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Abstract

In this thesis, we investigate the formation of atomic and molecular states with mul-

tiple core electrons missing. These multiple-core-hole (MCH) states are of interest

due to their sensitivity to their chemical environment. These MCH states are formed

by successive single-photon ionisations of core electrons. This can be achieved by

x-ray photons and a sufficiently large intensity such that the photo-ionisation rate

competes with the Auger decay rate of core-hole states.

To understand the pathways that lead to the formation of MCH states, we study

the interaction of free-electron laser (FEL) pulses with atoms and molecules. These

lasers are capable of producing short, high-intensity pulses with high photon en-

ergy, which make them ideal for forming MCH states. In order to understand the

interaction of an FEL with an atom or molecule, we model these interactions com-

putationally. We construct rate equations and track how the population of an atom or

molecule transitions between different states. These rate equations involve single-

photon ionization processes and Auger transitions. To account for these processes,

we compute photo-ionisation cross-sections and Auger decay rates.

We develop a computational model that allows us to calculate the ion yields

produced when an atom or molecule interacts with an FEL pulse. Further, by calcu-

lating how the population transitions via different pathways of intermediate atomic

and molecular states, we determine the proportion of the population which accesses

MCH states. We also compute electron spectra, which provide measurable observ-

ables indicating the formation of MCH states.



Impact Statement

Molecules with missing core electrons on multiple atomic sites are sensitive to their

chemical environment and can act as a basis for spectroscopic measurements. How-

ever, these states are also extremely short-lived and their creation typically requires

very high photon flux. As a result, it is important to understand the processes that

create these states and the conditions that maximise their creation. Free-electron

lasers are ideal for producing these core-hole states due to the high pulse intensity,

short duration and high-energy photons involved. Free-electron lasers (FELs) also

provide new methods of producing high-resolution images of molecules. These

lasers are also capable of producing high-intensity pulses that can image molecules

before the molecule breaks down due to sequential ionisation and the resultant

Coulomb forces.

To explore FEL interactions with atoms and molecules, we construct rate equa-

tion models that allow us to investigate how population transfers between different

states. To account for the transitions in these interactions, we calculate the photo-

ionisation cross-sections and Auger rates. For the molecular calculations, we com-

puted molecular bound and continuum orbital wavefunctions. By using molecular

orbital wavefunctions, we can obtain more accurate values than calculations us-

ing atomic continuum orbitals. Using these rate equation models, we were able

to recreate experimental results. We also vary the pulse parameters to investigate

the effects of different parameters on the ion yields and electron spectra produced

by FEL pulses. Further, we determine the sequences of transitions that form these

states and determine the proportions of the population that followed each sequence

of transitions. This allows us to explore the formation of intermediate states, such
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as multiple-core-hole states. By theoretically modelling laser-matter interactions,

we obtain a better understanding of the processes involved and how different types

of transitions contribute to the final yields.
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Chapter 1

Introduction

The advent of x-ray free-electron lasers (FELs) [4, 5] has introduced new tools

for the imaging and exploration of novel states of atoms and molecules [6, 7].

These lasers are capable of producing high intensity (∼ 1018 Wcm−2) pulses with

x-ray photons and femtosecond durations [8]. The high photon energy means that

these pulses can produce high-resolution images of molecules and the high inten-

sity means that these molecules can be imaged before they break down due to ra-

diation damage [9, 10, 11, 12]. As the molecule is ionised, it will be distorted by

to the Coulomb repulsion of the positively-charged holes. The high intensity of

FEL pulses means the molecular structure can be imaged before it changes signif-

icantly. The short, high intensity FEL pulses with x-ray photons are also ideal for

the creation of multiple-core-hole (MCH) states.

In MCH states, multiple electrons have been ionised from the core orbitals

of an atom or molecule. To produce these states, we must first ionise a single

core electron, creating a single-core-hole (SCH) state. Due to the energy difference

between core and valence electrons, states with core holes are unstable and will

decay rapidly via the Auger process. In this process, a core hole is filled in by a more

excited electron and the released energy ejects another electron. This means that to

produce a MCH state, a second core ionisation must occur before the SCH state can

decay. X-ray FELs are ideal for producing these states, as they have sufficiently

high-energy photons to photo-ionise core electrons and, due to the high intensity

of the pulse, photo-ionisation competes with Auger decay. In addition, the short
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pulse duration means that the high-intensity portion of the pulse will be reached

before too many transitions have occurred. This ensures that a large proportion of

the population will remain unionised until the high-intensity portion of the pulse is

reached.

MCH states are of interest primarily because of their chemical sensitivity.

When there are two core holes on different atomic sites, i.e. a two-site double-

core-hole state (TSDCH), the energy of the state will be highly dependent on the

chemical environment [13, 14, 15, 16]. This energy sensitivity is caused by the

relaxation of the other electrons, due to the changing potential, and the Coulomb

repulsion between the core vacancies. TSDCH states have been the focus of a large

amount of experimental work [17, 18, 19, 20, 21] as well as theoretical studies

[16, 22, 23].

Other work also investigated the energy levels of different MCH states, calcu-

lated using a variety of techniques and basis sets in molecular nitrogen [24]. Triple-

core-hole (TCH) states have also been studied. The creation of triply excited hol-

low states in laser-driven Lithium with subsequent auto-ionisation to doubly excited

states [25] and the production of TCH states in plasmas with optical lasers have also

been studied [26].

The interaction of FELs with atoms, in particular noble gases, has been the

subject of a large body of work [27, 28, 29, 30, 31, 32, 33]. These interactions

are dictated by the interplay of single-photon ionisations and Auger decay transi-

tions. There has been a significant amount of work on calculating these Auger rates

and photo-ionisation cross sections in atoms [34, 35, 36, 37, 38, 39]. In order to

understand the interplay of the photo-ionisation and Auger decay transitions that

occur due to FEL interactions with an atom, we model these interactions using rate

equations [34, 40]. This requires us to calculate the photo-ionisation cross-sections

and Auger rates for all available transitions and the bound and continuum orbital

wavefunctions in order to obtain these rates. We initially model the interactions of

FELs with atoms, as opposed to molecules, as there are no dissociative transitions

and the symmetry of the atom simplifies the calculations.
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Using this rate equation model, we were able to calculate the ion yields pro-

duced by interactions with various FEL pulses. Further, by considering the series

of states by which the population transitions to these final ion yields, we were able

to compute the proportion of the population which accessed different MCH states.

These pathways of states will contribute different amounts to the final ion yields

and, by calculating the transition rates between different pathways, we determined

the population that passes through all intermediate states. These pathway calcula-

tions also allowed us to identify sets of transitions that would preferentially populate

atomic states with odd or even charge [1]. We were able to determine why certain

ions were populated and identify the conditions that led to their population.

After working on atoms, we move to the molecular case in chapters 4, 5 and 6.

Previous molecular studies with FEL radiation include models where the molecule

is treated as a combination of independent atoms. Then, in these models, the Auger

rates and the photo-ionisation cross sections are computed for atomic transitions

[22, 23]. These atomic rates are then used to setup rate equations to describe molec-

ular interactions with FEL radiation and dissociation is accounted for through ad-

ditional terms in the rate equations. For high photon energy FEL pulses interacting

with N2, these models have been used to compute the yields of the final atomic ion

fragments as well as the contribution of the DCH molecular states in the yields of

the final atomic ions. Very recently, new methods have been developed to describe

molecular states with multiple holes and to compute molecular transitions following

interaction with FEL radiation [41, 42]. These models describe molecular orbitals

as linear combinations of the appropriate atomic orbitals and utilise the Hartree-

Fock-Slater approximation to calculate the continuum wavefunctions. These new

methods have been employed to compute the yields of the final molecular ion states

as well as the contribution of SCH and DCH states in water for fixed nuclei [43].

The calculations in these studies were performed with atomic continuum orbitals

rather than molecular ones. The use of atomic continuum orbitals is a good approx-

imation when these models are employed to study molecular interactions with high

photon energy FEL pulses.
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Previous studies [20, 44] have identified the time delay between subsequent PA

steps, with PA consisting of a single-photon ionisation (P) and an Auger decay (A),

as well as the inter-nuclear distance at the time these steps take place. It has been

shown in experiments [20] that when comparing laser pulses of the same intensity

but of different duration, PA events take place at smaller inter-nuclear distances

for the smaller duration laser pulses. Similarly, when comparing laser pulses of the

same duration but of different intensity, PA events take place at smaller inter-nuclear

distances for the higher intensity laser pulses [20]. Thus, for laser pulses of small

pulse duration and of high intensity the molecular transitions at small inter-nuclear

distances are important rendering the effect of the nuclear motion less important.

In addition, it follows that the use of molecular continuum orbitals versus atomic

continuum orbitals will result in more accurate results mostly for small duration and

high intensity FEL pulses.

We model the interaction of a molecule with an FEL pulse. In molecules,

there are three important types of transitions that take place during the interaction;

photo-ionisation, Auger decay and dissociation. As we remove electrons from the

molecule, it will become unstable and break down due to the Coulomb repulsion.

Due to this dissociation, it is necessary to construct atomic and molecular rate equa-

tions, to take into account the transitions that occur after dissociation. Because of

our previous work on atoms, we already have the tools needed for the atomic rate

equations. There is a large body of work on calculating Auger rates and photo-

ionisation cross sections in molecules [45, 46, 47, 48, 49, 50, 51]. To calculate the

Auger rates, cross-sections and continuum wavefunctions, we use the single-centre

expansion formalism [52] to express our wavefunctions in terms of spherical har-

monics. This allows us to perform these calculations semi-analytically and is less

computationally intensive than a fully numeric procedure.

We use molecular bound and molecular continuum orbitals to compute single-

photon ionisation and Auger rates. This is an advantage over previous calculations

where the molecule is treated as a combination of atoms [23] and over computa-

tions where atomic rather than molecular continuum orbitals are employed to de-
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scribe the interaction of molecules with FEL laser pulses [43]. The use of molec-

ular continuum orbitals versus atomic continuum orbitals will yield more accurate

results for low photon-energy FEL pulses as well as short duration and high in-

tensity FEL pulses [20]. This is because molecular continuum wavefunctions will

more accurately describe electrons emitted with low energy than atomic continuum

wavefunctions, as these low-energy electrons will be more affected by the potential

of the molecule. In addition, we compute the molecular continuum orbitals without

approximating the exchange interaction using the Slater exchange potential, unlike

existing work [41]. We then employ these orbitals to compute the Auger rates and

the single-photon ionisation cross sections for all molecular transitions that are en-

ergetically accessible.

N2 interacting with FEL pulses has been the subject of many experimental

studies [19, 20, 53, 54, 55]. In these studies the yields of the final atomic ion states

and the formation of molecular DCHs are investigated. We model the interaction

of the N2 diatomic molecule with FEL radiation using rate equations to understand

the transitions that occur during this interaction. In particular, we investigate the in-

teraction of a 525 eV and a 1100 eV FEL pulse with N2. These photon energies are

sufficient to create three inner-shell holes through sequential single-photon absorp-

tions and multiple valence holes in the ground state of N2. Moreover, for a 525 eV

FEL pulse some of the electrons ionise with very small energies. These small ener-

gies necessitate the use of molecular continuum orbitals, for the reasons discussed

above. We compute the Auger and the single-photon ionisation processes for the

allowed molecular transitions, thus improving over previous studies that consider

only atomic transitions [23]. We note that the use of molecular bound state orbitals

is important for obtaining electron spectra. Indeed, it has been shown that with

high-resolution electron spectroscopy one can observe the energy splitting of the

molecular core hole states 1σg and 1σu [47, 56]. We account for the dissociative

transitions phenomenologically, treating them as additional transitions in the rate

equations with rates given by their experimental lifetimes.

We compare the atomic ion yields, produced by FEL interactions with N2, to
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experimental results [23, 55] and find very good agreement in all cases. We then

investigate the dependence of the final molecular and atomic ion yields on the inten-

sity and pulse duration of the FEL pulse. Moreover, we compute the population that

transitions through all energetically accessible pathways of states. Using this we de-

termine the contribution of the DCH molecular states in the final atomic ion states.

Additionally, we calculate the electron spectra produced in these FEL interactions

and its dependence on the pulse parameters. Using these electron spectra, we can

determine whether photo-ionisation or Auger transitions in the electron spectra are

more effective in detecting the formation of DCH molecular states.

In chapter 6, we investigate the formation of SSDCH, TSDCH and TCH states

in FEL-driven N2. We register the percentage of the final atomic ion yields that

transitions through DCH or TCH molecular states. Moreover, at each time step

of our computations, we project the occupied delocalized molecular orbitals of the

DCH molecular states onto orbitals localized on an atomic site. Thus, we determine

the percentage of DCH molecular states that correspond to TSDCH and to SSDCH

molecular states. Finally, we compute the percentage of the total population that

accesses TSDCH, SSDCH and TCH molecular states as a function of the intensity

of the FEL pulse.



Chapter 2

Atomic interactions with a

free-electron laser pulse

2.1 Theory

Since the creation of x-ray free-electron lasers (FELs) [4], it has been possible to

create laser pulses with high intensity and short pulse length which provide x-ray

photons. These pulse parameters mean that x-ray FELs are ideal for the production

of multiple-core-hole (MCH) states. In order to understand the interaction between

an FEL pulse and an atom, we model the interaction computationally. We use a

system of rate equations to calculate the population in each atomic state. In addi-

tion, we also use rate equations to calculate the population transfer through each

pathway of different states. In order to do this, we must understand the processes

involved in the laser-matter interaction. For x-ray FEL interactions with atoms, the

salient transitions are single-photon ionisation and Auger decay. Therefore, in or-

der to model the interaction of an atom with an FEL pulse, we must first calculate

the Auger decay rates and the photo-ionisation cross-sections. In this section, we

explain how we calculate these rates and cross-sections and how we construct the

rate equations.
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2.2 Atomic Auger rates

2.2.1 The Auger process
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⌧
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Figure 2.1: Diagram of an Auger decay. In (a), a core electron is photo-ionised from the
atom, creating an ion with a core hole. In (b), a valence electron drops to fill
this vacancy and the energy released is transferred to another valence electron,
which is ejected from the atom. In (c), we see the final state of the atom, with
a fully occupied core and two missing valence electrons.

An example of the Auger process is shown in Fig. 2.1. Here, we produce a core-

hole state via photo-ionisation of an inner-shell electron, which then decays via

an Auger transition. In the Auger process a, typically valence, electron transitions

to fill the core hole. This transition releases energy, due to the different binding

energies of the core and valence orbitals. This energy is transferred to another,

typically valence, electron, which is then ejected from the atom with kinetic energy,

K = EV 1+EV 2−EC. Here, K is the kinetic energy of the electron escaping into the

continuum and EC, EV 1 and EV 2 are the energies of the core and valence electrons,

respectively.
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2.2.2 Coster-Kronig transitions
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(a) Non-Coster-Kronig
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3p
3s

1s

(b) Coster-Kronig

Figure 2.2: Energy level diagram of a Coster-Kronig transition compared to a non-Coster-
Kronig Auger transition. In (a), an Auger transition occurs where a 2p hole is
filled by a 3s electron and a 3p electron is ejected. In (b) a 2p electron fills in
a 2s hole and a 3p electron is ejected. The transition in (b) is a Coster-Kronig
transition and the kinetic energy of the emitted electron is smaller (represented
by the shorter arrow).

Coster-Kronig transitions are a subset of Auger transitions in which the electron

that fills in the hole comes from the same shell, but a different sub-shell, as the core

hole [57]. This releases less energy than transitions where an electron from a higher

shell fills in the hole. As a result, the ejected electron in a Coster-Kronig transition

will have lower kinetic energy than in a typical Auger transition. These transitions

tend to be more probable than other Auger transitions, as the electron filling in the

core hole will have a similar radial distribution to the hole wavefunction. These

transitions are of interest to us because there can be additional Auger decay after

the Coster-Kronig transition. Super-Coster-Kronig transitions also exist [57], in

which both the electron that fills the hole and the ejected electron come from the

same shell as the hole, but these were not encountered in this work.
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2.2.3 Derivation

The total Auger transition rate can be found from Fermi’s Golden Rule [58],

eqn (2.1), where the interaction Hamiltonian, H ′, for the Auger transition is the

electron-electron interaction and is given by ∑i> j 1/ri j.

Γi→ f = 2πρ
∣∣< f

∣∣H ′∣∣ i >∣∣2 . (2.1)

Here, |i〉 and | f 〉 are the initial and final states, respectively and ρ = δ (Ei−E f ) is

the density of final states in energy space. Summing over the possible final energies

removes this delta function. To calculate a particular Auger rate for two electrons in

valence orbitals to fill a core hole, we compute the group rates. These rates describe

the transitions involving two electrons, initially described by n1l1 and n2l2, filling a

vacancy, n3l3, and resulting in one continuum electron described by εl4, where ε is

the energy of the continuum electron. This is written as

TA(n3l3← n1l1,n2l2) = 2πN12∑
∣∣< f

∣∣H ′∣∣ i >∣∣2 . (2.2)

The symbol ∑ refers to the sum and average over the final and initial states, respec-

tively. N12 is the weighting factor that corresponds to the occupancy of the n1l1 and

n2l2 orbitals, which are denoted by N1 and N2 respectively, N12 is given as follows:

N12 =
N1N2

(4l1 +2)(4l2 +2)
(n1l1 6= n2l2)

=
N1(N1−1)

2(4l1 +2)(4l1 +2−1)
(n1l1 = n2l2)

(2.3)

Here, we have introduced an additional factor of 1/2 to avoid double counting in
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the case of identical initial electrons. Expanding out eqn (2.2) gives

TA(n3l3← n1l1,n2l2) =
2πN12Nh

2(2l3 +1) ∑
LSJM

L′S′J′M′

∑
l4

∣∣< f
∣∣H ′∣∣ i >∣∣2 . (2.4)

Here, Nh is the number of core holes in the n3l3 orbital. As we are working in the

LSJM scheme, we sum over these quantum numbers to find the total Auger rate[59].

We divide by 2(2l3 +1) to average over the different core hole possibilities. To use

this formula, we must first calculate the atomic orbital wavefunctions of both the

bound and continuum electrons, this process is explained in section 2.3.

2.2.3.1 Matrix element

The matrix element, for a given two electron transition, is given by

M =

〈
f
∣∣∣∣ 1
r12

∣∣∣∣ i〉=

〈
Ψ f (1,2, ...,N)

∣∣∣∣ 1
r12

∣∣∣∣Ψi(1,2, ...,N)

〉
. (2.5)

Here, Ψi and Ψ f are the anti-symmetrised wavefunctions of the initial and final

states of the atom. The numbers 1,2, ...,N refer to the electrons in the wavefunc-

tions. As only two electrons are involved in this transition, this can be simplified

to

M =

〈
Ψ f (1,2)

∣∣∣∣ 1
r12

∣∣∣∣Ψi(1,2)
〉
, (2.6)

where Ψi(1,2) and Ψ f (1,2) are the initial and final anti-symmetrised two-electron

wavefunctions. Writing the anti-symmetrisation explicitly gives

M =

(
〈Ψ(γ ′|12)|− 〈Ψ(γ ′|21)|√

2

)
1

r12

(
|Ψ(γ|12)〉− |Ψ(γ|21)〉√

2

)
= 〈Ψ(γ ′|12)| 1

r12
|Ψ(γ|12)〉−〈Ψ(γ ′|12)| 1

r12
|Ψ(γ|21)〉.

(2.7)
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Here Ψ(γ|12) and Ψ(γ ′|12) correspond to the initial and final state of the system

respectively, with electron 1 in the first orbital and electron 2 in the second orbital.

γ is used to represent the various quantum numbers that define the wavefunction.

In this case, we used the n1l1n2l2LSJM scheme[60] was used following the work of

Bhalla et al. [37]. In this scheme, the two electron wavefunctions are described in

terms of the principle, n, and orbital, l, quantum numbers of each electron as well

as the total orbital angular momentum, L, the total spin, S, and the total angular

momentum, J, and its projection, M. The first part of the right hand of eqn (2.7)

corresponds to the direct matrix element, where the electron order is preserved,

while the second part corresponds to the exchange interaction, in which the electron

order is switched.

2.2.3.2 Direct matrix element

The operator can be rewritten using the multipole expansion [60],

1
r12

= ∑
k

rk
<

rk+1
>

C(k)(Ω1) ·C(k)(Ω2), (2.8)

where r< = min(r1,r2) and r> = max(r1,r2). C(k)(Ω1) and C(k)(Ω2) are spherical

tensor operators [61] of order k, each with 2k+1 elements corresponding to spherical

harmonics,

C(k)
q (Ω) =

√
4π

2k+1
Ykq(Ω). (2.9)

These terms depend on the angular coordinates, Ω1 = (θ1,φ1), of electron 1 and 2,

respectively. The tensor dot product [60] is defined as

C(k)(Ω1) ·C(k)(Ω2) =
k

∑
q=−k

(−1)qC(k)
q (Ω1)C

(k)
−q(Ω2). (2.10)

where Ykq is a spherical harmonic with orbital angular momentum k and magnetic
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quantum number q. We then use this to rewrite the direct matrix element in the

n1l1,n2l2,LSJM scheme. For a transition filling a hole in n3l3 and ejecting an elec-

tron to εl4, where ε is the energy of the continuum electron, with two electrons

originally in the n1l1 and n2l2 orbitals, this can be written as

〈Ψ(γ ′|12)| 1
r12
|Ψ(γ|12)〉

= ∑
k
〈Ψ(n3l3,εl4,L′S′J′M′|12)| rk

<

rk+1
>

C(k)(Ω1) ·C(k)(Ω2)|Ψ(n1l1,n2l2,LSJM|12)〉

= ∑
k

Rk(n1l1,n2l2,n3l3,εl4)〈l3l4L′S′J′M′|C(k)(Ω1) ·C(k)(Ω2)|l1l2LSJM〉.

(2.11)

rk
<

rk+1
>

is purely a radial function, therefore we can separate it from the angular parts

and rewrite it as Rk(n1l1,n2l2,n3l3,εl4), defined as

Rk(n1l1,n2l2,n3l3,εl4) =
∫

∞

0

∫
∞

0
Pn1l1(r1)Pn2l2(r2)

rk
<

rk+1
>

Pn3l3(r1)Pn4l4(r2)dr1dr2.

(2.12)

1
r Pn1l1(r) is the radial wavefunction of the orbital n1l1. The operator 1

r12
is inde-

pendent of spin, which allows us to rewrite the angular component of the matrix

element by splitting it into an element containing spin and an element with no spin

dependence. First, we rewrite this operator into two parts:

C(k) ·C(k) ≡ T(0) = T(0) · I(0) (2.13)

T(0) is a tensor of rank 0, a scalar. It can equivalently be written as a scalar product

of itself and the rank 0 identity, I(0). The operator T(0) concerns the angular de-

pendence and I(0) concerns the spin depedence. This fact can be used to simplify

the matrix element by changing to the l1l2LMLSMS scheme where spin and orbital
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angular momentum are no longer coupled.

〈l3l4L′S′J′M′|C(k)(Ω1) ·C(k)(Ω2)|l1l2LSJM〉= 〈l3l4L′S′J′M′|T(0) · I(0)|l1l2LSJM〉

(2.14)

|l1l2LSJM〉 is rewritten in terms of |l1l2LMLSMS〉 in eqn (2.15) by using Clebsch-

Gordan (CG) coefficients [60]. The CG coefficient is written as (LMLSMS|JM) ≡

〈l1l2LMLSMS|l1l2LSJM〉.

|l1l2LSJM〉= ∑
MLMS

|l1l2LMLSMS〉〈l1l2LMLSMS|l1l2LSJM〉

≡ ∑
MLMS

(LMLSMS|JM)|l1l2LMLSMS〉
(2.15)

Substituting this expression into both the bra and the ket in eqn (2.14) we obtain

〈l3l4L′S′J′M′|T(0) · I(0)|l1l2LSJM〉=

∑
MLMSM′LM′S

〈l3l4L′M′LS′M′S|T(0) · I(0)|l1l2LMLSMS〉(LMLSMS|JM)(J′M′|L′M′LS′M′S).

(2.16)

Because T(0) · I(0) is a scalar, there are restrictions on the quantum numbers in

eqn (2.16) which will result in a non-zero matrix element (listed in eqn (2.17)).

These selection rules are given in [60] and follow from the angular momentum ad-

dition selection rules.

L′ = L M′L = ML S′ = S M′S = MS (2.17)

These can be expressed as delta functions, allowing the expression to be simplified.

Because of the δLL′ and δSS′ we can change all L′ to L and S′ to S and lose no
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generality:

〈l3l4L′S′J′M′|T(0) · I(0)|l1l2LSJM〉=

δLL′δSS′ ∑
MLMS

〈l3l4LMLSMS|T(0) · I(0)|l1l2LMLSMS〉(LMLSMS|JM)(J′M′|LMLSMS)

(2.18)

Using the orthonormality of Clebsch-Gordan coefficients [62],

∑
ML,MS

(J′M′|LMLSMS)(LMLSMS|JM) = δJJ′δMM′, (2.19)

this summation can be resolved into a simpler form, as shown in eqn (2.20).

The matrix element 〈l3l4LMLSMS|T(0) · I(0)|l1l2LMLSMS〉 is independent of ML and

MS. This can be seen explicitly in eqn (2.23) and eqn (2.24) and can be under-

stood physically as the Auger transition, which is an internal process, having no

dependence on the orientation of the total system.

〈l3l4L′S′J′M′|T(0) · I(0)|l1l2LSJM〉=

δLL′δSS′δJJ′δMM′〈l3l4LMLSMS|T(0) · I(0)|l1l2LMLSMS〉
(2.20)

Because L and S are decoupled and independent, the matrix element can be written

as the product of two matrix elements, as shown in eqn (2.21).

〈l3l4L′S′J′M′|T(0) · I(0)|l1l2LSJM〉=

δLL′δSS′δJJ′δMM′〈l3l4LML|T(0)
0 |l1l2LML〉〈SMS|I

(0)
0 |SMS〉

(2.21)

The Wigner-Eckhart theorem [62] can be used to separate a matrix element

into two parts, one of which depends on the projections of the angular momenta

and a part which is independent of the orientations. It is given in eqn (2.22) where
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〈γ ′ j′||T(k)||γ j〉 is the reduced matrix element [60] and has no dependence on the

projections of the angular momenta.

〈γ ′ j′m′|T(k)
q |γ jm〉= (−1)k− j+ j′ (kq jm| j′m′)√

2 j′+1
〈γ ′ j′||T(k)||γ j〉 (2.22)

By applying eqn (2.22) separately to the orbital angular momentum and the spin

elements of the right hand side of eqn (2.21), we receive eqn (2.23) and eqn (2.24).

Eqn (2.25) is given in [60] and follows from angular momentum addition rules.

〈l3l4LML|T(0)
0 |l1l2LML〉= (−1)L−L (00LML|LML)√

2L+1
〈l3l4L||T(0)||l1l2L〉 (2.23)

〈SMS|I
(0)
0 |SMS〉= (−1)S−S (00SMS|SMS)√

2S+1
〈S||I(0)||S〉 (2.24)

(00SMS|SMS) = (00LML|LML) = 1 (2.25)

Combining these equations, we obtain a new expression for the matrix element

given in eqn (2.26):

〈l3l4L′S′J′M′|T(0) · I(0)|l1l2LSJM〉=

δLL′δSS′δJJ′δMM′
〈l3l4L||T(0)||l1l2L〉√

2L+1
〈S||I(0)||S〉√

2S+1

(2.26)

Using eqn (2.13), the orbital angular momentum element can be rewritten as shown
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in eqn (2.27).

〈l3l4L||T(0)||l1l2L〉= 〈l3l4L||C(k)(Ω1) ·C(k)(Ω2)||l1l2L〉 (2.27)

Using the Wigner-Eckhart theorem and eqn (2.23), this can be returned to the non-

reduced form.

〈l3l4L||T(0)||l1l2L〉=
√

2L+1〈l3l4LML|C(k)(Ω1) ·C(k)(Ω2)|l1l2LML〉 (2.28)

Then, in the same manner as eqn (2.15), the individual orbital angular momentum

can be decoupled from each other and we can move from the l1l2LML scheme to the

l1m1l2m2 scheme in eqn (2.29).

〈l3l4LML|C(k)(Ω1) ·C(k)(Ω2)|l1l2LML〉=

∑
m1m2m3m4

(LML|l3m3l4m4)(l1m1l2m2|LML)

×〈l3m3l4m4|C(k)(Ω1) ·C(k)(Ω2)|l1m1l2m2〉

(2.29)

The tensor dot product, eqn (2.10) can be used, with the fact that the first

C(k) only acts on the first electron and that the second C(k) only acts on the second

electron, to separate the equation into two parts:

〈l3l4LML|
[
C(k)(Ω1) ·C(k)(Ω2)

](0)
0
|l1l2LML〉=

∑
m1m2
m3m4q

(−1)q(LML|l3m3l4m4)(l1m1l2m2|LML)〈l3m3|C
(k)
q |l1m1〉〈l4m4|C

(k)
−q|l2m2〉

(2.30)

Using the Wigner-Eckhart equation, eqn (2.22), we can express the terms

〈l3m3|C
(k)
q |l1m1〉 and 〈l4m4|C

(k)
−q|l2m2〉 in terms of their reduced matrix elements.
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We then use the symmetry properties of the CG coefficients [60] to simplify these

expressions.

〈l3m3|C
(k)
q |l1m1〉=

(l1m1kq|l3m3)√
2l3 +1

〈l3||C(k)||l1〉

〈l4m4|C
(k)
−q|l2m2〉=

(l2m2k(−q)|l4m4)√
2l4 +1

〈l4||C(k)||l2〉

= (−1)k+q (kql4m4|l2m2)√
2l2 +1

〈l4||C(k)||l2〉

(2.31)

Substituting expressions from eqn (2.31) into eqn (2.30) yields eqn (2.32), can-

celling out the (−1)2q as q is an integer.

〈l3l4LML|C(k)(Ω1) ·C(k)(Ω2)|l1l2LML〉=

∑
m1m2
m3m4q

(−1)k√
(2l3 +1)(2l2 +1)

(LML|l3m3l4m4)(l1m1l2m2|LML)

× (l1m1kq|l3m3)(kql4m4|l2m2)〈l3||C(k)||l1〉〈l4||C(k)||l2〉

(2.32)

Using the expression for the 6-j symbol [60],

l3 l4 L

l2 l1 k

=
(−1)L+k+l1+l4√
(2l3 +1)(2l2 +1)

× ∑
m1m2
m3m4q

(l1m1kq|l3m3)(l3m3l4m4|LML)(kql4m4|l2m2)(l1m1l2m2|LML),

(2.33)

we can rewrite eqn (2.32) as eqn (2.34) using the restriction that L, l1 and l4 always

have integer values to change (−1)−(L+l1+l4) to (−1)L+l1+l4 .

〈l3l4LML|
[
C(k)(Ω1) ·C(k)(Ω2)

](0)
0
|l1l2LML〉

= (−1)L+l1+l4

l3 l4 L

l2 l1 k

〈l3||C(k)||l1〉〈l4||C(k)||l2〉
(2.34)
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This means the direct portion of the matrix element, from eqn (2.11), can be written

in full as eqn (2.35), with Rk(1,2,3,4) used as shorthand for Rk(n1l1,n2l2,n3l3,εl4):

Mdirect = δJJ′δMM′δLL′δSS′(−1)L+l1+l4

×∑
k

Rk(1,2,3,4)

l3 l4 L

l2 l1 k

〈l3||C(k)||l1〉〈l4||C(k)||l2〉.
(2.35)

The reduced matrix elements can be calculated using eqn (2.36) to write them in

terms of CG coefficients [60].

〈l||C(k)||l′〉=
√

2l′+1(l′0,k0|l0) (2.36)

2.2.3.3 Exchange interaction

In the derivation above, we used the fact that the first C(k) acts only on the first

orbital and the second C(k) acts only on the second orbital. This is the not the case

for the exchange interaction in eqn (2.7). In the exchange interaction, we will need

to rearrange the orbitals such that they are in the same order in both the bra and the

ket. To do this, we first decouple L and S as follows:

Ψ(n1l1n2l2LSJM|21) = ∑
MLMS

(LML,SMS|JM)Ψ(n1l1n2l2LMLSMS|21). (2.37)

We then decouple the individual orbital angular momenta,

Ψ(n1l1n2l2LSJM|21) = ∑
MLMSm1m2

(LML,SMS|JM)(l1m1, l2m2|LML)

×Ψ(n1l1m1n2l2m2SMS|21),

(2.38)



2.2. Atomic Auger rates 35

and the individual spins:

Ψ(n1l1n2l2LSJM|21) = ∑
MLMSm1m2µ1µ2

(LML,SMS|JM)(l1m1, l2m2|LML)

×(s1µ1,s2µ2|SMS)Ψ(n1l1m1s1µ1n2l2m2s2µ2|21).

(2.39)

Here, s1 and s2 refer to the individual spins, which for electrons are equal to 1
2 , µ1

and µ2 refer to the projection of these spins.

Ψ(n1l1n2l2LSJM|21) = ∑
MLMSm1m2µ1µ2

(LML,SMS|JM)(l1m1, l2m2|LML)

×(s1µ1,s2µ2|SMS)φ(n1l1m1s1µ1|2)φ(n2l2m2s2µ2|1).
(2.40)

Following eqn (2.39), we have used the fact that the two orbitals are entirely de-

coupled to write the two electron wavefunction as the product of two one electron

wavefunctions in eqn (2.40). We rewrite this using the interchange properties of the

Clebsch-Gordan coefficients [63] in eqn (2.41):

Ψ(n1l1n2l2LSJM|21) = (−1)L−l1−l2(−1)S−1/2−1/2
∑

MLMSm1m2µ1µ2

(LML,SMS|JM)

×(l2m2, l1m1|LML)(
1
2 µ2,

1
2 µ1|SMS)φ(n1l1m1s1µ1|2)φ(n2l2m2s2µ2|1).

(2.41)

The electrons are still in the same orbitals, but the coupling ordering is swapped

from l1l2 to l2l1. Following this, we swap the n1l1m1s1µ1 labels and the n2l2m2s2µ2

labels. This expression allows us to write Ψ in the reordered form:

Ψ(n1l1n2l2LSJM|21) = (−1)L−l1−l2+S−1
Ψ(n2l2n1l1LSJM|12) (2.42)
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We can now express the exchange interaction contribution:

−〈Ψ(γ|12)| 1
r12
|Ψ(γ ′|21)〉= (−1)L−l1−l2+S

×∑
k
〈Ψ(n3l3n4l4L′S′J′M′|12)| rk

<

rk+1
>

C(k)(Ω1) ·C(k)(Ω2)|Ψ(n2l2n1l1LSJM|12)〉

(2.43)

As in eqn (2.11), the expression in eqn (2.43) can be split into radial and angular

components as shown in eqn (2.44).

−〈Ψ(γ|12)| 1
r12
|Ψ(γ ′|21)〉

= (−1)L−l1−l2+S
∑
k

Rk(2,1,3,4)〈l3l4L′S′J′M′|C(k)(Ω1) ·C(k)(Ω2)|l2l1LSJM〉

(2.44)

Removing the spin dependence as in eqn (2.14) and eqn (2.28), we obtain

−〈Ψ(γ|12)| 1
r12
|Ψ(γ ′|21)〉

= (−1)L−l1−l2+S
δMM′δJJ′δLL′δSS′

×∑
k
(−1)L+l4+l2

l3 l4 L

l1 l2 k

〈l3||C(k)||l2〉〈l4||C(k)||l1〉Rk(2,1,3,4).

(2.45)

We add the direct and exchange interaction terms to obtain an expression for the
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matrix element.

M = (−1)L+l1+l4 ∑
k

[
Rk(1,2,3,4)

l3 l4 L

l2 l1 k

〈l3||C(k)||l1〉〈l4||C(k)||l2〉

+(−1)L+SRk(2,1,3,4)

l3 l4 L

l1 l2 k

〈l3||C(k)||l2〉〈l4||C(k)||l1〉
]

δMM′δJJ′δLL′δSS′

(2.46)

2.3 Atomic orbitals

2.3.1 Continuum atomic orbtials

2.3.1.1 Hartree-Fock-Slater equations

To calculate Auger rates, we must first obtain the continuum orbital wavefunction

for the emitted electron in the Auger transition. To calculate this wavefunction, we

solve the Hartree-Fock (HF) equation [64];

−1
2

∇
2
φε(r)︸ ︷︷ ︸

Kinetic energy

− Z
|r|

φε(r)︸ ︷︷ ︸
Electron-nuclei

+
orb.

∑
i

ai

∫
dr′

φ∗i (r
′)φi(r′)
|r− r′|

φε(r)︸ ︷︷ ︸
Direct interaction

−
orb.

∑
i

bi

∫
dr′

φ∗i (r
′)φε(r′)
|r− r′|

φi(r)︸ ︷︷ ︸
Exchange interaction

= εφε(r).
(2.47)

Here r is the position of the continuum electron relative to the nucleus, φε is the

continuum orbital wavefunction and ε is the energy of the electron in the continuum.

Z is the charge of the nucleus and φi is the wavefunction of the bound orbital i.

ai and bi are coefficients with ai corresponding to the number of electrons in this

orbital. bi is the coefficient of the exchange interaction and its values are calculated
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in Appendix B. The contribution of the direct interaction can be written as

orb.

∑
i

ai

∫
dr′

φ∗i (r′)φi(r′)
|r− r′|

φε(r) =
∫

ρ(r′)
1

|r− r′|
dr′, (2.48)

where ρ(r′) = φ∗i (r′)φi(r′) is the electron density.

We can simplify the exchange term of eqn (2.47) using the Hartree-Fock-Slater

(HFS) method [65]. In this method, we make the free-electron exchange approx-

imation [66]; the average exchange potential of our non-uniform system at r is

approximated to be equal to the exchange potential for a free-electron gas with

equal charge density at point r. This method provides a much simpler form of the

exchange potential, given below.

V exch(r) =−3
[

3
8π
|ρ(r)|

] 1
3

. (2.49)

We also use the central field approximation, in which we assume that all or-

bital wavefunctions are solutions of a spherically-averaged potential. Using this, we

obtain the radial Hartree-Fock-Slater (HFS) equation.

[
−1

2
d2

dr2 +
1
2

l(l +1)
r2 +V HFS(r)

]
Pεl(r) = εPεl(r). (2.50)

Where Pεl is the radial component of the atomic continuum orbital, such that the

continuum orbital φεlm(r,θ ,φ) = 1
r Pεl(r)Ylm(θ ,φ). V HFS is the HFS one-electron

potential and at small distances from the nucleus V HFS(r) =V HFS
0 (r).

V HFS
0 (r) =−Z

r
− 1

r

∫ r

0
σ(t)dt−

∫
∞

r

σ(t)
t

dt−3
[

3
8π
|ρ(r)|

] 1
3

. (2.51)

Here, σ(r) = 4πr2ρ(r) is the spherically-averaged charge density at radius r. At
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large distances, the free-electron exchange approximation is inaccurate. Therefore,

we assume that the potential will asymptotically tend to the Coulomb potential of

the total charge on the atom. This gives the following expression for VHFS.

V (r) =

 V HFS
0 (r) r < r0

−(Z−N +1)/r r ≥ r0

(2.52)

Here N is the initial number of electrons, before the continuum electron is ejected.

r0 is defined as the radius such that V HFS
0 (r0) = −(Z−N + 1)/r0. We obtain this

potential, using the Herman-Skillman atomic structure code [67, 68]. Once we have

the one-electron potential, we can calculate the radial component of the atomic

continuum orbital using eqn (2.50), which we solve using the Numerov method.

2.3.1.2 Numerov method

To calculate the wavefunction using the Numerov method, we define an effective

nuclear charge, ZHFS, such that

V HFS(r) =−ZHFS(r)
r

. (2.53)

We can then write the radial HFS equation as

[
d2

dr2 −
l(l +1)

r2 +
2ZHFS(r)

r
+ k2

]
Pεl(r) = 0. (2.54)

Here, k =
√

2E corresponds to the momentum of the continuum electron. We find

the continuum orbital wavefunction by propagating the solution from r = 0 into the

asymptotic region and matching the solution to the asymptotic form of the wave-
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function [69]

Pεl(r)−−−→r→∞

√
2

πk
sin
(

kr+
(Z−N +1)

k
ln(2kr)− lπ

2
+δ

)
, (2.55)

where δ is the scattering phase-shift and must be determined. This expression

is found by neglecting terms which fall faster than 1/r as r → ∞ and solving

eqn (2.54). We perform the propagation following the modified Numerov method

[70], which gives solutions to second-order differential equations of the form

d2P(r)
dr2 =W (r)P(r). (2.56)

We work in terms of an auxiliary function z(r), given by

P(r) =
[
1− (h2/12)W (r)

]
z(r). (2.57)

This function is then propagated over a grid with step-size h, using a recursive

relation obtained via Taylor’s expansion

zi+1 =
[
2+h2Wi

]
zi− zi−1. (2.58)

At grid point ri, zi = z(ri) and Wi = W (ri), where i ∈ Z : i ∈ [0, I] and I is

the total number of points. We set z0 = 0 and z1 = 0.01h and propagate the wave-

function across the grid to an effective asymptotic radius. We then normalise the

propagated wavefunction by matching it to the asymptotic wavefunction calculated

with eqn (2.55). To obtain the normalisation, we note that

√
A2 +B2sin(x+δ ) = Asin(x)+Bcos(x), tan(δ ) = B/A, (2.59)
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where x = kr+(Z−N + 1) ln(2kr)/k− lπ/2, and equate the final two grid points

to Asin(x)+Bcos(x).

Asin(xI−1)+Bcos(xI−1) = P(xI−1),

Asin(xI)+Bcos(xI) = P(xI).
(2.60)

Solving these equations simultaneously yields A and B.

A =
P(xI−1)cos(xI)−P(xI)cos(xI−1)

sin(xI−1)cos(xI)− sin(xI)cos(xI−1)
, (2.61)

B =
P(xI)sin(xI−1)−P(xI−1)sin(xI)

sin(xI−1)cos(xI)− sin(xI)cos(xI−1)
, (2.62)

By matching eqn (2.55) to eqn (2.60), we obtain an expression for the normalisation√
2/(πk(A2 +B2)). This gives us the normalised radial wavefunction at all grid

points.

2.3.2 Bound atomic orbitals

To calculate Auger rates and the continuum electron wavefunctions, we must obtain

the bound orbital wavefunctions. To calculate all of the Auger transition rates and

the corresponding continuum wavefunctions, we need the wavefunction of each

bound orbital for all electronic configurations of our atom, (1sa2sb2pc3sd3pe...),

and the energies of the configurations. These calculations were performed without

accounting for fine structure. In our work, we calculated the atomic bound orbitals

using the Hartree-Fock procedure, with Molpro [71], which is a quantum chemistry

package.
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2.4 Atomic photo-ionisation cross-sections
In order to model the reaction of an atom following an FEL pulse, we need to obtain

the photo-ionisation cross-sections as well as the Auger rates. In our calculations,

we only consider single-photon, single-electron photo-ionisations and calculate the

photo-ionisation cross-section for each energetically accessible transition of this

type. To calculate these cross-sections, we used the Los Alamos National Labora-

tory collection of atomic physics codes [72].

2.5 Rate equations

2.5.1 States

We are interested in the response of an atom to an FEL pulse and the interplay

between photo-ionisation and Auger decay. To do this we must construct rate equa-

tions that calculate the population in each electronic configuration and how these

populations change with time due to photo-ionisation and Auger decay. The Auger

rates and photo-ionisation cross-sections are calculated as described in previous

sections. We do not include fluorescent transitions as, for the ion states considered,

they have much lower widths than the Auger decay and core photo-ionisations [73].

Similarly, for the large photon energies, we considered, multi-photon ionisations

had much lower cross-sections than single-photon processes. With this informa-

tion, we construct the rate equations listed as follows

d
dt

I
(q)
j (t) = ∑

i
(σi→ jJ(t)+Γi→ j)I

(q−1)
i (t)−∑

k′
(σ j→k′J(t)+Γ j→k′)I

(q)
j (t),

(2.63)

Here I
(q)
j is the population in state j, with charge q, J(t) is the photon flux

at time t, σi→ j is the photo-ionisation cross-section for state i to state j and Γi→ j

is the Auger rate for state i to state j. States here refer to electronic configurations

i.e. (1sa2sb2pc3sd3pe . . . ). Using these rate equations, we calculate the population

of each electronic configuration during the pulse. We account for Auger processes
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that occur after the pulse ends, to ensure that the configurations decay to stable

states. By summing up all of the configurations of a specific charge, as shown in

eqn (2.64), we find the ion yields I (q) generated by the pulse.

I (q) = ∑
j

I
(q)
j (t) (2.64)

2.5.2 Pathways

The rate equations give us information about the population in each state, however

we are interested in MCH states. These states decay quickly via the Auger process

and therefore there will be little population in them at any time. To better under-

stand how these states are formed and decay, we calculate the population for each

energetically allowed sequence of transitions, i.e. pathways, using a new set of

rate equations. A pathway population is defined as the population that has passed

through a series of states and is now in the final state of that series. For example,

I
(q)

i→ j→k→l(t) is the population that has passed through state i, j and k and is now in

state l, with charge q, at time t.

To find the all energetically allowed pathways, we start with the neutral atom

and add new pathways for each allowed transition from that initial state. We then

build up a set of pathways iteratively by taking each existing pathway and adding

a new pathway for each allowed transition from the final state of this pathway. We

repeat this process until there are no more allowed transitions available for any

pathway.

To calculate the pathway populations, we use similar rate equations to those

used in section 2.5.1. However, rather than calculating the population transition be-

tween different states, we instead consider the population moving between different

pathways. These equations are given below:

d
dt

I
(q)

i→ j→k(t) = (σ j→kJ(t)+Γ j→k)I
(q−1)

i→ j (t)−∑
l
(σk→lJ(t)+Γk→l)I

(q)
i→ j→k(t)
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(2.65)

Here I
(q)

i→ j→k is the population in the pathway i→ j→ k, where state k has charge

q and I
(q−1)

i→ j is the population in the pathway i→ j, where state j has charge q−1.



Chapter 3

Argon interacting with a

free-electron laser

In this section, we explore the interplay of photo-ionisations and Auger transitions

in argon interacting with an FEL pulse. Argon was chosen due to the high level

of experimental interest in this atom. There have been measurements of the Auger

spectra of 2p holes [35, 36], 2s holes [74] and 1s holes [75, 76, 77].

We use the techniques outlined in the previous section to model the interaction

of an FEL pulse with atomic argon. We calculate the ion yields and the contribu-

tion of different pathways to the ion yields. We explore the effects of combinations

of core photo-ionisations (PC) and Auger decay transitions (AVV ) and how the ac-

cessibility of core-hole states affects ion yields. We also investigate the impact of

Coster-Kronig Auger transitions [57] (ACV ) on the ion yields.

3.1 Calculation details

3.1.1 Bound orbital wavefunctions

We investigate the interplay between photo-ionisation and Auger transitions that

occur in argon interacting with an FEL pulse. In order to calculate the Auger decay

rates for this interaction, we must first obtain the orbital wavefunctions involved.

We consider electronic configurations up to Ar8+ of the form (1sa2sb2pc3sd3pe),

where a,b,c,d and e are integers between 0 and their occupancy in the neutral state

(1s22s22p63s23p6).
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As we want to represent a variety of different electronic configurations of ar-

gon, we use an expanded [78] basis set. As we will be performing two-electron

integrals in eqn (2.12), we choose to use gaussian-type orbitals (GTOs) where wave-

functions are expressed as a combination of gaussians. More GTOs than Slater-type

orbitals are required to achieve the same accuracy as Slater-type orbitals, which are

of the form Nrn−1e−ζ r where n is the principal quantum number, N is a normalising

factor and ζ is a constant related to the effective charge of the nucleus. However,

GTOs are easier to perform integrals with, due to the properties of gaussians [79].

With these basis sets, the orbital wavefunctions are given in terms of contracted

gaussian functions, which are formed of primitive gaussian-type orbitals (GTOs).

We used Cartesian primitive GTOs [80] centred on the atom, defined as

gi = Nxlxylyzlze−αi(x2+y2+z2) (3.1)

where x, y and z are the cartesian coordinates relative to the atom, α is an orbital

exponent and lx, ly and lz are non-negative integers. N is the normalisation factor,

given by

N =

(
2α

π

)3/4[(8α)lx+ly+lzlx!ly!lz!
(2lx)!(2ly)!(2lz)!

]1/2

. (3.2)

The sum of the lx, ly and lz values determine the type of the GTO. If lx + ly + lz = 0,

the GTO is an s-type GTO, lx + ly+ lz = 1 indicates a p-type GTO and lx + ly+ lz =

2 indicates a d-type GTO. We combine these primitive GTOs to form contracted

gaussian functions

ξ j = ∑
i

d jigi. (3.3)

Here, d ji are the contraction coefficients for the contribution of the ith primitive
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GTO to the contracted gaussian function ξ j. These contracted gaussians make up

the basis set with which we describe all of the orbital wavefunctions. Using these

contracted gaussians, we can express orbital wavefunctions in the form;

Φk = ∑
j

c jkξ j. (3.4)

Φk is the wavefunction of the kth orbital and c jk is the coefficient for the contribution

of the jth contracted gaussian function to this wavefunction.

We used a 6-311G triple-zeta Pople basis set [81] for these calculations. In this

basis set [82], the s orbital wavefunctions of argon are represented by 6 contracted

gaussian functions, formed of 6, 3,1,1,1 and 1 primitive gaussians, respectively. The

p orbital wavefunctions are represented by 5 contracted gaussian functions, formed

of 5,2,1,1 and 1 primitive gaussians, respectively.

3.1.2 Pulse parameters

The photo-ionisation rates, at time t, will depend on the photon flux, J(t). We

consider a monochromatic pulse and express the temporal form of the FEL flux

with a Gaussian function, which is given, in atomic units, by

J(t) = 1.554×10−16 I0[W cm−2]

h̄ω[Hartree]
exp
{
−4ln2

( t
τ

)2
}
, (3.5)

where I0 is the intensity at t = 0, τ is the full-width at half-maximum (FWHM) of

the pulse and h̄ω is the photon energy. For argon, we choose 4 different photon

energies, to allow the creation of 0, 1, 2 or 3 2p inner-shell holes by single-photon

ionisations respectively. For argon, these energies are 200 eV, 260 eV, 315 eV

and 360 eV, respectively. The pulse duration was chosen to be 10 fs, as a short

pulse duration favours the production of DCH states. We also consider a variety of

intensities, in order to investigate the dependence of the ion yields on the intensity.
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Auger group rates (10−4a.u.)
Method 3s3s 3s3p 3p3p Total

HFS [83] 0.77 12.85 47.90 61.52
HF [84] 0.28 15.74 56.97 72.99
CI [84] 0.47 9.54 54.74 64.75

This Code [33] 0.45 15.60 51.67 67.72

Table 3.1: Auger transitions rates from initial state 1s22s22p53s23p6 where the electron
filling in the 2p hole in the initial state and the electron escaping to the continuum
occupy the nl and n′l′ orbitals, denoted as nln′l′ in the table, respectively. We list
the Auger rates obtained in [83] using the Hartree-Fock-Slater (HFS) method, in
[84] using a Hartree-Fock (HF) method, and in [84] using a CI calculation. The
rates are given in 10−4 a.u.

3.1.3 Auger rates

To test the validity of our Auger rate calculations, we compared them with a variety

of existing theoretical calculations [33]. These comparisons are shown in table 3.1.

We see that our Auger rates lie between the values calculated with HFS and HF for

all transitions. This is expected as we employ the HF method for the bound orbitals

and the HFS method for the continuum orbitals. We also compare with Auger rates

calculated using a configuration interaction (CI) method. We expect this to be the

most accurate, as the configuration interaction method is a post-Hartree-Fock tech-

nique, which takes into account the mixing of different electronic configurations.

3.2 Rate Equations
In order to understand the interplay between the single-photon ionisations and

Auger transitions that take place during FEL interactions with argon, we use rate

equations to model the population change between different electronic configura-

tions. We run these rate equations in the range, −3τ ≤ t ≤ 40τ where the pulse

is centred at t = 0. The time after the pulse has finished ensures that states decay

to stable states, via the Auger process. This allows us to calculate the ion yields

produced by an FEL interaction with argon. The ion yields populated by argon

interacting with FEL pulses with various intensities, 10 fs duration and 360 eV

photons are given below:

As expected, we can see that high intensity pulses produce more higher-
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Figure 3.1: Ion yields of Arn+ produced by pulses of different intensity, 10 fs duration and
360 eV photons.

charged ions than low intensity pulses. This is the result of the increased number

of photo-ionisation transitions, which will in turn increase the number of Auger

transitions. We can also see that the peak yields of the even-charged ions are much

higher than the peaks of the odd-charged ions. In order to investigate this difference

in yields, we look at the transition pathways that populate these ion yields.

3.3 Pathways
The pathways available in our model depend on the energy of the photons in our

pulse, as this energy determines which photo-ionisation transitions can take place.

Once we have determined which transitions are allowed, we build up our set of

available pathways, as discussed in section 2.5.2. A diagram of the possible transi-

tions for pulses with 315 eV or 360 eV photons is shown below:

We can see, in Fig. 3.2, that the energy level diagram with higher-energy

photons has additional accessible states. In Fig 3.2a, we can see two different path-
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(a) 315 eV

(b) 360 eV

Figure 3.2: Ionisation pathways between different electronic configurations of Ar ac-
cessible with P (red lines) and A (green lines) events (a) up to Ar4+ for
h̄ω = 315 eV and (b) up to Ar3+ for h̄ω = 360 eV. Accessible configura-
tions are coloured black, while inaccessible configurations are grey. The labels
2s−a2p−b3v−c stand for the electronic configuration (2s2−a2p6−b3s2−d3p6−e),
with d + e = c the number of valence holes. In (a) PCAVV PCAVV (blue arrows)
and PCPCAVV AVV (brown arrows) are the pathways which contribute the most
to the ion yield of Ar4+. In (b) the blue arrows indicate the pathway PCACAVV

that involves a Coster-Kronig AC transition and populates Ar3+.
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ways have been illustrated. These are the two pathways which contribute the most

population to the Ar4+ ion yield. Both of these states involve two PC transitions

and two AVV transitions, these transitions are much more common than valence

photo-ionisation (PV ) transitions, so it’s expected that these transition pathways will

dominate the Ar4+ ion yield. However, only the brown pathway, PCPCAVV AVV , will

produce a double-core-hole (DCH) state as the two photo-ionisations occur before

an Auger transition fills in the core hole.

In Fig 3.2b, the 360 eV photons allows the photo-ionisation of a 2s electron.

This introduces Coster-Kronig transitions, which we see in the pathway PCACV AVV .

In the Coster-Kronig transition, a core hole is filled in by an electron from the

same shell and a valence electron is ejected. Therefore, these transitions remove a

valence electron, while retaining the same number of core holes. This means that

there can be a further Auger decay, as we see in the pathway PCACV AVV . To further

investigate the effects of increasing energetically-accessible core photo-ionisations,

we calculate the ion yields at a variety of photon energies.
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315 eV 360 eV

Figure 3.3: Ion yields of Arn+ for a pulse of 5×1015 W cm−2 intensity, 10 fs duration and
different photon energies. For each photon energy, the number of accessible
inner-shell holes is different: (a) 200 eV, no inner-shell holes; (b) 260 eV, a
single 2p inner-shell hole; (c) 315 eV, two 2p inner-shell holes. (d) 360 eV,
three 2p and a combination of two 2p and one 2s inner-shell holes. Highlighted
in red is the contribution of Coster-Kronig Auger transitions. (e) for 315 eV and
(f) for 360 eV show the contribution of pathways that are differentiated by the
maximum number of core holes in any state along each pathway: light grey
corresponds to zero maximum number of core holes, grey to one, black to two
and striped black lines to three.

3.4 Ion yields

In Fig. 3.3, we compare the ion yields generated by a 5×1015 Wcm−2 pulse with

a duration of 10 fs for a variety of different photon energies. The photon energies

were chosen so as to vary the number of energetically accessible core holes.

In Fig. 3.3a, no core holes are available and the ion yields fall with increasing

charge. For Fig. 3.3b, the ion yield of Ar2+ is the highest. The PC transition is much

more likely than the PV transition and it is followed by an Auger decay, populating
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the Ar2+ states. In Fig. 3.3c, two PC transitions are energetically accessible, as

seen in Fig. 3.2a. This leads to a large ion yield of Ar4+ due to PCPCAVVVAVV and

PCAVV PCAVV pathways. The ion yield of Ar2+ is also higher than the ion yield of

Ar+ for the same reasons as for the 260 eV case. For 360 eV (Fig. 3.3d), there are

three accessible PC transitions, see Fig. 3.2b. The ion yields of Ar4+ and Ar2+ are

higher than Ar3+ and Ar+ as for the lower energies. The ion yields of Ar6+ are also

higher than Ar5+, due to the contribution of pathways involving three PC transitions

and three AVV transitions.

It can be seen that the ion yields of Ar2n+ states are higher than the ion yields

of Ar(2n−1)+ states where n=1,2,..,h and h is the number of accessible core holes.

This is due to the PCAVV pairs, as the PC and AVV transitions are much more proba-

ble than PV transitions and PC transitions create core holes which will decay via AVV

transitions. The relation holds at the 360eV photon energy, but the difference be-

tween the odd and even charged yields is smaller than in the 315eV case. This is due

to the Coster-Kronig transitions which replace a PCAVV pair with a PCACV AVV se-

ries of transitions, as shown in Fig. 3.2b. This replacement shifts the pathway from

populating even-charged states to populating odd-charged states. Another effect

that we notice is that, after core photo-ionisations become energetically accessible

(Fig. 3.3 b-d), increasing the photon energy increases the proportion of argon which

remains unionised. This effect is due to the increase in photon energy decreasing

the photon flux for a given intensity, as shown in eqn (3.5).

While the ion yields in Fig. (3.3a-d) give a lot of information about the transi-

tions that dominate the ion yields and the effects of Coster-Kronig, we are primarily

interested in the production of a double core hole state.

The ion yields data doesn’t allow us to determine whether a double core hole

state was produced as there are multiple pathways that result in Ar4+, as shown

in Fig. 3.2a. By calculating the pathway populations we show, in Fig. 3.3e and

Fig. 3.3f, the proportion of pathways that pass through multiple-core-hole (MCH)

states. We show that less than half of the yield in Ar4+ came via a DCH state. To

investigate how to maximise the proportion of the population which accesses MCH
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Figure 3.4: As a function of pulse intensity: (a) for 315 eV and 10 fs, the ion yields of
Ar4+ (black squares), of PCAVV PCAVV (blue circles), of PCPCAVV AVV (brown
diamonds) and of all the other pathways contributing to Ar4+ (grey trian-
gles); (b) for 360 eV and 10 fs, the ion yield of Ar6+ (black squares), of
PCPCPCAVV AVV AVV (brown diamonds), of {3PC +3AVV} (blue circles) and of
all the other pathways contributing to Ar6+ (grey triangles).

states, we calculate the pathway populations at a variety of intensities

If we use a pulse with 315 eV photon energy, which can only photo-ionise

two 2p electrons, see Fig. 3.2a, the only MCH state that can be produced is a DCH

state. We are interested in the population of the PCPCAVV AVV pathway as it provides

evidence of a double core hole state. To see the population that accessed MCH

states, the contribution to the ion yields can be split by pathway as shown in Fig.

3.4. In the 315 eV case, Fig. 3.4a, the contribution from the PCPCAVV AVV pathway

is lower than the contribution from the PCAVV PCAVV pathway at low intensity and

higher at high intensity. This is to be expected as a high intensity is required for the
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second photo-ionisation to be more probable than the Auger decay. In the triple-

core-hole (TCH) case, Fig. 3.4b, the PCPCPCAVV AVV AVV pathway corresponds to

the formation of a TCH state. This pathway contributes a smaller proportion of the

ion yield, compared to the PCPCAVV AVV transition in the DCH case. This is due

to the increase in the number of different pathways available for the route to Ar6+

compared to Ar4+.

These calculations show the proportion of the Ar4+ and Ar6+ ion yields that

access DCH or TCH states, respectively. However, they do not offer any observable

quantity that would indicate the formation of a MCH state. In order to show the

formation of an MCH state, it would be necessary to calculate the electron spectra

produced in an FEL interaction.

3.5 Conclusion

We have explored the interaction of x-ray FELs with atomic argon. The ion yields

showed a preferential population of states with even charge for the pulse parame-

ters we considered. We investigated how this preferential population varied with

different photon energies. As we allowed the creation of more inner-shell holes, we

found that the Ar2n yield was higher than the Ar2n−1 yield for n = 1, ...,h, where h

is the number of core holes available. This effect is evidence of the dominance of

core photo-ionisation and Auger decay transitions, as the combination of these two

transition types will predominately populate even-charged argon ions. However, if

the photon energy is increased, new transitions will become available and the ion

yields may no longer follow this pattern.

When the 2s electrons become energetically accessibly by the FEL pulse, we

find that the difference between odd and even-charged ion yields is reduced. By cal-

culating the pathways by which the ion yields are populated, we obtain information

about the the types of transitions that are more likely to populate even-charged or

odd-charged ionic states. We note the emergence of the Coster-Kronig Auger transi-

tions when 2s electrons become energetically accessible. These ACV transitions add

an additional ionisation to the pairs of PC and AVV and pathways involving these
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transitions will predominately populate odd-charged states of argon.

The pathway calculations also allow us to determine the proportion of argon

which accesses a MCH state. By calculating the pathways at various intensities,

we can see how individual sets of transitions depend on intensity and choose pulse

parameters that maximise the production of MCH states. The pathway model we

developed was also used to interpret experimental data and understand the dominant

pathways at varying intensities [85].

Further investigation could involve whether the preferential population of

even-charged ion states continues at higher photon energy, where additional 2s

photo-ionisations are energetically accessible. It would also be interesting to see

if the dependence on the availability of core holes breaks down at longer durations.

As the pulse length increases, there is less contribution from MCH states and a

single core hole could allow for multiple PCAVV transitions, if the pulse length is

longer than the Auger lifetime.



Chapter 4

Interaction of free-electron laser with

molecules

4.1 Introduction
The interaction of molecules with free-electron laser (FEL) radiation is an area of

much interest for imaging [9, 10, 11, 12] as well as spectroscopy [13, 14]. As

such, there have been several theoretical models which seek to explain experimental

observations [23, 41, 42]. Some of these studies have treated the molecule as a

combination of independent atoms [23], while others use molecular transition rates

calculated with continuum orbitals obtained using Hartree-Fock-Slater methods [41,

42].

In this chapter, we present the theoretical basis behind our model. To inves-

tigate molecular FEL interactions, we must consider the interplay of single pho-

ton ionisations with Auger transitions and dissociation. We explain how we calcu-

late the photo-ionisation cross-sections and Auger rates in our model and describe

how we obtain the molecular continuum wavefunctions without using the Slater

exchange potential. This should produce more accurate results, particularly at low

energies, where the continuum electron spends more time in the molecular potential.

4.2 Single-centre expansion
In the method we used to calculate the Auger decay rates in atoms, the angular

integrals are solved analytically [37]. However, the molecular orbitals do not have
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well-defined orbital angular momentum since they are not spherically symmetric.

We express the wavefunction in terms of functions with well-defined orbital angular

momentum, by performing a single-centre expansion (SCE) [52]. Expressing our

wavefunctions in terms of components with well-defined orbital angular momentum

allows us to calculate the angular integrals analytically, reducing the computation

time. This allows for faster calculations of the continuum wavefunctions, photo-

ionisation cross-sections [86, 87] and Auger rates. In the SCE method multi-centred

molecular orbitals, φi(r), are expressed as an expansion over spherical harmonics

Ylm(θ ,φ):

φi(r) = ∑
lm

Pi,lm(r)
r

Ylm(θ ,φ), (4.1)

where Pi,lm(r) is the single-centre coefficient (SCC) of the Ylm component of orbital

i. If we project the angular part out of any system of equations describing the

single centre wavefunction, we are left with an equation in terms of only Pi,lm(r)

and one spatial variable, r. We have then reduced a multi-centred problem in three

dimensions to that of a single centred problem in a single dimension; the resulting

equations describing the single centre coefficients, Pi,lm(r), present a much simpler

problem to solve.

4.2.1 Molecular Bound Orbitals

To account for Auger and photo-ionisation transitions, we must calculate the Auger

rates and photo-ionisation cross-sections. To obtain these values, we must first ob-

tain the molecular orbital wavefunctions. We use Molpro [71] to calculate the wave-

functions of all bound orbitals in each accessible electronic configuration of molec-

ular nitrogen, of the form 1σα
g 1σ

β
u 2σ

γ
g 2σδ

u 1πε
ux1π

ζ
uy3σ

η
g , where α,β ,γ,δ ,ε,ζ ,η

are the orbital occupations and have values between 0 and 2.

To calculate the single-centre coefficients of the bound orbitals, Pi,lm(r), we

multiply the orbital wavefunction φi(r) by Y ∗l′m′(θ ,φ) and integrate over the solid
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angle dΩ = sin(θ)dθdφ . From eqn (4.1) we obtain

∫
Y ∗l′m′(θ ,φ)φi(r)dΩ = ∑

lm

Pi,lm(r)
r

∫
Y ∗l′m′(θ ,φ)Ylm(θ ,φ)dΩ. (4.2)

Using the orthonormality of spherical harmonics [60], this can be written as

∫
Y ∗l′m′(θ ,φ)φi(r)dΩ = ∑

lm

Pi,lm(r)
r

δll′δmm′. (4.3)

Summing over the delta functions gives us the single-centre coefficients

Pi,l′m′(r) = r
∫

Y ∗l′m′(θ ,φ)φi(r)dΩ. (4.4)

4.3 Molecular continuum orbitals

As photo-ionisations and Auger transitions emit electrons, it is necessary to obtain

the continuum orbital wavefunctions to calculate the photo-ionisation cross-sections

and Auger rates. This is more difficult than the atomic case, as there is no spherical

symmetry in the molecular case. The wavefunction of a continuum electron in

the presence of a molecular potential can by found by solving the corresponding

Hartree-Fock equation [64]:

−1
2

∇
2
φε(r)︸ ︷︷ ︸

Kinetic energy

+
nuc.

∑
n

−Zn

|r−Rn|
φε(r)︸ ︷︷ ︸

Electron-nuclei

+
orb.

∑
i

ai

∫
dr′

φ∗i (r′)φi(r′)
|r− r′|

φε(r)︸ ︷︷ ︸
Direct interaction

−
orb.

∑
i

bi

∫
dr′

φ∗i (r′)φε(r′)
|r− r′|

φi(r)︸ ︷︷ ︸
Exchange interaction

= εφε(r).
(4.5)

φε refers to the continuum wavefunction with energy ε , and φi refers to the wave-
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function of the bound orbital i. Zn and Rn are the charge and position of nucleus

n, respectively. ai and bi are coefficients associated with the bound orbital i, based

on the symmetries of the state. These values are derived in Appendix B. The dif-

ferent terms correspond to different interactions between charged particles. The

electron-nuclei term is the potential experienced by the continuum electron due to

the Coulomb interaction with each of the nuclei. The direct and exchange terms

are due to the Coulomb interaction between the continuum electron and the bound

electrons. To solve the angular integrals analytically, we express the bound and

continuum orbital wavefunctions using a SCE. We then project onto a spherical

harmonic, Y ∗lm(θ ,φ), and use the orthonormality of spherical harmonics to obtain:

∑
l′m′

[(
− d2

dr2 +
l(l +1)

r2 −2ε

)
δll′δmm′+2V ne

lm,l′m′(r)+2Jee
lm,l′m′(r)

]
Pε,l′m′(r)

+2Xlm[P̄ε ](r) = 0.

(4.6)

The electron-nuclei interaction V ne
lm,l′m′(r) is given by

V ne
lm,l′m′(r) =

nuc.

∑
n
−Zn(−1)m

√
(2l +1)(2l′+1)

×∑
kq

 l k l′

0 0 0

 l k l′

−m q m′

√ 4π

2k+1
Y ∗kq(θn,φn)

rk
<

rk+1
>

,

(4.7)

where Wigner 3j-symbols [60] have been used to express the angular integrals,
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r< = min(r,Rn) and r> = max(r,Rn). The direct interaction Jlm,l′m′(r) is given by

Jlm,l′m′(r) = ∑
i

ai ∑
l2m2l3m3

kq

√
(2l +1)(2l′+1)(2l2 +1)(2l3 +1)

×

l2 k l3

0 0 0

 l2 k l3

−m2 q m3

l′ k l

0 0 0

 l′ k l

−m′ q m


×(−1)m2+m′

∫
∞

0

rk
<

rk+1
>

P∗i,l2m2
(r′)Pi,l3m3(r

′)dr′,

(4.8)

where r< = min(r,r′) and r> = max(r,r′) and, l2,m2 and l3,m3 refer to the angular

momentum components of the orbital i. There are two sets of angular quantum

numbers for a single orbital i as it appears in the equation twice and both terms

are expressed using the SCE. We are interested in molecular nitrogen, which is

a diatomic molecule and therefore has rotational symmetry about the internuclear

axis. This rotational symmetry means that the magnetic quantum number, m, is a

good quantum number. Therefore, for a given bound orbital i, m2 and m3 are equal

and have a fixed value determined by the σ or π symmetry of the orbital. This

also applies to the continuum orbital and m and m′ are equal and determined by

the symmetry of the continuum orbital. The exchange interaction can be cast as a

functional of the SCE coefficients of the continuum electron orbital as follows

Xlm[P̄ε ](r) = ∑
l′m′

orb.

∑
i

bi ∑
l2m2l3m3

kq

√
(2l +1)(2l′+1)(2l2 +1)(2l3 +1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

l3 k l

0 0 0

 l3 k l

−m3 q m


×(−1)m2+m3

∫
∞

0

rk
<

rk+1
>

P∗i,l2m2
(r′)Pεl′m′(r

′)dr′Pi,l3,m3(r).

(4.9)

These terms are derived and discussed in greater detail in appendix A. To obtain the

SCE coefficients of the continuum orbital, we solve eqn (4.6) using a non-iterative
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technique [52].

4.4 Non-iterative solution to the Hartree-Fock equa-

tion for continuum electrons

The Hartree-Fock equation for continuum electrons can be solved either iteratively

or non-iteratively [52]. The iterative method is significantly more computationally

intensive, as the integrals which depend on the solution, Pε,lm, must be recalculated

for each iteration. The non-iterative technique involves coupling two separate sec-

ond order differential equations into a single system of second order differential

equations. This new system of equations no longer involves a functional of the so-

lution (the exchange term in eqn (4.6)). This means that we no longer have to solve

the HF equations iteratively. The method is described below. Initially we define a

new function Yk(P1,P2) as,

Yk(P1,P2) = r
∫ rk

<

rk+1
>

P∗1 (r
′)P2(r′)dr′ (4.10)

where P1 and P2 can refer to a SCC of a bound or continuum wavefunction. By

calculating the second derivative of Yk(P1,P2), we find it satisfies the second order

differential equation,

d2Yk(P1,P2)

dr2 =
k(k+1)

r2 Yk(P1,P2)−
(2k+1)

r
P1(r)P2(r). (4.11)

Now consider the exchange term in eqn (4.6), given by eqn (A.14) in section A.3.
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Using eqn (4.10), this can now be rewritten,

2Xlm[P̂ε ](r) = 2 ∑
l′m′

orb.

∑
i

bi ∑
l2m2l3m3

kq

(−1)m2+m3
√

(2l +1)(2l′+1)(2l2 +1)(2l3 +1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

l3 k l

0 0 0

 l3 k l

−m3 q m


×

Yk(Pi,l2m2,Pε,l′m′)

r
Pi,l3,m3(r).

(4.12)

Defining a new function of the vectors of the bound and continuum SCCs, Pi and

Pε ;

Yk(Pi,Pε) = ∑
l′m′

∑
l2m2

(−1)m2
√

(2l′+1)(2l2 +1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

Yk(Pi,l2m2 ,Pε,l′m′),

(4.13)

we can now express the exchange term as,

2Xlm[P̂ε ](r) = 2
orb.

∑
i

bi ∑
k

∑
l3m3

(−1)m3
√

(2l +1)(2l3 +1)

×

l3 k l

0 0 0

 l3 k l

−m3 q m

Yk(Pi,Pε)

r
Pi,l3,m3(r).

(4.14)
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Yk(Pi,Pε) satisfies the following second order differential equation,

d2Yk(Pi,Pε)

dr2 =
k(k+1)

r2 Yk(Pi,Pε)−
(2k+1)

r ∑
l′m′

∑
l2m2

√
(2l2 +1)(2l′+1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

Pi,l2m2(r)Pε,l′m′(r).

(4.15)

We now couple the original second order differential equation for the continuum

wavefunction eqn (4.6) with the second order differential equation for Yk(Pi,Pε) in

a matrix equation,

d2P
dr2 = M̂P (4.16)

where P is the solution vector,

P =

 {Plm}

{Yk(Pi,Pε)}

 (4.17)

and M̂ is block matrix,

M̂ =

{Mlm,l′m′} {Mlm,ik}

{Mik,l′m′} {Mik,i′k′}

 . (4.18)

The top-left components of this block matrix, {Mlm,l′m′}, correspond to the non-

exchange terms from eqn (4.6)

{Mlm,l′m′}=
(

l(l +1)
r2 −2ε

)
δll′δmm′+2V ne

lm,l′m′(r)+2Jee
lm,l′m′(r). (4.19)
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The top-right elements are the multiplicative factors of Yk(Pi,Pε) from eqn (4.14),

{Mlm,ik}=
2bi

r ∑
l3m3

(−1)m3
′√

(2l +1)(2l3 +1)

×

l3 k l

0 0 0

 l3 k l

−m3 q m

Pi,l3,m3(r).

(4.20)

The bottom-left components correspond to the multiplicative factors of Pε,l′m′ from

eqn (4.15),

{Mik,l′m′}=−
(2k+1)

r ∑
l2m2

(−1)m2
√

(2l2 +1)(2l′+1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

Pi,l2,m2(r).

(4.21)

Finally, the bottom-right terms are the multiplicative factors of Yk(Pi,Pε) from

eqn (4.15),

{Mik,i′k′}=
k(k+1)

r2 δkk′δii′. (4.22)

By writing out the matrix equation, eqn (4.16), in full it is clear that we now have a

coupled set of equations which we can solve to find P.

4.4.1 Integration grid

There are two situations in which the Hartree-Fock equation, eqn (4.6), becomes

singular; when r = 0 for l 6= 0, and at the positions of the nuclei, where the electron-

nuclei attraction term becomes singular eqn (A.1). Thus, an equidistant grid of r

could result in numerical errors at these points. Therefore, as suggested by De-
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mekhin [52], the grid of r is mapped on to a new variable ρ by the transformation,

ρ(r) = αr+β lnr+
nuc.

∑
i

arctan
Ri− r

γi
, (4.23)

where α , β and γi are positive constants which are determined by trial and error

on a case-by-case basis. For this work on molecular nitrogen, the values, α = 0.2,

β = 0.88 and γi = −0.58 were used. The grid of ρ results in a higher density of

points r when r→ 0 and at the positions of the nuclei. The grid of ρ(r) is discretised

as,

ρn = ρ0 +nh, (4.24)

where h is the step size. The transformation from r to ρ(r) results in a new solution

normalised in space Flm(ρ) [52, 88] which is given by

Flm(ρ) =

√
dρ(r)

dr
Plm(r) =

√
ρ ′Plm(r). (4.25)

Introducing this transformation into eqn (4.6) results in the following expression,

d2Fε,lm(ρ)

dρ2 =
1

(ρ ′)2 ∑
l′m′

[(
l(l +1)
r2(ρ)

−2ε

)
δll′δmm′+2V ne

lm,l′m′(r(ρ))

+2Jee
lm,l′m′(r(ρ))+

{
1
2

ρ ′′′

ρ ′
− 3

4
(ρ ′′)2

(ρ ′)2

}
δll′δmm′

]
Fε,l′m′(ρ)+

1
(ρ ′)2 2Xlm[F̄ε ](ρ).

(4.26)

We define the function Yk(Pi,Fε) as

Yk(Pi,Fε) =
√

ρ ′Yk(Pi,Pε). (4.27)
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Differentiating this twice and using eqn (4.15) results in

d2Yk(Pi,Fε)

dρ2 =
1

(ρ ′)2

[
Yk(Pi,Fε)

{
k(k+1)

r2(ρ)
+

1
2

ρ ′′′

ρ ′
− 3

4
(ρ ′′)2

(ρ ′)2

}

−(2k+1)
r(ρ) ∑

l′m′
∑

l2m2

(−1)m2
√

(2l2 +1)(2l′+1)l2 k l′

0 0 0

 l2 k l′

−m2 q m′

Pi,l2m2(r(ρ))Fε,l′m′(ρ)

 .
(4.28)

We can now write an equivalent second-order differential matrix equation to

eqn (4.17) on the ρ-grid,

d2F
dρ2 = M̂ρF . (4.29)

Here F is the solution vector of length Nlm +Nik, where Nlm is the number of l and

m combinations in the SCE and Nik is the number of bound orbitals multiplied by

the number of k values included in the expansion of the 1/|r− r′| term. F is given

by

F =

 {Flm}

{Yk(Pi,Fε)}

 , (4.30)

and M̂ρ is the block matrix of size Nlm +Nik

M̂ρ =

{Mρ

lm,l′m′} {M
ρ

lm,ik}

{Mρ

ik,l′m′} {M
ρ

ik,i′k′}

 . (4.31)

The block matrix elements heights and widths are given by either Nlm or Nik for the
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indices lm and ik, respectively. These block matrix elements are:

{Mρ

lm,l′m′}=
1

(ρ ′)2

[(
l(l +1)
r2(ρ)

−2ε

)
δll′δmm′+2V ne

lm,l′m′(r(ρ))

+2Jee
lm,l′m′(r(ρ))+

{
1
2

ρ ′′′

ρ ′
− 3

4
(ρ ′′)2

(ρ ′)2

}
δll′δmm′

]
,

(4.32)

{Mρ

lm,ik}=
1

(ρ ′)2
2bi

r(ρ) ∑
l3m3

(−1)m3
′√

(2l +1)(2l3 +1)

×

l3 k l

0 0 0

 l3 k l

−m3 q m

Pi,l3,m3(r),

(4.33)

{Mρ

ik,l′m′}=−
1

(ρ ′)2
(2k+1)

r(ρ) ∑
l2m2

(−1)m2
√

(2l2 +1)(2l′+1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

Pi,l2,m2(r),

(4.34)

and

{Mρ

ik,i′k′}=
1

(ρ ′)2

{
k(k+1)

r2(ρ)
+

1
2

ρ ′′′

ρ ′
− 3

4
(ρ ′′)2

(ρ ′)2

}
δkk′δii′. (4.35)

Eqn (4.29) can then be solved for Fε,l′m′(ρ) on the grid ρ via the Numerov method.

4.4.2 Finding F̄ using the Numerov method and Thomas algo-

rithm

The Numerov method can be used to efficiently solve a second-order differential

equation such as eqn (4.29) which does not include the first derivative of the desired
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function. For an inhomogeneous equation with the form

y′′(r) = f (r)y(r), (4.36)

the solution can be found by propagation of the equation [89],

(
1− h2

12
fn+1

)
yn+1−

(
2+

10h2

12
fn

)
yn +

(
1− h2

12
fn−1

)
yn−1 = 0, (4.37)

with appropriate boundary conditions, where fn = f (nh) for a grid of size N, with

n = 1, . . . ,N−1,N and h the radial step size. Applying this to eqn (4.29) we get the

following expression,

ân−1F̂n−1− b̂nF̂n + ân+1F̄n+1 = 0. (4.38)

where matrices â and b̂ are given by,

ân = 1− h2

12
M̂ρ

n (4.39)

b̂n = 21+
10h2

12
M̂ρ

n (4.40)

where 1 is the identity matrix of size Nlm +Nik. This can be written in the form of
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a tridiagonal matrix:



−b̂1 â2

â1 −b̂2 â3
. . .

ân−1 −b̂n ân+1
. . .





F̄1

F̄2
...
...
...


=



0

0
...
...

0


. (4.41)

The length of the vectors is the size of the grid, N. To solve this equation, we

use the Thomas Algorithm [90]. This method involves an outwards sweep from 1 to

N, which removes the lower diagonal components, followed by an inwards sweep

from N to 1, which gives the solution. We first, define a matrix V̂n in terms of it’s

relation between two sequential values of our wavefunction.

F̄n = V̂nF̄n+1 (4.42)

This will allow us to calculate F̄n for all n given an asymptotic value. We can

substitute this expression into eqn (4.38) to determine the value of V̂n:

ân−1V̂n−1F̄n− b̂nF̂n + ân+1F̄n+1 = 0, (4.43)

rearranging this expressions gives

F̄n = (b̂n− ân−1V̂n−1)
−1ân+1F̄n+1, (4.44)
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using eqn (4.42), we obtain an expression for V̂n

V̂n = (b̂n− ân−1V̂n−1)
−1ân+1. (4.45)

Using this expression, we can do an outwards sweep from n = 1 to find V̂n at all

points in the grid. We can then do an inwards sweep from n = N using eqn (4.42)

to find F̄n at all grid points. However, we first need to find the value of V̂1 in order

to use eqn (4.45).

4.4.3 Boundary conditions

There are two sets of boundary conditions, the inner boundary conditions, which

describe the behaviour of the system as r → 0, and the outer asymptotic bound-

ary conditions, which describe the behaviour of the solution as r→ ∞. The inner

boundary conditions give the values of V̂1 and V̂2, such that we can then iterate for

all other points on the grid. These boundary conditions are given below [52].

V̂1 = V̂2 = V̂ = (b̂2− â1V̂ )−1â3. (4.46)

This equation is solved recursively, until it converges to a value for V̂ . Once we

have obtained these initial conditions, we can iterate through all points in the grid

and find V̂n at all points on the grid. We then need to find the asymptotic values

of F̄ , such that we can sweep backwards to obtain F̄ at all points. The asymptotic

values of the wavefunction, on an r-grid are given below [52].

PLM
lm (r) = δ

L
l δ

M
m Jl(r)+RLM

lm Hl(r) (r→ ∞). (4.47)

The superscripts L and M denote the different energy-degenerate solutions, each

of which is formed by a combination of Plm functions. Jl and Hl are the energy-

normalised regular and irregular Coulomb wavefunctions, respectively [91]. The
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regular Coulomb function represents the solution of a point charge. RLM
lm is the in-

teraction matrix, which we compute, it expresses the deviation from a point charge

solution [87]. RLM
lm is generally a Hermitian matrix, however, as we use real spher-

ical harmonics in our SCE, it is a real symmetric matrix. As the solution vector

contains Yk(Pi,Pε) terms, we also include the asymptotic values of these terms [52]

Yk(Pi,Pε) = Bikr−k (r→ ∞), (4.48)

where Bik is a constant. Thus, the combined asymptotic boundary conditions for a

given L,M channel, which represents an energy-degenerate continuum wavefunc-

tion, are:

P̄ =

{δ L
l δ M

m Jl(r)+RLM
lm Hl(r)}

{Bikr−k}

 (r→ ∞). (4.49)

To consider all L,M channels simultaneously, we use a solution vector of matrices.

P̂ =

Ĵ(r)+ R̂Ĥ(r)

r̂(r)B̂

 (r→ ∞), (4.50)

here the Ĵ(r) and Ĥ(r) are diagonal matrices with dimensions Nlm×NLM, Nlm =

NLM and Nlm is the number of different l,m combinations included in the SCE, the

diagonal components are Jl(r) and Hl(r), respectively. B̂ = {Bik,LM} is a matrix of

the constants Bik, as defined in eqn (4.48), for each channel L,M with dimension

Nik×NLM, where Nik is the number of different i,k combinations included in the

calculation. r̂(r) is a diagonal matrix with r−k as the diagonal elements for each

bound orbital i, such that the matrix has dimensions Nik×Nik.

Using eqn (4.50) for the Nth and (N− 1)th points of the ρ grid, we calculate
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F̂ using eqn (4.25) and use eqn (4.42) to obtain

√
ρ ′N−1

ĴN−1 + ĤN−1R̂

r̂N−1B̂

=

{Vlm,l′m′}N−1 {Vlm,ik}N−1

{Vik,l′m′}N−1 {Vik,i′k′}N−1

√ρ ′N

ĴN + ĤNR̂

r̂NB̂


(4.51)

where the block structure of the V̂ matrix has been made explicit. The above matrix

equation can be written as two separate boundary conditions which are dependent

on each other;

√
ρ ′N−1

(
ĴN−1 + ĤN−1R̂

)
=
√

ρ ′N
(
{Vlm,l′m′}N−1(ĴN + ĤNR̂)+{Vlm,ik}N−1r̂NB̂

)
,

(4.52)

√
ρ ′N−1r̂N−1B̂ =

√
ρ ′N
(
{Vik,l′m′}N−1(ĴN + ĤNR̂)+{Vik,i′k′}N−1r̂NB̂

)
. (4.53)

Rearranging these equations for R̂ and B̂, we obtain

R̂ =

(√
ρ ′N−1ĤN−1−

√
ρ ′N{Vlm,l′m′}N−1ĤN

)−1

×
(√

ρ ′N{Vlm,ik}N−1r̂NB̂+
√

ρ ′N{Vlm,l′m′}N−1ĴN−
√

ρ ′N−1ĴN−1

)
,

(4.54)

B̂ =

(√
ρ ′N−1r̂N−1−

√
ρ ′N{Vik,i′k′}N−1r̂N

)−1(√
ρ ′N{Vik,l′m′}N−1

(
ĴN + ĤNR̂

))
.

(4.55)
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Substituting 4.55 into 4.54 we find an expression for R̂

R̂ =

√ρ ′N−1

ρ ′N
ĤN−1−{Vlm,l′m′}N−1ĤN

−{Vlm,ik}N−1r̂N

(√
ρ ′N−1

ρ ′N
r̂N−1−{Vik,i′k′}N−1r̂N

)−1

{Vik,l′m′}N−1ĤN

−1

×

{Vlm,l′m′}N−1ĴN−

√
ρ ′N−1

ρ ′N
ĴN−1

+{Vlm,ik}N−1r̂N

(√
ρ ′N−1

ρ ′N
r̂N−1−{Vik,i′k′}N−1r̂N

)−1

{Vik,l′m′}N−1ĴN

 ,

(4.56)

and an expression for B̂ can be obtained by substituting 4.54 into 4.55,

B̂ =

[√
ρ ′N−1

ρ ′N
r̂N−1−{Vik,i′k′}N−1r̂N

−{Vik,l′m′}N−1ĤN

(√
ρ ′N−1

ρ ′N
ĤN−1−{Vlm,l′m′}N−1HN

)−1

{Vlm,ik}N−1r̂N

−1

×

{Vik,l′m′}N−1J̄N +{Vik,l′m′}N−1ĤN

(√
ρ ′N−1

ρ ′N
ĤN−1−{Vlm,l′m′}N−1ĤN

)−1

×

(
{Vlm,l′m′}N−1ĴN−

√
ρ ′N−1

ρ ′N
ĴN−1

)]
.

(4.57)
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4.4.4 Back propagation of solution

After R̂ and B̂ have been found FN can be found by applying the boundary condi-

tions (eqn (4.50)),

FN =
√

ρ ′

ĴN + R̂ĤN

r̂NB̂

 (4.58)

the solution vector at all other grid points, Fn, is then found by back substitution

from n = N to n = 0 using the relation,

F̄n

Ŷn

=

{Vlm,l′m′}n {Vlm,ik}n

{Vik,l′m′}n {Vik,i′k′}n

F̄n+1

Ŷn+1

 . (4.59)

Once found, F̄n is transformed to P̂n using eqn (4.25). In the above equations F̂n and

Ŷn are matrices; as in subsection 4.4.2, P̂ = Plm,LM where the columns correspond to

different channels, L,M, and the rows are the individual components, l,m, of these

channels. Ŷ = Yik,LM, where again the columns correspond to different channels

L,M and the rows correspond to the set of values of Yk(Pi,Fε) for bound orbital i

and multipole expansion angular momenta k.

4.4.5 Normalisation

The continuum electron wavefunction is well-defined, which requires that

Pε,lm(r→ 0)→ 0 for all l,m. (4.60)

In addition, the continuum wavefunctions are energy normalised such that,

〈PLM
ε |PLM

ε ′ 〉=
∫

∞

0
dr∑

lm
P∗ε,lm(r)Pε ′,lm(r) = δ (ε− ε

′). (4.61)
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We then insert our expression for the asymptotic form of the radial continuum wave-

function, eqn (4.49). Generally, R̂ is a Hermitian matrix [52]. In our calculations, R̂

is a symmetric matrix, as we use real spherical harmonics [87].

〈PLM
ε |PL′M′

ε ′ 〉=
∫

∞

0
dr∑

lm
P∗LM

ε,lm (r)PL′M′
ε ′,lm(r)

=
∫

∞

0
dr∑

lm

(
J∗ε,l(r)δ

L
l δ

M
m +H∗ε,l(r)R

LM
lm
)

×
(

Jε ′,l(r)δ
L′
l δ

M′
m +Hε ′,l(r)R

L′M′
lm

)
.

(4.62)

Due to the orthogonality of the Coulomb functions,

∫
∞

0
drJ∗ε,l(r)J(r)ε ′,l = δ (ε− ε

′), (4.63)

with a similar expression for Hε,l(r) and

∫
∞

0
drJ∗ε,l(r)Hε ′,l(r) = 0, (4.64)

one can write eqn (4.62) as,

〈PLM
ε |PL′M′

ε ′ 〉= δ (ε− ε
′)

(
δ

L
L′δ

M
M′+∑

lm
RLM

lm RL′M′
lm

)
. (4.65)

Using this equation, we can show that energy-normalised solutions are given by

[87]:

P̃LM
ε,lm(r) = 〈r, l,m|PLM

ε 〉=
1√

1+λ 2
LM

∑
L′M′

ULM
L′M′P

L′M′
ε,lm (r) (4.66)
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Where ŪLM is an eigenvector of R̂ and λLM is an eigenvalue, such that:

R̂ŪLM = λLMŪLM (4.67)

4.5 Molecular photo-ionisation cross-sections

We calculate the molecular photo-ionisation cross-sections for an electron transi-

tioning from a bound molecular orbital φi to a final continuum molecular orbital φε

as follows [61].

σi→ε =
4
3

απ
2
ωNi ∑

M=−1,0,1
|DM

iε |
2
, (4.68)

where α is the fine structure constant, Ni is the occupation number of the initial

molecular orbital i, ω is the photon energy, and M is the polarization of the photon.

In the length gauge, the matrix element DM
iε is given by

DM
iε =

∫
φi(r)φε(r)

√
4π

3
rY1M(θ ,φ)dr. (4.69)

In the single centre expansion formalism eqn (4.69) takes the form

DM
iε =

√
4π

3 ∑
lm,l′m′

∫
∞

0
drP∗i,lm(r)rPε,l′m′(r)

∫
dΩY ∗lm(θ ,φ)Yl′m′(θ ,φ)Y1M(θ ,φ)

= ∑
lm,l′m′

(−1)m√(2l +1)(2l′+1)

 l l′ 1

0 0 0

 l l′ 1

−m m′ M

∫ ∞

0
drP∗i,lm(r)rPε,l′m′(r).

(4.70)
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4.6 Molecular Auger rate calculations

To account for the molecular Auger transitions in our model, we must calculate the

Auger rates for all accessible electronic configurations. In this section, we outline

the equations that we solved and the method by which we derived these equations.

4.6.1 Derivation

In order to find the Auger rate, we start from the expression for the matrix element,

given in eqn (2.7). For molecular Auger rates, we choose to work in the abSMS

scheme. In this scheme, two electron wavefunctions are expressed in terms of their

orbitals, a and b and their total spin, S and its projection, MS. Expressing the matrix

element, M , in this scheme results in

M = 〈ζ cS′M′S|12| 1
r12
|baSMS|12〉

−〈ζ cS′M′S|12| 1
r12
|baSMS|21〉.

(4.71)

Here, ζ refers to the emitted continuum electron, c denotes the core hole being

filled in and a and b refer to the valence electron orbitals. S and S′ are the total

spin of the initial and final electrons, respectively, MS and M′S are their projections.

|(baSMS|12)〉 corresponds to a two-electron wavefunction, with the first electron in

spatial orbital b and the second electron in spatial orbital a, with magnetic quantum

numbers mb and ma, respectively and total spin S and spin projection MS. The first

term of eqn (4.71) refers to the direct term, in which the order of the electrons is

consistent. The second term refers to the exchange term, in which the order of the

electrons has been switched.

We now use the multipole expansion to express the operator 1
r12

in terms of

spherical harmonics about the molecular centre [61],

1
r12

= ∑
kq

4π

2k+1
rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2), (4.72)
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where r< = min(r1,r2) and r> = max(r1,r2). Substituting this into eqn (4.71) gives

M = ∑
kq

4π

2k+1

(
〈ζ cS′M′S|12| rk

<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|baSMS|12〉

−〈ζ cS′M′S|12| rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|baSMS|21〉
)
.

(4.73)

The operator acts on each electron individually, we reorder the electrons in the

exchange term so that we can separate the two-electron wavefunction into its one-

electron components. In order to reorder the wavefunction |baSMS|21〉, we first

rewrite it in terms of individual spins, with projections µa and µb, respectively,

using eqn (2.15)

|baSMS|21〉= ∑
µbµa

(1
2 µb

1
2 µa|SMS)|baµbµa|21〉. (4.74)

We then express this as a product of two one-electron wavefunctions,

|baSMS|21〉= ∑
µbµa

(1
2 µb

1
2 µa|SMS)|bµb|2〉|aµa|1〉, (4.75)

and use the interchange properties of the Clebsch-Gordan coefficients [60] to obtain

|baSMS|21〉= ∑
µbµa

(−1)S−1
2−

1
2 (1

2 µa
1
2 µb|SMS)|aµa|1〉|bµb|2〉. (4.76)

Comparing this with the expansion of |abSMS|12〉,

|abSMS|12〉= ∑
µaµb

(1
2 µa

1
2 µb|SMS)|aµa|1〉|bµb|2〉, (4.77)
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we obtain

|baSMS|21〉= (−1)S−1
2−

1
2 |abSMS|12〉. (4.78)

We can now substitute eqn (4.78) into eqn (4.73) to obtain

M = ∑
kq

4π

2k+1

(
〈ζ cS′M′S|12| rk

<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|baSMS|12〉

+(−1)S〈ζ cS′M′S|12| rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|abSMS|12〉
)
,

(4.79)

As the operator is independent of spin, we can separate the spin and spatial compo-

nents to obtain

M = 〈S′M′S|SMS〉∑
kq

4π

2k+1

(
〈ζ c|12| rk

<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|ba|12〉

+(−1)S〈ζ c|12| rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|ab|12〉
)
.

(4.80)

We use the orthonormality of the spin wavefunctions to express 〈S′M′S|SMS〉 as

δ S′
S δ M′

M .

M = δ
S′
S δ

M′
M ∑

kq

4π

2k+1

(
〈ζ c|12| rk

<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|ba|12〉

+(−1)S〈ζ c|12| rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)|ab|12〉
)
.

(4.81)
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This can be expressed as

M = δ
S′
S δ

M′
M ∑

kq

4π

2k+1

∫
d3r1

∫
d3r2(

φ
∗
ζ
(r1)φ

∗
c (r2)

rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)φb(r1)φa(r2)

+(−1)S
φ
∗
ζ
(r1)φ

∗
c (r2)

rk
<

rk+1
>

Y ∗kq(θ1,φ1)Ykq(θ2,φ2)φa(r1)φb(r2)

)
.

(4.82)

We use the SCE, eqn (4.1), to split this expression into radial and angular compo-

nents.

M = δ
S′
S δ

M′
M ∑

lζ mζ lcmckq
lamalbmb

4π

2k+1

∫
d3r1

∫
d3r2

1
r2

1r2
2[(

Pζ ,lζ mζ
(r1)Pc,lcmc(r2)

rk
<

rk+1
>

Pb,lbmb(r1)Pa,lama(r2)

Y ∗lζ mζ
(Ω1)Y ∗lcmc

(Ω2)Y ∗kq(Ω1)Ykq(Ω2)Ylbmb(Ω1)Ylama(Ω2)
)

+(−1)S
(

Pζ ,lζ mζ
(r1)Pc,lcmc(r2)

rk
<

rk+1
>

Pa,lama(r1)Pb,lbmb(r2)

Y ∗lζ mζ
(Ω1)Y ∗lcmc

(Ω2)Y ∗kq(Ω1)Ykq(Ω2)Ylama(Ω1)Ylbmb(Ω2)

)]
.

(4.83)

where Ωi = (θi,φi) is the angular coordinates of the ith electron. The angular inte-

grals over the triplets of spherical harmonics can be written in terms of Wigner-3j

symbols [92] as

∫
dΩY ∗LM(Ω)Ykq(Ω)Yl′m′(Ω)

= (−1)M

√
(2L+1)(2k+1)(2l′+1)

4π

L k l′

0 0 0

 L k l′

−M q m′

 (4.84)
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Expanding the integrals in eqn (4.85) and substituting in eqn (4.84), we obtain

M = δ
S′
S δ

M′
M ∑

lζ mζ lcmckq
lamalbmb

∫
dr1

∫
dr2

(−1)mζ+mc+q
√
(2lζ +1)(2lc +1)(2lb +1)(2la +1)Pζ ,lζ mζ

(r1)Pc,lcmc(r2)
rk
<

rk+1
>

Pb,lbmb(r1)Pa,lama(r2)lζ k lb

0 0 0

 lζ k lb

−mζ −q mb

lc k la

0 0 0

 lc k la

−mc q ma


+(−1)S

Pζ ,lζ mζ
(r1)Pc,lcmc(r2)

rk
<

rk+1
>

Pa,lama(r1)Pb,lbmb(r2)lζ k la

0 0 0

 lζ k la

−mζ −q ma

lc k lb

0 0 0

 lc k lb

−mc q mb

 .

(4.85)

4.6.2 Summation

To find the total Auger rate of a transition, we must sum over the final states and

average over the initial states [59]. The summation over the final states is due to

the possible pathways from a single initial state, the average over the initial state

is because that state is not explicitly defined. In this case, the initial state has a

core hole in a specific orbital with either up or down spin. To average over these

possibilities, we introduce a factor of a half. In general, the Auger rate is given by

Γ = ∑2πN12Nh|M |2, (4.86)

where ∑ denotes a sum over final states and average over initial states [37], Nh is
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the number of holes in the specified orbital, and N12 is defined as

N12 =
N1N2

2×2
forelectrons indifferentorbitals

=
N1(N1−1)
2×2×1

forelectrons insameorbital.
(4.87)

This is equivalent to eqn (2.3) where the maximum occupancy of the molecular

orbitals is 2. In this general case, M could be in any scheme and the summation

would be over the quantum numbers of the scheme. In the SMS scheme, we sum

over S, MS, S′ and M′S and use a matrix element with well-defined SMSS′M′S, given

in eqn (4.85). In this case, the initial state has a core hole in a specific orbital with

either up or down spin. To average over these possibilities, we introduce a factor of

a half. We also sum over ζ because we aren’t interested in the state of the continuum

electron. This expression gives the total Auger transition rate from valence electrons

in spatial orbitals a and b which fill a core hole in the spatial orbital c.

Γb,a→c = ∑
SMSS′M′S

πN12Nh ∑
ζ

|〈φ(ζ cS′M′S)|
1

r12
|φ(baSMS)〉|2 (4.88)

The advantage of using the m1m2SMS scheme is that we can obtain the contribution

from the singlet and triplet states separately. To do this, we use eqn (4.88), but

rather than summing over S, we instead pick one specific S.



Chapter 5

Free-electron laser interactions with

molecular nitrogen

There is a large body of existing work concerning free-electron laser (FEL) inter-

actions with molecular nitrogen. Experimental studies [19, 20, 53, 54, 55] have

measured the ion yields produced by an FEL pulse and the formation of double-

core-hole (DCH) states. Theoretical works [22, 23] have calculated the ion yields

produced in these interactions and determined the contribution of DCH states, us-

ing models which treat the molecule as a combination of independent atoms. In our

work, we treat the molecule using molecular bound and continuum wavefunctions.

In this chapter, we investigate the interplay between single-photon ionisation,

Auger decay and dissociation that occurs during the interaction of molecular ni-

trogen with an FEL pulse. We use a rate equation model, with transitions rates

calculated using the methods described in the previous chapter, to calculate the

atomic and molecular ion yields produced by an FEL interaction with N2. Further,

we obtain the population that travels through the different pathways of transitions

to arrive at these final ionic states and the electron spectra produced during these

interactions.
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5.1 Calculation details

5.1.1 Pulse parameters

As in section 3.1.2, we treat the pulse as monochromatic and express the photon flux

using eqn (3.5). For molecular nitrogen, we choose two different photon energies,

we use 1100 eV to compare with experimental data and 525 eV to make best use

of our model. Previous work using atomic continuum orbitals are least accurate at

low energies, where the effects of the molecular potential are more profound. As

we use fully molecular bound and continuum orbitals, this regime can be treated

more accurately by our model. Three pulse durations were chosen, 4 fs, 7 fs and 80

fs. These values were chosen to compare with experiment and to see the effect of

varying pulse duration on the ion yields and pathways. We also considered a variety

of intensities, in order to determine how the intensity changed the ion populations

and the pathways leading to these ions.

5.1.2 Bound molecular orbitals

We used the Molpro [71] quantum chemistry package to compute each bound

molecular orbital of every electronic configuration of molecular nitrogen of the form

1σα
g 1σ

β
u 2σ

γ
g 2σδ

u 1πε
ux1π

ζ
uy3σ

η
g , where α,β ,γ,δ ,ε,ζ ,η are the orbital occupations

and have values between 0 and 2. The g and u subscripts denote the gerade or

ungerade symmetry of the orbitals, ungerade wavefunctions change sign following

inversion through the molecular centre, gerade wavefunctions do not. Using Mol-

pro, we compute each molecular orbital as a combination of atomic orbitals and

assume the nuclei are fixed at the equilibrium internuclear distance of N2, 2.08 a.u..

We used the Hartree-Fock method and a correlation-consistent polarised valence

triple-zeta basis set (cc-pVTZ) [93]. This basis set is less computationally intensive

than higher-zeta basis sets, while still providing good accuracy. In this basis set, ni-

trogen orbitals are expressed in terms of four s, three p, two d and one f contracted

gaussians, which are constructed from ten s, five p, two d and one f primitive gaus-

sians, respectively. For molecular nitrogen, N2, there will be twice as many basis

functions, corresponding to the two atomic sites.
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5.1.2.1 Single-centre expansion

For the single-centre expansion of the bound molecular orbitals of N2, we express

the wavefunctions in terms of spherical harmonics with l <= 30. As N2 is a di-

atomic molecule, there is rotational symmetry about the internuclear axis and or-

bitals have well-defined m. This means that, while we express each orbital in terms

of multiple spherical harmonics, all of the spherical harmonics for a given orbital

will have the same m values. In addition each orbital is either gerade or ungerade.

The gerade and ungerade status of the orbitals means that only the even or odd

spherical harmonics will contribute.

5.1.3 Molecular continuum orbitals

To calculate the molecular continuum orbitals of N2, we solve eqn (4.6) as discussed

in section 4.4. We find that convergence of the continuum orbital is achieved when

expressed in terms of spherical harmonics with l ≤ 19. This means that, for each

continuum energy, ε , we consider degenerate solutions with L≤ 19. Note that this L

does not correspond to angular momentum, it simply labels the different solutions

referred to in eqn (4.49). The gerade (ungerade) nature of the continuum orbital

means that only the even (odd) spherical harmonics will contribute to the orbital.

This also reduces the number of degenerate solutions.

For our calculations of N2 continuum orbitals, we assume the nuclei are fixed

at the equilibrium distance of N2, 2.08 a.u.. In addition, when we use the Laplace

multipole expansion [94] to express 1/|r−r′| in eqn (A.2), we expand up to k = 30,

as this value gave good convergence. We use an integration grid from r = 10−10 a.u.

to r = 40 a.u. with a step size of r = 0.01 a.u. and determine the a and b coefficients

for each calculation as discussed in Appendix B.

5.1.4 Dissociation

As we ionise nitrogen, we will produce charged ions. Some of these molecular

ions, particularly the higher-charged ions, are unstable and will dissociate. In the

dissociation process, the molecule splits into two atomic nitrogen fragments. In our

work, we assume that the nuclei are fixed at the equilibrium distance of N2, 2.08
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a.u. and account for the dissociation with additional terms in the rate equations. We

assume that all configurations of N4+
2 and configurations of N3+

2 without core holes

dissociate instantaneously into N2++N2+ and N2++N+, respectively [23, 55]. We

use a very large transition rate for the dissociation to approximate the instantaneous

dissociation. Following previous work [23, 55], we also assume that all electronic

configurations of N2+
2 dissociate, with a lifetime of 100 fs based on experimental

work [95]. N2+
2 fragments into N++N+ in 74% of cases and N2++N in 26% of

cases [95].

5.2 Rate comparisons

5.2.1 Photo-ionisation cross-sections
Ephoton(eV) 2σg→ εσu 2σg→ επu

Ref. [96] This Work Ref. [96] This Work
40 0.035 0.038 0.073 0.20
45 0.58 0.55 0.22 0.38
50 2.6 2.5 0.41 0.52
55 1.9 2.0 0.59 0.63
60 1.1 1.2 0.71 0.69
65 0.74 0.80 0.75 0.73
70 0.54 0.58 0.74 0.73
75 0.40 0.44 0.70 0.72
80 0.31 0.33 0.65 0.69

Table 5.1: Photo-ionization cross-sections for N2 transitions: columns 3 and 5 correspond
to our results and columns 2 and 4 correspond to previous calculations [96]

Using eqn. 4.70, we calculated the photo-ionisation cross-sections for several

transitions in N2 and compared them with previous calculations [96]. We find a

good agreement, as can be seen for the two cases considered in Table 5.1. Differ-

ences between our results and the results in ref. [96] might be due to the fact that in

ref. [96] the Hartee-Fock equations are solved with ai = 2 and bi = 1 for all orbitals

which is not the case in our calculations, see Appendix B.

5.2.2 Auger rates

Next, we compare our results for the Auger rates of N+
2 with a 1s core-hole, which

are computed using eqn (4.88), with the Auger rates calculated using a Green’s
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Final State Valence 1 Valence 2 This Work Ref. [97]
3Σ+

u 2σu 3σg 0.01 0.01
1Σ+

u 2σu 3σg 0.05 0.11
3Πu 3σg 1πux(1πuy) 0.01 0.01
1Πu 3σg 1πux(1πuy) 0.11 0.13
3Πg 2σu 1πux(1πuy) 0.02 0.03
1Πg 2σu 1πux(1πuy) 0.08 0.13
3Πu 2σg 1πux(1πuy) 0.03 0.01
1Πu 2σg 1πux(1πuy) 0.09 0.06
3Σ+

u 2σg 2σu 0.01 0.01
1Σ+

u 2σg 2σu 0.20 0.11
3Σ+

g 2σg 3σg 0.02 0.02
1Σ+

g 2σg 3σg 0.08 0.07
1Σ+

g 3σg 3σg 0.05 0.04
1∆g 1πux(1πuy) 1πux(1πuy) 0.09 0.12
1Σ+

g 1πux(1πuy) 1πuy(1πux) 0.03 0.01
1Σ+

g 2σu 2σu 0.05 0.13
1Σ+

g 2σg 2σg 0.07 0.02

Table 5.2: Ratio of each Auger transition for a 1s core-hole divided by the sum of all Auger
transitions for a 1s core-hole for N2

function method [97]. The 1s state corresponds to φ1s =
1√
2

(
φ1σg +φ1σu

)
. Using

the orthonormality of the molecular states, it follows that the 1s Auger rates are

obtained by averaging the 1σg and 1σu Auger rates. In the work in ref. [97], only

relative values of the Auger rates are given. Specifically, the ratio of each Auger

rate is given with respect to the the Auger rate for the transition to the 1Σ+
g state

with 3σg electrons filling in the core hole and being ejected to the continuum; we

denote this transition by 1Σ+
g (3σg3σg) . To compare the results in ref. [97] with

our values we divide each Auger transition by the sum of all Auger transitions for

a 1s core-hole state. The resulting values are shown in Table 5.2 and the overall

agreement is shown to be good. The agreement between some of the Auger rates

we compute in the current work and the Auger rates in ref. [97] is not as good. We

believe this is due to the different techniques employed to compute the Auger rates.

This is supported by further comparing Auger rates computed in the current work

with results for Auger rates given in ref. [97] and ref. [98]. In the latter work, the

author employs a configuration interaction calculation to compute the Auger rates
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Final State Valence 1 Valence 2 This Work Ref. [97] Ref. [98]
1Σ+

g 3σg 3σg 1.00 1.00 1.00
3Σ+

u 2σu 3σg 0.16 0.17 0.43
1Πu 3σg 1πux(1πuy) 2.39 3.37 1.57
1∆g 1πux(1πuy) 1πux(1πuy) 2.02 3.00 2.70
1Σ+

g 1πux(1πuy) 1πuy(1πux) 0.58 0.34 1.59
1Σ+

u 2σu 3σg 1.06 2.93 1.97

Table 5.3: Ratio of some of the Auger transitions for a 1s core-hole or N2 divided by the
Auger transition to the 1Σ+

g (3σg3σg) state

Auger Rate 1Σ+
g (3σg3σg)

1Σ+
u (2σu3σg)

Ref. [47] 1 1.17
Ref. [98] 1 1.97
Ref. [97] 1 2.93
This work 1 1.53
Experimental [47] 1 1.55(8)

Table 5.4: Combined Auger rates of transitions from the 1σg and the 1σu core hole molec-
ular states of N+

2 to the 1Σ+
g (3σg3σg) and 1Σ+

u (2σu3σg) states, respectively. The
rates are given relative to the 1Σ+

g (3σg3σg) transition rate.

of N+
2 with a 1s core hole. As in ref. [97], in ref. [98] only relative values of the

Auger rates are given.

In Table 5.3 we compare the ratio of some 1s Auger rates with the Auger rate

for the 1Σ+
g (3σg3σg) transition. We find that any two techniques agree for only

some of the transitions shown in Table 5.3. In these calculations for Table 5.2 and

Table 5.3 the Auger rates are split by the total spin of the final state, however, the

Auger rates used in the rate equations are summed over all allowed spin configu-

rations. This is because spin is not specified in the electronic configurations of the

molecular states.

In addition, in Table 5.4 we compare our values with the experimental and the-

oretical results in ref. [47] for the Auger transitions from the 1σg and the 1σu core

hole molecular states of N+
2 to the 1Σ+

g (3σg3σg) and 1Σ+
u (2σu3σg) states. We find

a very good agreement with the experimental values, while the agreement between

the results in ref. [97] and ref. [98] with ref. [47] is not as good. In Table 5.5, we

also compare the ratio of the transition rates from the 1σg and the 1σu core hole
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Γg/Γu 1Σ+
g (3σg3σg)

1Σ+
u (2σu3σg)

Ref. [47] 1.98 1.00
(This work) 2.02 0.97
Experimental [47] 2.15(11) 0.80(4)

Table 5.5: Relative Auger rates of transitions from the 1σg and the 1σu core hole molec-
ular states of N+

2 , labelled Γg and Γu, respectively, to the 1Σ+
g (3σg3σg) and

1Σ+
u (2σu3σg) states

molecular states of N+
2 . Again, we find a very good agreement with the experi-

mental values. Moreover, we find that the sum of all Auger rates corresponding

to a 1s core-hole is equal to 2.87× 10−3 a.u.. This value compares well with the

experimental value of 3.77×10−3 a.u. obtained in ref. [19].

5.3 Rate equations

In order to model the interplay of single-photon ionisations, Auger decays and dis-

sociative transitions, we use a system of rate equations. We have one rate equation

for each accessible state of atomic and molecular nitrogen. To account for the tran-

sitions between atomic states, we must also calculate the atomic photo-ionisation

cross-sections and Auger rates, following the procedures explained in chapter 2.

With the atomic and molecular photo-ionisation cross-sections and Auger rates, in

addition to the dissociation rates, we can now run rate equation calculations. We

do not include fluorescence transitions in the rate equations as they are negligible

compared to photo-ionisation and Auger decay rates [99]. Similarly, at x-ray en-

ergies, multi-photon processes will not contribute significantly. The rate equations

describing the percentage of the population I j(t) in a molecular ion state j take the

form
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d
dt

I j(t) = ∑
i

(
σi→ jJ(t)+Γi→ j

)
Ii(t) (5.1)

−∑
k

(
σ j→kJ(t)+Γ j→k

)
I j(t)−∑

n
κ j→n,pI j(t),

d
dt

Ai→ j = Γi→ jIi(t),

d
dt

Pi→ j = σi→ jJ(t)Ii(t).

σi→ j and Γi→ j are the molecular single-photon absorption cross section and Auger

decay rate, respectively, from the initial molecular state i to the final molecular state

j. The molecular states i, j and k have charges q-1, q and q+1, respectively. κ j→n,p

denotes the dissociation rate from the initial molecular state j with charge q to the

final atomic states n and p. The atomic states n and p have total charge equal to

q. For the dissociation cases currently considered, for each atomic final fragment

n there is only one atomic final fragment p. The first term in eqn (5.1) accounts

for the formation of the molecular state j through the single-photon ionization and

Auger decay of the molecular state i. The second term in eqn (5.1) accounts for

the depletion of the molecular state j by transitioning to a molecular state k through

single-photon ionization and Auger decay. The third term accounts for the depop-

ulation of the molecular state j through dissociation to the atomic states n and p.

These rate equations, eqn (5.1), are used to calculate the molecular ion yields. In

addition, in eqn (5.1), we solve for the Auger Ai→ j and the photo-ionization Pi→ j

yield from an initial molecular state i with charge q-1 to a final molecular state j

with charge q. The rate equations describing the populations of an atomic state n
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take the form

d
dt

In(t) = ∑
m
(σm→nJ(t)+Γm→n)Im(t) (5.2)

−∑
o
(σn→oJ(t)+Γn→o)In(t)+∑

j

κ j→n,p

2−δn,p
I j(t),

d
dt

Am→n = 2Γm→nIm(t),

d
dt

Pm→n = 2σm→nJ(t)Im(t),

where the indices n, m and o refer to atomic states with charges, q, q-1 and q+1, re-

spectively, while j refers to molecular states. The first term in eqn (5.2) accounts for

the formation of the atomic state n through the single-photon ionization and Auger

decay of the atomic state m. The second term in eqn (5.2) accounts for the deple-

tion of the atomic state n by transitioning to an atomic state o through single-photon

ionization and Auger decay. The third term in eqn (5.2) accounts for the population

of state n as a result of dissociative transitions from a molecular state j. The factor
1

2−δn,p
conserves the the total probability. Namely, if the molecular state results in

the same two atomic fragments the factor is equal to 1. If fragmentation results

in two different atomic fragments the factor is equal to 1
2 , since a rate equation is

formulated for each atomic fragment separately. This means that the actual atomic

populations are given by 2In. As in the molecular rate equations, in eqn (5.2), we

solve for the Auger Am→n and the photo-ionization Pm→n yields from an initial

atomic state i with charge q-1 to a final atomic state j with charge q. Here, we have

factors of two to account for the actual atomic populations being 2In. We note that

eqn (5.1) and eqn (5.2) are solved simultaneously. We obtain the molecular and

atomic ion yields long after the end of the laser pulse.

The three types of rate equations used to compute the population through a

specific pathway i→ j→ k are given by eqns (5.3-5.5)
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d
dt

Ii→ j→k(t) = (σ j→kJ(t)+Γ j→k)Ii→ j(t) (5.3)

−∑
l
(σk→lJ(t)+Γk→l)Ii→ j→k(t)−∑

n
κk→n,pIi→ j→k(t),

d
dt

Ii→ j→n(t) =
κ j→n,p

2−δn,p
Ii→ j(t) (5.4)

−∑
o
(σn→oJ(t)+Γn→o)Ii→ j→n(t),

d
dt

Ii→m→n(t) = (σm→nJ(t)+Γm→n)Ii→m(t) (5.5)

−∑
o
(σn→oJ(t)+Γn→o)Ii→m→n(t).

The indices i, j, k and l refer to molecular states whereas the indices m, n and o re-

fer to atomic states. Eqn (5.3) computes molecular pathway populations, eqn (5.4)

computes pathway populations where the final state is an atomic one, but the pre-

vious states were molecular. Pathway populations where the final and the previous

states are atomic ones are computed using eqn (5.5). Solving eqns (5.3-5.5), allows

us to register all energetically-allowed pathways.

5.3.1 Rate equation parameters

For our model, we constructed rate equations for each electronic state of molecular

or atomic nitrogen that is accessible by a 525 eV or 1100 eV photon energy FEL

pulse. There are 309 states that are accessible by a pulse with 1100 eV photons,

therefore we must solve 309 simultaneous rate equations to model the interaction of

N2 with an FEL pulse. For most calculations, we assume that the sample is localised

at a single point, such that there is no spatial variation in intensity. We compute the

rate equations between -200 fs and 1000 fs, this ensures that the entirety of the pulse

is included and gives all states additional time after the pulse ends to decay via the

Auger process or dissociate. We then measure the ion yields that are present 1000 fs
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Figure 5.1: Ionization pathways between the different electronic states of N2 up to N4+
2 that

are accessible with sequential single-photon ( h̄ω = 525eV ) absorptions and
Auger decays. The green and red lines indicate photo-ionization and Auger
transitions, respectively.

after the pulse maximum. The possible molecular transitions, up to N4+
2 , available

for a pulse with 525 eV photons interacting with N2 are shown below:
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5.4 Comparison of atomic ion yields with experiment
Now that we have constructed our model, it is important to verify the results we

obtain compare well with experiment. In our model, we have assumed that the

molecular nitrogen is located at the highest intensity point of the beam. To compare

with experimental data [55], we consider that N2 is spread over an area of varying

intensity. To replicate the conditions of the experiment, we take the FEL flux to be

given by

J(x,y, t) = ρ(x,y)Γph(t), (5.6)

where Γph(t) is the total rate of photons at time t and ρ(x,y) is the transverse beam

profile given by

ρ(x,y) =
4ln2

πρxρy
e
−4ln2[( x

ρx
)2+(

y
ρy

)2]
, (5.7)

with ρx = 2.2µm and ρy = 1.2µm being the FWHM in the x and y dimensions,

respectively. These values are chosen to match the parameters used in the exper-

iments we compare with [55]. The total rate of photons across the cross-section,

Γph(t), is given by

Γph(t) = Γph,0e−4ln2( t
τ
)2
, (5.8)

where τ is the FWHM of the pulse in time and Γph,0 is the peak rate of photons

given by

Γph,0 = 2

√
ln2
π

nph

τ
. (5.9)

nph = Ep/ω is the number of photons, each with energy ω , in a pulse with energy
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Figure 5.2: Charged atomic ion yields produced by various FEL pulses interacting with N2
integrated over a 10 µm by 10 µm area. The pulse parameters used for each
plot were a) pulse energy 0.15 mJ with 4 fs FWHM and 77% loss b) pulse
energy 0.26 mJ with 7 fs FWHM and 84% loss c) pulse energy 0.26 mJ with 80
fs FWHM and 70% loss. Our results are displayed with experimental results
[23, 55] for comparison.

Ep. To compare with this experiment, we must include the effects of photon beam

transport losses. To incorporate this, we multiply the pulse energy by a factor corre-

sponding to the losses reported in the experimental work [55]. We calculate the ion

yields on a grid of area 10 µm by 10 µm consisting of 31 points in x and 31 points

in y. To compute this, we find the intensity at each of these points and calculate the

ion yields generated by a pulse of that intensity. We then integrate the ion yields

over the area and normalise the values such that the sum of the charged atomic ion

yields is equal to 1. We perform this calculation for 4 fs, 7 fs and 80 fs pulses, so

as to compare with the experimental values used. The comparisons are displayed in

Fig. 5.2. We find that the ion yields calculated with our method are in agreement

with the experimental data for all pulse durations.

Having established that our model can reproduce experimental ion yields, we can

use it to investigate the dependence of the ion yields on the pulse parameters.

5.5 Ion yields
We calculated the atomic and molecular ion yields of nitrogen for four different

FEL pulses, assuming that initially only neutral N2 is populated. We considered

FEL pulses with either 525 eV or 1100 eV photons. For each energy, we calculated

the yields produced by a 4 fs or 80 fs FWHM pulse. The molecular yields are
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Figure 5.3: Molecular ion yields of N2 following one of four FEL pulses as a function of
the intensity of the laser pulse. The yield is given as a proportion of the total
population, a portion of which populates atomic states of nitrogen.

displayed in Fig. 5.3. There are only N2 and N+
2 molecular states present in the ion

yields as higher-charged states dissociate. We find that at low intensity, almost all of

the population is in neutral N2, as all transitions that depopulate this configuration

are dependent on the photon flux. As the intensity rises, the yield of N2 and N+
2

fall off dramatically, the intensity where this happens depends on the FWHM and

photon energy of the pulses. Comparing (a) and (b), we find that the longer pulse

causes the molecular ion yields to fall at a lower intensity than the short pulse. This

is due to the increased total photon flux which results in an increased number of

photo-ionisation transitions. The effect of the photon energy is seen by comparing

(a) and (c). For a photon energy of 525 eV the molecular ion yields drop at a

lower intensity than for a 1100 eV photon energy. There are two reasons for this,

one is that a lower photon energy, for a fixed intensity, gives a higher photon flux,

the other reason is that the lower energies are closer to the ionisation energies and

therefore give larger photo-ionisation cross-sections. Both of these effects lead to
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Figure 5.4: Atomic ion yields of N2 following one of four FEL pulses as a function of the
intensity of the laser pulse. The yield is given as a percentage of the total atomic
and molecular population.

higher photo-ionisation transition rates and increase the rate at which the N2 and

N+
2 configurations are depopulated.

The atomic ion yields are displayed in Fig. 5.4 for the same set of pulses

as in Fig. 5.3. We see that more population reaches the higher-charged states as

we increase intensity. However, the intensity at which the peak yields are reached

varies between pulses, as the pulses give different photo-ionisation transition rates.

Comparing (b) and (d), we can see the effect of photon energy on the ion yields. The

pulse with 1100 eV photon energy requires a larger intensity than the pulse with 525

eV photon energy for similar ion yields. This is due to a larger photon flux, given by

intensity divided by the photon energy, and a large photo-ionisation cross-section,

as the lower energies are closer to the ionisation energies. If we compare (c) and (d),

we see the effect of the pulse duration on the atomic ion yields. The longer pulse

will produce larger yields of higher-charged atomic ions than the shorter pulse. This
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is due to the increased total photon flux during the 80 fs pulse, compared to the 4

fs pulse. There are other interesting features in this figure that we do not find in the

molecular ion yields. At low intensity, most obviously in (a) and (c), we see that

the N and N2+ yields are nearly identical. This is because the only way to produce

neutral atomic nitrogen is via the dissociation of N2+
2 → N+N2+ and, for short,

low intensity pulses, there will be few atomic transitions as dissociation typically

occurs after the pulse ends. We also see that the gradients of the N, N+ and N2+

ion yields are very similar at low intensities, as they are primarily populated by the

dissociation of N2+
2 .

We also find that the N7+ yields of Fig. 5.3(d), where N6+ is the dominant

yield at high intensity, as opposed to (b) where N7+ is the dominant yield at the

highest intensities. This is due to a subset of the core photo-ionisation transitions in

atomic nitrogen, which are energetically accessible with 1100 eV photons, but not

with 525 eV photons. This means that if the only remaining electron in N6+ is a

core electron, it can’t be ionised by 525 eV photons.

5.6 Pathways

We now focus on the DCH states of molecular nitrogen, which have interesting

properties for chemical analysis. However, these states decay rapidly, so the resul-

tant ion yields at the end of the pulse will not have any DCH states present. This

means that we have to identify other observables that indicate DCH formation. To

do this, we calculate the pathways that populate different configurations and the

population involved in each pathway. This gives us the percentage of the popula-

tion in each ion yield that has accessed a DCH state during the interaction with the

FEL pulse.
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Figure 5.5: Atomic ion yields produced by N2 interacting with FEL pulses with various
pulse parameters. The ion yields are divided into two types, the red portion is
the contribution of pathways that involve at least one DCH state of molecular
nitrogen. The blue portion is the contribution of pathways that don’t include
any molecular states with more than one core hole.

In Fig. 5.5 we have plotted the atomic ion yields produced by four different

FEL pulses. Further, we have identified the contributions of pathways involving

molecular DCH states and those involving only a molecular SCH state. By compar-

ing (a) and (b) or (c) and (d), we find that the higher intensity pulses produce higher

atomic ion yields. We also find that pathways involving molecular DCH states

contribute significantly more to these ion yields. This is due to the high intensity

requirement to photo-ionise a second core electron, before Auger decay can take

place. This means that, at low intensity, it is very difficult to produce DCH states.

Comparing (a) and (c), we also find that, for a given intensity, reducing the photon

energy leads to higher DCH state contributions and higher overall ion yields. This

is due to higher photon flux and photo-ionisation cross-sections for 525 eV photon

energy.
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Calculating the pathway contributions also allows us to determine the dom-

inant pathways that populate different ionic states. This reveals important infor-

mation about the transitions that take place during the FEL pulse, which may not

be obvious from experimental measurements. We identify the dominant pathways

and determine which ones involve DCH states. We calculated the contributions of

each type of pathway to the N, N+, N2+, N3+ and N4+ atomic ion yields for a

1017 Wcm−2, 4 fs pulse with 525 eV photon energy. These contributions are dis-

played in Table 5.6, where core and valence photo-ionisations are denoted as PC

and PV, respectively. AVV refers to Auger transitions in which a valence electron

fills in the core hole and another valence electron is ejected, ACV refers to Auger

transitions in which one of these electrons is a core electron. These ACV are known

as Coster-Kronig transitions [57] and they are a type of Auger transition that pre-

serves the number of core holes, leading to further Auger decay. D denotes the

dissociation of molecular states of nitrogen into atomic states.

N PCAVVD 94%

N+ PCAVVD 85%

N2+ {PCPC +AVV +ACV/AVV/PC}D 62%
N2+ PCAVVPCAVVD 21%

N3+ {PCPC +AVV +ACV/AVV/PC}DAVV 79%

N4+ {PCPC +AVV +ACV/AVV/PC}D{PC/AVV +AVV} 73%
N4+ PCAVVPCAVVDPCAVV 9%

Table 5.6: The percentage contributions to the atomic ion yields up to N4+ of the dominant
pathways of ionisation for a 4 fs FWHM, 525 eV photon energy and an inten-
sity of 1017 Wcm−2 FEL pulse. The pathway before the dissociation, D, is the
molecular pathway of ionisation

We can see from this table that the primary contributions to the N and N+ ion

yields are from PCAVVD pathway. In this pathway, a core hole is created by the PC

transition and this hole is then filled in via Auger decay. The resultant N2+
2 state then

dissociates into either N++N+ or N2++N with no core holes. As only one core

hole is created in this pathway, no DCH states are accessed. This is consistent with

what we see in Fig. 5.5 where there are negligible contributions to these ion yields
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from DCH states. Conversely, the N2+, N3+ and N4+ are all dominated by pathways

that feature a DCH state, as evidenced by the PCPC sequence of transitions. There

are also significant contributions to N2+ and N4+ from pathways that don’t involve

a DCH state. Indeed, with no DCH states, the pathway PCAVVPCAVVD contributes

21% of the population in the N2+ yield and the PCAVVPCAVVDPCAVV pathway

contributes 9% of the population in the N4+ ion yield.

5.7 Electron spectra

While the pathway contributions give us interesting information, they can’t be mea-

sured experimentally. Instead, we look at the electron spectra for evidence of the

transitions that have taken place. In Fig. 5.6, we plot the electron spectra generated

by molecular nitrogen interacting with four different FEL pulses at an intensity of

1017Wcm−2. We consider pulses with either 525 eV or 1100 eV photon energy and

we consider 4 fs and 80 fs pulse durations for each pulse energy. In (c), the 525 eV

4 fs case, we find a substantial spectral line at 55 eV from photo-ionisations involv-

ing DCH states (yellow line), which provides measurable evidence of the formation

of a DCH state. There is a larger electron yield at 105 eV from DCH transitions

(yellow line), however the overlap with other transitions (green lines) means that

this would be difficult to measure experimentally. Comparing (a) and (c), we see

that the 525 eV photon energy pulse ionises a lot more electrons than the 1100 eV

photon energy pulse. This is due to the higher photon flux and photo-ionisation

cross-sections, leading to more photo-ionisations. This creates core holes, which

lead to Auger decays and higher-charged molecular states that then dissociate.

Comparing (a) and (b) or (c) and (d), reveals the effect of increasing the pulse

duration. The longer pulse duration increases the overall number of transitions. It

also causes a large increase in atomic photo-ionisation and Auger transitions, as the

longer pulse duration allows transitions to continue after the dissociation has taken

place. An additional effect that we note, when comparing (c) and (d), is the reduced

DCH photo-electron yield for the longer pulse. This effect is due to the slow build

up of intensity in the 80 fs case, which allows the SCH states to Auger decay before
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Figure 5.6: Electron spectra produced by the interaction of N2 with FEL pulses at an inten-
sity of 1017 Wcm−2 with various pulse parameters.

the necessary intensity for DCH states is reached. Conversely, if we compare (a)

and (b), there is a larger contribution to DCH photo-electron yield in the 80 fs case

(yellow lines). In this case, the effects of increasing the total photon flux are much

larger than the effects of the depopulation during the intensity build up.

5.8 Summary

In this chapter, we investigated the interaction of molecular nitrogen with FEL ra-

diation. We computed molecular continuum orbitals in the single-centre expansion

scheme and used these orbitals to compute the Auger rates and single-photon ion-

ization cross-sections for molecular nitrogen. Formulating rate equations for all

energetically accessible molecular and atomic transitions, we investigated the de-

pendence of the final ion yields on the parameters of the FEL pulse. Moreover, we

studied the contribution of the DCH molecular states to the final atomic ion yields.

We found that for a relatively small photon energy of 525 eV, DCH molecular states
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contribute significantly to the formation of the final atomic ion fragments at inter-

mediate intensities. For an FEL pulse with 1100 eV photon energy, we find that

a much higher intensity is needed in order for the DCH molecular states to sig-

nificantly contribute to the final atomic ion fragments. Finally, we computed the

contribution of Auger electrons and photo-electrons in the electron spectra. Our

results show that the electrons removed by single-photon core ionization processes

allow us to detect the formation of DCH molecular states in the electron spectra.



Chapter 6

Double and triple-core-hole states in

molecular nitrogen

In the previous chapter, we calculated the contribution of pathways involving

double-core-hole (DCH) states to the final atomic ion yields generated by molecular

nitrogen interacting with an FEL pulse. However, there are two types of DCH states

in molecules. Single-site double-core-hole states (SSDCH), with both core holes on

the same site and two-site double-core-hole states (TSDCH), with the core holes on

different sites. TSDCH states are of particular interest as they are very sensitive to

their chemical environment [13, 14, 15, 16]. These states have been the subject of a

significant amount of experimental work [17, 18, 19, 20, 21]. There have also been

theoretical studies which calculate the contribution of TSDCH states to the final ion

yields by treating each atom in the molecule independently [22, 23].

To understand the production and detection of these states, we again model

the interaction of molecular nitrogen with an FEL pulse using molecular orbitals.

In this chapter, we determine the percentage of the population of each DCH state

that is in either a TSDCH or a SSDCH state. We also calculate the percentage of

the population which accesses triple-core-hole (TCH) states, which, in molecular

nitrogen, will always contain core holes on both atomic sites.
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6.1 Projection of delocalized molecular orbitals onto

orbitals localized on atomic sites
As in section 5, we use molecular orbitals to obtain the final atomic ion yields and

the populations of the pathways from the rate equations. We note that the use of

molecular bound state orbitals is important for obtaining electron spectra. Indeed, it

has been shown that with high-resolution electron spectroscopy one can observe the

energy splitting of the molecular core-hole states 1σg and 1σu [54, 56, 100, 101].

In order to determine whether a pathway accesses a TSDCH molecular state or

a SSDCH molecular state during the interaction of N2 with an FEL pulse, it is

necessary at each time step of the propagation to project the delocalized inner-shell

molecular orbitals onto inner-shell orbitals localized on atomic sites. We denote the

DCH molecular states that involve the inner-shell molecular orbitals 1σg and 1σu

by |1σg1σg〉, |1σg1σu〉, |1σu1σg〉 and |1σu1σu〉.

The delocalized molecular orbitals are expressed in terms of orbitals localized

on atomic sites by |1σg〉 = 1√
2
(|1sa〉+ |1sb〉) and |1σu〉 = 1√

2
(|1sa〉− |1sb〉) where

|1sa〉 and |1sb〉 are |1s〉 orbitals localized on the atomic sites a and b of N2, respec-

tively. At every time step, we check whether a DCH molecular state |1σg1σg〉,

|1σg1σu〉 or |1σu1σu〉 has been accessed. Expressing the DCH molecular state

|1σg1σg〉 in terms of orbitals localized on atomic sites, we obtain the following:

|1σg1σg〉=
1
2
[|1sa〉|1sa〉+ |1sa〉|1sb〉+ |1sb〉|1sa〉+ |1sb〉|1sb〉] , (6.1)

|〈1sa1sa|1σg1σg〉|2 = |〈1sa1sb|1σg1σg〉|2

= |〈1sb1sa|1σg1σg〉|2 = |〈1sb1sb|1σg1σg〉|2 =
1
4
.

(6.2)

Thus, the formation of a DCH molecular state |1σg1σg〉 corresponds to 50% proba-

bility of accessing a SSDCH molecular state, i.e. the |1sa1sa〉 or the |1sb1sb〉 state,

and 50% probability of accessing a TSDCH molecular state, i.e. the |1sa1sb〉 or the
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|1sb1sa〉 state. One can show that the same probabilities are obtained for the DCH

molecular state |1σu1σu〉.

Next, we show that the DCH molecular state |1σg1σu〉 corresponds to different

probabilities of accessing a SSDCH molecular state versus a TSDCH molecular

state depending on the spin of the state. Denoting by S and T the spatial part of a

singlet or triplet DCH molecular state, respectively, we obtain

|1σg1σu〉S/T =
1√
2
(|1σg〉|1σu〉± |1σu〉|1σg〉) . (6.3)

Expressing the spatial part of the DCH molecular state |1σg1σu〉T in terms of or-

bitals localized on the atomic sites, we obtain

|1σg1σu〉T =
1√
2
(|1sb〉|1sa〉− |1sa〉|1sb〉) , (6.4)

and

|〈1sa1sb|T |1σg1σu〉T |2 = 1. (6.5)

and, thus, this state corresponds to 100% probability of occupying a TSDCH molec-

ular state. Similarly, expressing the DCH molecular state |1σg1σu〉S in terms of

orbitals localized on the atomic sites, we obtain:

|1σg1σu〉S =
1√
2
(|1sa〉|1sa〉− |1sb〉|1sb〉) , (6.6)

|〈1sa1sa|1σg1σu〉S|2 = |〈1sb1sb|1σg1σu〉S|2 =
1
2
. (6.7)

and, thus, this state corresponds to 100% probability of occupying a SSDCH molec-
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ular state. Taking into account that a DCH molecular state has 75% probability to

be in the |1σg1σu〉T state and 25% to be in the |1σg1σu〉S state, based on the multi-

plicities of the singlet and triplet states [61], it follows that the DCH state |1σg1σu〉

has 75% probability to access a TSDCH molecular state and 25% probability to

access a SSDCH molecular state. The above probabilities are incorporated at every

time step of our computations in order to calculate the probability of pathways that

access TSDCH and SSDCH molecular states during the interaction of N2 with an

FEL laser pulse.

6.2 Electron spectra
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Figure 6.1: Electron spectra resulting from the interaction of N2 with a 4 fs FWHM FEL
pulse (a) with 525 eV photon energy and peak intensity of 1017 Wcm−2 and
(b) with 1100 eV photon energy and peak intensity of 1018 Wcm−2. DCH
ug denotes transitions involving states with a 1σg electron and a 1σu electron
missing. DCH gg/uu denotes the electron yield from transitions involving a
state with two 1σg or two 1σu electrons missing. Photo Mol (nCH) and Auger
Mol (nCH), with n the number of core holes, denote single-photon ionisation
and Auger transitions, respectively, that involve molecular states with no more
than n core holes. The label “other” refers to transitions that involve molecular
states with either no core holes or a single core hole.

Using the rate equations, we calculate the electron spectra of all atomic and

molecular transitions for N2 interacting with two different FEL pulses. In Fig. 6.1

(a) we show the electron spectra produced by a 1017 Wcm−2, 4 fs FEL pulse with

525 eV photon energy. The pulse in Fig. 6.1 (b) also has a 4 fs duration, but has 1100

eV photon energy and a peak intensity of 1018 Wcm−2. We choose this duration be-
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cause our calculations are most accurate for short duration and high intensity pulses,

as we treat the nuclear motion via transitions in the rate equations, as described in

section 5.3. Importantly, this pulse duration is experimentally accessible [55]. The

1017 Wcm−2 and 1018 Wcm−2 intensities are chosen as they produce large electron

yields for transitions involving DCH states. In both cases, the transitions that in-

volve a |1σg1σu〉 state or a TCH molecular state can not be easily discerned. These

transitions would give the strongest evidence of the production of states with core

holes on more than one site. We can discern electron yields corresponding to transi-

tions involving a |1σg1σg〉 or a |1σu1σu〉 DCH state at 55 eV kinetic energy for the

525 eV FEL pulse and at 630 eV for the 1100 eV FEL pulse. Unfortunately, these

DCH states are TSDCH states in only 50% of cases and SSDCH states otherwise.

This means that the electron spectra cannot give evidence of the production of a

state with core holes on more than one atomic site. However, if we performed these

calculations accounting for fine structure we find, from eqn (6.5) and eqn (6.7), that

the electron spectra could give evidence of TSDCH states.

6.3 Ion yields
We calculate the ion yields produced by the interaction of molecular nitrogen with

an FEL using the rate equations. To determine the contributions from different

types of core hole states, we keep track of the population in each state that came via

a SCH, SSDCH, TSDCH or TCH state. We then compile this into ion yields, split

by the different type of core hole state.

6.3.1 Comparison with experimental and theoretical results

In Fig. 6.2, we compute the atomic ion yields produced by an FEL pulse interacting

with molecular nitrogen for three different pulses with various pathways closed.

The yields are compared with experimental values [55] and another computational

work [23], which treats the molecule as two independent atoms. Using the method

outlined in section 5.4, we calculate the FEL flux on a grid of area 10 µm by 10

µm, with 31 points in the x direction and 31 points in the y direction, and use these

values to obtain the atomic ion yields. We then integrate these ion yields over the
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area and normalise such that the sum of the charged atomic ion yields is 1. We then

compare this integrated ion yield with the experimental and theoretical work.
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Figure 6.2: Atomic ion yields for molecular nitrogen interacting with FEL pulses of (a)
pulse energy 0.15 mJ with 4 fs FWHM and 77% loss (b) pulse energy 0.26 mJ
with 7 fs FWHM and 84% loss (c) pulse energy 0.26 mJ with 80 fs FWHM
and 70% loss. Our results are compared with the experimental results in Ref.
[23, 55]. Atomic ion yields are obtained with all pathways accounted for as
well as with certain pathways excluded and are compared with other theoretical
results [23].

In Fig. 6.2, we have calculated the atomic ion yields with all pathways allowed

(red) and they compare very well with the experimental yields [55] (black) and the

other computational work [23] (dark red). We also compare the atomic ion yields

generated by pathways that only involve SCH molecular states (light blue) with the

equivalent calculation from the other computational work (dark blue) and again we

find a good agreement. The ion yields generated by only the SCH and TSDCH

pathways are also calculated and our values (light green) compare well with other

calculations (dark green) that have the same pathways restricted. This suggests

that we correctly account for the percentage of the population that passes through a

TSDCH state.

We find that the yields calculated with multiple-core-hole pathways restricted

have lower high-charge ion yields and the N+ ion yield increases as we exclude

more pathways. This is expected as the pathways that involve multiple-core hole

states will primarily populate the higher-charged atomic ion yields. This effect is

diminished in the 80 fs case (c) because the multiple-core-hole pathways have lower

contributions in longer pulses.
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6.3.2 Contribution of SSDCH, TSDCH and TCH molecular

states in atomic ion yields.
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Figure 6.3: Atomic ion yields produced by various FEL pulses interacting with molecular
nitrogen. The ion yields are split into the contributions of pathways accessing
SCH, SSDCH, TSDCH and TCH molecular states.

In Fig. 6.3, for different FEL pulses, we compute the final atomic ion yields

as well as the contribution of SCH, TSDCH, SSDCH and TCH molecular states to

each of the final atomic ion yields. In Fig. 6.3 (a) and (c), we find that for short

duration, 4 fs FWHM, and high intensity FEL pulses, 49% and 56% of all pathways

contributing to all final atomic ion yields are pathways that have accessed TSDCH

and TCH molecular states. Moreover, we find that the contribution of pathways that

access TSDCH and TCH molecular states increases for higher-charged atomic ion

states. The is because the contribution of pathways where two single-photon ion-

izations take place sequentially, i.e. before an Auger process takes place following

the first single-photon ionization, is larger for atomic ions N3+ and N4+ compared

to N2+. For instance, the contribution of pathways that have accessed SSDCH, TS-

DCH or TCH molecular states account for roughly 90% of the N5+ yield for the
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short duration and intense FEL pulses, see Fig. 6.3(a) and (c). For the long duration

of 80 fs FWHM and small intensity FEL pulses, we find that no more than 10% of

all pathways contributing to the atomic ion yields are pathways that have accessed

SSDCH, TSDCH and TCH molecular states. In addition, the atomic ion yields of

the higher-charged states have much larger values for the 80 fs pulse rather than

for the 4 fs FWHM FEL pulse. This is reasonable since for the long duration FEL

pulse more single-photon ionization processes take place leading to the formation

of higher charged atomic ions.

6.4 Dependence of DCH and TCH molecular states

on intensity.
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Figure 6.4: Proportion of populations that access different core-hole states of N2 when
driven with a 4 fs FWHM and 525 eV (a) or 1100 eV (b) FEL pulse as a
function of intensity.

In Fig. 6.4, we plot the population of pathways that accesses SCH, SSDCH,

TSDCH and TCH molecular states as a function of intensity for a 4 fs FEL pulse

for 525 eV photon energy (a) and for 1100 eV photon energy (b). We find that for

the 525 eV (1100 eV) FEL pulse most of the population accesses multiple-core-hole

molecular states for intensities above 1017 Wcm−2 (1018 Wcm−2). The intensity is

higher for the higher photon energy pulse since the single-photon ionisation cross

sections are higher for the smaller photon energy FEL pulse. Moreover, we find that

the contribution of TCH molecular states compared to TSDCH molecular states is
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higher for the 1100 eV rather than for the 525 eV FEL pulse for high intensities.

The reason for this, is that more molecular states are energetically accessible with

the 1100 eV photon energy FEL pulse.

6.5 Summary
Extending the theoretical framework of Chapter 5, we have computed the contri-

bution to the final atomic ion yields of pathways that access SSDCH, TSDCH and

TCH molecular states. We have identified the most effective duration and inten-

sity of a 525 eV and a 1100 eV FEL pulse in order to maximize the contribution

of pathways that access SSDCH, TSDCH and TCH molecular states. Future work

including the effects of fine structure could allow us to explicitly detect TSDCH or

SSDCH states, based on section 6.1.



Chapter 7

Conclusion

In this dissertation, we explored the interplay of single-photon ionisations and

Auger transitions that take place due to a free-electron laser (FEL) interaction with

an atom or molecule. To understand the transitions that occur during such an FEL

interaction, we modelled this process computationally using rate equations. To ac-

count for the transitions in these models, it was necessary to calculate the Auger

rates and photo-ionisation cross-sections for all accessible transitions. We also con-

sidered the effects of dissociative transitions in our molecular model. These models

allowed us to investigate the formation of multiple-core-hole states that are pro-

duced by sequential core single-photon ionisations. We have addressed why these

states are interesting and their potential use as a basis for spectroscopic measure-

ments.

To better understand the interplay of photo-ionisation and Auger decay, as well

as to create the groundwork for further work, we began by modelling FEL interac-

tions with atoms. This involved calculating Auger and photo-ionization transition

rates and using these rates to construct a set of rate equations. The spherical symme-

try of atoms implies that these calculations were computationally and conceptually

simpler than their molecular equivalents. Using our model of atomic interactions

with FEL pulses, we were able to calculate the ion yields and electron spectra pro-

duced by argon interacting with various FEL pulses. Using the ion yields, we were

able to observe the difference between the population of odd and even-charged ions

of argon. Further, by calculating the pathway populations, we found that this was
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caused by the combination of core photo-ionisation and Auger decay transitions.

We investigated how the odd-even disparity changed with increasing photon energy

and found that the number of energetically-accessible core ionisations determined

the extent of this pattern. We found that, for the pulses we considered, the odd-even

disparity extended up to ion yields with charge equal to twice the number of core

holes available. However, as we increased the photon energy, we also saw the emer-

gence of Coster-Kronig transitions. By considering the pathways through which the

ion yields are reached, we could see the effect of these Coster-Kronig transitions in

populating odd-charged ion yields, reducing the difference between the odd and

even-charged ion yields.

After computing FEL transitions with atoms, we studied FEL transitions with

molecules. We calculated the single-photon ionisation cross-sections and the Auger

decay rates using molecular bound and continuum orbital wavefunctions. By com-

puting the molecular continuum orbital wavefunctions, our calculations should be

more accurate that calculations using atomic continuum orbital wavefunctions. The

use of molecular continuum orbitals should be most relevant for transitions that

emit low energy electrons, as these electrons will spend more time in the molecu-

lar potential. To account for the breakdown of the molecular ions, we introduced

dissociative transitions, in addition to the Auger and photo-ionization transitions.

The molecular model was much more involved computationally and theoretically

due to the non-spherical symmetry of the molecular orbitals, necessitating the use

of single-centre-expansions to express the wavefunctions in terms of components

with well-defined angular momentum. With the techniques described in chapter 5,

we were able to determine the atomic and molecular ion yields produced in these

interactions, as well as the electron spectra emitted. We found that the atomic ion

yields we obtained had very good agreement with experiments. By varying our

pulse, we also investigated the effects, on the ion yields, of changing the intensity,

pulse length and photon energy. We found that long high-intensity pulses produced

more highly-charged ions than short or low-intensity pulses. We also found that the

pulses with photon energy closer to the core ionisation energies produced signifi-
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cantly more highly-charged ions than the pulses with a higher photon energy, for a

given intensity and length.

In addition, we were able to calculate how the molecular population transi-

tioned through different intermediate states to reach these final states. These path-

way calculations allowed us to determine the proportion of the population which

accesses unstable short-lived states, in particular the ones containing multiple core

holes. We found that the proportion of the population which accessed double-core-

hole states was highly dependent on the intensity and the photon energy. High

intensity and low photon energy significantly increased the proportion of the popu-

lation which accessed these states with two core holes.

With the projection onto localised atomic orbitals, described in chapter 6, we

determined the proportion of the population which accessed two-site or single-site

double-core-hole states. This allowed us to determine the percentage of the popu-

lation that accessed states with a core hole on each atomic site. As expected, we

found that this percentage was greatest for short, high intensity pulses with low

photon energy. However, due to the nature of this projection, we were unable to

provide an observable which would allow the detection of these states.

The aim of this thesis has been to study the production and detection of

multiple-core-hole states resulting from FEL interactions with atoms and molecules.

By using the pathway rate equations, we were able to ascertain the proportion of the

population that accesses various core-hole states in atoms and molecules. By vary-

ing the pulse parameters, we could also investigate the conditions which favour the

production of these states. By calculating the electron spectra produced in FEL

interactions with matter, we also determined observable values which indicate the

production of various multiple-core-hole states. However, due to the nature of our

model, the subset of these states with the most interest [13, 14], two-site double-

core-hole states, could not be explicitly detected using our methods.

In future work, we will build on this model by accounting for the nuclear

motion of the molecule and treating the dissociative transitions as a gradual pro-

cess changing the internuclear separation of the molecule. This will require post-
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Hartree-Fock techniques for calculating the molecular wavefunctions, as HF meth-

ods are inaccurate at large inter-nuclear distances. These post-Hartree-Fock tech-

niques mean that we will work with more complex wavefunctions and would pose

additional computational and conceptual challenges. However, they will also give

more accurate wavefunctions and allow us to calculate the wavefunctions during

dissociation.

As mentioned in chapter 6, it would also be interesting to include the effects

of fine-structure in our wavefunction calculations. While we have summed over the

different spin combinations in this work, there are differences in the Auger rates

for triplet and singlet states and accounting for this would improve our model. In

addition, the inclusion of fine-structure would allow us to uniquely identify whether

double-core-hole states had core holes on one or two atomic sites from their delo-

calised wavefunctions. This would allow us to use the electron spectra produced by

our model as an indicator of the production of two-site double-core-hole states.

An additional area of interest for future work is the modelling of different

molecular interactions with FEL pulses. In this work, we have considered only

one molecule, diatomic nitrogen. While our model was designed to work with

homonuclear diatomic molecules, by making modifications to our model, we could

simulate the interactions of a variety of molecules with FEL pulses.



Appendix A

Molecular continuum wavefunction

calculations

The molecular single-centre coefficients (SCCs) of a molecular continuum wave-

function are found by solving eqn (4.6). This equation depends on three compo-

nents, the electron-nuclei interaction, V ne
lm,l′m′(r), the direct interaction, Jee

lm,l′m′(r)

and the exchange interaction Xlm[P̂ε ](r). In section 4.3, we summarised these com-

ponents, but did not offer a derivation of the terms. Below, we detail the full deriva-

tion of the components.

A.1 Electron-nuclei interaction

This term describes the Coulomb attraction between the positively-charged nuclei

and the negatively-charged electrons. From eqn (4.6), we can write this component

as

V ne
lm,l′m′(r) =

∫
Y ∗lm(θ ,φ)

nuc.

∑
α

(−Zα)

|r−Rα |
Yl′m′(θ ,φ)dΩ, (A.1)

where Zα is the charge of the nucleus α and Rα its position in space. Substituting
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the Laplace multipole expansion [94]:

1
|r−Rα |

= ∑
kq

4π

2k+1
rk
<

rk+1
>

Ykq(θ ,φ)Y ∗kq(θα ,φα), (A.2)

where r< = min(r,Rα) and r> = max(r,Rα), in eqn. (A.1) results in,

V ne
lm,l′m′(r)=−

nuclei

∑
α

Zα ∑
kq

4π

2k+1
rk
<

rk+1
>

Y ∗kq(θα ,φα)
∫

Y ∗lm(θ ,φ)Ykq(θ ,φ)Yl′m′(θ ,φ)dΩ,

(A.3)

The integral over three spherical harmonics is given by [94],

∫
Ylm(θ ,φ)Ykq(θ ,φ)Yl′m′(θ ,φ)dΩ =

√
(2l +1)(2k+1)(2l′+1)

4π

×

 l k l′

0 0 0

 l k l′

m q m′

 ,

(A.4)

where double row of triples in brackets denote Wigner-3j symbols [60]. Using

Y ∗lm(θ ,φ) = (−1)mYl−m(θ ,φ), eqn. (A.4) and eqn. (A.3) can be written as

V ne
lm,l′m′(r) =−

nuclei

∑
α

Zα(−1)m
√

(2l +1)(2l′+1)

×∑
kq

 l k l′

0 0 0

 l k l′

−m q m′

√ 4π

2k+1
Y ∗kq(θα ,φα)

rk
<

rk+1
>

,

(A.5)

thus obtaining the general expression for V ne
lm,l′m′(r).
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A.2 Direct interaction

From eqn. (4.6), the direct interaction term is,

Jlm,l′m′(r) =
∫

Y ∗lm(θ ,φ)∑
i

ai

∫
dr′

φi(r′)φ∗i (r′)
|r− r′|

Yl′m′(θ ,φ)dΩ. (A.6)

With the use of the Laplace expansion in eqn (A.2), the above expression becomes

Jlm,l′m′(r) = ∑
i

ai ∑
l2m2,l3m3,

kq

4π

2k+1

∫
Y ∗l2m2

(θ ′,φ ′)Ykq(θ
′,φ ′)Yl3m3(θ

′,φ ′)dΩ
′

×
∫

Y ∗lm(θ ,φ)Y
∗
kq(θ ,φ)Yl′m′(θ ,φ)dΩ

∫
∞

0

rk
<

rk+1
>

P∗i,l2m2
(r′)Pi,l3m3(r

′)dr′.

(A.7)

Using Y ∗lm(θ ,φ) = (−1)mYl−m(θ ,φ) and eqn (A.4), we obtain

Jlm,l′m′(r) = ∑
i

ai ∑
l2m2,l3m3,

kq

(−1)m+m2+q√(2l +1)(2l′+1)(2l2 +1)(2l3 +1)

×

l2 k l3

0 0 0

 l2 k l3

−m2 q m3

 l k l′

0 0 0

 l k l′

−m −q m′


×
∫

∞

0

rk
<

rk+1
>

P∗i,l2m2
(r′)Pi,l3m3(r

′)dr′.

(A.8)

Using the following symmetry relations [60]

 l k l′

m q m′

= (−1)l+k+l′

 l k l′

−m −q −m′

 (A.9)
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and

 l k l′

m q m′

= (−1)l+k+l′

k l l′

q m m′

 , (A.10)

eqn (A.8) can be rewritten as

Jlm,l′m′(r) = ∑
i

ai ∑
l2m2,l3m3,

kq

(−1)m2+m′√(2l +1)(2l′+1)(2l2 +1)(2l3 +1)

×

l2 k l3

0 0 0

 l2 k l3

−m2 q m3

l′ k l

0 0 0

 l′ k l

−m′ q m


×
∫

∞

0

rk
<

rk+1
>

P∗il2m2
(r′)Pil3m3(r

′)dr′.

(A.11)

Here, we have used q = m′−m to simplify the expression for the sign. This follows

as the bottom row of all non-zero Wigner-3j symbols must equal zero [60].

A.3 Exchange interaction

The exchange interaction [102] is a quantum mechanical effect that takes into ac-

count the interaction of different spin symmetries. All two-electron wavefunctions

must be anti-symmetric, as electrons are fermions [103]. This means that the spin

symmetry will determine the spatial symmetry and the different spatial symmetries

will have different energies. Anti-symmetric spatial wavefunctions will tend to zero

as the separation goes to zero. As a result the expectation value of the distance

between these electrons will be higher than in the case with a symmetric spatial

wavefunction. Thus, a triplet state has lower energy than a singlet.

The exchange interaction has the effect of a non-local potential [104]. This

means that the potential acting on the electron depends on the wavefunction of the

electron at all points in the region of the non-locality [105]. Mathematically, we de-

fine the contribution of the exchange interaction with a functional of the continuum
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orbital wavefunction. As the continuum orbital depends on the energy, the contri-

bution of the exchange interaction is also energy dependent. The exchange term is

given by

Xlm[P̂ε ](r) =
∫

Y ∗lm(θ ,φ)∑
l′m′

orb.

∑
i

bi

∫
dr′

φ∗i (r′)Pεl′m′(r′)
|r− r′|

φi(r)Yl′m′(θ
′,φ ′)dΩ.

(A.12)

Expressing the bound wavefunctions using a SCE and using eqn (A.2), we can

express the exchange term as

Xlm[P̂ε ](r) = ∑
l′m′

orb.

∑
i

bi ∑
l2m2,l3m3,

kq

4π

2k+1

∫
Y ∗l2m2

(θ ′,φ ′)Ykq(θ
′,φ ′)Yl′m′(θ

′,φ ′)dΩ
′

×
∫

Y ∗lm(θ ,φ)Y
∗
kq(θ ,φ)Yl3m3(θ ,φ)dΩ

×
∫

∞

0

rk
<

rk+1
>

P∗il2m2
(r′)Pεl′m′(r

′)dr′Pil3m3(r).

(A.13)

Again using eqn (A.4) and the properties of Wigner-3j symbols given in the previous

section (eqn (A.9) and eqn (A.10)), the above expression can be written as

Xlm[P̂ε ](r) = ∑
l′m′

orb.

∑
i

bi ∑
l2m2,l3m3,

kq

(−1)m2+m3
√

(2l +1)(2l′+1)(2l2 +1)(2l3 +1)

×

l2 k l′

0 0 0

 l2 k l′

−m2 q m′

l3 k l

0 0 0

 l3 k l

−m3 q m


×
∫

∞

0

rk
<

rk+1
>

P∗il2m2
(r′)Pεl′m′(r

′)dr′Pil3m3(r).

(A.14)

It is clear when looking at the radial term in eqn (A.14) that the exchange inter-
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action depends on the value of the continuum electron wavefunction at all r and

is hence non-local. Two methods of solving the Hartree-Fock equation, eqn (4.6),

are the iterative method, in which Pεl′m′(r) is found and then substituted back into

the equation until it converges, and the non-iterative method, which is explained in

section 4.4.



Appendix B

Hartree-Fock direct and exchange

coefficients

In the Hartree-Fock framework, after applying the variational principle [64], the

electron-electron interaction terms can be written as

orbs

∑
i

aiJiφε −
orbs

∑
i

biKiφε = ε
ee

φε , (B.1)

where φε is the spin-orbital of the molecular continuum electron with spin orienta-

tion µε and εee is the energy contribution of the electron-electron interaction terms.

The index i refers to a bound molecular orbital and Ji and Ki are defined as

Jiφε = 〈φi|
1

r12
|φi〉φε (B.2)

Kiφε = 〈φi|
1

r12
|φε〉φi.

To obtain the ai and bi coefficients in the general case, it suffices to obtain ai and bi

for three limiting cases. Since we consider molecular orbitals in all three limiting

cases, the electron occupancy of the shells involved is zero, one or two. If a shell

is not occupied, the coefficients ai and bi are zero. For the first limiting case, a

two-electron system is considered, with both electrons initially occupying a single

shell i and one of these electrons finally being emitted to the continuum. Spin is

conserved and it is equal to zero in the initial and final states. Therefore, a two-
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electron wavefunction must be constructed that is anti-symmetric in spin and anti-

symmetric under exchange of electrons. Such a wavefunction is given as a sum of

the following two Slater determinants

Φ(r1,r2) =
1√
2

 1√
2!

∣∣∣∣∣∣φ
↑
i (r1) φ

↓
ε (r1)

φ
↑
i (r2) φ

↓
ε (r2)

∣∣∣∣∣∣− 1√
2!

∣∣∣∣∣∣φ
↓
i (r1) φ

↑
ε (r1)

φ
↓
i (r2) φ

↑
ε (r2)

∣∣∣∣∣∣
 , (B.3)

where r1 and r2 are the spatial coordinates of the two electrons. Using spin con-

servation and exchange symmetry, it is found that the energy contribution of the

electron-electron interaction term is given by

ε
ee = 〈Φ| 1

r12
|Φ〉= 〈φiφε |

1
r12
|φiφε〉+ 〈φiφε |

1
r12
|φεφi〉. (B.4)

Using the variational principle in the Hartree-Fock equations scheme [64] for the

continuum orbital, the following equations are obtained

Jiφε +Kiφε = ε
ee

φε . (B.5)

Comparing eqn (B.1) and eqn (B.5), we find that ai = 1 and bi =−1.

Another limiting case involves two shells i and j. In the initial state one electron

is in shell i and two electrons occupy shell j. In the final state one electron from the j

shell escapes to the continuum. A three-electron wavefunction must be constructed

which is anti-symmetric in spin regarding the continuum electron and the electron

in the j shell and anti-symmetric under exchange of electrons. Such a wavefunction

is given as a linear combination of the following two Slater determinants

Φ(r1,r2,r3) =
1√

2×3!

∣∣∣∣∣∣∣∣∣
φ
↑
i (r1) φ

↓
j (r1) φ

↑
ε (r1)

φ
↑
i (r2) φ

↓
j (r2) φ

↑
ε (r2)

φ
↑
i (r3) φ

↓
j (r3) φ

↑
ε (r3)

∣∣∣∣∣∣∣∣∣ (B.6)

− 1√
2×3!

∣∣∣∣∣∣∣∣∣
φ
↑
i (r1) φ

↑
j (r1) φ

↓
ε (r1)

φ
↑
i (r2) φ

↑
j (r2) φ

↓
ε (r2)

φ
↑
i (r3) φ

↑
j (r3) φ

↓
ε (r3)

∣∣∣∣∣∣∣∣∣ .
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Following the same procedure as for the other limiting case, the following equations

are obtained

(
Ji− 1

2Ki + J j +K j
)

φε = ε
ee

φε , (B.7)

Comparing eqn (B.1) and eqn (B.7), it is found that a j = 1 and b j =−1, while

ai = 1 and bi =
1
2 .

The third limiting case involves two electrons occupying shell i and two elec-

trons occupying shell j in the initial state, with one electron from orbital j escaping

to the continuum in the final state. Following the same procedure as in the other two

cases, it can be shown that ai = 2 and bi = 1 and a j = 1 and b j =−1. In general, for

all molecular ion states, in the Hartree-Fock formalism, the occupation coefficients

ai and bi can be obtained using the above three limiting cases.



Appendix C

Code summaries

C.1 Molecular Auger rate calculation code
The molecular Auger rate equation code calculates the matrix elements as given in

eqn (4.85) and combines them as described in eqn (4.88). It calculates the Auger

rate for a transition involving a particular degenerate continuum orbital, labelled

by L. Breaking down the code like this, allows the calculation to be split up into

multiple jobs and reduces the time required. The code reads in the single-centre

expansion (SCE) coefficients of the bound and continuum orbitals and splines these,

using the gsl_spline functionality [106], to obtain the radial wavefunctions.

It then performs analytic angular integrals using the WignerSymbols package

[107] and numeric 2D radial integrals using the boost package [108]. Through

these functions, it calculates the matrix elements and returns the Auger rate, for a

given L, in atomic units. These Auger rates are then compiled using a python script.

C.2 Molecular rate equation code
The molecular rate equation code can calculate either the ion and electron yields or

the pathway populations. It reads the atomic and molecular state energies and tables

of the atomic and molecular photo-ionisation cross-sections and Auger rates as well

as the dissociation rates and uses these to construct a set of rate equations. These

rate equation are then solved iteratively using Euler’s method [109] with 1.2×107

steps between -200 fs and 1000 fs. To calculate the pathway populations, the path-

ways are first constructed by chaining together transitions. We then construct rate
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equations for each of these states and solve them iteratively. We construct the list

of pathways as follows:

Construct an empty temporary vector of pathways

Add a pathway containing the ground state index to this vector.

Append a 1 to the stored vector of pathway populations,

as all of the population is in the ground state.

While this temporary vector of pathways is not empty,

->Take the first pathway in the vector.

->Determine the possible transitions from the final state of the pathway.

->For each transition,

->->Create a new pathway as a copy of the pathway.

->->Append the final state index of the transition.

->->Add this new pathway to the temporary vector.

->Add the initial pathway to the vector of stored pathways.

->Add a 0 to the stored vector of pathway populations,

as all of the non-ground states will be unoccupied initially.

->Remove the initial pathway from the temporary vector.

At high photon intensities, a large number of transitions are possible. This

means that the number of pathways increases to an unwieldy amount, with 6.6 mil-

lion pathways for molecular nitrogen ionised by 1100 eV photons. To overcome

this difficulty, we split the pathways into branches. The pathways can, by defini-

tion, only transition to longer pathways. Therefore, a given branch of pathways

starting with a certain set of transitions will be independent of pathways that do not

start with that set of transitions. Thus, for a given branch, we include the pathways

that form the branch start and all of the pathways which they depopulate to, such

that the correct amount of the population will be transferred to the branch start.

From this, all pathways that start with the branch start will be included and these

pathways will have no dependence on the pathways that are excluded. An exam-

ple is shown below, for the branch starting with 0→ 2→ 5, where 0, 2 and 5 are

hypothetical state indices:

0

0→ 1 X

0→ 2

0→ 3 X
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0→ 2→ 4 X

0→ 2→ 5

0→ 2→ 6 X

0→ 2→ 5→ 7

0→ 2→ 5→ 8

All paths from this point start with 0→ 2→ 5

Here, the pathways labelled with an X are included in the rate equation calculation,

but discarded at the end as their populations are not properly calculated. By split-

ting up the pathways in this way, we can separate the rate equations into multiple

calculations and run them independently.
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Schröter, R. Moshammer, I. Schlichting, J. Ullrich, and A. Rudenko. Ultra-

fast charge rearrangement and nuclear dynamics upon inner-shell multiple

ionization of small polyatomic molecules. Phys. Rev. Lett., 110:053003, Jan

2013.

[45] Paola Bolognesi, Marcello Coreno, Lorenzo Avaldi, Loriano Storchi, and

Francesco Tarantelli. Site-selected Auger electron spectroscopy of N2O. The

Journal of Chemical Physics, 125(5):054306, 2006.

[46] V. Feyer, P. Bolognesi, M. Coreno, K. C. Prince, L. Avaldi, L. Storchi, and

F. Tarantelli. Effects of nuclear dynamics in the low-kinetic-energy Auger

spectra of CO and CO2. The Journal of Chemical Physics, 123(22):224306,

2005.
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