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ABSTRACT 

To explore the potential advantages of supplying occupant behavior models with inter-occupant diversity 

information, this study models the occupants’ operation of windows in a monitored open-plan office at 

aggregate and individual levels. Subsequently, a calibrated energy model of the office area incorporates 

the developed models and multiple streams of monitored data to evaluate the predictive performance 

of the models and their contribution to enhance the reliability of building performance assessments. 

According to the results, individual window operation models outperformed the aggregate model in 

capturing the peak and variation of window operation across occupants in the free-running season, 

which resulted in a better assessment of thermal comfort. However, the individual models yielded an 

overestimation of peak heating demand, as compared with the benchmark value based on the actual 

window operations in a single year. 

INTRODUCTION 

The building simulation community has increased its efforts to reduce the gap between predicted and 

actual building energy use through probabilistic representations of occupant behaviour in buildings 

(Schweiker 2017). However, several studies have demonstrated that the use of existing occupant 

behaviour models involves considerable uncertainties and does not necessarily lead to a more reliable 

building performance assessment (e.g., Tahmasebi & Mahdavi 2017; Gilani et al. 2017). Specifically, it 

is shown that without proper treatment of the diversity in occupants’ behaviour, probabilistic occupancy-

related models fail to provide representative ranges of occupant behaviour possibilities as intended 

(O’Brien et al. 2017; Tahmasebi & Mahdavi 2016). To address this issue, different approaches for 

inclusion of diversity in occupant behaviour modelling efforts have been examined (Reinhart 2004; 

Mahdavi 2015; O’Brien et al. 2017; Haldi et al. 2017). However, it has been also suggested that for 

specific cases, such as large open-plan offices (Gilani et al. 2017), a detailed treatment of occupants’ 

diversity may not be beneficial. Consequently, further studies in this area are needed, as the potential 

benefits of supplying probabilistic occupant behaviour models with inter-occupant diversity information 

are not conclusively established. In this context, the current contribution revisits the problem through a 

case study. Thereby, the study investigates if modelling the inter-occupant diversity in operation of 

windows contributes to a more reliable performance analysis of an open-plan office area. 

METHOD 

Overview 

The present study uses long-term monitored data on indoor and outdoor environment and state of 

windows in an office area to model the occupants’ operation of windows with and without integration of 

inter-occupant variations in this regard. Subsequently, using the monitored window operation data along 

with a calibrated building performance model of the office area, the study explores two essential 

questions with regard to the use of stochastic window operation models: To which extent do the 

predictions of window operation models that disregard the behaviour diversity differ from the actual 



occupants’ behaviour? To what degree does the consideration of occupants’ behavioural diversity in 

building simulation contribute to better performance assessments? 

Building data 

The current study focuses on an office area with seven workstations in Vienna, Austria, where each 

occupant has access to one manually operable casement window (Figure 1). Six of these workstations 

are in an open-plan area. The building is not air-conditioned and it only uses a hydronic heating system 

to actively maintain thermal comfort in the cold season. In this office, the occupants’ presence, state of 

windows and several environmental parameters (including indoor and outdoor air temperature) are 

monitored on a continuous basis. The study uses the monitored data from a calendar year (referred to 

as estimation period) to derive the window operation models. A separate set of data obtained from 

another calendar year (referred to as validation period) is used to evaluate the performance of the 

models. 

Window operation models 

To explore the research questions, the authors developed the following two types of window operation 

models based on the monitored data in the estimation period: 

 Aggregate model (AGG), which was derived based on the data obtained from all occupants and 

windows; 

 Individual models (W1-W7), which were derived based on the data obtained from each occupant 

and his/her associated window. 

Each of the models consists of two logistic regression sub-models for estimation of window opening and 

closing probabilities. They provide the state transition probabilities for a Markov chain, based on which 

the states of windows are predicted for the validation period (for more details, see Tahmasebi & Mahdavi 

2018). Table 1 provides the estimated coefficients for the individual and aggregate window opening and 

closing models. Figure 2 illustrates slices through the response surface of individual and aggregate 

models at an outdoor temperature of 20°C. Figure 3 depicts such slices at indoor temperatures of 20°C 

and 30°C. 

  



 

Table 1: Estimated coefficients for logistic regression models of window opening and closing based on the individual windows 

(W1 – W7) and aggregate data. 

Window 
model 

Variables 
and terms 

Opening 
coefficients  

Closing 
coefficients  

Individual 
W1 

Intercept -10.4233 16.6416 

θin 0.0905 -0.7013 

θout 0.2047 -0.5011 

Interaction -0.0034 0.0186 

Individual 
W2 

Intercept -12.2998 27.2410 

θin 0.3135 -1.1479 

θout 0.1075 -1.1022 

Interaction -0.0032 0.0424 

Individual 
W3 

Intercept -28.3577 7.9830 

θin 0.9783 -0.4323 

θout 0.9343 -0.3756 

Interaction -0.0363 0.0144 

Individual 
W4 

Intercept -31.2056 29.7625 

θin 1.0775 -1.3678 

θout 0.4713 -1.0668 

Interaction -0.0195 0.0454 

Individual 
W5 

Intercept -49.5078 15.5018 

θin 1.9324 -0.7982 

θout 1.5071 -0.6517 

Interaction -0.0617 0.0283 

Individual 
W6 

Intercept -22.4190 23.7542 

θin 0.8031 -1.0475 

θout 0.3130 -0.8246 

Interaction -0.0123 0.0332 

Individual 
W7 

Intercept -13.7355 25.3944 

θin 0.4225 -1.1495 

θout 0.0343 -0.9280 

Interaction -0.0007 0.0374 

Aggregate 
(AGG) 

Intercept -10.6882 23.9665 

θin 0.2187 -1.0969 

θout 0.2100 -0.9172 

Interaction -0.0052 0.0376 

 

  



 
Figure 1: Schematic illustration of the office area, observed occupants and operable windows 

 

 

       

Figure 2: Slices through the response surface of individual and aggregate models for opening (left) and closing (right) of 

windows at an outdoor temperature of 20°C. 

  



 

       

       

Figure 3: Slices through the response surface of individual and aggregate models for opening (left) and closing (right) of 

windows at indoor temperatures of 20°C (top) and 30°C (bottom). 

 

Note that, in order to focus the investigation on the inter-occupant diversity representation, the current 

study adopted a rather simple approach to model window operation. Specifically, without conducting a 

comprehensive variable selection procedure, all the models only use indoor and outdoor temperatures 

as explanatory variables. However, the interaction term was added to the models to capture the effect 

of indoor temperature depending on outdoor temperature and vice versa. To the authors’ knowledge, 

interaction of indoor and outdoor temperature has not been incorporated before in window operation 

models. This is, however, especially important in the present study, as in a number of extremely hot 

summer days in Vienna, natural ventilation cannot serve as a cooling measure and may not be 

preferable by occupants. As it can be seen in Figure 3, the developed models have captured this 

tendency: With an indoor temperature of 20°C and outdoor temperatures such as -2 to 26°C, the 

probability of opening window increases with the rise of outdoor temperature (Figure 3, top left plot). 

However, in extreme summer conditions (for example with an indoor temperature of 30°C), for a number 

of occupants, the probability of opening window is decreasing when the outdoor temperature rises 

(Figure 3, bottom left plot). A similar alternating pattern can be seen also in terms of estimated window 

closing probabilities (Figure 3, right plots).  

Moreover, it should be noted that the models do no not differentiate between different occupancy phases 

(such as arrival, intermediate and departure). However, given the operational circumstances in the 

studied building, windows are assumed to be closed upon occupants’ last departures. 

Diversity representation 

The present contribution adopts an ideal approach to represent inter-occupant diversity in window 

operation. Thereby, each individual model is used to predict the occupant, based on whom the model is 



developed. This strategy was due in part to the small number of occupants in the study. Moreover, it 

was considered consistent with the study's main aim, namely to explore the potential advantages of 

integrating diversity in occupant behaviour models. 

Office area calibrated simulation model 

The office area was modelled in the building energy simulation tool EnergyPlus 8.8.0. In the zoning 

scheme, the open-plan south and north-oriented spaces were separated from the central corridor. 

However, using the network-based multi-zone airflow model of EnergyPlus, the airflows across the 

external windows and the connected spaces were simulated. The constant input parameters governing 

airflow simulation in the EnergyPlus model (namely open windows discharge coefficient and closed 

windows air mass flow coefficient) were set based on a previous model calibration effort (Tahmasebi & 

Mahdavi 2012).  

The building calibrated simulation model served as a test bed for evaluation of window operation models 

with consideration of models’ feedback, i.e. the impact of models’ output (window states) on models’ 

input (indoor temperature). The calibrated building model also made it possible to determine the impact 

of window operation (and use of different window operation models) on the estimation of building 

performance indicators. To this end, the monitored data streams of occupants’ presence and use of 

lights and equipment in the validation year were fed into the model. In addition, the aggregate and 

individual window operation models were successively integrated into the building model using 

EnergyPlus runtime language. The study also benefited from a benchmark building model, which 

contained the actual states of windows based on the monitored data obtained in the validation period. 

Moreover, the building model was exposed to the outdoor environmental conditions in the validation 

period, using a weather data file generated from on-site weather station measurements. The measured 

dataset included outdoor air temperature, air humidity, atmospheric pressure, global horizontal radiation, 

diffuse radiation, wind speed, and wind direction. Lastly, due to the stochastic nature of the window 

operation models, the building model was simulated 50 times to obtain representative ranges of outputs. 

It should be also noted that, an ideal unlimited heating system is set in the model to maintain the indoor 

temperature of different zones according to the measured indoor temperatures in the validation period, 

and to estimate the space heating demands. However, since such a system fully counteracts the impact 

of window openings, the building model is not strictly applicable to evaluation of window operation 

models in heating season. Therefore, for the purpose of the current study, the predictive performance 

of window operation models is only considered in the free-running season (from April 22 to September 

25).  

Window operation evaluation metrics 

The following metrics serve to evaluate the window operation models in view of interval-by-interval 

equivalence of the predicted and monitored window states: 

 TPR (True Positive Rate), as the proportion of actual open states, which are correctly predicted. 

 FPR (False Positive Rate), denoting the proportion of actual closed states, which are wrongly 

predicted. 

 TNR (True Negative Rate), denoting the proportion of actual closed states, which are correctly 

predicted. 

 FNR (False Negative Rate) as the proportion of actual open states, which are wrongly predicted 

closed. 

In addition, three indicators examine the dynamics and overall aspects of the predicted window 

operations, as follows: 

 Overall fraction of open state, as the total window opening time divided by the observation time. 

 Mean number of actions per day averaged over the observation time. 

 Median open state duration, to capture the durations for which windows are left open. 



These indicators have been widely used in the studies pertaining to the evaluation of occupant behaviour 

models (e.g., Schweiker et al. 2010). However, in order to measure the models’ ability to discriminate 

between occurrence and nonoccurrence of window openings and closings, the authors deployed a 

rather novel metric in this field, namely the coefficient of discrimination. This metric is suggested by Tjur 

(2009) in the context of logistic regression as an analogue to the coefficient of determination (R-squared) 

in ordinary regression models. The coefficient of discrimination (CoD) is calculated as follows: 

 

𝐶𝑜𝐷 = �̅̂�1 −  �̅̂�0 

 

Where �̅̂�1 and �̅̂�0 denote the average of fitted values (estimated probabilities of window opening or 

closing), respectively, for the so-called successes (intervals, in which an opening or a closing action has 

been observed) and the failures (intervals, in which an opening or a closing action has not been 

observed). Similar to R-squared in linear regression, coefficient of discrimination takes values between 

0 and 1. A value of 0 corresponds to “no explanatory power” (all fitted values are equal), and a value of 

1 corresponds to “perfect fit” (the fitted values coincide with the observations). This indicator offers two 

advantages in evaluation of occupant behaviour models: Firstly, it is obtained without conducting Monte 

Carlo simulation of the model (as it deploys the estimated probabilities and not the randomly-sampled 

states). Secondly, it does not require the inclusion of the models’ feedback as it examines the models’ 

predictions in a set of disconnected time intervals. 

Building performance indicators 

To capture the office area performance in heating and free-running seasons, the building energy model 

estimates the following indicators:  

 Annual heating demand per floor area [kWh.m-2], which gives the total heating energy required 

in a year to maintain temperature set-points. 

 Peak heating demand per floor area [W.m-2], which gives the maximum heating energy required 

in a 15-min interval to maintain temperature set-points. 

 Time outside EN15251 comfort zone [%], which denotes the fraction of occupied time in the 

free-running season, in which operative temperature is outside EN15251 Category III limits. 

RESULTS 

Occupants’ interactions with windows 

Table 2 provides the metrics obtained from interval-by-interval comparison of predicted and monitored 

window states of the entire office area in the free-running validation period. In addition, the models’ 

ability to discriminate window opening and closing actions is captured with values of the coefficient of 

discrimination given in Table 3. This table also includes the coefficient of discrimination obtained from 

two widely-used existing window operation models developed by Rijal et al (2007) and Haldi and 

Robinson (2009) for reference.  

Further aspects of window operation predictions, namely, overall fraction of open state, number of 

opening action and open state durations, are summarized in Table 4. It provides the observed and 

predicted values of the metrics for individual occupants/windows in the free-running season, together 

with the mean and standard deviation of the metrics across occupants. Note that, the values of the 

metrics in Table 2 and Table 4 are obtained from averaging the models’ predictions in 50 Monte Carlo 

runs. To better compare the models’ performance in capturing the variations in occupants’ interactions 

with windows, Figure 4 shows the coefficient of variation of the metrics (as the ratio of standard deviation 

to the mean) obtained from the observations and predictions made by the aggregate and individual 

models.  



Building performance indicators 

Table 5 gives the obtained building performance indicators, namely, annual and peak heating demands, 

and the percentage of occupied time outside EN15251 comfort limits. It includes the outputs of the 

benchmark model (with the monitored window operation data), along with the mean and standard 

deviation of the predictions provided by the building models equipped with the aggregate and individual 

window operation models. To put the models’ performance in context, Table 5 also provides the results 

obtained from two simple window operation models. The first one assumes windows are open if indoor 

temperature is above 26°C. The second one assumes windows are always closed.  

To better interpret the obtained results, Figure 5 illustrates the relative error of the estimated building 

performance indicators as compared to the benchmark model. Note that, due to the very large 

overestimation of discomfort by the model with closed windows, the output of this model is not included 

in Figure 5. 

  



Table 2: Values of TPR, FPR, TNR, and FNR for aggregate and individual window operation models in the free-running 

validation period  

Model(s) 
TPR 
[%] 

FPR 
[%] 

TNR 
[%] 

FNR 
[%] 

Aggregate  29.2 4.3 95.7 70.8 

Individuals  47.1 5.9 94.1 52.9 

     

Table 3: Values of Coefficient of Discrimination (CoD) for window opening and closing actions obtained from aggregate and 

individual window operation models in the validation period  

Model(s) CoDopening [-] CoDclosing [-] 

Aggregate 0.008 0.082 

Individuals 0.034 0.127 

Reference 1 (Rijal et al. 2007) 0.044 0.008 

Reference 2 (Haldi and Robinson 2009) 0.013 0.012 

 

 

Table 4: Observed and predicted mean values of fraction of open state, openings per day, and median open state duration for 

individual values along with inter-occupant mean and standard deviation of the metrics 

Window 

Overall fraction of open state [%] Opening actions per day [d-1] Median open state duration [h] 

Observed 
Aggregate 

model 
Individual 

models 
Observed 

Aggregate 
model 

Individual 
models 

Observed 
Aggregate 

model 
Individual 

models 

W1 2.5 5.5 0.5 0.18 0.45 0.07 2.00 2.38 1.46 

W2 7.8 6.5 4.8 0.46 0.48 0.50 3.75 2.57 1.62 

W3 3.6 7.5 8.8 0.18 0.52 0.55 4.00 2.68 3.13 

W4 10.8 6.8 7.3 0.48 0.54 0.52 4.75 2.31 2.56 

W5 8.8 7.2 19.7 0.50 0.56 1.02 3.25 2.43 3.43 

W6 9.3 5.0 11.7 0.50 0.43 1.04 2.75 1.99 1.52 

W7 17.8 6.7 13.6 0.69 0.52 0.83 4.13 2.50 3.37 

Mean 8.7 6.5 9.5 0.43 0.50 0.65 3.52 2.41 2.44 

SD 4.7 0.9 5.8 0.17 0.04 0.32 0.86 0.21 0.83 

 

Table 5: Building performance indicators obtained from the building models equipped with monitored window operation 

(benchmark), aggregate and individual window operation models, and two simple non-probabilistic models 

Window 
operation 
model(s) 

Annual 
heating 
demand 

[kWh.m-2] 

Peak 
heating 
demand 
[W.m-2] 

Time 
outside 

EN15251 
comfort 
zone [%] 

Benchmark 64.7 89.3 5.6 

Aggregate 67.4 ± 0.5 95.5 ± 15.5 8.8 ± 0.5 

Individuals 68.0 ± 0.5 111.0 ± 20.8 4.6 ± 0.3 

Open if θin>26 62.8 60.4 2.8 

Closed 62.4 45.5 25.0 



 

 

Figure 4: Coefficient of variation of the overall fraction of open state, number of opening actions, and median opening duration 

across occupants obtained from the observations, the aggregate and individual window operation models 

 

 

Figure 5: Relative error of the building performance indicators obtained from the building model with aggregate and individual 

window operation models as well as a simple rule-based model 

DISCUSSION 

Occupants’ interactions with windows 

The results provided in Table 2 indicate that individual window operation models outperform the 

aggregate model in correctly predicting open states (TPR of 47.1% versus 29.2%), whereas their false 

predictions of open states are only slightly more frequent than those of the aggregate model (FPR of 

5.9% versus 4.3%). The individual models also generate fewer false predictions of closed states (FNR 

of 52.9% versus 70.8%). Their performance in correctly predicting the closed states is very close to that 

of the aggregate model.  

The low values of the coefficient of discrimination given in Table 3 for both aggregate and individual 

models suggest that their performance in this regard is far from satisfactory. However, the similar values 

obtained from the predictions by two reference models reveal that this poor performance is not 

exclusively attributable to the models developed in this study. In fact, this may be rather explained by 

the inherent limit to the extent to which one can predict the exact time of occupants’ control-oriented 

actions. Nonetheless, the higher values of the coefficient of discrimination for the individual models, as 

compared with the aggregate model, suggests that the integration of diversity into the models has to 

some extent improved their ability in discriminating window opening and closing actions.  



Moreover, from the metrics provided for individual windows in Table 4, an interesting observation can 

be made concerning the overall fraction of open state: Even though each occupant’s model is based on 

the data obtained from the same occupant in the estimation period, the individual models could not 

identify the occupant who kept the window open the longest. Based on observations, W7 shows the 

maximum overall fraction of open state with 17.8%. However, in case of the individual models’ 

predictions, the maximum overall fraction of open state belongs to W5 with 19.7%. Nonetheless, and 

arguably more importantly, the individual models have outperformed the aggregate model in capturing 

the peak operation of individual windows. In fact, the aggregate model's lack of sensitivity to inter-

occupant diversity leads to the prediction that no occupant keeps the windows open longer than 7.5% 

of the time in free-running season. This has implications for the assessment of thermal comfort, which 

will be discussed in the next section. 

As it can be seen from the mean values provided in Table 4, individual models do not show a better 

performance in predicting the average tendencies in terms of number of opening actions and opening 

duration. In fact, they even show a larger error in the average number of actions across occupants. 

However, the combination of an overestimation of the number of openings and an underestimation of 

the opening duration has resulted in this case in a better estimation of the overall fraction of open state. 

As for capturing the variations in occupants’ interactions with windows, Figure 4 shows that the 

aggregate model has not captured the diversity among occupants. The individual models, however, 

have reproduced the variation of the metrics values across occupants with a slight overestimation.  

Building simulation results 

From Table 5, it can be seen that the aggregate and individual window operation models provide close 

estimations of the annual heating demand. Similarly, the non-probabilistic models, which disregard the 

possibility of window opening in heating season, provide reasonable estimates of annual heating 

demand. However, the non-probabilistic models fail to capture the peak heating demands resulting from 

occasional operation of windows in winter. In contrast, the aggregate and individual probabilistic models 

overestimate the peak values, which is more noticeable in case of individual models. Nonetheless, the 

benchmark peak heating demand (as one instance of possible annual peak demands in the building 

operation phase) is within one standard deviation of the mean predicted value of the aggregate model 

and very close to that of the individual models (Figure 5).  

With regard to the estimation of thermal comfort in the free-running season (see Figure 5), the individual 

window operation models outperform the aggregate probabilistic model and the non-probabilistic ones. 

As mentioned before, even though the individual models could not identify the most ‘active’ window-

operating occupant in the validation period, they have done well in capturing the peak and the variations 

in the fraction of open state among occupants (see Table 4 and Figure 4). This has served the building 

model with individual window operation models to better estimate the occupants’ thermal comfort in the 

free-running season (see Table 5 and Figure 5).  

Delving further into this finding, one can hypothesize that, in a free-running open-plan office area with 

multiple occupants and windows, when few occupants open the windows (and, for example, enable 

cross ventilation) the rest of the occupants may not bother to open the windows anymore (perhaps, 

amongst other things, to avoid draught problem). Therefore, firstly, the occupants who open the windows 

more frequently may be different from time to time (as is the case in the estimation and validation periods 

in the present study). Secondly, due to the smaller number of ‘active’ occupants, as compared with the 

‘passive’ ones (perhaps because in such an open-plan office operation of few windows suffice to change 

the indoor conditions), such adaptive actions may not be captured in models relying on averaged 

observations. 

In this case study, the aggregate stochastic window operation model did not include the influence of 

‘active’ occupants and therefore overestimated thermal discomfort. In contrast, the non-probabilistic 

model, which opens all the windows when indoor temperature exceeds 26°C, underestimated the 

thermal discomfort, due to an overestimation of air change rate (which may not be even preferable for 

occupants). The results of the study suggested that, in the present case, the integration of inter-occupant 



behaviour diversity in window operation models could enhance the reliability of simulation-based thermal 

comfort analysis of an open-plan office area. 

CONCLUSION  

The study presented in this paper was limited to seven occupants in a specific office space in Vienna, 

Austria. The window operation models were developed and tested based on the data obtained from the 

same building. The study also examined an ideal case in representation of inter-occupant diversity, as 

the models estimated for individual occupants were used to predict the same occupants’ interactions 

with windows. Nonetheless, the results suggest that integrating inter-occupant diversity in window 

operation models may be beneficial in terms of: 

 Discrimination between windows’ open and closed states throughout a long-term simulation; 

 Discrimination between occurrence and nonoccurrence of window opening and closing actions; 

 Estimation of the peak and variations of window operation across occupants, which cannot be 

captured by models derived from aggregate data; 

 Assessing thermal comfort in an open-plan space, in which each occupant’s adaptive actions 

could influence indoor environmental conditions of the whole space and thus influence other 

occupants.  

With regard to the estimation of annual heating demand, the study did not show a benefit in using the 

aggregate or individual probabilistic models. As for the assessment of peak heating demand, the 

aggregate model showed a reasonable performance. The integration of inter-occupant diversity led to 

an overestimation of peak heating demand, as compared to the benchmark value resulting from the 

actual window operations in a single year.  

Note that, while the present study points to the importance of occupants’ behavioural diversity 

information in window operation models for specific building performance queries, it does not offer a 

generic and practical approach for the pervasive provision and systematic inclusion of such information 

in routine building performance simulation processes. Specifically, to provide effective simulation-based 

design support, occupant models would have to be based on statistically representative diversity 

information. As such information is currently unavailable, care should be taken in extrapolating from the 

results obtained from the few available empirical sources of data – such as what this study was based 

on. It should be also noted that a subsequent publication by the authors provides more details on the 

developed models and further explores their performance (Tahmasebi & Mahdavi 2018). 
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