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A Cobalt Arylphosphonate MOF – Superior Stability, Sorption and 
Magnetism  
Yunus Zorlua, Dogan Erbaharb, Ahmet Çetinkayac, Aysun Buluta,d, Turan S. Erkale, A. Ozgur 
Yazaydine, Jens Beckmann*f, and Gündoğ Yücesan*g 

We report a novel metal organic framework (MOF) based on a 
cobalt arylphosphonates, namely, [Co2(H4-MTPPA)]·3 NMP·H2O 
(1·3 NMP·H2O), which was prepared solvothermically from the 
tetrahedral linker tetraphenylmethane tetrakis-4-phosphonic acid 
(H8-MTPPA) and CoSO4·7 H2O in N-Methyl-2-pyrrolidone (NMP). 
Compound 1 has the highest porosity (BET surface area of 1034 
m2/g) ever reported for a MOF based on a arylphosphonic acid 
linker. The blue crystals of 1·3 NMP·H2O are comprised of edge-
shared eight-membered Co2P2O4 rings, are  thermally very stable 
up to 500°C. 

The discovery of metal organic frameworks (MOFs) was a great 
advance in the field of porous solids.1 MOFs create ordered 
pore sites with tailor-made surface areas that could perform 
specific tasks such as sorption, catalysis, small molecule 
storage, proton conduction, greenhouse gas sequestration 
etc.2  MOFs allowed post-synthetic modifications to further 
optimize the function of the pore sites after the initial 
synthesis.3 One of the drawbacks of common carboxylate-
based MOFs is the poor thermal stability and sensitivity 
towards hydrolysis that somewhat hampers commercial 
applications and their use in industry.4,5 These drawbacks may 
be overcome using phosphonate-based MOFs, which are 
chemically and thermally more robust due to the higher 
number of bonds between the linkers and the inorganic 
domains.6-8 Phosphonates have higher affinity for metal ions 

compared to the majority of the other metal binding Lewis 
bases.9, 10  The linearly expanding 1,4-phenyldiphosphonic acid 
and 4,4’-biphenyldiphosphonic acids are the most widely used 
arylphosphonate linkers to produce metal organophosphonate 
compounds.11-15 Unlike their corresponding carboxylate 
derivatives,16 the linear arylphosphonate linkers usually 
produced lamellar and pillared-layered networks. The close 
packing of hydrophobic linear organic components has lead 
the formation of two-dimensional M-O-P-O-M condensations, 
which are connected by the linear organic linkers to form the 
pillared layered structures. One approach to eliminate the 
formation of metal oxide layers and pillared layered networks 
is the use of the trigonal or tetrahedral expanding ligands 
where organophosphonate units are well separated and three-
dimensional geometry of the organic linker core is not suitable 
for the formation of the dense pillars. This hypothesis worked 
with the open armed tritopic trigonal planar ligands that 
produced the hexagonal, honey comb structured void channels 
connecting the trimeric one dimensional inorganic building 
units7 and this approach formed one of the most porous metal 
organophosphonate frameworks with surface areas up to 647 
m2/g.17, 18 In a similar way, Shimizu, Zon and our group have 
reported novel arylphosphonate linkers expanding in 
tetrahedral geometry, which created the Cu-P-O cluster nodes 
and connected this cluster nodes to form porous Cu-MOFs 
with BET surface areas of up to 794 m2/g.19-21 
 Herein, we report the single crystal structure of the first 
complex of porous cobalt complex [Co2(H4-MTPPA)]·3 
NMP·H2O (1·3 NMP·H2O) synthesized with the 
tetraphenylmethane tetrakis-4-phosphonic acid (H8-MTPPA) 
ligand (Scheme 1). The thermogravimetric analysis (TGA) 
indicates that 1·3 NMP·H2O has extraordinary stability at high 
temperatures. The crystallization is a difficult task to achieve in 
metal organophosphoante chemistry as the transition metal 
ion affinity for phosphonate is extremely high compared to 
carboxylate functional groups.9, 10 
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Metal-organophosphonate structures are often reported using 
powder diffraction or recently electron diffraction methods. 
Stock recently reported beautiful tetraphosphonate-MOFs 
using the planar porphyrine core using these methods, where 
the surface areas were up to 700 m2/g.22-24 In order to obtain 
the single crystals of metal organophosphonates, we adapted 
a high throughput method using temperature and pH as the 
variables to optimize the crystallization conditions.25 As a 
result of this approach, 1·3 NMP·H2O was obtained as indigo 
blue single crystals by the solvothermal synthesis of 
CoSO4·7H20 with H8-MTPPA in NMP as a solvent at 165°C. 
Although porous cobalt organophosphonate solids are very 
rare in the literature,23 cobalt is an interesting element with 
respect to its spectroscopic and magnetic properties.  

The crystal structure of 1·3 NMP·H2O revealed the three-
dimensional porous framework, which is composed of a metal-
oxide chain of edge shared eight- membered Co2P2O4 rings 
(Fig. 1). These one-dimensional chains were connected by H4-
MTPPA4- linkers to form the void channels via the tetrahedral 
Co(II) in the chain structure. The tetrahedral structure of H8-
MTPPA and mono deprotonated phosphonate arms dictated 
the formation of tetrahedral Co(II) centers in 1·3 NMP·H2O. 
The whole network of 1·3 NMP·H2O is composed of 
tetrahedral R-PO3

2–, tetrahedral C atom in MTPPA and 
tetrahedral Co(II), which is the reminiscent of the known 
zeolites. As seen in Fig. 1a and 1c, the one-dimensional chain 
pattern in 1 (Fig 1a, 1b, 1c) was also observed in previously 
reported of Zn2H4-MTPPA and Zn2H4-STPPA (H8-STPPA = 
tetraphenylsilane tetrakis-4-phosphonic acid, Scheme 1) 
structures, which also produced large BET surface areas. As it 
can be seen in Figure 1, the previously reported Zn-MOFs with 

H8-STPPA and H8-MTPPA linkers indicated that the 
conformational changes in the edge sharing eight-membered 
rings in the chain structure results in the significant changes in 
the calculated BET surface areas. Recently, ZrH4-STPPA was 
reported, which also exhibited similar one dimensional chain 
structure composed of edge shared eight-membered rings 
with octahedral Zr centers.26 The additional connectivity of 
octahedral geometry increased the linker/metal ratio created 
the dense three dimensional network of ZrH4-STPPA.26 The BET 
surface area of 1 was derived from its simulated N2 adsorption 
isotherm at 77 K obtained by grand canonical Monte Carlo 
simulations (Supporting Information). Such calculations have 
been widely used for characterizing the surface area of MOF 
materials.27, 28 The calculated BET surface area for 1, 1034 
m2/g, is 107 m2/g higher than that of the reported for its Zn 
analogue, Zn2H4-MTPPA, which was 927 m2/g.19 However, it is 
significantly higher compared to the isostructural zinc 
compound Zn2H4-STPPA (565 m2/g). The same chain pattern 
was also observed in structurally rigid naphthalene 
arylphosphonate linkers with square pyramidal and octahedral 
metal atoms producing microporous frameworks.29 The 
stability of such edge shared Zn2P2O4 chains is significant as 
robust inorganic building units for future metal 
organophosphonate compounds, which could hypothetically 
produce isoreticularly expanding void channels with, 
tetratopic, tritopic and ditopic ligands with expanding tether 
lengths. As seen in the thermogravimetric analysis graphic (see 
ESI), the compound is an unusually stable MOF as organic 
components from MTPPA starts decomposing at ca. 525°C, 
and 27% (calculated 29.5%) of total weight loss of MTPPA 
continues until 700°C. Initial ca. 20% (calculated 27 %) weight 
loss corresponds to the solvent molecules (Supporting 
Information). The recent article about ultra stable ZrH4-STPPA 
also shows a similar STPPA decomposition pattern but 1 is 
approximately 100°C more stable than the previously reported 
zirconium compound, which was not porous.26 The magnetism 
in MOFs is an active research area.30-33 We investigated the 
magnetic properties of 1 via ab initio calculations. Spin 
polarized density functional theory analysis is performed on 
the structure that is revealed from XRD data and it is observed 
that the electronic structure tends to converge towards a state 
where a net spin of 3 per Co atom is established (Fig. 1d). 
While the charge density of this net spin has been observed to 
concentrate mainly around Co atoms it is not totally localized 
and extends throughout the structure along the b axis of the 
crystal which may point out to a ferromagnetic interaction 
between Co atoms as well as the magnetic anisotropy in the 
crystal. 

Scheme 1, Synthesis of 1  

H8-MTPPA + Co(SO4)·7H2O Co2H4-MTPPA·3 NMP·H2O
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