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Abstract

Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the
mechanisms underlying these associations remain elusive. In this study, we conducted a two-
pronged approach to identify candidate causal SNPs and assess underlying biological
mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus
for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific
effects and a scaffold/matrix attachment region were characterized and through physical DNA
interactions BNC2 was established as the most likely target gene. We determined the
consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-Seq
regions and validated a set of its downstream target genes. Fine-mapping by dense regional
genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the
scaffold/matrix attachment region as among the most likely causal variants. This study reveals a
comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of

susceptibility to ovarian cancer.

Significance: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian

cancer risk gene



INTRODUCTION

Epithelial ovarian cancer (EOC) is a poorly understood disease often diagnosed at late
stages and with low 5-year survival rates. Although it used to be widely acknowledged that the
ovarian surface epithelium (OSE) was the likely tissue of origin of EOC, recent evidence
supports the notion that the epithelial lining of the fallopian tube and benign endometriosis
contribute to the origin of invasive EOCs. Invasive EOCs may also originate from ectopic
Mullerian tissue due to endosalpingiosis. The diverse cellular origins of EOC subtypes, in part,

underlie the heterogeneity that characterizes ovarian cancer.

Less than half of all familial ovarian cancer cases and less than 15% of high grade
serous EOC are due to highly penetrant pathogenic alleles of genes such as BRCA1 and
BRCA2. However, exhaustive family-based linkage studies have not identified additional highly
penetrant EOC susceptibility genes (1). The excess familial risk of EOC may be explained, at
least in part, by common variants with low to moderate penetrance. Genome-wide association
studies (GWAS) have identified ~40 common variant loci associated with risk of EOC (2-13).
Delineation of the mechanisms and likely causal variants at GWAS-identified loci may reveal

novel chemoprevention and therapeutic strategies.

To evaluate the mechanisms by which single nucleotide polymorphisms (SNPs) may
contribute to EOC, we conducted a functional dissection at the 9p22.2 locus, the first ovarian
cancer risk locus identified through GWAS of European ancestry women (2). The SNP most
significantly associated with high grade serous EOC risk was rs3814113, which is located 44 kb
centromeric and 220 kb telomeric to the BNC2 and CNTLN transcription start sites (TSS),
respectively (2). The minor allele [C; MAF = 0.323] was associated with reduced risk of high

grade serous EOC (combined data OR = 0.82; 95%Cl = 0.79-0.86; P = 2.5 x 10*).



MATERIALS AND METHODS

Cell Lines

We used two immortalized normal OSE cell lines, iOSE4 and iOSE11 (14), and three
immortalized normal fallopian tube surface epithelial cells (iIFTSEC33, iIFTSEC246, and
iIFTSEC283), a normal epithelial ovarian cell line, iOSE4°™"®, immortalized with hTERT and
transformed with MYC (15), and HEK293FT cells. Cell line aliquots were tested for
mycoplasma (PCR-based method) and authenticated using STR analysis before being used for

experiments, which were conducted before 20 passages after thawing.

FAIRE-Seq and ChIP-Seq for Histone Modifications

FAIRE-Seq (Formaldehyde Assisted Isolation of Regulatory Elements followed by sequencing)
and ChIP-Seq (Chromatin immunoprecipitation followed by sequencing) for Histone H3 Lysine
27 Acetylation (H3K27Ac) and Histone H3 Lysine 4 Monomethylation (H3K4me1l) were

performed in iIOSE4, iOSE11, iIFTSEC33, iIFTSEC246, iIFTSEC283 (GSE68104) (16).

Enhancer Scanning

We used an optimized method to identify genomic regions with enhancer activity (17). Genomic
tiles of ~2 kb were generated by PCR using bacterial artificial chromosome (BAC) Clone RPCI-
11-185E1 (Empire Genomics) as the template and cloned in forward and reverse orientations
upstream in the firefly luciferase reporter vector designed to test for enhancer activity (17).
Primers can be found in Supplementary Table 1. Transfections included a plasmid expressing
Renilla sp. luciferase as internal control and every tile was tested in two independent
experiments. Tiles with significantly (two-tailed t-test; p <0.05) higher luciferase counts than the

control tile (TC) were tested for allele specific effects. For allele-specific luciferase assays, tiles



with the effect allele were considered significant if the luciferase counts were significantly higher

or lower (p <0.05) in at least one independent experiment than the tile with the reference allele.

Electrophoretic Mobility Shift Assays

Nuclear extracts were obtained from iIOSE4“MY¢ cells at 70-90% confluence and EMSAs were

run as previously described (18).

Nuclear Scaffold Extraction

A lithium-based nuclear scaffold extraction was performed as previously described (19).
Scaffold and genomic DNAs were quantified by gPCR using primers for Region 11, the ApoB
S/MAR and the ApoB Neg regions (Supplementary Table 1). Samples were run using Sybr
Green Spectrum on Applied Biosystems 7900 HT Real-Time PCR System. Enrichment was
calculated by dividing the quantity of the scaffold DNA by the quantity of the digested genomic
DNA. A Z-score for the region 11 and ApoB S/IMAR was calculated as described previously (19)
[Z score = (average of SIMAR — average of ApoB Neg)/std dev of ApoB Neg)]. A Z-Score > 8
indicates a site positive for scaffold binding (19). Each experiment includes three technical

replicates.

Chromosome Conformation Capture (3C)

3C libraries were prepared as previously described (20). gPCR was performed by using Taq
Polymerase PCR Kit (Qiagen) and Syto9 (Life Technologies). Samples were run using FAM
Spectrum on an Applied Biosystems 7900 HT Fast Real-Time PCR System. EcoR1 digested
BACs (RPCI-11-185E1 Empire Genomics, RPCI-11-179K24 Life Technologies, RPCI-11-
106G11 Life Technologies) for the region were used for the standard curve. Interactions were

calculated as a percentage of a restriction site directly adjacent to the bait restriction site. Sites



with a significantly higher frequency of interaction than the site adjacent to the anchor were
considered significant (p <0.05; two-tailed t-test). 3C was performed in two independent

experiments and three technical replicates each.

Protein Binding Microarray

Fragments containing cDNAs of each of the zinc finger pairs were PCR amplified from a
plasmid containing BNC2 cDNA (a gift from Dr. Philippe Djian) using primers containing
Gateway recombination sites (Supplementary Table 1). PCR products were cloned into
pDONR221 using the BP recombination kit and transferred to pDEST15 as a fusion to
Glutathione-S-transferase (GST) using LR recombination kit (Invitrogen). Purified GST-ZFs
were eluted from beads with 50 mM reduced glutathione and 0.5 pg of each GST-ZF protein
construct were applied individually to two differently designed arrays designated ME and HK as
previously described (21, 22). ZFs typically bind to degenerate motifs and have the potential to
have more than one recognition sequence (21). Each DNA probe sequence is given an E-score
which is similar to the Area under the ROC curve statistical metric and an E-score above 0.45

was considered significant.

ChIP/ChIP-Seq for BNC2

Chromatin immunoprecipitations were performed as previously described (23) using a validated
BNC2 antibody (Sigma Atlas) (see Supplementary Data). Real-time gPCR was performed
using Sybr Green chemistry with primers at the -2184, -914, and -582 positions relative to the
TSS (Supplementary Table 1) in an Applied Biosystems 7900HT Fast Real-Time PCR System.
ChIP for each cell line was performed in four biological replicates. Overrepresentation test

(release 20170413) was conducted with PANTHER version 11.1 released 2016-10-24 using all



genes in Homo sapiens database as a reference list and a Bonferroni correction for multiple
testing. The uploaded list contained 965 genes of which 839 were mapped to GO-SIim.

For BNC2 ChIP-Seq four individual ChIP samples were pooled for each cell line
(IOSE11 and iFTSEC283) in two biological replicates. Immunoprecipitated DNA was used to
generate a sequencing library using the NUGEN Ovation Ultralow Library System with indexed
adapters (NUGEN, Inc., San Carlos, CA). The library was PCR amplified and size-selected
using AxyPrep Fragment Select beads (Corning Life Sciences — Axygen Inc., Union City,
CA). Each enriched DNA library was then sequenced on an lllumina HiScan SQ sequencer to
generate 20-30 million 100-base paired-end reads. The raw sequence data was de-multiplexed
using the Illlumina CASAVA 1.8.2 software (lllumina, Inc., San Diego, CA) and binding sites
were identified using the MACS2 software (24) using input DNA as a control. See

Supplementary Data for further details.

Nanostring

pNTAP-BNC2 (or the empty vector) was transfected with Fugene 6 into 293FT cells at 70%
confluence. Cells were harvested after 24 h, RNA was isolated using Trizol RNA Isolation (Life
Technologies), and cleaned using Qiagen RNeasy Mini Kit (Qiagen). The three biological
replicates for HEK293FT cells with the empty vector or over-expressed BNC2 were applied to a
Nanostring platform containing probes for 87 genes and 10 reference genes (Supplementary
Table 2) used to normalize the data in the NanoString nSolver Analysis Software v 1.1. These
genes had a %CV < 50. Genes were considered to be differentially expressed if p <0.05 (two-

tailed t-test).

Fine-mapping Association Analyses



To refine the observed signal at rs3814113 (2), fine-mapping was conducted using a
customized lllumina iSelect genotyping array (iCOGS). SNPs were selected based on data
from 1000 Genomes Project (1000GP) (25) CEU (April 2010) and Hapmap Il within a 1 Mb
interval of rs3814113 (chr9: 16407967-17407967)(26). We included tagging SNPs (r* > 0.1)
with a minor allele called at least twice in the 1000GP and additional SNPs tagging remaining

variation in the interval (r? > 0.9), requiring lllumina Design score > 0.8.

The iICOGS array was used to genotype cases and controls from constituent studies of
the Ovarian Cancer Association Consortium as previously described (6), supplementing with
data from three independent ovarian cancer GWAS. In iCOGS, we excluded samples if they
were not of European ancestry, had a genotyping call rate of <95%, showed low or high
heterozygosity, were not female or had ambiguous sex, or were duplicates (cryptic or intended).
SNPs were excluded if they were mono-morphic, had a call rate of < 95%, showed evidence of
deviation from Hardy-Weinberg equilibrium in controls or had low concordance between
duplicate pairs(6). For two of the GWAS (from Mayo Clinic and the UK), we also excluded rare
SNPs (MAF < 1% or allele count < 5, respectively). The final data set comprised 11,069 cases
and 21,722 controls from iCOGS (‘OCAC-iCOGS’), 2,165 cases and 2,564 controls from a
GWAS from North America (27), 1,762 cases and 6,118 controls from a United Kingdom-based
GWAS (2), and 441 cases and 441 controls from the Mayo Clinic. All subjects included in this
analysis provided written informed consent as well as data and blood samples in accordance to
ethical guidelines under protocols approved by institutional review boards of their respective
study sites. Overall, 43 studies from 11 countries provided data on 15,437 women diagnosed
with invasive EOC, 9,627 of whom were diagnosed with serous EOC, and 30,845 controls from

the general population.

We imputed variants separately for the OCAC-iCOGS and each GWAS from 1000

Genomes Project data using the v3 April 2012 release as the reference panel using the



IMPUTE?2 software (28) without pre-phasing. The final data set comprised genotypes for 4,234

SNPs of which 2,418 had been directly genotyped.

We evaluated the association between genotype and disease using logistic regression
by estimating the associations with each additional copy of the minor allele (log-additive
models). The analysis was adjusted for study and population substructure by including the
eigenvectors of the first five European-specific principal components as covariates in the model.
We used the same approach to evaluate SNP associations with serous ovarian cancer after
excluding all cases with any other or unknown tumor subtype. For imputed SNPs, we used
expected dosages in the logistic regression model to estimate SNP effect sizes and P values.
We carried out analyses separately for OCAC-iCOGS and each GWAS and pooled data
thereafter using a fixed-effects meta-analysis; thus, all results are based on the combined data.
We also performed analyses adjusted for rs3814113 to evaluate evidence of independent

signals.
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RESULTS

Overview of Study Design

Here, we utilized two independent approaches to identify a list of candidate causal SNPs (Fig.
1). First, we conducted a comprehensive analysis to identify functional SNPs in linkage
disequilibrium (LD, r* > 0.3) with rs3814113 with no prior assumption about their individual
association to risk. Since all resided in non-coding regions, we hypothesized that SNP alleles
determine the activity of regulatory elements in enhancers and promoter regions active in OSE
and fallopian tube surface epithelial cells (FTSEC) (29). Second, we performed fine-mapping
association analyses by densely genotyping over 15,000 ovarian cancer cases and 30,000
controls to identify a credible set of causal SNPs guide by association data. These parallel

approaches identified the SNP most likely to be causal to ovarian cancer risk at the 9p22 locus.

Candidate Causal SNP Set for Functional Analysis

A total of 134 SNPs were chosen for functional analysis, based on their LD (r* = 0.3) with
rs3814113 in European 1000 Genomes Project data (v3 April 2012 release). They are
distributed over an 82 kb region ranging from the first intron of BNC2 to ~44 kb centromeric to

its transcription start site (TSS) (Fig. 2a and Supplementary Table 3).

Since all SNPs in the candidate functional set are in non-coding regions, several
independent assays were used to identify transcriptional regulatory elements. First we analyzed
data from FAIRE-Seq, and ChIP-Seq for H3K27Ac and H3K4Mel. FAIRE-Seq reveals regions
of open chromatin while H3K27Ac or H3K4Mel are markers for active chromatin and
enhancers, respectively. The chromatin landscape profiles (Fig. 2a) were derived from iOSE

and iIFTSEC cells (16).

Analysis of FAIRE- and ChlIP-Seq data identified twelve regions with evidence of

enhancer activity in at least one cell line (Fig. 2a). Twenty-two candidate causal SNPs (Table 1)
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are located within five regions containing FAIRE or ChIP-Seq features suggesting that these
SNPs might have a functional impact (Fig. 2a). The relatively lenient threshold for LD and
criteria to consider a region as a putative enhancer was designed to favor sensitivity at the initial

stage of analysis (with high specificity being achieved by the integration of the two approaches).

Mapping SNPs to Regions of Enhancer Activity

To refine the analysis, we tested twelve genomic tiles (~2 kb each) (Fig. 2a), in both
orientations, spanning the five candidate regions using a reporter assay to identify enhancer
activity in iOSE4°™YC ovarian cells (17). Although not present in a region with evidence of
regulatory activity, we also tested one tile containing rs3814113 (Tile 12), the most significantly
associated with high grade serous EOC in a previous study (2), and a control tile devoid of
evidence for enhancer activity as judged by FAIRE and ChlIP-Seq data (Fig. 2a, Tile C). Tiles in
regions 6 (T6), 7 (T7.2, T7.3, T7.6), and 8 (T8) contained nine candidate causal SNPs and
showed significant activity (two tailed t-test p<0.05 compared to the control tile C; two

replicates) in at least one orientation (Fig. 2b).

Causal SNPs are hypothesized to display allele-specific effects. Therefore, we used site-
directed mutagenesis in tiles T6, T7.2, T7.3, T7.6, and T8 to change each of the nine candidate
causal SNPs from the reference to the effect allele and compared their activity. For tiles with
multiple SNPs, the reference tile was the most common haplotype (Supplementary Fig. 1) (All
populations; 1000 Genomes Project). Individual SNPs were mutated to determine the
contribution of each SNP, with other SNPs in the haplotype retaining the reference SNP allele.
Seven SNPs in T6 (rs62541878), T7.2 (rs62541920, rs12379183), T7.3 (rs1092647), and T8
(rs77507622, rs10810657, rs12350739) demonstrated significantly different transcription activity
(p<0.05) between the reference and effect allele in at least one replicate (Fig. 2c-d). These

seven SNPs were retained for analysis.
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Allele Specific Activities in Electrophoretic Mobility Shift Assays

We conducted EMSAs using probes with both alleles for each of the seven SNPs in regions 6, 7
and 8 (Fig. 2e). Tiles that did not show activity in Fig. 2b were not tested. Tile 11 had significant
transcription activity in only one reporter experiment but two SNPs within the region
(rs113780397 and rs181552334) are correlated with the original SNP (r* of 0.818 and 0.5,
respectively), and so four additional probes were tested. We also examined rs3814113, the
most significant original GWAS SNP. EMSAs revealed allele specific nuclear extract binding for
rs12379183, rs62541920 (Region 7), rs12350739, rs77507622 (Region 8) and rs181552334

(Region 11) (Fig. 2e) indicating these SNPs were strong causal candidates.

Region 11 Attaches to the Nuclear Scaffold

Region 11 overlapped with an open chromatin region, according to FAIRE-Seq data obtained in
ovarian cells, and one SNP showed allele-specific binding in EMSA experiments (rs181552334).
However, this region lacked H3K4Mel and H3K27Ac marks and luciferase assays showed
weak evidence for enhancer activity in ovarian cells (Fig. 2b). Interestingly, the region is A/T rich
(> 60%), a feature in regions that anchor the cell’s DNA to the nuclear scaffold/matrix (19).
Moreover, Region 11 was predicted by MAR-Wiz to attach to the nuclear scaffold/matrix

compared to the rest of the locus (Supplementary Fig. 2).

To determine whether Region 11 was attached to the nuclear scaffold in ovarian cells,
we performed a nuclear scaffold extraction in IOSE11 cells (19), using HelLa cells as a control.
Region 11 had significantly higher enrichment in the scaffold fraction of IOSE11 and HelLa cells
than a previously defined negative control (ApoB Neg) (19) (Fig. 3a-c). A region previously
defined as a S/IMAR (ApoB S/MAR) (19) in HelLa cells did not have significantly higher

enrichment in the scaffold fraction of IOSE11 cells than ApoB Neg (Fig. 3a-c) but had
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significantly higher enrichment in the scaffold fraction of HeLa cells than ApoB Neg. These
results indicate that Region 11 acts as S/IMAR in ovarian cells. Visual inspection of HiC (High
dimensional chromosome conformation capture) data from seven cell lines suggested the
presence of a 1.8 Mb (chr9:15,750,000-17,550,000) topologically associating domain (TAD) in
which the S/IMAR (Region 11, rs181552334) is situated close to one of its borders (Fig. 3d-e).

This TAD includes TSS for BNC2, C90rf92, and CNTLN.

Candidate Target Genes BNC2 and CNTLN

Two functional SNPs in Region 7 were located in an approximately 7kb region that includes the
TSSs for two BNC2 transcripts (Fig. 2a) denoted by FAIRE-Seq and H3K4mel ChlP-Seq data
in ovarian cells, and ENCODE layered H3K4me3 (promoters) ChlP-Seq data (Fig. 3f). This
region is the major BNC2 promoter, raising the hypothesis that BNC2 may act as the mediator

of risk at the 9p22.2 locus.

Region 8, containing two SNPs with allele specific activity in luciferase assays and
EMSA, overlapped with FAIRE-Seq and ChIP-Seq data in ovarian cells with features indicative
of an enhancer (Fig. 2a). To determine potential interacting promoters with the enhancer at
region 8, we examined all genes (c90rf92, BNC2, CNTLN and SH3GL2) within a stretch of 1 MB
at either side of the region containing the candidate SNPs (Fig. 3f). First, guided by H3K4me3
marks in seven non-ovarian cell lines from ENCODE, we identified their promoters close to
TSSs (Fig. 3f). Next, we inferred whether the gene was expressed in ovarian cell lines using
H3K27ac as a marker of active promoters combined with analysis of transcript levels from RNA
sequencing (RNA-Seq) data for ovarian and fallopian tube epithelial cells (Fig. 3g). This analysis
indicated that BNC2 and CNTLN were expressed in ovarian cells, but c9orf92 or SH3GL2 were

not (Fig. 3g).
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Region 8 is physically close to the TSS of BNC2 in Ovarian Cells

Next, we used Chromatin Conformation Capture (3C) to determine which promoters physically
interacted with Region 8. In iOSE11 cells, Region 8, when compared to an adjacent site
displayed two regions of frequent (Fig. 3h; blue arches) interactions. The interaction peak closer
to the anchor is located upstream of the TSS but does not overlap with any known chromatin
marks. The second interaction peak corresponds to region 7 considered to be the core promoter
of BNC2. No significant interaction was detected between Region 8 and the CNTLN TSS (Fig.
3h). As expected, no interaction was detected between the S/MAR in Region 11 and promoters
in the region (Fig. 3i). The modules in Regions 7 and 8 appear to affect the major promoter of
BNC2 and are a distal regulatory enhancer that physically interacts with the BNC2 promoter,

respectively.

Fine mapping

Next, as part of our two-pronged approach, we conducted fine mapping of the 9p22 locus in
15,437 women diagnosed with invasive EOC and 30,845 controls (Fig. 4a). We evaluated the
association between genotype and disease using logistic regression by estimating the
associations with each additional copy of the minor allele (log-additive models) for 4,234 SNPs
of which 2,418 were directly genotyped (Supplementary Table 4). SNP rs3814113 remained
the most statistically significant association (P = 2.10 x 10%) (Fig. 4a) with the minor allele [C]
being protective. Next, we calculated the likelihood ratio of each SNP relative to the most
significant SNP (rs3814113) of being the functional variant underlying the signal. For any given
set of correlated associated SNPs, the strength of evidence was estimated by the log likelihood
statistic from the logistic regression; thus difference in the log likelihood between the SNP with

the strongest association and any other SNP provides a measure of the log odds in favor of the
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most significant SNP being the SNP that is truly driving the observed association. There were
40 SNPs with odds of 1:1000 or better and were considered to be credible candidates for

mediating the observed association. They were all in strong LD (r? > 0.89).

While 35 out of the 40 SNPs were part of the set of 134 SNPs assessed during
functional analysis, five SNPs (rs34131140, rs112442786, rs113198237, rs199782476, and
€9 po0s16900214/rs62543587) were not (Supplementary Fig. 3). SNPs rs199782476 and
rs62543587 did not overlap with any biofeatures (FAIRE-seq, H3K4me1, H3K27Ac) suggesting
they were not functionally relevant. The remaining three SNPs were part of Tile 11
(rs112442786), Tile 12 (rs34131140) or the control (TC) Tile (rs113198237). Tiles 12 and TC
did not display significant activity in enhancer scanning (Fig. 2b) suggesting that rs112442786,
which resided in Tile 11 and mapped to the S/IMAR region, may be functionally relevant

(Supplementary Fig. 3).

Among the 40 SNPs, six SNPs with odds ranging from better than 1:4 (rs112442786) to
better than 1:200 (rs181552334) mapped to the S/IMAR (Region 11) (Fig. 4a). We repeated the
association analyses adjusting for rs3814113 to identify additional independent signals in the
region (Fig. 4b). Nine SNPs were significant at P < 10”° (Supplementary Table 4; Conditional
tab) of which two (rs7848057, rs80039758) mapped to the S/IMAR (Fig. 4b). In this group of 9
SNPs, rs10756825 and c9 pos16889285 were the next most significant associations (p = 2.3 X
10°; p = 6.23 x 107, respectively) and mapped close to the enhancer in Region 8 (Fig. 4b).
Finally, several attempts to remove the S/IMAR using CRISPR-based genome editing
techniques were not successful, suggesting that deletion of this region may impact the viability

of ovarian and fallopian tube cells.

To identify eQTL associations for c9orf92, BNC2, CNTLN and SH3GL2 we searched the
GTEX dataset for single gene eQTLs in all tissues (GTEx Analysis Release V7; dbGaP

Accession phs000424.v7.p2; fallopian tube not included due to small sample size). Although all
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four genes displayed eQTL associations (CNTLN = 11,039; C90RF92 = 1; SH3GL2 = 361;
BNC2 = 94) (Supplementary Table 5) only BNC2 displayed eQTL associations with SNPs
(rs10962662, rs10756823, and rs10124837; whole blood) present in our set of 40 credible
candidate SNPs. Next, we searched for single SNP eQTL associations in all tissues for 40
credible candidate SNPs. The only three eQTL associations found were for SNPs rs10962662,

rs10756823, and rs10124837 with BNC2.

The data from the functional analysis and fine mapping data provide evidence that the
candidate causal SNPs at the locus exert their effects in a 1.8Mb TAD with BNC2 as the most

likely target gene at the locus.

In vitro Recognition of Specific DNA Sequences by BNC2 Zinc Fingers

BNC2 has three pairs of C2H2 zinc fingers (ZF) raising the possibility that it recognizes specific
DNA sequences and is involved in transcription regulation (Fig. 5a) (30). To identify DNA
sequences recognized by BNC2, GST-tagged constructs of each ZF pair (Supplementary Fig.
4) were expressed in bacteria and applied to a protein binding microarray (PBM) with
overlapping, rationally randomized nucleotides, representing every possible motif up to 10 bp
(21, 22). When aligned the top ten scoring sequences for each ZF pair generated a sequence
logo using position weight matrix scoring (Fig. 5a). The motifs for ZF1,2 and 5,6 were consistent
with the predicted C2H2 “recognition code” (31). Binding for ZF3,4, which yielded lower-
confidence data, did not match the recognition code predictions (Fig. 5a) (32). The 3’ end of the
ZF1,2 and ZF5,6 binding motifs had the same nucleotides at the exact same position and
weight, consistent with the similarity in amino acid residue positions between ZF2 and ZF6 (Fig.
5a). Notably, the BNC2 promoter region contains two BNC2 ZF5,6 PBM binding sequences

(Supplementary Fig. 4).
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We validated BNC2 binding sequences identified with the PBM by conducting ChIP in
iIOSE11 and iFTSEC283 cells for endogenous BNC2 (Supplementary Fig. 4) at the PBM sites (-
582 and -914 bp upstream of the TSS) at the BNC2 locus. A significantly larger amount of DNA
was immunoprecipitated with the BNC2 antibody than with the IgG control at the -582 (iOSE11
p=26x10% IFTSEC283 p = 8.3 x 10°) and -914 (iI0SE11 p = 1.8 x 10, IFTSEC283 p = 2.0 X
10°®) bp sites, but not at the -2184 bp site (negative control; Supplementary Fig. 4). These data
provides evidence that the sites identified in the PBM experiment are recognized by

endogenous BNC2.

BNC2 Genome-wide Target Sites

To identify genomic sites bound by BNC2 in ovarian cells, we used ChIP-Seq in iOSE11
and iIFTSEC283 cells (see Extended Data). MEME, a motif analysis tool, defined a motif
centrally enriched in the ChlP-Seq peaks in both cell types (Fig. 5b-c). The motif identified by
MEME appears to be a concatenation of the reverse complement motif for ZF1,2 and the motif
for ZF5,6 with a 75% homology (Fig. 5b). The concatamer motif was significantly enriched in
ChIP-Seq peak summits in iIFTSEC283 and iOSE11 cells (Fig. 5¢). ChIP-Seq data replicated
BNC2 binding in the iOSE11 cells (chr9:16871799-16872039) at the -914 position tested in

ChIP-gPCR (Supplementary Fig. 4).

Identification and Validation of BNC2 Target Genes

To identify putative target genes regulated by regulatory elements containing BNC2 recoghnition
sites, we generated a list of 995 genes/transcripts with TSS within 30 kb of the BNC2 ChIP-Seq
peak centers found in both iIOSE11 and iIFTSEC283 cells (Supplementary Table 2). Next, we
used PANTHER (33) and found that several functional classes were statistically

overrepresented in our set including system development (GO:0048731), anatomical structure
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development (G0O:0048856), single-multicellular organism process (GO:0044707), multicellular
organism development (GO:0007275), and tissue development (GO:0009888) (Supplementary

Table 2).

From the above set, we selected a set of 87 genes that were: a) implicated in ovarian
cancer; b) ovarian development; c) were part of KEGG pathways related to cancer; d) in which
BNC2 ChlP-Seq peaks were found in their core promoter (within 1kb from the TSS)
(Supplementary Table 2) and tested the extent to which their expression (measured by
Nanostring) was modulated by overexpression of BNC2 in HEK 293T.. Multiple unsuccessful
attempts were performed to manipulate expression - silencing or ectopic overexpression - levels
of BNC2 in ovarian cells, suggesting that BNC2 levels are tightly controlled. Several genes
mapping to KEGG Focal Adhesion, ECM-receptor interaction or TGF- Signaling Pathways and
implicated in ovarian cancer or ovarian development showed significant changes in expression
upon BNC2 overexpression (Table 2; Supplementary Table 2). Although most genes showed a
positive correlation with BNC2 overexpression, FEM1A and IGTB5 showed an inverse
correlation suggesting that BNC2 modulation of expression is likely to be context dependent
(Table 2). Taken together, these experiments validate the BNC2 binding site in vivo and reveal

putative downstream targets of BNC2 activity in ovarian cells.
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DISCUSSION

Here, we started from early findings from GWAS for EOC risk and delineated a mechanistic
hypothesis for susceptibility at the 9p22.2 locus. Using a two-pronged approach combining
functional analysis and fine mapping we identified three genomic features (and enhancer to
BNC2, the BNC2 promoter, and a Substrate/Matrix Attachment Region) harboring twelve
potentially functional SNPs (Fig. 1). Based on the likelihood statistics, the most likely causal
SNPs were in a Substrate/Matrix Attachment Region (S/MAR) located in a 1.8 Mb topologically
associating domain (TAD). Also, this TAD includes associated SNPs revealed in conditional
analysis (adjusting for rs3814113) that locate to an enhancer region that interacts with the
BNC2 promoter in ovarian cells. Taken together our data implicate multiple candidate causal

SNPs at the locus that converge to regulate BNC2 in ovarian cancer susceptibility.

Our functional analysis revealed two SNPs in the BNC2 promoter, two SNPs in an
enhancer that physically interacts with the BNC2 promoter, and a functional SNP in a SIMAR
with allele-specific effects. Of these five SNPs, the strongest genetic evidence for causality is for
rs181552334 in the S/IMAR. An additional SNP, rs112442786 (r* to rs181552334 = 0.9556),
located in the same region, which emerged in our fine-mapping approach was not directly tested
and may also contribute to risk. SIMARs are thought to help maintain the local 3D chromatin
structure by contributing to looping and modulate gene expression (34). Polymorphisms in
S/MARSs can regulate, in an allelic-specific manner, attachment to the nuclear scaffold/matrix
(35). Interestingly, our EMSA experiments suggest allelic specific binding to nuclear proteins.
Several attempts to remove the S/IMAR using CRISPR-based genome editing techniques were
not successful suggesting that ovarian cells may not be viable without this S/IMAR. CRISPR-
based deletion of a region including the S/IMAR in 293T HEK cells led to a two-fold reduction of
BNC2 expression (36), with no changes in CNTLN expression, implicating the S/IMAR in BNC2

regulation. Notably, all three cis-eQTL associations detected for the 40 credible SNPs from fine
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mapping were with BNC2; and all cis-eQTL associations for the four genes at the locus only
BNC2 showed eQTL with the set of credible SNPs. High dimensional chromatin interaction
(HIC) data from seven cell lines indicates the presence of a 1.8 Mb topologically associating
domain (TAD) in which the S/IMAR is situated close to one of its borders. Our data suggest a
role for several regulatory interactions, defined by a TAD containing multiple non-coding

elements which target BNC2 (Fig. 1).

Although future research will further delineate the relationship between BNC2 and
ovarian biology, recent reports support our findings. Hnisz et al. (37) identified a super enhancer
in ovarian cells near BNC2, consistent with BNC2 representing a cell identity gene or master
regulator in ovarian cells. The bonaparte zebrafish (Bnc2) mutants display skin pigmentation
defects (no body stripes), stunted growth, and dysmorphic ovaries coupled to infertility (38). In
mice, Bnc2 is expressed in ovarian theca cells, and female mice nullizygous for Bnc2 display an
excessive number of stromal cells combined with a reduced number of oocytes (39).
Interestingly, rs12379183, in Region 7, is associated with sonographically detectable
abnormalities in the ovaries (40). Moreover, a network-based integration of GWAS and gene
expression in ovarian cancer focusing on transcription factors identified BNC2 using a
combination of coexpression and enrichment analysis as a gene contributing to a HOX-centric
network associated with serous ovarian cancer risk (41). Finally, a recent analysis of genetic
interactions between germline polymorphisms and tumor formation in specific tissues revealed a

significant association between rs3814113 and ovarian cancer (42).

Genome-wide and candidate gene association studies suggest that this locus may also
be pleiotropic in humans with effects on ovary, skin, and skeletal biology. SNPs in the 9p22.2
locus have been associated with skin pigmentation in Europeans (43) and Asians (44), with
freckling (45), and height (46).Functional analysis revealed rs12350739 as the likely causal

variant contributing to saturation of skin color (47). SNP rs12350739 was identified in the
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present study mapping to a Region 8 (a candidate BNC2 enhancer). An introgressed region of
Neanderthal DNA (Chr9: 16,720,121-16,786,930) proposed to confer adaptive advantage to
colder climates through changes in skin pigmentation is also present at this locus (48, 49).
Finally, this locus has also been shown to modify ovarian cancer risk in carriers of BRCAL and

BRCAZ2 pathogenic variants (50).

We acknowledge limitations of this work including the that regulatory networks may be
significantly altered during development (51), the incomplete knowledge of the regulatory
landscape in ovarian cells (e.g. lack of data on CTCF repressor marks and of information on
other non-coding RNA elements) and the possibility of missing rare alleles that contribute to the
phenotype that could be revealed using the larger Haplotype Reference Consortium data for
imputation. Despite these limitations, our data identify plausible and likely biological
mechanisms operating to modulate ovarian cancer risk. In summary, we confirmed the region
as a highly associated susceptibility locus and propose that the mechanism of ovarian cancer
susceptibility at the 9p22.2 locus is likely mediated by changes in a transcriptional regulatory

network involving several regulatory elements (enhancers and S/MAR) acting on BNC2.
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Table 1: Twenty-two SNPs correlated with rs3814113 overlap with areas of regulatory

activity.
. chr9 Coordinates Effect Reference 2 MAF P value in
Region Tile SNP Name Allele Allele R Song et al.
1 16,837,392-16,838,723
2 16,848,158-16,848,790
3 16,850,432-16,851,014
4 16,852,717-16,853,479
5 16,857,377-16,857,907
5 B A C 0.719 A=0.3904
6 16,860,790-16,861,348
T6 rs62541878 T A 0.3  T=0.0513
7 16,863,768-16,874,127
rs11792249 G T 0.3 G=0.0513
T7.1 rs2153271 T C 0.539 T=0.2879 4.66x10™°
rs62541920 A G 0.3 A=0.0511
T7.2 rs12379183 G A 0.445 G=0.2462 1.36x10™%
173 rs10962647 G T 0.3 G=0.0515
T7.4&T7.5 rs10962648 C G 0.3 C=0.0515
rs62541922 C T 0.317 C=0.0487
T7.6 rs62541923 A © 0.3  A=0.0507
T7.7 rs11789875 A G 0.3 A=0.0489
rs10962649 T C 0.3  T=0.0489
T7.8 rs10810650 T © 0.589 T=0.2963
8 16,883,570-16,885,692
rs10810657 A T 0.528 A=0.2915
T8 rs12350739 A G 0.508 A=0.1875
rs77507622 G A 0.3  G=0.0493
9 16,899,790-16,900,338
10 16,901,238-16,902,039
11 16,907,559-16,908,180
rs113780397 A G 0.818 A=0.4395
rs9697099 A T 0.301 T=0.4814
rs181552334 © A 0.527 G=0.4395
Ti1 rs76718132 T © 0.379 NA
rs117224476 G T 0.44 NA
rs77795022 G T 0.442 NA
12 16,915,387-16,915,739

LD (r2 =2 0.3) to rs3814113 based on 1000GP data v3.

MAF: minor allele frequency; rs2153271 are reported in dbSNP as the reverse orientation to the

genome; NA, not available. SNPs in bold represent the final five SNPs remaining at the end of

the functional analysis; SNP shown in bold and underlined indicates the only SNP that is

common to the two analytical approaches.
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Table 2: Validation of ChlP-seq Data by Nanostring

TSS to Expression
Gene P-Value Correlation PBM Notes
Peak Center to BNC2
FAM49B 21553 0.000147821 - 1,2;5,6 Ovarian cancer
ITGB5 8074 0.000463581 - 1,2;5,6 Focal Adhesion
Focal adhesion,
JUN 20445 0.00626649 + 1,2;5,6 WNT and MAPK
signaling
TGFBR3 5215-14508  0.0390608 ¥ 5,6 TGF-beta Signaling
Pathway
Focal adhesion,
CCND3 -25565 0.00106617 + 1,2;5,6 WNT and MAPK
signaling
- . Ovarian
CEPSS  oug27i24647  0-002645 * 1,2:56 Development
FEM1A -65 0.0206431 - 1,2;5,6 Promoter with Peak

Expression correlation to BNC2: indicates whether the expression of the target gene is

positively (upregulated) (+) or negatively (downregulated) (-) correlated with the overexpression

of BNC2.
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FIGURE LEGENDS

Figure 1: Rules guiding SNP selection and prioritization of causal SNPs at the 9922 locus
using atwo-pronged strategy. Functional dissection guided by Linkage Disequilibrium with
the most significantly associated risk SNP (left flowchart) identified five SNPs in three regulatory
elements, an enhancer to BNC2, the BNC2 promoter, and a Substrate/Matrix attachment region
(S/MAR). Analysis guided by fine mapping data (right flowchart) points to the S/IMAR as the
region with the SNPs most highly associated with risk (in bold red) which was also identified in
the functional analysis. Conditional analysis (adjusted for rs3814113; green font) revealed
independent signals at the locus.

Figure 2: Candidate functional SNPs overlapping with regions of regulatory activity in
ovarian cells. A. Within the region of the 9p22 locus containing linked SNPs, twelve regions
contain FAIRE peaks (gray bars), H3K27Ac peaks (orange bars), and/or H3K4Mel peaks
(maroon bars) in IOSE and iFTSEC cells. Some regulatory regions do not overlap with
candidate SNPs (yellow highlight). Regions highlighted in red overlap with candidate functional
SNPs (thin blue bars). Numbered blue bars represent the location of 2 kb tiles cloned into
luciferase reporter vectors. B. Box and whisker plots showing the luciferase activity from
duplicate experiments with eight biological replicates of each tile in both orientations. Asterisks
denote tiles exhibiting significant transcription activity compared to a control tile (C) located in a
genomic region inactive in ovarian cells as judged by features in the figure. Tiles moving forward
in the functional assays are colored red. C and D. Luciferase assays reveal significant allele-
specific differences in transcription activation for rs62541878, rs62541920, rs12379183,
rs1092647, rs10810657, rs12350739, and rs77507622, as indicated by red boxes and asterisks
in forward (C) or reverse orientation (D). Reference and effect allele tiles are shown in blue and
red fonts, respectively. E. EMSA showing allele-specific differences in mobility between the
reference and effect alleles. SNPs in Regions 7 (rs12379183 and rs6251920), and 8
(rs12350739 and rs77507622) display differences in complex formation between the reference
and effect alleles. SNPs with allele-specific differences are indicated by red text.

Figure 3: Region 11 is attached to the nuclear scaffold in ovarian cells. A-C. Genomic DNA
(total or attached to the nuclear scaffold) was extracted from ovarian iOSE11 and HelLa cells.
For each region the ratio of scaffold-attached to total DNA is depicted. Significance was defined
by a Z score 221 (Z score = (average of scaffold attached DNA — average of negative
control)/standard deviation of negative control). R11, Region 11; ApoB, ApoliproteinB gene,
used as positive control in HeLa cells. D. HiC (High dimensional chromosome conformation
capture) interaction frequency data from cell lines obtained from the Yue lab HiC browser
(http://promoter.bx.psu.edu/hi-c/view.php). Dashed line indicates the position of the S/IMAR. E.
Depiction of the location of the topologically associating domain (TAD) inferred from the
interaction data in D and the relative positions of the S/MAR and the other two genes located in
the TAD. F. A snapshot from the genome browser displays UCSC genes as well as FAIRE
peaks (gray), H3K27Ac peaks (orange), and/or H3K4Mel peaks (maroon) in iOSE, iFTSE, and
ovarian cancer cells generated in the laboratory. The four genes within the region considered as
potential target genes for ovarian cancer susceptibility include c9orf92, BNC2, CNTLN, and
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SH3GL2. ENCODE H3K4me3 peaks (purple), used to identify the promoters of these four
genes (highlighted in yellow). H3K27ac tracks (orange) inform the extent to which these
promoters are active and show that BNC2 and CNTLN promoters are active in ovarian cells
while c90rf92 and SH3GL2 are not. G. RNA-Seq for these four genes indicates the presence of
transcripts for BNC2 and CNTLN but not for SH3GL2 and c9orf92. H-I. Chromosome
conformation capture (3C) analysis indicates that Region 8 interacts with the BNC2 promoter
(H) while region 11 (right) does not show a significant interaction compared to the adjacent site
(I). Anchor regions for 3C are highlighted in red. Red dashed line indicates the interaction to
adjacent probes. Each graph is aligned with chromatin mark and transcript information from the
genome browser. Regions containing SNPs are indicated by blue boxes. Blue arches depict the
interactions.

Figure 4: Fine mapping of the interval at 9p22 (chr9: 16407967-17407967) locus in 15,437
women diagnosed with invasive EOC and 30,845 controls. Plotted using LocusZoom
(http://locuszoom.sph.umich.edu/locuszoom). A. rs3814113 (the most significant SNP in the
original analysis (Song et al.) is shown as a purple diamond as remains as the most significant
association in fine mapping analysis for serous ovarian cancer. SNPs are colored according to
LD to rs3814113. B. Conditional analysis adjusting for rs3814113.

Figure 5: BNC2 recognizes specific nucleotide sequence. A. BNC2 is characterized as a
C2H2 zinc finger protein with three pairs of ZFs (called 1,2; 3,4; 5,6). BNC2 Zinc Finger binding
sites were identified in vitro by applying recombinant proteins of each ZF pair to a protein
binding microarray. Position weight matrices of all potential binding sites with significant scores
for each BNC2 ZF pair are shown as logos. Motifs predicted based on the protein sequence of
the ZF domains aligned with ZF1,2 and ZF5,6. The 3’ end of the sequences recognized by
ZF1,2 and ZF5,6 reveal the same nucleotides. Inspection of the amino acid sequences for ZF2
and ZF6 show that amino acid residues at position -1, 2, 3, 6, and 10 within the alpha helix that
specifically interact with DNA nucleotides (in red) are the same. B. The ChIP-Seq motif
identified by MEME seems to be a concatenation of the predicted motif for ZF1,2 and the
predicted reverse complement motif for ZF 5,6. C. Enrichment of motif relative to ChlP-Seq
peak summits.
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Supplementary Figure 1 (Related to Figure 2): Haplotype frequency for tiles Enhancer
Scanning times with multiple SNPs. Haplotype frequencies obtained from LDLink (V 2.0;
December 2, 2016; All Populations).
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Supplementary Figure 2: (Related to Figure 3) Conservation and S/MAR predicted
sequences within the locus. A. This snapshot from the genome browser for the region
containing linked SNPs includes tracks for Phylop, PhastCons scoring for conservation
and alignment of DNA sequences among several vertebrates. Interestingly, region 7 and 8
have peaks of conservation for both scoring systems while regions 6 and 11 lack a
conservation signal. B. Region 11 contains sequences highly predicted by MAR-Wiz to
attach to the nuclear scaffold/matrix compared to the rest of the locus. The intensity of
prediction was driven by the Origin of Replication Rule and the A-T Richness Rule.



candidate selection strategies

¢

LD-guided fine mapping
Tag SNP Tag SNP
rs3814113 rs3814113
(Song et al.) (Song et al.)
J(LD rrz0.3 l{genotype
82 kb 134 ——y e; < 2418
overlap with
D o : J/ Impute (1816 SNPs)
5 regions 22 : 4234 --Senditional__
o Enhancer : ‘l, p < 5x10-2 : ps105
H Scanning (ES) . 1
P9 : 241 I
: ] . odds 1:1000 !
[ allele-specific . ‘l/ (or better) Ny
¥ \l/ activity :
347 : 40 _ 9
overlap with
\I/ biofeatures
rs112442786
rs199782476
EMSA rs62543587
\L rs113198237
rs34131140
5 6 4
LD r?
(rs3814113) == 0.9776 0.5664 0.5882 1 1
() () A
I w & v ® »&
oY & R i N NS
v? N W ~N ) w U
< &8 3z 2 * .
~ ~ %) ~N m N
& & I & & 'i”oﬁ’
Scale |
hg19 | skb | | | | | | | | | | | | | | |
chre: 16,907,500 16,908,000 16,908,500 ' 16,909,000 16,909,500 16,910,000 16,910,500 16,911,000 16,911,500 16,912,000 16,912,500 16,913,000 16,913,500 ' 16,914,000 16,914,500 16,915,000
iOSE4 FAIRE I
FISECS AR —
FTSE(E%A‘Z FAIRE
UWB1.289 FAIRE
iOSE11 H3K4me1
iECoas Mcimet
WS 389 3Kimen T11 TC T12

CaOV3 H3K4me1

Supplementary Figure 3: Overlap between the set of 134 SNPs obtained through the LD-
guided analysis and the set of 40 SNPs obtained through the fine mapping-guided
approach. Thirty-five out of 40 SNPs obtained through the fine mapping-guided approach were
present in the set of 134 SNPs and where functionally assessed. The five remaining SNPs
emerged due to updated imputation and were separately assessed (red dashed arrow and
lower panel). These five SNPs were visualized in the Human Genome Browser and their LD r?
to the rs3814113 (tag SNP) is shown on top of the browser. Locations of SNPs are indicated by
a thin red line. Enhancer scanning tiles tested in Figure 2 are shown as blue bars.



A < <
< < 0 < < 0
0w O m W N m
m m o mm 5 o
o o <
& @ o 9 22t 5 o T

Q= 1o o = £ T &

o o © oo © 9 © g
o n o W L O mn & ¢ & g w
v ~ -~ N N D~ -~ £ 2 8 N

50 kDa 50 kDa

B IP: Cell Line
150+ Il (gG: IOEM
o BNC2: IOE11
:3 c 2883 = 70E5 WM IgG: IFTE283
221001 1 ] 1 - BNC2: IFTE283
<3 I
g g NS
38 T
EC I
04
Position Relative to TSS: -582 914 -2184
Primers 582 w914 i 2184 mm
ZF Binding Motifs 561 561
ChlIP-Seq BNC2 e
UCSC Genes WBch
chr9 (hg19): 16 871 000] 16871500] 16872000] 16872500] 16 873 000]

Supplementary Figure 4: (Related to Figure 5) BNC2 binds to its own promoter.
A. Coomassie stain of protein purification of GST tagged BNC2 ZF pairs: 1,2; 3,4; and
5,6. B. Chromatin immunoprecipitation (ChlP) indicates that BNC2 binds to its own
promoter. Potential ZF 5,6 binding sites within the BNC2 promoter are indicated with
black lines. Black boxes indicate location of amplicons analyzed with ChIP gPCR. In
iIOSE11 and iFTSEC283 cells there is a signal that BNC2 is indeed binding to those
sites (bar graph). ChlP-seq data for BNC2 in iOSE11 cells replicate the binding at the -
914 position (blue bar).



EXTENDED DATA AND METHODS (BNC2 ChIP-Seq)

Antibody

Chromatin immunoprecipitations were performed as previously described * using a validated
Prestige® BNC2 antibody (Sigma Atlas; cat.no. HPA018525). Prestige Antibodies were
developed supported by the Human Protein Atlas (proteinatlas.org). According to the
manufacturer Prestige Antibodies are tested in a series of validation steps. The BNC2 antibody
was able to immunoprecipitate ectopically expressed CBP-tagged BNC2 showing that it can

also specifically recognize native BNC2 (Extended Data Figure 1).
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Extended Data Figure 1: GFP and CBP tagged BNC2 were over expressed in 293FT cells. Lysates of these cells were
immunoprecipitated with either Rabbit IgG or the Prestige antibody for BNC2 (Sigma). Immunoprecipitates (IP; #1, 1ug of BNC2 antibody;
#2, 2ug of BNC2 antibody ) undergo Western Blot for CBP. A band for BNC2 between the 150 kDA and 250 kDA mark appears in the
input and BNC2 IP for over expressed BNC2 but not in the input and BNC2 IP for over expressed GFP nor in the 1gG IP.

ChlP-Seq

ChIP-Seq was performed on the endogenous BNC2. In brief, iOSE11 or iIFTSEC283 cells at
70% confluence were cross-linked with 1% Formaldehyde in PBS. Crosslinking was quenched
by adding Glycine to a concentration of 0.125 M. After washing, cells were collected in Szaks’
RIPA buffer [150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris HCI pH8, 5

mM EDTA, Protease Inhibitors, 50 mM NaF, 0.2 mM sodium orthovanadate, 0.5 mM PMSF] and



the lysate was brought to approximately 1 mg/mL. The lysate was then sonicated in Biogenode
Sonicating Water Bath for 12 cycles of 30 sec on and 30 sec off for 8 min. One mg of protein
was then mixed with 40 pL of 50% slurry protein A/G agarose beads (Santa Cruz) previously
washed in Szaks’ RIPA buffer and pre-cleared for 1-2 h at 4°C. We prepared one lysate per cell

line, referred to as OSE_input and FTE_input.

Next, pre-cleared lysate was mixed with 5 pg of BNC2 antibody (Sigma Atlas) and 40 L
of 50% slurry protein A/G agarose beads previously washed in Szaks’ RIPA buffer and
saturated with 1 mg/mL BSA. The mix was incubated overnight at 4°C while rotating. Beads
were then washed twice with Szaks’ RIPA Buffer, four times with Szaks’ IP wash buffer [100
mM Tris HCI pH 8.5, 500 mM LiCl, 1% NP-40, 1% deoxycholate], twice again with Szak’ RIPA
Buffer and twice with cold TE. Immunocomplexes were eluted by incubating samples at 65°C for
10 min in 1.5X Talianidis Elution Buffer [70 mM Tris HCI pH 8, 1 mM EDTA, 1.5% SDS].
Crosslinks were reversed by bringing samples to 200 mM NacCl solution and incubating at 65°C
for 5 h. DNA was purified by phenol-chloroform extraction and re-suspended in 50 puL 10 mM

Tris pH 8.0.

For BNC2 ChIP-Seq four individual ChIP samples (from each input lysate) were pooled
for each cell line (IOSE11 and iFTSEC283) in two biological replicates, referred to as OSEL1,
OSE2, FTE1, and FTE2. Immunoprecipitated DNA was used to generate a sequencing library
using the NUGEN Ovation Ultralow Library System with indexed adapters (NuUGEN, Inc., San
Carlos, CA). The library was PCR amplified and size-selected using AxyPrep Fragment Select
beads (Corning Life Sciences — Axygen Inc., Union City, CA). The size and quality of the library
was evaluated using the Agilent BioAnalyzer, and the library was quantitated with the Kapa
Library Quantification Kit (Kapa Biosystems, Woburn MA). Each enriched DNA library was then
sequenced on an Illlumina HiScan SQ sequencer to generate 100-base paired-end reads. The

raw sequence data was de-multiplexed using the lllumina CASAVA 1.8.2 software (lllumina,



Inc., San Diego, CA) and binding sites were identified using the MACS2 software 2 using input
DNA as a control and callpeak function without building the shifting model, minimum FDR as

0.01.

The .bam and .wig files were visualized and inspected using the UCSC genome
browser®. The number of reads for each sample and their quality metrics are shown in Extended
Data Figure 2. All samples had >70% of reads with Q30 or better and 2% or less of duplicates.
For peak calling —log;o(q value) > 2 (corresponding to an 1% FDR) was used as a cut-off. The
number of paired end reads ranged from ~50M to ~69M per sample above the ENCODE

minimum requirement of 20M for point-source (ChIP-Seq) experiments *.

IFTSEC283 cells had a total of 5,687 (FTE1) and 5,730 (FTE2) peaks with 3,396
overlapping peaks and iOSE11 cells had a total of 5,492 (OSE1) and 9,818 (OSE2) with 3,205
overlapping peaks. Peaks used for identification of potential target genes had an intensity
greater than 0.05 (reads/length), number of reads greater than 50, and a fold change compared
to the input greater than 10 for a total of 2,012 peaks for iIFTSEC283 cells and 544 peaks for
IOSE11 cells. Median enrichment ranged from 5.2 to 6.9 considered within the norm for

ENCODE experiments®. Typical peaks are illustrated in Extended Data Figure 3.



Extended Data Figure 2. Sample quality metrics for ChIP-Seq experiment. A. Sample description and quality metrics. Rawnum
and cleanreadsnum, number of raw and clean map reads, respectively. Paired and paired_perc, number and percent of paired
mapped reads. 2Q30(%), percent of map reads Q30 and above. B. Distribution of map reads according to their quality metrics (Q
bins). Red dashed line indicates threshold of 2Q30. C. Peak overlaps between replicates of the same cell lines and overlapped
between the two samples.
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FTE1 71,314,272 60,150,320 59,956,210 99.67 194,110 76.59 1.08 99.6
FTE2 62,325,344 50,518,833 50,334,218 99.63 184,615 75.9 0.86 99.53
FTE input 57,373,894 36,646,199 36,475,486 99.53 170,713 70.9 2.02 99.4
0OSE1 46,248,654 35,419,803 35,274,898 99.59 144,905 76.51 0.44 99.47
0OSE2 80,421,386 64,143,808 63,883,442 99.59 260,366 75.88 0.84 99.47
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g . FTE_input
‘E w
B g 03 I --._-II
2 & 8 10 12 14 18 18 20 22 24 26 28 130 32 34 36 38 40
g FTE1
31 e ML
2 5] a 10 12 14 16 148 20 22 24 26 28 30 32 34 36 38 40
F FTE2
B ]
2 & 8 0 12 14 16 18 20 22 24 2% 28 130 32 34 36 38 40
F OSE_input
3 .:.3 I -I—..“II
2 [ 8 0 12 14 16 18 20 22 24 26 28 (30 32 34 3/ 3B 40
g OSE1
2 -] g 10 12 14 16 18 20 22 24 X 28 130 32 M4 ¥ M 40
g OSE2
: .j I T ll.ll-
2 B 8 10 12 14 16 18 20 22 24 26 28 30 32 34 3/ 3@ 40
C FTE1 FTE2 OSE2

FTE OSE
OSE
3396 (



Extended Data Figure 3. Examples of ChIP-Seq data from the Human Genome Browser. A. FAM49B
peak. B. TGBRS3 peak. C. Jun peak. Peaks located in these regions and found both in FTE and OSE
samples. The total length of the called peak is shown as the blue highlight.

e 18k - 1 hgte
sk 130,658,000 | 130,534,000 | 130,630,008 | 130,634 000 | 130,040,200 | 130,048,000 |

8 TR N TSP AP, u..‘l“.‘.l_t.u.d.-m.nﬁa..u meharas cstinde e
YTV FOTVY OTITAR PR TN N Y Y W T YW VRN R Sy TP ST FTIRY PR

e sl mmn boobani |Il lu-ﬂ l‘l-l ‘ HlllLL |||.i ‘ll‘.l‘ b iJl b odh

ganem aee b b T I ST -lLs. LY T T T T T Y O T R Y TR Y Y e Y ST W

oo .. ([ (TP G VTR | § TPy ll.luluuniml.lhn TTY SR g

(onEa ERE

UWR1 I8 n\mr - L}
st rine . .
-
" - -
ey
oo
e
Al
B
+ naté
w2.39%,000 | 2,300,000 | 309,000 | w3000 | w2arse0 | 2390000 |
FTE
o hanem heode & “ﬁ-h&.—d-d b sl hlhln B kil L-_-. L L R T LT SIS A W T S
38
Fre
b bn cndl it i A o A ke . —— aled N N | e T

e hu PRI T IY TR ¥ “ ul . b, in.El.n Ak dlbid e o

. L I T O T ABE - e b e e e eee [P T

e ] B e T L sembobi o . 4N L o A s mms ke o e e
T ek kal u.iil;;:;i..ﬁ“m Wi u.lir N P T R R TF I ¥ 118

]
: } — f
]
foai " nats
= sl szl %0.338000 | oo | sazeion | w2000 | P
R ] lllm [T TYepray s dukoedibld Mo boenls wan L-hl.aﬂl--l“
o ek I Y S i M& Ama M.k h [V TSR " VST N Y WPSFAPY PR T .“Im

"dh‘ ill bodid vihinns 5o AN ‘h i lil-lll bt bebd b b ailed “ linmuis

I::‘___aﬁulh-ll--l-ll-l PO AR Yy N TS AR P Bahnd vl oaiian dhoidd ABokae v e eite oih oo ndl
o “h-l‘llﬁhﬁ_m u“hn.& FTiY . ML* Lﬂhu ¥ VRY Py e |

rllull..lnhuuu,. it s Jhﬂuﬂlm.k‘i Lnlr.n..u itk

e - 14

3
CalVI FARE



References

1.

Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM. Gene-
specific requirement for P-TEFb activity and RNA polymerase Il phosphorylation within

the p53 transcriptional program. Genes & development 20, 601-612 (2006).

Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome biology 9, R137
(2008).

Kent WJ, et al. The human genome browser at UCSC. Genome research 12, 996-1006
(2002).

Landt SG, et al. ChlP-seq guidelines and practices of the ENCODE and modENCODE
consortia. Genome research 22, 1813-1831 (2012).



