edges. The trace asymptotics
corresponding to a single corner of the polygon are provided in Section 5, which completes the
proof of Theorem 2.1. The proofs of Theorems 2.3 and 2.5 can be found in Sections 6 and 7.

To conclude the introduction, we fix some general notation that will be applied throughout
the paper. If f, g are non-negative functions, we write f . g or g & f if f ≤ Cg for some
constant C > 0. This constant will always be independent of the scaling parameter L, but it
might depend on the test function h, the symbol σ, and the geometry of the polygon P . We
will comment on its explicit dependence whenever necessary. For x ∈ Rd, we use the notation
〈x〉 := (1+ |x|2)1/2, where |· | is the standard Euclidean norm. Moreover, Qx denotes the (closed)
unit cube centred at x and Br(x) is the (closed) unit ball of radius r > 0 around x (with respect
to | · |).

Acknowledgement. The author is very grateful to Adrian Dietlein and Alexander V. Sobolev
for illuminating discussions on the topic of this paper and for valuable comments on the manu-
script.

2. Results

Let h : C → C be an entire function with h(0) = 0 and consider a symbol σ ∈ W∞,1(R2),
see (3.5) for the definition. These assumptions will be sufficient to obtain the asymptotic trace
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formula (1.5) with well-defined coefficients cj = cj(P, h, σ). In order to write out the formulas
for the coefficients we need to fix some notation for the polygon P .

2.1. Notation for the polygon P and coefficients in the asymptotics. Let Ξ(P ) ⊂ R2

denote the set of vertices of P and E(P ) the set of edges of P . In the following we specify the
contribution of each edge E ∈ E(P ) and each corner at X ∈ Ξ(P ) to the asymptotics (1.5).

First, fix an edge E ∈ E(P ). Let νE be its inward pointing unit normal vector and let τE be
the unit tangent vector such that the frame (τE , νE) has the standard orientation in R2. This
induces an orientation on ∂P . Introduce the half-space

HE := {y ∈ R2 : y · νE ≥ 0}, (2.1)

and the semi-infinite strip of unit width,

SE := {aτE + bνE : (a, b) ∈ [0, 1]× [0,∞)} ⊂ HE . (2.2)

We also label the interior angles between E and its adjacent edges by γ
(1)
E and γ

(2)
E . For definite-

ness the enumeration is chosen in accordance with the orientation of ∂P . However, the latter
is not of much relevance as we will mainly be interested in a symmetric function of the angles,
F : E(P )→ R,

F (E) := − cot(γ
(1)
E )− cot(γ

(2)
E ). (2.3)

Note that F (E) = 0 if and only if γ
(1)
E + γ

(2)
E ∈ {π, 2π, 3π}, i.e. if and only if the edges adjacent

to E are parallel. Defining also the function

h1(z) := h(z)− zh′(0), (2.4)

we introduce the following coefficients corresponding to the edge E, which are finite under our
assumptions on h and σ, see also Theorem 2.1. We set

a1(νE) := tr
(
χSE

[
h1(AHE

)− h1(A)
])
, (2.5)

with SE and HE as in (2.1), (2.2). Note that the strip SE on the right-hand side of (2.5) may
actually be shifted along the edge E, leaving the value of a1(νE) unchanged since the operator
h1(AHE

)− h1(A) is translation-invariant in the direction τE . Similarly, we define the coefficient

a0(νE) := tr
(
χSE

M(x · νE)
[
h1(AHE

)− h1(A)
])
, (2.6)

where M(x · νE) is the multiplication operator

[M(x · νE)f ](x) := (x · νE)f(x), (2.7)

for any function f : R→ C. Clearly, also the operator M(x · νE)
[
h1(AHE

)− h1(A)
]

is invariant
with respect to translations along the edge E.

Fix now a vertex X ∈ Ξ(P ). Its adjacent edges are named E(1)(X) and E(2)(X), where the
enumeration is again chosen according to the orientation of ∂P . Corresponding to the vertex X
we have the two half-spaces

H(j)(X) := HE(j)(X), j = 1, 2, (2.8)

compare with (2.1). Moreover, let γX ∈ (0, π) ∪ (π, 2π) denote the interior angle at X. In the
following, we distinguish convex and concave corners of the polygon, employing the notation

Ξ≶(P ) := {X ∈ Ξ(P ) : γX ≶ π}.

Define the semi-infinite sector modelling the corner at X ∈ Ξ(P ) by

C(X) :=

{
H(1)(X) ∩H(2)(X), X ∈ Ξ<(P ),

H(1)(X) ∪H(2)(X), X ∈ Ξ>(P ).
(2.9)

If X ∈ Ξ<(P ), the corner at X ∈ Ξ(P ) or equivalently the sector C(X) is convex, otherwise we
call it concave. We are now ready to introduce coefficients corresponding to vertices X ∈ Ξ(P ).
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If X ∈ Ξ<(P ), we define

b0(X) := tr
(
χC(X)

[
h1(AC(X))− h1(AH(1)(X))− h1(AH(2)(X)) + h1(A)

])
, (2.10)

with C(X) and H(j)(X), j = 1, 2, defined in (2.9) and (2.8), respectively.

If X ∈ Ξ>(P ), we set

b0(X) := tr
(
χH(1)(X)∩H(2)(X)

[
h1(AC(X))− h1(A)

])
+ tr

(
χC(X)\H(1)(X)

[
h1(AC(X))− h1(AH(2)(X)

])
+ tr

(
χC(X)\H(2)(X)

[
h1(AC(X))− h1(AH(1)(X)

])
. (2.11)

2.2. Main result. Our first and main theorem provides a complete asymptotic expansion of
trh(APL

) and contains formulas for all the coefficients in (1.5).

Theorem 2.1. Assume that σ ∈ W∞,1(R2), see (3.5), and let h : C→ C be an entire function
with h(0) = 0. Then we have the asymptotic formula

trh(APL
) = L2c2 + Lc1 + c0 + O(L−∞), (2.12)

as L→∞, with coefficients

c2 =
|P |
4π2

∫
R2

dξ (h ◦ σ)(ξ)

c1 =
∑

E∈E(P )

|E| a1(νE),

c0 =
∑

E∈E(P )

F (E) a0(νE) +
∑

X∈Ξ(P )

b0(X).

In particular, for all E ∈ E(P ) and X ∈ Ξ(P ), the coefficients a1(νE), a0(νE), and b0(X) are
well-defined, see Subsection 2.1 for their definition.

Remark 2.2. (1) The super-polynomial error in (2.12) is a consequence of both the smooth-
ness of the symbol σ and the piecewise-straight boundary of P . That a smooth symbol
leads to the absence of all but two terms in the trace asymptotics for one-dimensional
truncated Wiener-Hopf or Toeplitz operators has been known for a long time, see [2, p.
120].

(2) Formula (1.4) implies that the corners of the polygon do not affect the two leading
coefficients in the asymptotics compared to the smooth boundary case. However, the
above formula for c0 shows that the corners do enter the trace asymptotics at the constant
order.

(3) An edge E ∈ E(P ) does not contribute to the coefficient c0 if F (E) = 0, i.e. if the edges
adjacent to E are parallel, see also (2.3). In particular, all contributions from the edges
to c0 vanish if, for instance, P is a parallelogram. As it becomes clear from the proof of
the theorem, the edge contributions to c0 are in fact aggregated local contributions from
corners of P .

(4) We emphasise that the coefficients b0(X) are defined by the two distinct formulas (2.10)
and (2.11), depending on the type of the corner at X ∈ Ξ(P ).

The coefficients a1(νE) and a0(νE), which only depend on the half-space operators h(AHE
)

and the full-space operator h(A), may be rewritten in terms of one-dimensional Wiener-Hopf
operators. This is the content of the next theorem. Here, we use the popular notation

W (σ) := A[0,∞)(σ),

for σ ∈ L∞(R). As anticipated, the formula (2.16) for c1 reduces the corresponding formula from
the smooth boundary case, see [38, Thm.].
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Theorem 2.3. Let σ ∈ W∞,1(R2) and let h : C → C be an entire function with h(0) = 0.
Define, for E ∈ E(P ) and t ∈ R, the family of one-dimensional symbols

R 3 ξ 7→ σE,t(ξ) := σ(tτE + ξνE). (2.13)

Then, for all E ∈ E(P ), the coefficients a1(νE) and a0(νE) in Theorem 2.1 may be rewritten as

a1(νE) =
1

2π

∫
R

dt tr
[
h
{
W (σE,t)

}
−W (h ◦ σE,t)

]
, (2.14)

a0(νE) =
1

2π

∫
R

dt tr
(
M(x)

[
h{W (σE,t)} −W (h ◦ σE,t)

])
, (2.15)

where M(x) denotes multiplication by x on L2(R). In particular, we have that

c1 =
∑

E∈E(P )

|E|
2π

∫
R

dt tr
[
h
{
W (σE,t)

}
−W (h ◦ σE,t)

]
. (2.16)

Remark 2.4. The advantage of formulas (2.14) and (2.15) lies in the fact that explicit formulas
for the traces of one-dimensional Wiener-Hopf operators are known. Assuming for simplicity
that σ ∈ S(R2), [41, Prop. 5.4] implies that

a1(νE) =
1

8π3

∫
R

dt

∫
R

dξ1

∫
R

dξ2
h(σE,t(ξ1))− h(σE,t(ξ2))

σE,t(ξ1)− σE,t(ξ2)

σ′E,t(ξ2)

ξ2 − ξ1
,

where the integral over ξ2 is interpreted as a Cauchy principal value. Referring to the same
proposition, one similarly gets that

a0(νE) =− 1

64π2

∫
R

dt

∫
R

dξ h′′(σE,t(ξ))σ
′
E,t(ξ)

2

− 1

32π4

∫
R

dt

∫
R

dξ1

∫
R

dξ2

∫
R

dξ3

{
3∑

k=1

h(σ(ξk))∏
j 6=k

[σ(ξk)− σ(ξj)]

}
σ′E,t(ξ2)

ξ2 − ξ1

σ′E,t(ξ3)

ξ3 − ξ1
.

2.3. The radially symmetric case. In contrast to the above, the coefficients b0(X), see (2.10)
and (2.11), can naturally not be transformed into integrals over traces of one-dimensional fibre
operators since they incorporate the truly two-dimensional sector operators h(AC(X)). This
makes their explicit calculation rather involved. However, we manage to compute the coeffi-
cients b0(X) in the special case when h is a quadratic polynomial and the symbol σ is radially
symmetric. By the latter we mean that, for any orthogonal matrix O ∈ R2×2 and for all ξ ∈ R2,

σ(ξ) = σ(Oξ).

Define

f̌(x) := (2π)−d/2(F∗f)(x) = (2π)−d
∫
Rd

dξ eiξ·xf(ξ), (2.17)

for functions f ∈ L1(Rd), so that the operator A has the difference kernel

A(x, y) = σ̌(x− y), x, y ∈ Rd.

If σ is radially symmetric, so is σ̌ and we shall write, slightly abusing notation,

σ(|ξ|) = σ(ξ), σ̌(|x|) = σ̌(x),

for all x, ξ ∈ R2. In the following theorem all coefficients cj in the asymptotics (1.5) are
computed explicitly for such symbols σ and quadratic test functions h. Again, our focus lies on
the coefficient c0 since the formulas for c2 and c1 are known to be the same as in the smooth
boundary case.
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Theorem 2.5. Suppose that σ ∈ W∞,1(R2) is radially symmetric and let h(z) = z2 + bz for
some b ∈ C. Then we have that

trh(APL
) = L2c2 + Lc1 + c0 + O(L−∞),

as L→∞, with

c2 =
|P |
2π

∞∫
0

dRR (h ◦ σ)(R),

c1 = −2 |∂P |
∞∫

0

dr r2σ̌(r)2,

c0 =
∑

X∈Ξ(P )

1
2

[
1 + (π − γX) cot γX

] ∞∫
0

dr r3σ̌(r)2.

Remark 2.6. (1) As in Theorem 2.1, the coefficients c1 and c0 only depend on the test
function h via the function h1(z) = z2.

(2) Notice that, due to the radial symmetry of σ, the dependence of the coefficients cj ,
j = 0, 1, 2, on the geometry of P separates from their dependence on the symbol σ.

(3) Interestingly, the contribution of convex corners and concave corners to c0 are obtained
via the same formula, in contrast to the two distinct formulas (2.10), (2.11).

The explicit formula for the coefficient c0 given in Theorem 2.5 allows us to compare it with
the corresponding coefficient B0 from the smooth boundary case, see (1.2). As in the theorem let
h be a quadratic test function and assume that σ ∈ W∞,1(R2) is radially symmetric. Applying
[26, Thm. 1.1], one gets that, for any bounded Ω ⊂ R2 with smooth boundary,

B0 = B0(Ω, h, σ) = 0. (2.18)

To our knowledge, this surprising fact has not been noted explicitly before and it even holds
without the radial symmetry of σ. For the reader’s convenience we provide a proof of (2.18) in
an appendix to this paper, see Lemma A.1. In contrast to the above, the function

f(γ) := 1 + (π − γ) cot(γ) (2.19)

is positive on (0, π) ∪ (π, 2π). This yields the following corollary.

Corollary 2.7. Let h(z) = z2 +bz and suppose that the symbol 0 6= σ ∈W∞,1(R2) is real-valued
and radially symmetric. Moreover, assume that P is a polygon and Ω ⊂ R2 is a bounded set
with smooth boundary. Then one has that

c0(P, h, σ) > 0,

while

B0(Ω, h, σ) = 0,

where c0 and B0 are the constant order coefficients from (1.5) and (1.2).

Remark 2.8. The corollary implies the following: consider a bounded set Λ ⊂ R2 with either
smooth or piecewise linear boundary. Then the type of the boundary can be determined from
the spectral asymptotics of AΛL

, as L→∞.

As a consequence of Corollary 2.7 the constant order coefficient in the trace asymptotics
exhibits an anomaly, similarly to the heat trace asymptotics for the Dirichlet Laplacian on two-
dimensional domains with corners, see e.g. [18, 21]. Any approximation of a polygon P by a
sequence of smooth domains {Ωn} can not recover the coefficient c0: for functions h and σ as
in the corollary, one gets that

B0(Ωn, h, σ) = 0 9 c0(P, h, σ),
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as n→∞. On the other hand, the approximation of domains with smooth boundary by polygons
works fine. As a simple but representative example consider a disc Ω and let {Pn} be a sequence
of inscribed regular n-gons, approximating Ω. As the function f , see (2.19), vanishes to second
order at γ = π, one easily checks that

c0(Pn, h, σ)→ 0 = B0(Ω, h, σ),

as n→∞.
We also point out that one may apply Theorem 2.5 to compute the particle number fluctu-

ation (PNF) of a free Fermi gas at positive temperature with respect to the spatial bipartition
R2 = PL ∪̇R2 \ PL. Namely, the PNF is given by

trh(APL
),

with

h(x) = x(1− x), σ(ξ) =
[
1 + exp

(ξ2 − µ
T

)]−1
,

see [14]. Here, µ ∈ R is the chemical potential and T > 0 denotes temperature. Corollary 2.7
allows us to compare the PNF for a scaled polygon PL with the PNF for a scaled set ΩL with
smooth boundary: if P and Ω have the same area and perimeter, then the PNF for the polygon
PL is strictly larger than the PNF for ΩL, as L→∞.

2.4. Strategy of the proofs. Let us comment on the basic ideas for the proofs of Theorems 2.1,
2.3, and 2.5.

The strategy of the proof of Theorem 2.1 is as follows. The leading order term in the
asymptotics originates from approximating the operator h(APL

) by its bulk approximation
χPL

h(A)χPL
, which is a very familiar idea. Indeed, one easily computes that

tr
(
χPL

h(A)χPL

)
=

∫
PL

dxh(A)(x, x) = |PL|(h ◦ σ)̂(0) = L2c2. (2.20)

Subtracting the latter from trh(APL
) leaves a remainder that is independent of the linear part

of h, hence we may replace h by the function h1(z) = h(z)− zh′(0):

tr
(
χPL

[
h(APL

)− h(A)
]
χPL

)
= tr

(
χPL

[
h1(APL

)− h1(A)
]
χPL

)
. (2.21)

For the following steps we mainly rely on the locality of the operator A: due to the assumptions
on the symbol σ, the kernel A(x, y) = σ̌(x−y) decays super-polynomially away from the diagonal,
see Lemma 3.2. As a first consequence, we can prove that the operator χPL

[
h1(APL

)−h1(A)
]
χPL

is concentrated on the boundary ∂PL. More precisely, defining for small but fixed ε > 0 the
(unscaled) one-sided ε-neighbourhood of ∂P ,

V := V(ε) := {y ∈ P ∪ ∂P : dist(y, ∂P ) ≤ ε}, (2.22)

we show that

tr
(
χPL

[
h1(APL

)− h1(A)
])

= tr
(
χVL

[
h1(APL

)− h1(A)
])

+ O(L−∞), (2.23)

as L → ∞. It is convenient to partition V into corner neighbourhoods N(X), X ∈ Ξ(P ), that

extend along half of the edges E(1)(X) and E(2)(X), see Figure 1 below. This reduces the
problem to computing the asymptotics of

tr
(
χNL(X)

[
h1(APL

)− h1(A)
])
, (2.24)

for a fixed vertex X ∈ Ξ(P ). In view of the translation-invariance of A we may assume that
X = 0, hence the sector C(X) models the corner at X ∈ Ξ(P ), see (2.9) and Figure 1. Again
the locality of the operator A implies that one can replace the operator h1(APL

) in (2.24) by
the L-independent sector operator h1(AC(X)):

tr
(
χNL(X)

[
h1(APL

)− h1(A)
])

= tr
(
χNL(X)

[
h1(AC(X))− h1(A)

])
+ O(L−∞). (2.25)

8



Figure 1. The sector C(X), the one-sided boundary neighbourhood V, and the
corner neighbourhood N(X)

γX

0

C(X)
P \ V

V

N(X)

X E(2)(X)

E
(1

)(X
)

Thus, we have completely localised the problem to the corner at X ∈ Ξ(P ). It remains to
prove that the right-hand side of (2.25) exhibits a two-term asymptotic expansion with super-
polynomial error: the leading order term, linear in L, results from the parts of N(X) near an

edge E(1)(X) or E(2)(X), whereas its constant order correction is solely produced by the fraction
of N(X) close to the vertex X. In order to extract these two terms we provide a trace-class
regularisation of the operator h1(AC(X)), see Proposition 5.2. This part of the proof shows some
commonalities with the analysis in [7] for the case of cubes. Summing up the contributions from
all X ∈ Ξ(P ) finishes the proof of Theorem 2.1.

Theorem 2.3 is deduced from Theorem 2.1. Here, the key observation is that, for a fixed edge
E ∈ E(P ), the operator h(AHE

)− h(A) is invariant with respect to translations along E. As a
consequence, it is unitarily equivalent to a direct integral over one-dimensional fibre operators
that are parametrised by the tangential coordinate. Not surprisingly, these fibre operators can
be rewritten in terms of one-dimensional Wiener-Hopf operators, which results in the formulas
(2.14) and (2.15) for the coefficients a1(νE) and a0(νE).

The proof of Theorem 2.5 requires the evaluation of all the coefficients cj , j = 0, 1, 2, from
Theorem 2.1. To compute a1(νE) and a0(νE) for all E ∈ E(P ) we apply Theorem 2.3. Moreover,
the specific choice of the function h allows us to evaluate b0(X) for each X ∈ Ξ(P ) via a
straightforward calculation. Here, the radial symmetry of the symbol σ is essential to extract
the dependence of b0(X) on the interior angle γX .

3. Trace norm estimates

In this section we collect the trace norm estimates that will be sufficient to prove Theorems
2.1 and 2.3.

3.1. Schatten-von Neumann classes. We introduce the standard notation for Schatten-von
Neumann classes Sp for p > 0, see e.g. [1], [29]. A compact operator T is an element of Sp iff
its singular values {sk(T )}∞k=1 are p-summable, i.e.

‖T‖pp :=
∞∑
k=1

sk(T )p <∞.

We shall often make use of Hölder’s inequality

‖T1T2‖1 ≤ ‖T1‖p‖T2‖q, (3.1)

for T1 ∈ Sp, T2 ∈ Sq, and p, q > 0 such that 1
p + 1

q = 1. Notice also the interpolation inequality

‖T‖pp ≤ ‖T‖p−q‖T‖qq, (3.2)

9



which holds if T ∈ Sq, 0 < q < p.

3.2. Finite volume truncations of the operator A. We recall the notation

A = A(σ) = F∗σF,

and

AΩ = AΩ(σ) = χΩF
∗σFχΩ,

where Ω ⊆ Rd is a measurable subset and σ : Rd → C is the symbol of the operator A, acting on
L2(Rd). The dependence of A on σ will be mostly suppressed, unless we consider the dimension-
reduced symbol as in Section 6. Let us also remind the reader of the following general notation,
which was introduced in the introduction: If f, g are non-negative functions, we write f . g
or g & f if f ≤ Cg for some constant C > 0. This constant will always be independent of
the scaling parameter L, but it might depend on the test function h, the symbol σ, and the
geometry of the polygon P .

The next lemma shows that, under mild assumptions on the symbol σ, the operator AΩ is
trace class if Ω ⊂ Rd is bounded. Even though this is well-known, see [4, Subsec. 10.83] for the
one-dimensional case, we provide a proof for the reader’s convenience. Having the application
to the polygon P in mind, one deduces from (3.4) below that

‖h(PL)‖1 . L2|P |,

if σ ∈ L1(R2) ∩ L∞(R2), and h : C → C is an entire function such that h(0) = 0. Here, the
implied constant depends on h and σ.

Lemma 3.1. Let σ ∈ L1(Rd) and assume that Ω,Λ ⊂ Rd are bounded sets. Then one has the
bound

‖χΛAχΩ‖1 . |Λ|1/2|Ω|1/2‖σ‖L1(Rd), (3.3)

with implied constant independent of σ, Λ, and Ω.
If in addition σ ∈ L∞(Rd) and h : C → C is an entire function with h(0) = 0, then also the
estimate

‖h(AΩ)‖1 . |Ω| (3.4)

holds, with implied constant only depending on h and σ.

Proof. We start by proving the estimate (3.3). Without loss of generality, we may assume that
σ ≥ 0 since the symbol can be decomposed as σ = σ1 − σ2 + i(σ3 − σ4) for suitable functions
σj ≥ 0. We have that

χΛAχΩ = B1B2,

where B1 and B2 are the operators on L2(Rd) with kernels

B1(x, ξ) := (2π)−d/2χΛ(x)eix·ξ
√
σ(ξ)

B2(ξ, y) := (2π)−d/2
√
σ(ξ)e−iy·ξχΩ(y).

Hence, (3.1) yields

‖χΛAχΩ‖1 ≤ ‖B1‖2‖B2‖2 = (2π)−d|Λ|1/2|Ω|1/2‖σ‖L1(Rd),

which proves (3.3).
Let us now assume that σ ∈ L1(Rd)∩L∞(Rd) and that h is as in the formulation of the lemma.

The boundedness of σ implies the (uniform) operator norm bound

‖AΩ‖ ≤ ‖A‖ ≤ ‖σ‖L∞(Rd).

It follows that

‖h(AΩ)‖1 . ‖AΩ‖1,
10



with implied constant depending only on h and ‖σ‖L∞(Rd). In view of (3.3) this finishes the
proof of the lemma. �

3.3. Symbol estimates. Introduce, for N ≥ 0, the Sobolev spaces

WN,1(Rd) := {f ∈ L1(Rd) : ∂αf ∈ L1(Rd) for all α ∈ Nd0, |α| ≤ N},
with corresponding norms

‖f‖N :=
∑
|α|≤N

‖∂αf‖L1(Rd).

Moreover, set

W∞,1(Rd) :=

∞⋂
N=0

WN,1(Rd).

In view of [6, Thm. 2.31 (2)] we note that

W∞,1(Rd) ⊂ C∞(Rd),

i.e.

W∞,1(Rd) = {f ∈ C∞(Rd) : ∂αf ∈ L1(Rd) for all α ∈ Nd0}. (3.5)

The next lemma recalls the standard fact that, for a symbol σ ∈W∞,1(Rd), its (inverse) Fourier
transform σ̌, see (2.17), decays super-polynomially at infinity. Moreover, it provides some infor-
mation on the dimension-reduced symbol, which will be useful when proving Theorem 2.3.

Lemma 3.2. Let σ ∈W∞,1(Rd). Then the following statements hold true.

(i) For all N ∈ N0, one has the bound

|σ̌(x)| . ‖σ‖N 〈x〉−N ,
with implied constants only depending on N .

(ii) Assume that d ≥ 2 and define, for t ∈ R, the reduced symbol

Rd−1 3 ξ 7→ σt(ξ) := σ(t, ξ).

Then we have that σt ∈ W∞,1(Rd−1), for all t ∈ R. Moreover, for every N ∈ N0, it holds
that (t 7→ σt) ∈ L1

(
R,WN,1(Rd−1)

)
∩ C
(
R,WN,1(Rd−1)

)
.

Proof. Using the fact that σ ∈W∞,1(Rd) and integrating by parts we get that

|σ̌(x)| .
∣∣ ∫ dξ eix·ξσ(ξ)

∣∣
=
∣∣ ∫ dξ σ(ξ)

[1− ix · ∇ξ
1 + x2

]N
eix·ξ

∣∣
=
∣∣ ∫ dξ eix·ξ

[1 + ix · ∇ξ
1 + x2

]N
σ(ξ)

∣∣
. ‖σ‖N 〈x〉−N ,

where the implied constants only depend on N . For the proof of the second part of the statement
notice that, since σ ∈ L1(Rd), there is some t0 ∈ R such that σt0 ∈ L1(Rd−1). This in turn implies
that

sup
t∈R
‖σt‖L1(Rd−1) ≤ ‖ sup

t∈R
|σt|‖L1(Rd−1) =

∫
Rd−1

dξ sup
t∈R

∣∣∣σt0(ξ) +

t∫
t0

ds ∂sσs(ξ)
∣∣∣

≤ ‖σt0‖L1(Rd−1) + ‖∂tσ‖L1(Rd) <∞, (3.6)

i.e. σt ∈ L1(Rd−1) for all t. Moreover, the fact that σ ∈ L1(Rd) ∩ C(Rd) and the uniform bound
(3.6) ensure that (t 7→ σt) ∈ L1

(
R, L1(Rd−1)

)
∩ C
(
R, L1(Rd−1)

)
. The analogous statements for

derivatives of σt follow along the same lines. This finishes the proof of the lemma. �
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For σ ∈ W∞,1(Rd), the off-diagonal decay of the kernel A(x, y) = σ̌(x − y), see Lemma 3.2,
and the continuity of σ̌ imply the following lemma. Its rather technical proof is omitted.

Lemma 3.3. Let σ ∈ W∞,1(Rd) and let h : C → C be an entire function with h(0) = 0. Then
for any open set G ⊆ Rd the operator kernel

(x, y) 7→ h(AG)(x, y)

is a continuous function on G×G.

3.4. Localisation estimates. Throughout this subsection, let σ ∈W∞,1(Rd) and let h : C→ C
be an entire function that vanishes to second order at z = 0. One of the main tools for proving
Theorem 2.1 is the next proposition. It is of similar spirit as [7, Thm. 2.5], which was recently
established in the context of ergodic Schrödinger operators.

Proposition 3.4. Suppose that Λ ⊆ Ω ⊆ Rd and let a, b ∈ Rd. Then, for any N ∈ N, there
exists a constant Ch,σ,N ≥ 0 such that

‖χQa∩Λ

[
h(AΛ)− h(AΩ)

]
χQb
‖1 ≤ Ch,σ,N 〈dist(a,Ω \ Λ)〉−N 〈dist(b,Ω \ Λ)〉−N 〈a− b〉−N . (3.7)

More precisely, if h is given by the power series h(z) =
∞∑
k=2

akz
k, then the constant Ch,σ,N may

be bounded as

Ch,σ,N .
∞∑
k=2

k|ak|
[
CN‖σ‖2N+2d+2

]k
, (3.8)

for some constant CN ≥ 0 and implied constant only depending on N .

Remark 3.5. (1) Unlike in [7, Thm. 2.5], we do not require convexity of the set Ω.
(2) In [7] the author deduced their result with the help of an a-priori Schatten quasi-norm

bound in Sq for some q < 1, see [7, Eq. (2.3)]. In the special case of Wiener-Hopf-
operators, this a-priori bound reduces to

sup
a,b∈Rd

‖χQaAχQb
‖q <∞. (3.9)

This estimate holds if, in addition to σ ∈ W∞,1(R2), we suppose that σ ∈ Lp(R2) for
some p ∈ (0, q), see [1, Ch. 11, Thm. 13]. However, we prefer not to assume any
additional decay on σ. Instead, we exploit the basic Hilbert Schmidt bound (3.10) on
unit cubes from Lemma 3.6 below.

(3) The mild decay assumptions on the symbol σ are compensated by assuming that the
test function h vanishes to second order at z = 0. This assumption is sufficient to prove
Theorem 2.1: we will exclusively apply Proposition 3.4 to the function h1, see (2.4).

Proposition 3.4 follows from approximation of the test function h by polynomials and the
next lemma.

Lemma 3.6. Let a, b ∈ Rd. Then, for all N ∈ N, there exists constants cN ≥ c̃N ≥ 0 such that

‖χQaAχQb
‖ ≤ ‖χQaAχQb

‖2 ≤ c̃N‖σ‖N 〈a− b〉−N , (3.10)

and such that, for all k ∈ N \ {1}, p ∈ {1, 2},

sup
G⊆Rd

‖χQa [AG]kχQb
‖p ≤

[
cN‖σ‖N+d+1

]k〈a− b〉−N . (3.11)

Proof. The estimate (3.10) is a direct consequence of Lemma 3.2. To prove (3.11) define, for all
N ≥ 1, the constants

c̃N,σ := c̃N
∑
|α|≤N

‖∂ασ‖L1(Rd),
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and set

c′d := sup
|x|≤1

∑
y∈Zd

〈y + x〉−d−1 <∞. (3.12)

Let N ∈ N, k ≥ 2, G ⊆ Rd, and M := N + d + 1. Then (3.10) implies that, for p ∈ {1, 2} and
for all a, b ∈ Rd,

‖χQa [AG]kχQb
‖p ≤

∑
y1,...,yk−1∈Zd

‖χQaAχQy1
‖2‖χQy1

AχQy2
‖ · · · · · ‖χQk−2

AχQyk−1
‖‖χQyk−1

AχQb
‖2

≤ c̃kM,σ

∑
y1,...,yk−1∈Zd

〈a− y1〉−M 〈y1 − y2〉−M · · · · · 〈yk−2 − yk−1〉−M 〈yk−1 − b〉−M

≤ c̃kM,σ

[
2N/2c′d

]k−1〈a− b〉−N . (3.13)

Here we have used Peetre’s inequality,

〈x− y〉N 〈y − z〉N ≥ 2−N/2〈x− z〉N , for x, y, z ∈ Rd,

and the definition of c′d, see (3.12). Setting

cN := c̃M2N/2c′d,

(3.11) follows and the proof of the lemma is complete. �

Proof of Proposition 3.4. Let h be an entire function of the form h(z) =
∞∑
k=2

akz
k. Then

Lemma 3.6 implies that

‖χQa∩Λ

[
h(AΛ)− h(AΩ)

]
χQb
‖1 ≤ C ′h,σ,N 〈a− b〉−N , (3.14)

where

C ′h,σ,N := 2
∑
k≥2

|ak|
[
cN‖σ‖N+d+1

]k
,

and cN is the constant in Lemma 3.6. As we may interpolate with (3.14), it suffices to show
that

‖χQa∩Λ

[
h(AΛ)− h(AΩ)

]
χQb
‖1 ≤ C ′′h,σ,N 〈dist(a,Ω \ Λ)〉−N 〈dist(b,Ω \ Λ)〉−N , (3.15)

for an appropriate constant C ′′h,σ,N . Again, we first prove (3.15) for monomials h(z) = zk, k ≥ 2.
Defining for m,n ∈ N0 the operators

τmn := χQa [AΛ]mχΛAχΩ\Λ[AΩ]nχQb
,

one gets that

χQa∩Λ

(
[AΛ]k − [AΩ]k

)
χQb

=

k−1∑
l=0

χQa∩Λ[AΛ]k−l−1(AΛ −AΩ)[AΩ]lχQb

= −χΛ

k−1∑
l=0

τk−l−1,l. (3.16)

Fix the numbers M and M ′, depending on N and d:

M := N + d+ 1, M ′ := N + 2d+ 2 = M + d+ 1.

Moreover, define for any set G ⊆ Rd the corresponding lattice point neighbourhood

G+ := {y ∈ Zd : Qy ∩G 6= ∅}. (3.17)
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We apply Lemma 3.6 and estimate as in (3.13) to deduce that, for m,n ∈ N,

‖τmn‖1 ≤
∑
x∈Λ+

y∈(Ω\Λ)+

‖χQa [AΛ]mχQx‖2‖χQxAχQy‖‖χQy [AΩ]nχQb
‖2

≤
∑
x∈Λ+

y∈(Ω\Λ)+

[
cM‖σ‖M ′

]n+m+1〈a− x〉−M 〈x− y〉−M 〈y − b〉−M

.
[
cM‖σ‖M ′

]n+m+1〈dist(a,Ω \ Λ)〉−N 〈dist(b,Ω \ Λ)〉−N . (3.18)

Here, the implied constants only depend on N . Similarly, we estimate for n ≥ 1,

‖τ0n‖1 ≤
∑

y∈(Ω\Λ)+

‖χQaAχQy‖2‖χQy [AΩ]nχQb
‖2

≤
∑

y∈(Ω\Λ)+

[
cM‖σ‖M ′

]n+1〈a− y〉−M 〈y − b〉−M

.
[
cM‖σ‖M ′

]n+1〈dist(a,Ω \ Λ)〉−N 〈dist(b,Ω \ Λ)〉−N . (3.19)

In case Qb ∩ Ω \ Λ = ∅ one has that τm0 = 0, hence combining (3.16), (3.18), and (3.19) gives

‖χQa∩Λ

(
[AΩ]k − [AΛ]k

)
χQb
‖1 . k

[
cM‖σ‖M ′

]k〈dist(a,Ω \ Λ)〉−N 〈dist(b,Ω \ Λ)〉−N , (3.20)

with implied constants only depending on N . If Qb ∩ Ω \ Λ 6= ∅, we estimate

‖τm0‖1 ≤ ‖χQa [AΛ]mχΛAχQb
‖1

≤
∑
x∈Λ+

‖χQa [AΛ]mχQx‖2‖χQxAχQb
‖2

≤
∑
x∈Λ+

[
cM‖σ‖M ′

]m+1〈a− x〉−M 〈x− b〉−M

.
[
cM‖σ‖M ′

]m+1〈dist(a,Ω \ Λ)〉−N ,

which together with (3.16), (3.18), and (3.19) again implies (3.20). The extension of Estimate

(3.20) to entire functions h of the form h(z) =
∞∑
k=2

akz
k, and an interpolation with (3.14) finishes

the proof of the proposition. �

Proposition 3.4 implies two corollaries, which will be useful in applications. For example, it
follows from Corollary 3.7 that the coefficient a1(νE), see (2.5), is well-defined.

Corollary 3.7. Suppose that the sets M, Λ, Ω ⊆ Rd satisfy

M ⊆ Λ ∩ Ω.

Moreover, assume that there exists β ≥ 0 and a constant Cβ ≥ 0 such that, for all r > 0,

]{x ∈ M+ : dist(x,Λ4Ω) ≤ r} ≤ Cβ〈r〉β, (3.21)

where the set M+ ⊆ Zd is defined in (3.17).
Then we have that

χM

[
h(AΛ)− h(AΩ)

]
∈ S1.

Proof. An application of the triangle inequality shows that we may restrict ourselves to the case
that Λ ⊆ Ω. Applying Proposition 3.4 for N = d+ β + 1 and the assumption M ⊆ Λ, one gets
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that ∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
≤
∑
a∈M+

b∈Zd

∥∥χQa∩Λ

[
h(AΛ)− h(AΩ)

]
χQb

∥∥
1

.
∑
a∈M+

b∈Zd

〈dist(a,Ω \ Λ)〉−d−β−1〈a− b〉−d−β−1

.
∑
a∈M+

〈dist(a,Ω \ Λ)〉−d−β−1

≤
∞∑
k=0

∑
a∈M+

k≤dist(a,Ω\Λ)≤k+1

〈k〉−d−β−1

.
∞∑
k=0

Cβ〈k + 1〉β〈k〉−d−β−1 <∞, (3.22)

where the implied constants depend on β, h, and σ. This finishes the proof of the corollary. �

The next corollary treats L-dependent sets M, Λ, and Ω. Here, the dependence on L does not
need to be linear, unlike for scaled sets. The corollary gives sufficient conditions under which the
spatial restriction of the operator h(AΛ) to M may be replaced by the corresponding restriction
of h(AΩ), with a super-polynomially small error in trace norm, as L→∞.

Corollary 3.8. Let M,Λ,Ω ⊆ Rd be sets that all possibly depend on the parameter L ≥ 1.
Suppose that

M ⊆ Λ ∩ Ω and dist(M,Λ4Ω) & L. (3.23)

Moreover, assume that there exists some β ≥ 0 and a constant Cβ ≥ 0, independent of L, such
that at least one of the following conditions is satisfied:

(i) ]M+ ≤ CβLβ.
(ii) Estimate (3.21) holds.

Then one has that ∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1

= O(L−∞),

as L→∞.

Proof. As in the proof of Corollary 3.7, we may assume that Λ ⊆ Ω. Moreover, similarly as in
(3.22), an application of Proposition 3.4 yields∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
.
∑
a∈M+

〈dist(a,Ω \ Λ)〉−N ,

with implied constant depending on h, σ, and N ≥ d + 1. If the estimate (i) holds, then one
easily concludes with (3.23) that∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
. Lβ−N ,

with implied constant depending on β,N, h, and σ. Assuming (ii) instead, we obtain as in the
proof of Corollary 3.7 that∥∥χM

[
h(AΛ)− h(AΩ)

]∥∥
1
. L−N/2

∑
a∈M+

〈dist(a,Ω \ Λ)〉−N/2

. L−N/2,

where we chose N ≥ 2(d + β + 1) and the implied constants depend on N , β, h, σ, and the
constant in (3.21). This finishes the proof of the corollary. �

15



4. Proof of Theorem 2.1: localisation to the corners of P

Fix ε > 0 to be chosen later and recall the definition (2.22) of V = V(ε), the one-sided ε–
neighbourhood of ∂P . As indicated in Subsection 2.4, we split V into (almost) disjoint sets
N(X), X ∈ Ξ(P ), such that N(X) contains the part of V close to the vertex X, see Figure 1 on
page 9. This induces a corresponding partition of VL = L · V.

4.1. Partition of VL. Fix a vertex X ∈ Ξ(P ) and recall that its adjacent edges are named

E(1)(X) and E(2)(X), see Subsection 2.1. It will be convenient to introduce the following two
choices for the unit normal and the unit tangent vector at X:

(τ
(1)
X , ν

(1)
X ) := (−τE(1)(X), νE(1)(X)),

(τ
(2)
X , ν

(2)
X ) := (τE(2)(X), νE(2)(X)).

(4.1)

This definition ensures that τ
(1)
X and τ

(2)
X , considered as vectors at X, point into the direction

of the edges E(1)(X) and E(2)(X), respectively. For j = 1, 2, define the tubes

T (j)(X) : = {aτ (j)
X + bν

(j)
X : (a, b) ∈ [0, |E

(j)(X)|
2 ]× [0, ε]}, (4.2)

and set

N(X) :=
[
T (1)(X) ∪ T (2)(X) ∪Bε(0)

]
∩ C(X), (4.3)

see Figure 2 below. Then N(X) is a corner-neighbourhood of 0 ∈ Ξ(P −X) and we define the
corresponding neighbourhood at X ∈ Ξ(P ) by

N(X) := X + N(X). (4.4)

Combining the scaled neighbourhoods NL(X) = L ·N(X), we arrive at the partition

VL =
⋃

X∈Ξ(P )

NL(X). (4.5)

At this point we choose ε > 0 small enough such that the union (4.5) is disjoint up to sets of
zero two-dimensional Lebesgue measure.

4.2. Reduction to individual corner contributions. As in the formulation of Theorem 2.1,
let σ ∈ W∞,1(R2) and assume that h is an entire function with h(0) = 0. Notice that due to
Lemma 3.1 the operators h(APL

) and χPL
h(A)χPL

are trace class, the trace of the latter operator
being computed in (2.20). This gives us the leading order term in the asymptotics (2.12):

trh(APL
) = L2c2 + tr

(
χPL

[
h(APL

)− h(A)
]
χPL

)
. (4.6)

0

T (2)(X)

T
(1

) (
X
)

|E (2)|/2

|E
(1

) |/
2

ε

Figure 2. The neighbourhood N(X) for a vertex X ∈ Ξ>(P )
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Moreover, it follows from Corollary 3.7 that

χPL

[
h1(APL

)− h1(A)
]
∈ S1,

where we recall the definition of the function h1(z) = h(z) − zh′(0). By construction, we have
that

dist(PL \ VL , R2 \ PL) & L,

hence Corollary 3.8 with Assumption (i) implies that

tr
(
χPL

[
h(APL

)− h(A)
]
χPL

)
= tr

(
χPL

[
h1(APL

)− h1(A)
])

= tr
(
χVL

[
h1(APL

)− h1(A)
])

+ O(L−∞).

In particular, we may from now on assume that h vanishes to second order at z = 0, such that
h1 = h. Also, we have reduced the proof of Theorem 2.1 to computing the asymptotics of

tr
(
χVL

[
h(APL

)− h(A)
])

=
∑

X∈Ξ(P )

tr
(
χNL(X)

[
h(APL

)− h(A)
])
,

employing (4.5) for the latter equality. For fixed X ∈ Ξ(P ), the translation-invariance of the
operator A implies that

tr
(
χNL(X)

[
h(APL

)− h(A)
])

= tr
(
χNL(X)

[
h(A(P−X)L)− h(A)

])
,

with N(X) = N(X)−X, see (4.4). Moreover, it is not difficult to see that

dist
(
NL(X) , C(X)4(P −X)L

)
& L.

Hence, Corollary 3.8 with Assumption (i) yields that

tr
(
χNL(X)

[
h(A(P−X)L)− h(A)

])
= tr

(
χNL(X)

[
h(AC(X))− h(A)

])
+ O(L−∞).

We emphasise that the trace

tr
(
χNL(X)

[
h(AC(X))− h(A)

])
(4.7)

depends on the polygon P only via the directions τ
(j)
X , j = 1, 2, and the length of the edges

adjacent to X. To compute its asymptotics for each X ∈ Ξ(P ) is the object of the next section.

5. Proof of Theorem 2.1: asymptotics for a fixed corner of P

Throughout this section we fix a vertex X ∈ Ξ(P ). In particular, we shall omit all arguments,
sub- and superscripts “(X)”; for instance, we will write C = C(X) and NL = NL(X). As before,
let σ ∈W∞,1(R2) and assume that h = h1 is an entire function that vanishes to second order at
z = 0. The main purpose of this section is to obtain an asymptotic formula for (4.7), which will
complete the proof of Theorem 2.1.

5.1. The L-term in the asymptotics. In the smooth boundary case, the sub-leading order
term in the asymptotics (1.2) is (at least morally) obtained via approximation of the operator
h(AΩL

) by half-space operators: around x ∈ ∂ΩL, the operator h(AΩL
) is replaced by h(AHx)

where Hx is the half-space approximation of ΩL at x. Similarly, the half-spaces H(1) and H(2),
see (2.8), locally model the sector C in (4.7), as long as one stays away from the apex of the
sector. Thus, to get a first-order approximation to (4.7), the strategy is to replace the sector C

by the half-space H(j), j = 1, 2, on the part of NL close to ∂H(j) ∩ ∂C. This philosophy was
used for right-angled cones in [36] and [7]. In the course of this section we will thus prove that

tr
(
χNL

[
h(AC)− h(A)

])
=

2∑
j=1

tr
(
χ
T

(j)
L

[
h(AH(j))− h(A)

])
+ O(1), (5.1)

as L→∞, see (4.2) and Figure 2 above for the definition of T (j). Here, the O(1)-term contains
the corner contribution at X to the coefficient c0 and a super-polynomial error in L. The
approximation (5.1) is useful since the invariance of the operator h(AH(j))− h(A) with respect
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to translations along the edge E(j) can be applied to scale out the length of the tube T
(j)
L . This

is demonstrated in the next lemma, which hence provides the L-term in the asymptotics of (4.7).

Lemma 5.1. Let j ∈ {1, 2} and set S(j) := SE(j), compare with (2.2). Then one has that

tr
(
χ
T

(j)
L

[
h(AH(j))− h(A)

])
= L |E

(j)|
2 tr

(
χS(j)

[
h(AH(j))− h(A)

])
+ O(L−∞).

Proof. Fix j ∈ {1, 2} and omit the superscript “(j)” for the duration of the proof. Moreover,
we may assume after a suitable rotation that H = R × [0,∞) and S = [0, 1] × [0,∞). Then it
follows from Corollary 3.8 that

tr
(
χTL

[
h(AH)− h(A)

])
= tr

(
χ
L
|E|
2 ·S

[
h(AH)− h(A)

])
+ O(L−∞).

Here, the trace on the right-hand side is well-defined due to Corollary 3.7. Also, the invariance
of the operator h(AH) − h(A) with respect to translations in the x1-direction implies that, for
all x = (x1, x2) ∈ R2,

(h(AH)− h(A))(x1, x2;x1, x2) = (h(AH)− h(A))(0, x2; 0, x2).

Thus, a change of coordinates in the x1-variable finishes the proof of the lemma. �

5.2. Regularisation of sector operators. The key to finding the constant order term in
the asymptotics of (4.7) is a trace-class regularisation of the sector operator h(AC) with the
help of the half-space operators h(AH(j)), j = 1, 2, and the full-space operator h(A). This
regularisation is given in the next proposition. For its proof we consider spatial restrictions
of h(AC) to different parts of the sector C and then compare these to the operators h(AH(j)),
j = 1, 2, or h(A), depending on which part of the sector we localise to. In that respect we follow
the ideas of [7]. However, instead of only looking at a right-angled convex cone, we tackle sectors
of any angle; in particular, we also deal with concave sectors. Moreover, our regularisation for
convex sectors C, see (5.2), does not require a partition of C. At the same time, it is independent
of the scaling parameter L, in contrast to the ones given in [7, Thm. 2.2].

Proposition 5.2. Let L ≥ 1. If X ∈ Ξ<(P ), then the operator

Z := χC
[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

]
(5.2)

is trace class with

‖χR2\BL(0)Z‖1 = O(L−∞), (5.3)

as L→∞.
If X ∈ Ξ>(P ), then the operators

Z1 := χH(1)∩H(2)

[
h(AC)− h(A)

]
,

Z2 := χC\H(1)

[
h(AC)− h(AH(2))

]
,

Z3 := χC\H(2)

[
h(AC)− h(AH(1))

]
,

are trace class and, for every j = 1, 2, 3, one has that

‖χR2\BL(0)Zj‖1 = O(L−∞),

as L→∞.

Proof. As in the statement of the proposition we treat convex and concave corners separately.
Convex corners, i.e. X ∈ Ξ<(P ): we divide the semi-infinite sector C into two halves,

Cl := {y ∈ C : y · (ν(2) − ν(1)) ≥ 0},

Cr := {y ∈ C : y · (ν(1) − ν(2)) ≥ 0},
18



where we recall the definition (4.1) for ν(j) = ν
(j)
X . Then one can write

Z = χCl

[
h(AC)− h(AH(1))

]
+ χCr

[
h(AC)− h(AH(2))

]
+ χCl

[
h(A)− h(AH(2))

]
+ χCr

[
h(A)− h(AH(1))

]
.

Thus, Corollary 3.7 implies that the operator Z is trace class since the estimate (3.21) with
β = 1 is easily checked for all involved sets. Moreover, applying the same splitting for Z, the
bound (5.3) follows from Corollary 3.8.
Concave corners, i.e. X ∈ Ξ>(P ): in the concave case we may directly apply Corollaries 3.7
and 3.8 to the operators Zj , j = 1, 2, 3; no further partition is required. The claim follows as in
the convex case, which finishes the proof of the proposition. �

5.3. Contributions from non-right-angled corners. In the next subsection we will apply
the regularisation for the sector operator h(AC) from Proposition 5.2 to find the asymptotics

of the trace (4.7). As it turns out during this process, non-perpendicular edges E(1) and E(2)

generate an extra term of constant order. Technically, this relies on the fact that the tubes T (j),
which are responsible for the L-term in the asymptotics, see Lemma 5.1, are rectangles. In this
sense, they are not compatible with interior angles γ /∈ {π2 ,

3π
2 }.

For the fixed vertex X ∈ Ξ(P ), introduce the following sectors, which depend on j ∈ {1, 2},
see Figure 3 below:

Γ(j) :=

{
{aτ (j) + bν(j) : 0 ≤ a < cot(γ)b}, γ ∈ (0, π2 ] ∪ (π, 3π

2 ],

{aτ (j) + bν(j) : cot(γ)b < a ≤ 0}, γ ∈ [π2 , π) ∪ [3π
2 , 2π).

(5.4)

We will see in Subsection 5.4 that non-perpendicular edges E(1) and E(2) contribute the constants

tr
(
χΓ(j)

[
h(AH(j))− h(A)

])
, j = 1, 2, (5.5)

to the asymptotics of (4.7). These traces are well-defined in view of Corollary 3.7 and the
following lemma provides an alternative characterisation of (5.5).

Lemma 5.3. Let X ∈ Ξ(P ) be a vertex of P and let Γ(j), j = 1, 2, be the sectors introduced in

(5.4). Moreover, let S(j) be the strip of unit width defined in Lemma 5.1. Then we have that,
for j = 1, 2,

tr
(
χΓ(j)(X)

[
h(AH(j))− h(A)

])
= | cot(γ)| tr

(
χS(j)M(x · νH(j))

[
h(AH(j))− h(A)

])
.

Proof. Fix X ∈ Ξ(P ). Without loss of generality suppose that γ ∈ (0, π/2] and j = 2, and, for
the matter of readability, omit the superscript “(2)”. The other cases can be reduced to this one
via a symmetry argument. After a suitable rotation we may also assume that H = R× [0,∞),

γ

0

Γ(2)

Figure 3. The sector Γ(2) for γ ∈ (π2 , π)
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Γ = {(x1, x2) ∈ H : 0 ≤ x1 ≤ cot(γ)x2}, and S = [0, 1]× [0,∞). Splitting the strip S into unit
cubes, one easily gets from Proposition 3.4 that the operator

χSM(x2)
[
h(AH)− h(A)

]
is trace-class. In view of Corollary 3.7, we likewise have that

χΓ

[
h(AH)− h(A)

]
∈ S1. (5.6)

Furthermore, as in the proof of Lemma 5.1 the invariance of the operator h(AH) − h(A) with
respect to translations in the x1-direction implies that, for all x = (x1, x2) ∈ R2,

(h(AH)− h(A))(x1, x2;x1, x2) = (h(AH)− h(A))(0, x2; 0, x2).

By Lemma 3.3 this kernel is continuous on Γ × Γ ⊂ H ×H, so [5, Thm. 3.5] and (5.6) ensure
that it is integrable on Γ× Γ. Hence, we may apply Fubini’s theorem to arrive at

tr
(
χΓ

[
h(AH)− h(A)

])
=

∫
Γ

dx1dx2 (h(AH)− h(A))(0, x2; 0, x2)

=

∞∫
0

dx2

cot(γ)x2∫
0

dx1 (h(AH)− h(A))(0, x2; 0, x2)

= cot(γ)

∞∫
0

dx2 x2 (h(AH)− h(A))(0, x2; 0, x2)

= cot(γ)

1∫
0

dx1

∞∫
0

dx2 x2 (h(AH)− h(A))(0, x2; 0, x2)

= cot(γ) tr
(
χSM(x2)

[
h(AH)− h(A)

])
.

This finishes the proof of the lemma. �

5.4. Complete asymptotics. Equipped with Proposition 5.2 and Lemmas 5.1 and 5.3, we are
now ready to extract the asymptotics from (4.7). As the regularisation for the sector operators
in Proposition 5.2 depends on the type of the sector, we naturally have to distinguish convex
and concave corners of the polygon PL. Propositions 5.4 and 5.5 contain the respective results.

Proposition 5.4 (Convex corners). Let X ∈ Ξ<(P ). Then we have that

tr
(
χNL

[h(AC)− h(A)]
)

= L

2∑
j=1

|E(j)|
2 tr

(
χS(j)

[
h(AH(j))− h(A)

])
+ tr

(
χC
[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

])
− cot(γ)

2∑
j=1

tr
(
χS(j)M(x · νH(j))

[
h(AH(j))− h(A)

])
+ O(L−∞),

as L→∞.

Proof. We write

tr
(
χNL

[
h(AC)− h(A)

])
= tr

(
χNL

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

])
+

2∑
j=1

tr
(
χNL

[
h(AH(j))− h(A)

])
. (5.7)

Proposition 5.2 implies that the operator

χC
[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

]
20



is trace class with

tr
(
χC\NL

[
h(AC)− h(AH(1))− h(AH(2)) + h(A)

])
= O(L−∞),

since dist(0, C \ NL) & L. Thus it remains to find the asymptotics for

tr
(
χNL

[
h(AH(j))− h(A)

])
, j = 1, 2.

Recall the definition (5.4) of the sectors Γ(j) and define its finite sections

Γ(j)[r] := {y ∈ Γ(j) : y · ν(j) ≤ r}, j = 1, 2, r ≥ 0.

Applying the definition of N, see (4.3), and Corollary 3.8 we get that

tr
(
χNL

[
h(AH(j))− h(A)

])
= tr

(
χ
T

(j)
L

[
h(AH(j))− h(A)

])
+ sgn(γ − π

2 ) tr
(
χΓ(j)[εL]

[
h(AH(j))− h(A)

])
+ O(L−∞).

Furthermore, Lemma 5.1 and another application of Corollary 3.8 yield that

tr
(
χNL

[
h(AH(j))− h(A)

])
= L|E(j)|

2 tr
(
χS(j)

[
h(AH(j))− h(A)

])
+ sgn(γ − π

2 ) tr
(
χΓ(j)

[
h(AH(j))− h(A)

])
+ O(L−∞).

Hence, the claim follows from Lemma 5.3 and (5.7). �

Proposition 5.5 (Concave corners). Let X ∈ Ξ>(PL). Then we have that

tr
(
χNL

[h(AC)− h(A)]
)

= L
2∑
j=1

|E(j)|
2 tr

(
χS(j)

[
h(AH(j))− h(A)

])
+ tr

(
χH(1)∩H(2)

[
h(AC)− h(A)

])
+ tr

(
χC\H(1)

[
h(AC)− h(AH(2)

])
+ tr

(
χC\H(2)

[
h(AC)− h(AH(1)

])
− cot(γ)

2∑
j=1

tr(χS(j)M(x · νH(j))
[
h(AH(j))− h(A)

])
+ O(L−∞).

as L→∞.

Proof. The proof is analogous to the convex case. We write

tr
(
χNL

[h(AC)− h(A)]
)

=η1(L) + η2(L),

with

η1(L) := tr
(
χNL∩H(1)∩H(2)

[
h(AC)− h(A)

])
+ tr

(
χNL∩C\H(1)

[
h(AC)− h(AH(2))

])
+ tr

(
χNL∩C\H(2)

[
h(AC)− h(AH(1))

])
,

and

η2(L) := tr
(
χNL∩C\H(1)

[
h(AH(2))− h(A)

]
+ tr

(
χNL∩C\H(2)

[
h(AH(1))− h(A)

]
.

Proposition (5.2) implies that

η1(L) = tr
(
χH(1)∩H(2)

[
h(AC)− h(A)

])
+ tr

(
χC\H(1)

[
h(AC)− h(AH(2))

])
+ tr

(
χC\H(2)

[
h(AC)− h(AH(1))

])
+ O(L−∞).
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Moreover, we notice that the sectors C \H(j), j = 1, 2, have an interior angle of γ − π ∈ (0, π).
This and the fact that cot(γ − π) = cot(γ) explains why the contribution of η2(L) to the
asymptotics is the same as in the convex case. Alternatively, one easily gets that, for instance,

tr
(
χNL∩C\H(1)

[
h(AH(2))− h(A)

])
= tr

(
χ
T

(2)
L

[
h(AH(2))− h(A)

])
+ sgn(γ − 3π

2 ) tr
(
χNL∩Γ(2)

[
h(AH(2))− h(A)

])
.

Thus, as in the convex case the claim follows from Corollaries 3.7 and 3.8, and Lemmas 5.1 and
5.3. �

The proof of Theorem 2.1 is now complete:

Proof of Theorem 2.1. Subsection 4.2 implies that for h = h1,

tr
(
χPL

[
h(APL

)− h(A)
]
χPL

)
=

∑
X∈Ξ(P )

tr
(
χNL(X)

[
h(AC(X))− h(A)

])
+ O(L−∞).

Hence, it follows from Propositions 5.4 and 5.5 that

tr
(
χPL

[
h(APL

)− h(A)
]
χPL

)
= Lc1 + c0 + O(L−∞).

In view of (4.6), this finishes the proof of the theorem. �

6. Proof of Theorem 2.3

It suffices to prove the theorem for test functions h of the form h(z) =
∞∑
k=2

akz
k since both

sides of (2.14) and (2.15) vanish for linear functions h. Moreover, we may assume after a suitable
rotation that HE = H = R× [0,∞), i.e. SE = S = [0, 1]× [0,∞). Thus, we have that

σE,t(ξ) = σ(t, ξ) =: σt(ξ), (t, ξ) ∈ R2.

Define, for α ∈ {0, 1} and fixed t ∈ R, the operator

Bα(t) := M(xα)
[
h{W (σt)} −W (h ◦ σt)

]
,

which acts on L2(R). Proposition 3.4 implies that, for α ∈ {0, 1} and t ∈ R,∥∥Bα(t)
∥∥

1
≤
∞∑
n=1

∥∥M(xα)χ[n−1,n]

[
h{A[0,∞)(σt)} − h{A(σt)}

]
χ[0,∞)

∥∥
1

≤
∞∑
n=1

∥∥M(xα)χ[n−1,n]

∥∥∥∥χ[n−1,n]

[
h{A[0,∞)(σt)} − h{A(σt)}

]∥∥
1

≤
∞∑
n=1

nα〈n− 1〉−3
∞∑
k=2

k|ak|
[
C3‖σt‖12

]k
.
∞∑
k=2

k|ak|
[
C3‖σt‖12

]k
<∞.

Hence, in view of Lemma 3.2 we have that (t 7→ ‖Bα(t)‖1) ∈ L1(R)∩L∞(R). In particular, the
right-hand sides of (2.14) and (2.15) are well-defined under our assumptions on h and σ.

Introduce the unitary (identification) map

J : L2(R2)→ L2
(
R, L2(R)

)
, (Jf)(t) := f(t, · ).

Moreover, define the partial Fourier transforms F1, F2 on L2(R2) that only act on the first and
second variable, respectively. To obtain the identities (2.14) and (2.15), we first prove that

M(xα2 )
[
h(AH)− χHh(A)χH

]
= F∗1J

∗BαJF1, (6.1)
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where Bα :=
⊕∫
R
dtBα(t) acts on L2

(
R, L2(R)

)
. For an introduction to direct integral operators

see for example [24]. To verify (6.1), notice that

F1χH = χHF1,

hence

AH = χHF
∗
1F
∗
2σF2F1χH = F∗1χHF

∗
2σF2χHF1.

Moreover, the definition of J yields that

χHF
∗
2σF2χH = J∗

⊕∫
R

dtW (σt) J,

implying that

h(AH) = F∗1J
∗h
( ⊕∫
R

dtW (σt)
)
JF1 = F∗1J

∗
⊕∫

R

dt h{W (σt)}JF1. (6.2)

Similarly, one gets that

χHh(A)χH = AH(h ◦ σ) = F∗1J
∗
⊕∫

R

dtW (h ◦ σt) JF1. (6.3)

Thus, combining (6.2) and (6.3) gives

M(xα2 )χH
[
h(AH)− h(A)

]
χH = M(xα2 )F∗1J

∗
⊕∫

R

dtB0(t)JF1 = F∗1J
∗
⊕∫

R

dtBα(t) JF1,

which proves (6.1).
As a consequence of (6.1), the coefficients a1(νE) and a0(νE) are given by the traces of the

operators χSB̃αχS , α = 0, 1, where

B̃α := F∗1J
∗BαJF1.

In order to calculate these traces, we evaluate the quadratic form of B̃α on product states.
Namely, for φ, ψ ∈ L2(R), we have that〈

φ⊗ ψ, B̃α(φ⊗ ψ)
〉
L2(R2)

=
〈
J((Fφ)⊗ ψ), BαJ((Fφ)⊗ ψ)

〉
L2(R,L2(R))

=

∫
R

dt
〈
(Fφ)(t)ψ, (Fφ)(t)Bα(t)ψ

〉
L2(R)

=

∫
R

dt |(Fφ)(t)|2〈ψ,Bα(t)ψ〉L2(R). (6.4)

Choose now an orthonormal basis {ψn}n∈N of L2(R), such that {ψn⊗ψm}n,m∈N is an orthonormal
basis of L2(R2). Then (6.4) implies that

tr
(
χSB̃αχS

)
=
∑
n,m∈N

〈ψn ⊗ ψm, χSB̃αχSψn ⊗ ψm〉L2(R2)

=
∑
n,m∈N

∫
R

dt |F(χ[0,1]ψn)(t)|2〈ψm, Bα(t)ψm〉L2(R).

As we have the estimate∑
m∈N

∣∣〈ψm, B(t)ψm〉L2(R)

∣∣ ≤ ‖Bα(t)‖1 ∈ L∞(R),
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we may apply Fubini’s theorem to get that

tr(χSB̃αχS) =
∑
n∈N

∫
R

dt |F(χ[0,1]ψn)(t)|2 trBα(t)

=
∑
n∈N
〈ψn, χ[0,1]F

∗ trBα( · )Fχ[0,1]ψn〉L2(R).

Hence, employing the fact that trBα( · ) ∈ L1(R), we arrive at

tr(χSB̃αχS) = tr
(
χ[0,1]F

∗ trBα( · )Fχ[0,1]

)
= (trBα)̂(0) =

1

2π

∫
R

dt trBα(t).

This finishes the proof of Theorem 2.3.

7. Radially symmetric symbols – Proof of Theorem 2.5

As in the statement of Theorem 2.5 assume that the symbol σ is radially symmetric and the
test function h is a quadratic polynomial, i.e. h(z) = z2 + bz for some b ∈ C. The coefficient
c2 = c2(P, h, σ) is easily computed from Theorem 2.1. Recall also that the linear part of h does
not contribute to the coefficients c1 and c0, so we may assume in the following that h(z) = z2.
To compute c1 and a0(νE), E ∈ E(P ), we apply Theorem 2.3. This is done in the next lemma.

Lemma 7.1. Let h(z) = z2 and assume that σ ∈ W∞,1(R2) is radially symmetric. Then the
coefficients c1, a0(νE) in Theorem 2.1 satisfy the equations

c1 = −2 |∂P |
∞∫

0

dr r2σ̌(r)2,

∑
E∈E(P )

F (E) a0(νE) =
∑

X∈Ξ(P )

π

2
cot(γX)

∞∫
0

dr r3σ̌(r)2.

Proof. We first notice that the radial symmetry of the symbol implies that σE,t(ξ) = σ(t, ξ) =
σt(ξ) for all E ∈ E(P ), and t, ξ ∈ R. Furthermore, we make use of the formulas (2.14) and (2.15)
in Theorem 2.3. Similarly as in [40], one calculates that, for α ∈ {0, 1}, t ∈ R,

− tr
(
M(xα)

[
W (σt)

2 −W (σ2
t )
])

=

∞∫
0

dxxα
0∫

−∞

dy σ̌t(x− y)σ̌t(y − x)

=

∞∫
0

dxxα
∞∫
x

dy σ̌t(y)σ̌t(−y)

=

∞∫
0

dy σ̌t(y)σ̌t(−y)

y∫
0

dxxα

=
1

2

∞∫
−∞

dy
|y|α+1

α+ 1
σ̌t(y)σ̌t(−y).
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Parseval’s identity in the t-variable and the radial symmetry of σ̌ imply that

− 1

2π

∫
R

dt tr
(
M(xα)

[
W (σt)

2 −W (σ2
t )
])

=
1

4π

∫
R

dt

∫
R

dy
|y|α+1

α+ 1
σ̌t(y)σ̌t(−y)

=
1

2

∫
R

dy1

∫
R

dy2
|y2|α+1

α+ 1
σ̌(−y1, y2)σ̌(y1,−y2)

=
1

2

∞∫
0

dr r

2π∫
0

dθ
|r sin(θ)|α+1

α+ 1
σ̌(r)2

=


2
∞∫
0

dr r2σ̌(r)2, α = 0,

π
4

∞∫
0

dr r3σ̌(r)2, α = 1.

Hence, the claim follows from Theorem 2.3 and the definition of F (E), see (2.3). �

It remains to compute the coefficients b0(X), X ∈ Ξ(P ), from formulas (2.10) and (2.11).
This calculation is performed in the next lemma.

Lemma 7.2. Let h(z) = z2 and assume that the symbol σ ∈W∞,1(R2) is radially symmetric.
Then for every X ∈ Ξ(P ) the formula

b0(X) =
1− γX cot(γX)

2

∞∫
0

dr r3σ̌(r)2 (7.1)

holds.

Proof. Fix X ∈ Ξ(P ) and omit the subscript or argument “(X)” for the duration of the proof.
As usual, we treat the cases of convex and concave corners separately.

First, let X ∈ Ξ<(P ). Then, due to the radial symmetry of σ, we may assume that

C = {(r cos(θ), r sin(θ)) : r ≥ 0, θ ∈ [0, γ]}, (7.2)

with γ ∈ (0, π). From (2.10) one gets that

b0 = tr
[
χC
(
[AC ]2 − [AH(1) ]2 − [AH(2) ]2 +A2

)]
= tr

(
χCAχ−CAχC

)
, (7.3)

and evaluating the trace gives

b0 =

∫
C

dx

∫
−C

dy σ̌(x− y)2 =

∫
C

dx

∫
x+C

dy σ̌(y)2 =

∫
C

dy σ̌(y)2 |(y − C) ∩ C| .

For the last equality we have used the fact that x ∈ C and y ∈ x+C is equivalent to y ∈ C and
x ∈ (y − C) ∩ C. Applying (7.2) and the assumption that γ ∈ (0, π), one easily computes that,
for y ∈ C,

|(y − C) ∩ C| = y1y2 − cot(γ)y2
2.

Hence, the radial symmetry of σ yields∫
C

dy σ̌(y)2 |(y − C) ∩ C| =
∞∫

0

dr r3σ̌(r)2

γ∫
0

dθ cos(θ) sin(θ)− cot(γ) sin2(θ)

=
1− γ cot(γ)

2

∞∫
0

dr r3σ̌(r)2,

and the claim follows for X ∈ Ξ<(P ).
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Secondly, let X ∈ Ξ>(P ). Then we get from (2.11) that

b0 = tr
[
χH(1)∩H(2)

(
[AC ]2 −A2

)]
+ tr

[
χC\H(1)

(
[AC ]2 − [AH(2) ]2

)]
+ tr

[
χC\H(2)

(
[AC ]2 − [AH(1) ]2

)]
= − tr

(
χH(1)∩H(2)Aχ−H(1)∩H(2)AχH(1)∩H(2)

)
+

2∑
j=1

tr
(
χC\H(j)Aχ−C\H(j)AχC\H(j)

)
.

Note that H(1) ∩H(2) and C \H(j), j = 1, 2, are convex sectors with interior angles 2π− γ and
γ − π, respectively. Thus, the formulas (7.3) and (7.1) for X ∈ Ξ<(P ) yield

b0 =
[
− 1− (2π − γ) cot(2π − γ)

2
+ 1− (γ − π) cot(γ − π)

] ∞∫
0

dr r3σ̌(r)2

=
1− γ cot(γ)

2

∞∫
0

dr r3σ̌(r)2.

This finishes the proof of the lemma. �

Theorem 2.5 follows now from combining Lemmas 7.1 and 7.2.

Appendix

The purpose of this appendix is to provide a proof of the following result.

Lemma A.1. Suppose that d ≥ 2 and let Ω ⊂ Rd be a bounded set with smooth boundary.
Moreover, assume that σ ∈ W∞,1(Rd) and let h(z) = z2 + bz for some b ∈ C. Then the
coefficient Bd−2 = Bd−2(Ω, h, σ) in (1.2) vanishes:

Bd−2(Ω, h, σ) = 0.

For σ and Ω as in the lemma and (general) entire test functions h with h(0) = 0, a formula for
Bd−2 is contained, for instance, in [26]. In order to write it down, we need to fix some notation.
Let dΣ denote the surface measure on ∂Ω and write νx for the inwards pointing unit normal
vector at x ∈ ∂Ω. Consider the canonical volume element dX = dΣdξ on T ∗(∂Ω) where dξ is the
Lebesgue measure on {νx}⊥. Moreover, let L denote the second fundamental form on ∂Ω with
respect to the unit normal ν and write H for (d− 1) times the mean curvature on ∂Ω. Finally,
introduce for a vector w ∈ Rd its orthogonal projection wTx = wTx(∂Ω) onto Tx(∂Ω) = {νx}⊥.

In view of [26, Thm. 1.1] the coefficient Bd−2 = Bd−2(Ω, h, σ) is given by

Bd−2 = − 1

2(2π)d+2

∫
T ∗(∂Ω)

dX

∫
R

dξ1

∫
R

dξ2

ξ1 − ξ2

∫
R

dξ3

ξ1 − ξ3

{
3∑

k=1

h(σ(ξ + ξkν))∏
j 6=k

[σ(ξ + ξkν)− σ(ξ + ξjν)]

}

×
{
L
[
(∇σ)T (ξ + ξ2ν), (∇σ)T (ξ + ξ3ν)

]
−H

[
ν · (∇σ)(ξ + ξ2ν)

][
ν · (∇σ)(ξ + ξ3ν)

]}
, (A.1)

where the integrals over ξ2 and ξ3 are interpreted as Cauchy principal values. Equipped with
this formula, we are ready to prove the lemma.

Proof of Lemma A.1. Note that, for the given function h, one has that

3∑
k=1

h(σ(ξ + ξkν))∏
j 6=k

[σ(ξ + ξkν)− σ(ξ + ξjν)]
= 1,
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for all ξ, ν ∈ Rd and ξ1, ξ2, ξ3 ∈ R. Thus, as the Hilbert transform

C∞(R) ∩ L2(R) 3 f 7→ f̃ ; f̃(t) :=
1

π
lim
ε↘0

∫
|s−t|>ε

ds
f(s)

t− s
,

extends to a unitary operator on L2(R), the formula (A.1) for Bd−2 simplifies to

− 1

8(2π)d

∫
T ∗(∂Ω)

dX

∫
R

dζ
{
L
[
(∇σ)T (ξ + ζν), (∇σ)T (ξ + ζν)

]
−H

[
ν · (∇σ)(ξ + ζν)

]2}
. (A.2)

To see that this expression vanishes identically we repeat an argument from [26, p. 600]. Writing
out the volume element dX = dΣdξ and combining the ξ- and ζ-integration in (A.2), one arrives
at

Bd−2 = − 1

8(2π)d

∫
∂Ω

dΣ(x)

∫
Rd

dξ
{
Lx
[
(∇σ)T (ξ), (∇σ)T (ξ)

]
−Hx

[
νx · (∇σ)(ξ)

]2}
.

Hence, the lemma follows from Fubini’s theorem and the identity∫
∂Ω

dΣ(x)
(
Lx
[
wTx , wTx

]
−H(x)[νx · w]2

)
= 0,

which holds for any w ∈ Rd, see [26, Eq. (4.16)]. �
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