UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Development and characterisation of nanocarriers system of hydrophobic drugs for pulmonary delivery

Nimmano, Nattika; (2019) Development and characterisation of nanocarriers system of hydrophobic drugs for pulmonary delivery. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Revised PhD thesis N Nimmano following minor amendments.pdf]
Preview
Text
Revised PhD thesis N Nimmano following minor amendments.pdf

Download (8MB) | Preview

Abstract

Background: The bioavailability of BCS class II drugs used in non-small cell lung cancer (NSCLC) treatment is limited by low water solubility. Also, current therapies for NSCLC cause systemic side effects and sub-therapeutic levels of drugs at the target sites. Colloidal systems administered by the pulmonary route may overcome these problems. Method: A genistein-mPEG conjugate was synthesised and characterised for delivering erlotinib or curcumin in micelles. Liposomes co-loaded with genistein and erlotinib were developed as an alternative formulation approach and studies using DSC and HPLC analysis. The aerosol properties of micelles and liposomes were measured using the Next Generation Impactor (NGI). The Fast Screening Impactor (FSI) was investigated as an alternative to the NGI for aerosol characterisation of nebulised liposomes. Three parameters (nebuliser types, impactor operating conditions and liposome size reduction methods) were studied using the FSI. Results: Successful conjugation was confirmed by FT-IR, NMR and MS. Curcumin loading into conjugate micelles had mean size < 200nm, with ≈ 50% encapsulation efficiency (EE). However, the genistein conjugate was not appropriate for erlotinib delivery, having low EE (<3%). For liposomes, the mean size was ≈130 nm, with 10% EE (erlotinib) and 100% EE (genistein). DSC results showed incorporation of both drugs into the bilayer, giving a broadening of the main phase transition of DPPC with a decreased main phase temperature. The air-jet nebuliser was superior to the vibrating-mesh device in terms of significantly higher fine particle dose (FPD) and fine particle fraction (FPF). The FSI (5± 3 ºC), with modification operated at 15 L/min, was found to be simple to use and labour-saving for simple aerosol characterisation, giving comparable results to the NGI for FPD and FPF. Extruded liposomes showed greater size stability than sonicated vesicles during preparation and nebulisation. Conclusions: Optimised micelles and liposomes with desired mean size and drug entrapments have the potential for nebuliser delivery of genistein, erlotinib and curcumin, and may be suitable for delivering other hydrophobic drugs.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Development and characterisation of nanocarriers system of hydrophobic drugs for pulmonary delivery
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
URI: https://discovery.ucl.ac.uk/id/eprint/10068143
Downloads since deposit
349Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item