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Abstract

Let G be a finite group. It is an unsolved problem to classify closed con-

nected manifolds with fundamental group G. This thesis represents a first

approximation to solving this problem. We consider the universal covers of

such manifolds, and require that these covers be connected up to, but not

including, the middle dimension, and that they satisfy a specific formulation

of Poincaré Duality originally set out by Lefschetz. Using results from homo-

logical algebra, in particular the work of Johnson and Remez in constructing

diagonal resolutions for metacyclic groups, we are able to construct purely

algebraic chain complexes and invariants which act as a first approximation

to these universal covers for the cases G cyclic and metacyclic.
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Chapter 1

Introduction

1.1 Motivation

This thesis has several motivations, both algebraic and topological. The

first comes from Lefschetz [15] and his original treatment of Poincaré Du-

ality using dual cell structures. Poincaré Duality has been a fundamental

part of many major results within the field of topology, and is usually stated

as giving an isomorphism between the homology and cohomology groups of

a space X, or a homotopy equivalence of chain groups. While this formu-

lation has proved extremely powerful, it is also true that only defining an

equivalence up to homotopy can obscure non-trivial and difficult behaviour.

However by following Lefschetz’s work and placing some minor restrictions

upon X, one can in fact define Poincaré Duality as a strict isomorphism of

chain complexes. This extremely precise formulation is beneficial when per-

forming calculations at the chain level, and one can then ask for worthwhile

applications.

The theory of manifolds is an expansive subject, and there are many ways

to divide it into distinct cases. One could start by splitting into the three

classes of Topological, Piecewise-Linear (PL) and Differential manifolds. One

can also loosely divide the subject by dimension into manifolds M such that

dim(M) ≥ 5, and then low-dimensional cases. From these we are interested

in PL manifolds of dimension greater than 5. Finally, one can further split
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CHAPTER 1. INTRODUCTION

the subject into the study of simply connected manifolds, i.e. those manifolds

M such that π1(M) = 0, and non-simply connected manifolds, i.e. those with

non-trivial fundamental group.

The development of techniques such as surgery theory allowed almost all

problems in the simply connected case to be solved. However many problems

in the non-simply connected case remain outstanding, such as the construc-

tion of free group actions on manifolds. Suppose you had a group G and

wished to construct a free action on a specific manifold X, then this is equiv-

alent to realising X as the universal cover of some manifold M satisfying

π1(M) = G.

The case X = Sn was studied in depth by the likes of Milnor [17], Petrie

[21], and Madsen, Thomas and Wall [16], and it makes sense to ask what

the next stage up of complexity is from this case. We can classify the sphere

as having non-zero homology only in the top and bottom dimensions and as

a next step can consider the case where there exists non-zero homology in

the middle dimensions too. Writing the dimension of such an X to be 2n or

2n+ 1, this is the same as X being (n− 1) connected.

In the simply connected case and for n ≥ 3, Wall gave a general classifi-

cation of such (n− 1) connected 2n manifolds in [25] and (n− 1) connected

2n + 1 manifolds in [26], and called them highly-connected. Barden com-

pleted the results in the odd case with a treatment of n = 2 in [1]. However

when considering universal covers, we have the added structure of the chain

groups being free Z[G] modules to contend with. As a first approximation to

constructing M with fundamental group G and highly-connected universal

cover M̃ , we can seek to construct potential universal covers by constructing

chain complexes of free Z[G] modules satisfying certain requirements, such

as our precise formulation of Poincaré Duality.

To this end, recent developments in homological algebra have facilitated

such constructions for the case G = G(p, q). The metacyclic groups are

defined by the presentation

G(p, q) = 〈x, y; xp = yq = 1, yx = θ(x)y〉

10



CHAPTER 1. INTRODUCTION

where p prime, q a divisor of p− 1 and θ ∈ Aut(Cp) satisfies ord(θ) = q.

The concept of a free resolution was introduced by Hilbert (see [13]). If

G is a finite group and Λ = Z[G], then every Λ-module M admits a free

resolution, in other words, there exists an exact sequence of the form

. . . Fm+1

Km+1

Fm

Km

Fm−1 . . . F2

K1

F1

K0

F0 M

where each Fi is a free module over Λ. Each Ki is a kernel and a stable

invariant of the resolution, by which we mean if F , F ′ are two resolutions of

a Λ-module M , then for each i, Ki ⊕ Λa ∼= K ′i ⊕ Λb for some a, b ∈ N. The

syzygy operators are then defined by Ωi = [Ki], where [Ki] denotes the stable

equivalence class of Ki. There is also the notion of a projective resolution

where each Fi may now be a projective module.

Johnson defines an almost free resolution of diagonal type and period 2q

of a Λ-module M to be a resolution

∆∗ = . . .→ ∆2n+1
∂2n+1−−−→ ∆2n

∂2n−−→ ∆2n−1
∂2n−1−−−→ . . .

∂2−→ ∆1
∂1−→ ∆0 →M

satisfying

• ∆0 = Λ;

• for each k ≥ 1, ∆2k−1 = Λ ⊕ Λ and ∆2k = P (k) ⊕ Λ where P (k) is a

projective module of rank 1 over Λ;

• for each k ≥ 2 the differential ∂k has the diagonal form ∂k =

(
∂+
k 0

0 ∂−k

)
;

• P (k +mq) = P (k) and ∂±k+mq = ∂±k for all k,m ≥ 1;

•
q−1⊕
r=1

P (r) ∼= Λq−1 and P (q) ∼= Λ.

11



CHAPTER 1. INTRODUCTION

Furthermore he defines a resolution of strongly diagonal type to be one also

satisfying ∆2k = Λ⊕ Λ. In [7] Johnson showed that for the dihedral groups

D2p = G(p, 2), Z admits a strongly diagonal resolution. Together with Remez

in [9] he later showed that for general metacyclic groups G(p, q), Z admits an

almost free resolution, and in an upcoming paper they will also show that for

a range of small values of p and q, Z admits a strongly diagonal resolution.

These constructions also give a complete description of the syzygy modules.

These resolutions allow the construction of chain complexes of dimension

4k + 1 which, in the strongly diagonal case, are possible models for our

universal covers. Defining Ω∗2k+1 to be the dual of Ω2k+1 (see section 2.1), the

non-trivial behaviour is encapsulated in a single boundary homomorphism

∂ : Ω∗2k+1 → Ω2k+1

where Ω∗2k+1 and Ω2k+1 are completely understood. Furthermore, the general

almost free construction acts as a first approximation to such completely free

constructions.

1.2 Statement of Results

In Chapter 2 we cover a range of algebraic concepts and results which are the

foundation for much of the work in this paper. Particular interest is shown to

the concept of a free resolution, which was introduced in the previous section.

As well as the most general construction needed for its definition, we consider

the case for two specific choices of Λ = Z[G]. Firstly, G = Cn, the cyclic

group of order n, where we derive the resolution from first principles, and

then G metacyclic, where we give a brief overview of the results and concepts

produced by Johnson and Remez in [9]. Fixing G = G(p, q), we define a right

Λ-module R = Z[ζp] where ζp is the pth root of unity with Λ-actions

ζ i · x = ζ i−1

ζ i · y = θ−1(ζ i)

12



CHAPTER 1. INTRODUCTION

and define the fixed ring of R by

R0 = {r ∈ R; θ−1(r) = r}

Furthermore define π ∈ R0 to be the unique (up to units) prime lying over p

i.e the element satisfying

π
p−1
q = pu

for some uinR0 a unit. Define the upper quasi-triangular matrices over A

relative to I

Tn(A, I) = {X = (xij)1≤i,j≤n ∈Mn(A); xij ∈ I if i > j}

We can define right modules R(k) = {kth row of Tn(A, (π)}, where

R(k + nq) ∼= R(k)

for all k, n. The almost free resolution of Z which Johnson and Remez con-

struct provides the odd syzygy description

Ω2k+1(Z) = [R(k)⊕ [y − 1)]

where [y − 1) is the right ideal generated by y − 1. We also note that each

R(k) has an alternate cyclotomic interpretation. Defining P k = (ζ−1)kZ[ζp],

it is true that

R(k) ∼=

P k 1 ≤ k ≤ q − 1

R k = q

In Chapter 3 we give a proof of Poincaré Duality as originally set out

by Lefschetz in [15]. We build up a number of results and constructions

on ordered sets and ordered simplicial complexes from first principals, be-

fore focusing on what we term combinatorial manifolds, which are simplicial

complexes which also possess the local structure of a manifold. Assuming a

space X to be a combinatorial manifold we then provide a genuine geometric

version of duality upon it via the use of the dual cell construction. We then

13



CHAPTER 1. INTRODUCTION

formalise this result algebraically in terms of chain and cochain complexes

through the use of what we call Lefschetz complexes and co-complexes. Given

a combinatorial manifold X, we can associate a Lefschetz complex X to it.

Our dual cell construction then allows us to construct a Lefschetz co-complex

D(X), and a chain isomorphism

h∗ : C∗(X)→ Cn−∗(D(X))

Defining B(X) to be the barycentric subdivision of X, and B(X) to be

the Lefschetz complex associated to B(X), we then improve upon this with

the following strong version of Poincaré Duality:

Theorem. There exist chain isomorphisms

h∗ : C∗(B(X))→ Cn−∗(B(X))

h∗ : C∗(B(X))→ Cn−∗(B(X))

We call a function f symmetric when f ∗ = f , and skew-symmetric when

f ∗ = −f . There then exists a symmetry condition on each hk, namely

h∗k = (−1)
n(n−1)

2 hn−k

We then turn to studying combinatorial manifolds X with fundamental

group G whose universal cover X̃ is a (m − 1) connected 2m + 1 combi-

natorial manifold. For these odd-dimensional manifolds, we use the above

result to show their homology is essentially determined by a single boundary

homomorphism. Reversing our thinking, we observe a similarity between

the almost exact sequences of free Λ-modules which constitute our universal

cover chain complexes, and the exact sequences of Λ-modules of free resolu-

tions. We then use our results from Chapter 2 to construct purely algebraic

chain complexes which satisfy conditions of a (m−1) connected 2m+1 com-
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CHAPTER 1. INTRODUCTION

binatorial universal cover, whose homology is determined by the diagram

Cm

Ω∗m+1 Ωm+1

Cm
∂2m+1

∂̃2m+1

where ∂̃∗m+1 = (−1)m∂̃m+1.

Given this diagram, we analyse ∂̃2m+1 : Ω∗m+1 → Ωm+1 at the minimal

level for specific choices of Λ, starting with Z[Cn] in Chapter 4. For the case

m = 2k+1, a general classification is simple. The case m = 2k requires more

work, but still allows a complete result. Here, the problem becomes studying

Z[Cn]-homomorphisms

F : R∗n → Rn

where

Rn = Z[Cn]�1 + x+ . . .+ xn−1 = 0

We proceed by looking at matrix representations, and define ξi ∈ GLi(Z)

to be the upper-triangluar square matrix consisting entirely of 1’s, in other

words, the matrix whose (k, l)th entry is defined by

(ξi)kl =

1 l ≥ k

0 k < l

We then define γi ∈ GLp−1(Z) by

γi =

(
0 −ξti

ξp−1−i 0

)

where t denotes the transose, and produce the following result:

Theorem. Suppose F : R∗n → Rn is a symmetric Z[Cn]-homomorphism

15



CHAPTER 1. INTRODUCTION

satisfying F ∗ = F . Then F has matrix representation

F = a p−1
2

(

p−3
2∑
i=0

2γi + γ p−1
2

) +

p−2∑
i= p+1

2

ai(γi − γp−(i+1))

where ai ∈ Z.

In Chapter 5 we fix G = G(p, q) and m = 2k, and begin by showing,

at the minimal level, ∂̃4k+1 : Ω∗2k+1 → Ω2k+1 can be described in block matrix

form

∂̃2m+1 =

(
Fk G

G∗ H

)
where

G = (Gk,0, Gk,2, Gk,3, . . . , Gk,p−1)t

G∗ = (G∗k,0, G
∗
k,2, G

∗
k,3, . . . , G

∗
k,p−1)

and, writing P̃ k = (P k)∗

F : P̃ k → P k

Gk,i : P̃ i → P k

H : [y − 1)∗ → [y − 1)

The remainder of the chapter is then spent building a collection of results

and techniques to classify Fk and Gk,i. We briefly look at the situation over

Q[G(p, q)], before coming to the key concept that allows much of the follow-

ing analysis; each P k is completely characterised by two simple conditions.

Defining the unit

vX =

p−b∑
j=1

xj

allows us to define two properties for a Λ-module M (0 ≤ k ≤ q − 1):

16



CHAPTER 1. INTRODUCTION

M(Σ): rkZ(M) = p− 1 and M · Σx = 0 where Σx =
p−1∑
k=0

xk

M(k): There exists εk ∈M such that εk · y = εk · (−1)kvkX and

SpanZ{εk · xi}0≤i≤p−2 = M

It is then true that M ∼= P k if and only if M satisfies both proper-

ties. We call εk the characteristic element of P k. Since we also have duality

relations

P̃ k =


P k = 0

R k = 1

P q+1−k 2 ≤ k ≤ q − 1

each P̃ k must possess its own characteristic element which we label ε̃k. It fol-

lows that any Λ-homomorphism Fk : P̃ k → P k will be completely determined

by where it sends ε̃k, and so can be completely described by

Fk(ε̃k) = εk · α

for some α ∈ R. The question then becomes how to calculate α. To do

this, we produce a number of results that allow Fk to be broken down into

constituent parts of duality isomorphisms, projection homomorphisms and

endomorphisms, each defined on the relevant characteristic elements. Since

we also require a symmetry condition on Fk, we need to understand how these

parts behave under duality, and it is here we encounter our main hurdle: to

calculate the dual of our duality isomorphism, we need a description of ε̃k in

terms of the natural dual basis.

By showing π = π · w for w ∈ R×0 a unit, it follows we can consider π as

an element acting from the right. Furthermore, we show the existence of a

unit uπ ∈ R satisfying

(xp−1 − 1)quπ = π

Defining basis elements p[k, i] = εk · xi we then obtain:

17
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Theorem.

ε̃k =


p[k, 0]∗ k = 0

p[k, 0]∗ · x k = 1

p[k, 0]∗ · xku−1
π 2 ≤ k ≤ q − 1

This result allows us to calculate how our functions behave under dual-

ity. However to make further progress, we need an explicit description for

w ∈ R×0 , and therefore define a property of G:

G(π): π = (−1)qπ

For the rest of Chapter 5, we show that G(π) is satisfied for a large number

of groups, and produce the following:

Theorem. Suppose G = G(p, 2j) for some j, or G(p, p−1
2

) where p−1
2

is

odd. Then Λ satisfies G(π).

In Chapter 6 we bring together the results of the previous chapter to give

the classifications of Fk. Defining subsets of R0

R±0 = {r ∈ R0; r = ±r}

we obtain the following:

Theorem. Suppose G = (p, 2r) and Fk : P̃ k → P k is a symmetric Λ-

isomorphism. Then

Fk(ε̃k) =



εk · (xp−1 − 1)α+ k = 0

εk · (xp−1 − 1)q+1−2kuπα+ k = 1

εk · (xp−1 − 1)q+1−2kα+ 1 < k ≤ q
2

εk · (xp−1 − 1)2(q−k)+1uπα+
q+2

2
≤ k < q

where α+ ∈ R+
0 , α− ∈ R−0 .

18
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Theorem. Suppose G = G(p, 2r + 1), Λ satisfies G(π), and Fk : P̃ k → P k

is a symmetric Λ-isomorphism. Then

F+
k (ε̃k) =



εk · (xp−1 − 1)α+ k = 0

εk · (xp−1 − 1)q+1−2kuπα− k = 1

εk · (xp−1 − 1)q+1−2kα− 1 < k < q+1
2

εk · α− k = q+1
2

εk · (xp−1 − 1)2(q−k)+1uπα+
q+1

2
< k < q

where α+ ∈ R+
0 , α− ∈ R−0 .

We then provide a number of explicit matrix representations for Fk for

some small values of p, q, before also using the results of Chapter 5 to classify

Gk,i:

Theorem. Suppose Gk,0 ∈ HomΛ(R̃, P k). Then

Gk,0(ε̃0) =


εk · (xp−1 − 1)α k = 0

εk · α k = 1

εk · (xp−1 − 1)q+1−kuπα 2 ≤ k ≤ q − 1

for α ∈ R0

Theorem. Suppose 2 ≤ i ≤ q − 1, and Gk,i ∈ HomΛ(P̃ i, P k). Then

Gk,i(ε̃i) =


εk · (xp−1 − 1)q+1−i−kα k < q + 1− i

εk · (xp−1 − 1)2q+1−i−kuπα k > q + 1− i

εk · α k = q + 1− i

for α ∈ R0.
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Finally we consider H : [y − 1)∗ → [y − 1). Defining

αn =

(
0 In−1

1 0

)

we obtain:

Theorem. Suppose H : [y−1)∗ → [y−1) is a symmetric Λ-homomorphism.

Then H can be expressed as a product

(h1 ⊗ h2) : (R∗q ⊗ Z[Cp]
∗)→ (Rq ⊗ Z[Cp])

where

h1 = an−1
2

(

n−3
2∑
i=0

2γi + γn−1
2

) +
n−2∑
i=n+1

2

ai(γi − γn−(i+1))

h2 = b0α0 +

p−1
2∑
j=1

bi(αi + αp−i)

ai, bi ∈ Z.

Together, these results give a pleasingly complete algebraic description of

our middle boundary homomorphisms for the case G metacyclic and satisfy-

ing G(π)

20



Chapter 2

Algebraic Preliminaries

2.1 Basic Concepts

Let Λ be a ring with multiplicative identity 1Λ. A right Λ-module M consists

of an abelian group (M,+) and an operation M × Λ→M such that

• (x+ y)λ1 = xλ1 + yλ1;

• x(λ1 + λ2) = xλ1 + xλ2;

• x(λ1λ2) = (xλ1)λ2;

• x1λ = x

for all x, y ∈ M , λ1, λ2 ∈ Λ. We call a Λ-module M free when it has a basis

over Λ. A Λ-lattice is a Λ-module whose underlying abelian group is finitely

generated and torsion free. A module M is simple if its only submodules

are {0} and M , and is semisimple when it can be decomposed as the direct

product

M = M1 ⊕ . . .⊕Mn

where each Mi is simple.

Suppose Λ is a commutative ring and G a finite group. The group ring

Λ[G] is defined as the formal sum

Λ[G] =
∑
g∈G

agg

21



CHAPTER 2. ALGEBRAIC PRELIMINARIES

where ag ∈ Λ. Defining the sum and product respectively by∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

(
∑
g∈G

agg) · (
∑
h∈G

bhh) =
∑
g∈G

(
∑
h∈G

ahbh−1g)g

we see that Λ[G] has the structure of a free module over Λ. If Λ is a field, say

F, then F[G] becomes an algebra called the group algebra. We note that the

definition of semisimplicity given for modules is easily extended to algebras.

Let V be a vector field over a field F and G a finite group. Classically a

group representation of G on F is defined to be the homomorphism

ρ : G→ GLF(V )

where GLF(V ) is the group of automorphisms of V over F. If V has dimen-

sion n over F, then GLF(V ) can be thought of as the group of n×n invertible

matrices with coefficients in F. We have the following famous theorems of

representation theory (see [2] §3 for a complete treatment):

Theorem 2.1.1 (Wedderburn Decomposition). Let A be a semisimple

algebra of finite dimension over a field F. Then there exists an isomorphism

of F-algebras

A ∼=
m∏
i=1

Mni(Di)

where ni,m ∈ N, Di are division algebras over F, and Mni(Di) denotes the

set of ni × ni matrices with coefficients in Di. Both ni and Di are uniquely

determined up to isomorphism.

Theorem 2.1.2 (Maschke). Let G be a finite group and F a field with

characteristic coprime to the order of G. Then F[G] is semisimple.

The majority of this thesis is concerned with Z[G] and its modules (equiv-

alently, its representations), where since Z is not a field, the above results do

not hold. Representations are easily extended to free modules M over a ring
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R however, and we define integral representations

ρ : G→ GLZ(M)

Suppose M is a free right Z[G]-module of rank n with basis elements ei, so

that M = SpanZ{ei}0≤i≤n−1. We can construct explicit matrix representa-

tions via the standard relation

ρ(g)(ei) = ei · g

for g ∈ G. Suppose

ρ(g)(ei) =
n−1∑
j=0

aijej

for aij ∈ Z. Then ρ(g) can be expressed as a matrix ρ(g) ∈Mn(Z) via

ρ(x) = (aji)ij

If M is a Z[G] module, define the dual module

M∗ = HomΛ(M,Λ)

M∗ is naturally a left module, which can be converted to a right module via

the formal involution ω : Z[G]→ Z[G] defined by

ω(
∑
g∈G

agg) =
∑
g∈G

agω(g) =
∑
g∈G

agg
−1

Unless otherwise specified, when we write M∗ we shall mean it considered as

a right module. For λ ∈ Z[G], we introduce a shorthand for ω as

ω(λ) = λ

M∗ has a dual representation, ρ∗, associated to it, and written as matrices

we have

ρ∗(g) = ρ(g−1)t
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2.2 Resolutions and Syzygies

Let Λ be a ring and M a finitely generated Λ module. We can take a minimal

generating set {φi}0<i≤m0 for M , i.e. every x ∈M can be written

x = φ1λ1 + . . .+ φm0λm0

for some m0 ∈ Z, λi ∈ Λ. Let {ei}0<i≤m0 be the standard basis for Λm0 , and

define a surjective mapping

∂0 : Λm0 →M

ei 7→ φi

It follows that ∂0 has a kernel, which we denote K1, and so generates a short

exact sequence

0→ K1 ↪→ Λm0 �M → 0

We can repeat this process for K1 to generate a surjective mapping

∂1 : Λm1 → K1

and a short exact sequence

0→ K2 ↪→ Λm1 � K1 → 0

Continuing this process inductively, we generate a series of exact sequences

0→ Ki+1 ↪→ Λmi � Ki → 0
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Splicing these short sequences together allows us to construct the long exact

sequence

. . . Fm+1

Km+1

Fm

Km

Fm−1 . . . F2

K1

F1

K0

F0 M

This construction gives us the notion of a free resolution. Formally, a free

resolution of a Λ-module M is an exact sequence

. . .→ Fm
∂m−→ Fm−1

∂m−1−−−→ . . .
∂2−→ F1

∂1−→ F0
∂0−→M → 0

where each Fi is a free Λ-module. Any such free resolution F∗ is not unique;

there exists another free resolution, say F ′∗

. . .→ F ′m
∂′m−→ F ′m−1

∂′m−1−−−→ . . .
∂′2−→ F ′1

∂′1−→ F ′0
∂′0−→M → 0

where Fi � F ′i . However there does exist a relation between the kernels of

any two resolutions. Two Λ-modules M,M ′ are said to be stably equivalent

when there exists some a, b ≥ 0 such that

M ⊕ Λa ∼= M ′ ⊕ Λb

We denote the stable equivalence class of M by [M ].

Proposition 2.2.1. Let F∗, F
′
∗ be two free resolutions of a Λ module M .

Then Ki is stably equivalent to K ′i.

To prove this we first need a result of Schanuel (pp 165-168 in [14]):

Lemma 2.2.2 (Schanuel). Suppose

0→ K
i−→ F

p−→M → 0
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0→ K ′
j−→ F ′

q−→M → 0

are exact sequences where F, F ′ are free. Then K ⊕ F ′ ∼= K ′ ⊕ F .

Proof. Construct the fibre product over F by defining

F × F ′ = {(x, y) ∈ F ⊕ F ′; p(x) = q(y)}

and ρ to be the projection onto the first factor, so that we have the diagram

0 Ker(ρ) F × F ′ F 0

0 K ′ F ′ M 0

ρ

p
q

Since p, q are both surjective, so must ρ be also. Furthermore

Ker(ρ) = Ker(p) = K ′

and we can induce a short exact sequence

0→ K ′ → F × F ′ → F → 0

We can repeat the construction over F ′ to induce another exact sequence

0→ K → F × F ′ → F ′ → 0

Since F, F ′ are free, both these sequences split, so that

K ⊕ F ′ ∼= F × F ′ ∼= K ′ ⊕ F

We can now prove 2.2.1.

Proof. The proof is by induction on i, with base case true by 2.2.2. Suppose
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true for i− 1 so that there exist a, b such that

Ki−1 ⊕ Λa ∼= K ′i−1 ⊕ Λb

Splitting the resolutions at the ith stage we obtain two exact sequences

0→ Ki → Fi−1 → Ki−1 → 0

0→ K ′i → F ′i−1 → K ′i−1 → 0

We can stabilise these by ‘adding on’ a number of frees, to induce exact

sequences

0→ Ki → Fi−1 ⊕ Λa → Ki−1 ⊕ Λa → 0

0→ K ′i → F ′i−1 ⊕ Λb → K ′i−1 ⊕ Λb → 0

By the induction hypothesis, Ki−1 ⊕ Λa ∼= K ′i−1 ⊕ Λb, so that applying

Schanuel gives

Ki ⊕ F ′i−1 ⊕ Λb ∼= K ′i ⊕ Fi−1 ⊕ Λa

Define the ith syzygy of a module M as

Ωi(M) = [Ki]

The structure of Ωi(M) can be represented graphically as a directed tree by

taking each node to be a module in the equivalence class, and each path to

represent the direct sum with one copy of Λ. If G is finite, then Ωi(M) has
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three possible structures:

•

•

•

•

...

A

•• •

•

•

•

...

B

•

•

•

•

...

• •

C

Defining a minimal moduleM0 to be a module which does contain a summand

isomorphic to Λ, we see that the three structures correspond to a unique M0

(type A); multiple M0 all occurring at the same (bottom-most) level of the

tree (type B); and multiple M0 occurring at two different levels of the tree

(type C). We call a syzygy which can be represented by a tree of type A

straight. Equivalently, a syzygy is straight when it can be written

Ωi(M) = M0 ⊕ Λai

for some minimal module M0 and ai ∈ Z.

We call a resolution F∗ periodic of period n when it satisfies

• Fi = Fi+kn;

• ∂i = ∂i+kn

for all k ∈ N. This thesis considers the syzygy modules Ωi(Z) over rings

Λ = R[G] where R is a commutative ring and Λ is equipped with a periodic

resolution.

There also exists the notion of a projective resolution

. . .→ Pm
∂m−→ Pm−1

∂m−1−−−→ . . .
∂2−→ P1

∂1−→ P0
∂0−→M → 0
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where each Pi is a projective Λ-module. The definition of syzygies given for

free resolutions also holds for projective resolutions.

2.3 Resolutions and Syzygies for Cyclic Groups

We now consider a specific choice of Λ, namely Λ = Z[Cn], where Cn is the

cyclic group of order n with group presentation

〈x; xn = 1〉

There exists a short exact sequence

0→ IC → Λ
ε−→ Z→ 0

where ε is the augmentation map defined by

ε(
n−1∑
i=0

aix
i) =

n−1∑
i=0

ai

and IC = Ker(ε) is called the augmentation ideal. We can dualise this to

induce another exact sequence

0→ Z ε∗−→ Λ→ I∗C → 0

where we use the identifications Λ∗ ∼= Λ, Z∗ ∼= Z. Here ε∗(1) =
n−1∑
i=0

xi.

Proposition 2.3.1. IC ∼= I∗C .

Proof. Define basis elements εi = xi − 1. Then the canonical basis of IC is

E = {εi}1≤i≤n−1

Defining basis elements φi = xi − xi+1 we can define an alternative basis

Φ = {φi}1≤i≤n−1
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To check that Φ is a basis, construct a new basis Φ′ by

φ′i =

φi i 6= n− 2

φn−2 + φn−1 i = n− 2

From Φ′, we can construct a further basis Φ′′ by

φ′′i =

φ′i i 6= n− 3

φ′n−3 + φ′n−2 i = n− 3

Continuing this process gives a sequence of elementary basis transformations

which eventually ends at E , and so Φ is indeed a basis. Let ρE be the standard

representation of E , and ρΦ the standard representation of Φ. Then, using

the easily verified relation

1− x =
n−1∑
i=1

xi+1 − xi

we obtain

ρΦ(x)(φi) = φi · x

= (xi − xi+1)xn−1

=


−

n−1∑
j=1

φj i = 1

φi−1 2 ≤ i ≤ n− 1

Writing cn−1 for the (n− 1)× 1 column matrix consisting entirely of 1′s, and

In−1 for the identity matrix of size (n − 1) × (n − 1), we therefore have the

block matrix description

ρΦ(x) =

(
−cn−1 In−1

−1 0

)
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Similarly, using the fact that

xj − x = xj − 1 + 1− x = εj − ε1

one can calculate

ρ(x−1)(εi) = εi · x−1

= (xi − 1)x

=

εi+1 − ε1 1 ≤ i ≤ n− 2

−ε1 i = n− 1

Therefore

ρE(x−1) =

(
−ctn−1 −1

In−1 0

)
Clearly

(ρE)∗(x) = ρE(x−1)t = ρΦ(x)

so that Φ is the canonical basis for I∗C and the result follows.

Define a Λ-module

Rn = Z[Cn]/(
n−1∑
i=0

xi)

with right action

xa · x = xa−1

Then I∗C
∼= Rn. Furthermore, for n = p prime and ζp = exp(2πi/p), we

obtain Rp
∼= Z[ζp]. The module action then becomes

ζa · x = ζa−1

Proposition 2.3.2. Suppose Λ = Z[Cn]. Then

Ω2j(Z) = [Z]

Ω2j+1(Z) = [Rn]
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Proof. Recall the two short exact sequences

0→ IC → Λ→ Z→ 0

0→ Z→ Λ→ I∗C → 0

Using 2.3.1, we can splice these two sequences together at IC ∼= I∗C to give a

resolution of length 2

0→ Z→ Λ→ Λ→ Z→ 0

We can now repeatedly splice at Z to generate a resolution of arbitrary length

and period 2, and the syzygies then follow.

We also have the following:

Proposition 2.3.3. Suppose Λ = Z[Cn]. Then Ωi(Z) is straight.

Proof. In [6] Johnson proves that if the Wedderburn decomposition of Λ⊗R
does not contain H as a summand, then Ω1(Z) is straight. Furthermore,

from 2.3.2, Ω1(Z) = Ω2j+1(Z). Johnson also proves that if M0
∼= Z, and

the Wedderburn decomposition of Λ⊗R does not contain H as a summand,

then Ω2j(Z) is straight. It is a standard result that Q[Cn] has Wedderburn

decomposition

Q[Cn] =
∏
d|n

Q[x]/cd(x)

where cd(x) is the dth cyclotomic polynomial. Tensoring with R will not

generate a H term, hence the result.

We briefly note that for such a resolution, we can define boundary oper-

ators as

∂2j−1 = x− 1 ∂2j = Σx
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2.4 Resolutions and Syzygies for Metayclic

Groups

For p an odd prime and q a divisor of p− 1, define the metacyclic groups by

the group presentation

G(p, q) = 〈x, y; xp = yq = 1, yx = θ(x)y〉

where θ ∈ Aut(Cp) ∼= Cp−1, ord(θ) = q. We note that there is no general

expression for θ, and it must be calculated on a case by case basis. Fixing

Λ = Z[G(p, q)], we outlne the treatment of Johnson and Remez in [9] who

construct a special type of Λ resolution of Z. We defer all proofs and in-

depth discussion to that paper. Define a resolution of diagonal type to be a

projective resolution

∆∗ = (. . .→ ∆n+1
∂n+1−−−→ ∆n

∂n−→ ∆n−1
∂n−1−−−→ . . .

∂2−→ ∆1
∂1−→ ∆0 →M → 0)

satisfying

• ∆0 = Λ;

• for each k ≥ 1, ∆2k−1 = Λ ⊕ Λ and Λ2k = P (k) ⊕ Λ where P (k) is a

projective module of rank 1 over Λ;

• for each k ≥ 2 the differential ∂k has the diagonal form ∂k =

(
∂+
k 0

0 ∂−k

)
.

Furthermore, we say ∆∗ is almost free when it satisfies

q−1⊕
k=1

P (k) ∼= Λq−1 and P (q) ∼= Λ

Remez and Johnson show that the trivial module Z admits an almost free

diagonal resolution of period 2q.

Recall the Z[Cp] module I∗C
∼= Z[ζp]. By extension of scalars, Z[ζp] is also

a Λ-module. In order to distinguish between Z[ζp] considered as a Z[Cp]-

module and a Λ-module, we will denote it by RC and R respectively. Since
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θ(Σx) = Σx, θ also induces a ring automorphism of order q on R, and we

define Λ actions

ζ i · x = ζ i−1

ζ i · y = θ−1(ζ i)

Define R0 to be the fixed ring of R under θ (or equivalently, θ−1)

R0 = Rθ = {r ∈ R; θ−1(r) = r}

Define π ∈ R0 to be the unique prime in R0 lying over p. R0 and π then

satisfy:

• dimZ(R0) = p−1
q

;

• πR0 has index p in R0;

• π
p−1
q = pu for some u ∈ R0 a unit.

A diagonal resolution consists of two strands, where we can think of the

lower strand corresponding to the subgroup Cq, and the upper corresponding

to the subgroup Cp. To construct the lower strand we take the resolution of

Cq we constructed in 2.3.2 and simply induce upwards

. . .→ Λ
y−1−−→ Λ

Σy−→ Λ
y−1−−→ Λ

Σy−→ . . .

The construction of the upper strand is not so simple. Suppose S̃, S+,

S−, S are rings. We say that S is a fibre product of S+ and S− over S0 when

there exists a commutative square of ring homomorphisms

S̃ S+

S− S

and if for s+ ∈ S+, s− ∈ S− and φ+(s+) = φ−(s−) there exists a unique
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s ∈ S̃ such that ψ+(s) = s+, ψ−(s) = s−. We can decompose Z[Cp] as a fibre

product

Z[Cp] RC

Z Fp

ε

Let (S, τ) be a commutative involuted ring, i.e.

• S is a commutative ring;

• τ : S → S an automorphism satisfying τm = Id for some m ≥ 2.

and let n be a multiple of m. The cyclic ring Cn(S, τ) is then the free two

sided S module with basis {1,y, . . . ,yn−1} which satisfies the relations

yn = 1 ys = τ(s)y

where s ∈ S. In other words, every element c ∈ Cn(S, τ) can be written

c =
n∑
i=0

siy
i si ∈ S

We apply this cyclic algebra construction to Z[Cp] using θ as our automor-

phism, which we take to be the identity on Z and Fp, to obtain

Cq(Z[Cp]) Cq(RC)

Cq(Z) Cq(Fp)

ε

We can identify

Cq(Z[Cp]) ∼= Z[G(p, q)]

Cq(Z) ∼= Z[Cq]
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Cq(Fp) ∼= Fp[Cq]

to obtain

Z[G(p, q)] Cq(RC)

Z[Cq] Fp[Cq]

ε

It remains to understand the structure of Cq(RC).

Suppose A is a commutative ring, and I an ideal of A. We define the

upper quasi-triangular matrices over A relative to I by:

Tn(A, I) = {X = (xij)1≤i,j≤n ∈Mn(A);xij ∈ I if r > s}

When I = (a) is principal we write Tn(A, I) = Tn(A, a). We then obtain:

Proposition 2.4.1. Cq(RC) = Tq(R0, π).

Λ therefore decomposes as the fibre product

Z[G(p, q)] Tq(R0, π)

Z[Cq] Fp[Cq]

ε

We can further decompose Tq(R0, π) as

Tq(A, π) ∼= R(1)⊕R(2)⊕ . . .⊕R(q)

where R(k) is the kth row of Tq(A, π) considered as a right Λ module. There

exist the following relations:

• R(q) = R;
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• R(k)∗ = R(q + 1− k).

Define a homomorphism T : R(k + 1)→ R(k) by

T =

(
0 Iq−1

π 0

)

We can apply T to repeatedly to generate an infinite sequence of embeddings

. . . ⊂
T
R(q) ⊂

T
R(q − 1) ⊂

T
. . . ⊂

T
R(2) ⊂

T
R(1) ⊂

T
R(q) ⊂

T
. . .

where at each step, R(k + 1) embeds into R(k) with index p.

Define IG to be the augmentation ideal of Λ, i.e. the kernel of the aug-

mentation mapping

ε : Λ→ Z

and [y − 1) to be the right ideal generated by y − 1. Then (see 5.2 and 5.12

in [9]):

Proposition 2.4.2. There exists a split exact sequence of Λ modules

0→ [y − 1)→ IG → R(1)

Since this sequence splits, we can decompose the augmentation ideal of G as

a direct product

IG = R(1)⊕ [y − 1)

This direct sum decomposition forms the basis of the diagonal construction.

By composing the natural projections

Λ→ Tq(R0, π)

Tq(R0, π)→ R(k)

we define a series of projections πk

πk : Λ→ R(k)
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and define K(k) = Ker(πk). 2.4.2 then generates (see 6.9, 9.7, 9.8 in [9]):

Theorem 2.4.3 There exists an exact sequence of the form

G(q) : 0 R(1) Λ Λ R(q) 0

K(q)

G(q) then induces:

Theorem 2.4.4. For 1 ≤ k ≤ q − 1 there exist exact sequences of the

form

G(k) : 0 R(k + 1) P (k) Λ R(k) 0

K(k)

where P (2), . . . , P (q) are projective Λ-modules of rank 1 such that

q⊕
i=2

P (i) ∼= Λq−1

Splicing these segments together generates the upper strand of our almost

free diagonal resolution

0 R(1) Λ

K(q)

Λ

R(q)

P (q − 1)

K(q − 1)

. . . Λ

R(2)

P (1)

K(1)

Λ R(1) 0

Theorem 2.4.5. Suppose Λ = Z[G(p, q)]. Then Z admits an almost free

resolution of diagonal type.

Given the existence of such a resolution, the next question to ask is
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whether it can be improved upon by replacing each projective P (k) with Λ.

We call such a free resolution strongly diagonal. The existence of a strongly

diagonal resolution of period 2q depends on the existence of sequences

G̃(k) : 0 R(k + 1) Λ Λ R(k) 0

K(k)

for 1 ≤ i ≤ q−1. If every such G̃(i) existed, we could splice together to form

an exact upper strand

0 R(1) Λ

K(q)

Λ

R(q)

Λ

K(q − 1)

Λ . . . Λ

R(2)

Λ

K(1)

Λ R(1) 0

The existence of a strongly diagonal resolution was shown for the dihedral

groups by Johnson in [7], and for the groups G(5, 4) and G(7, 3) in [19] and

[22] respectively. In an upcoming paper [10], Johnson and Remez will expand

these results for certain small values of p, q:

Theorem 2.4.6. These exists a strongly diagonal resolution for the groups:

G(p, 2); G(5, 4); G(7, 3), G(7, 6); G(11, 5), G(11, 10); G(13, 3),

G(13, 4), G(13, 6); G(17, 4); G(19, 3), G(19, 6), G(19, 9).

We note that for both cases, we have a complete understanding of the

syzygy modules, and can write the odd syzygies as

Ω2k+1(Z) = R(k)⊕ [y − 1)

We also have the following (see 6.2.7 in [22]):
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Theorem 2.4.7. Suppose Λ = Z[G(p, q)]. Then Ω2k+1(Z) is straight.

While a strongly diagonal resolution for general G(p, q) might currently

be out of reach, we can construct a strongly diagonal p-adic resolution. De-

note the ring of p-adic integers by Ẑ, and define the p-adic completion of Λ

by

Λ̂ = Λ⊗Z Ẑ

Similarly, for M a Λ lattice we define M̂ to be its corresponding lattice over

Λ̂ by

M̂ = M ⊗Λ Λ̂

Tensoring 2.4.3 with Ẑ generates an exact sequence

Ĝ(q) : 0 R̂(1) Λ̂ Λ̂ R̂(q) 0

K̂(q)

Similar tensor products then induce exact sequences for 1 ≤ i ≤ q − 1

Ĝ(i) : 0 R̂(k + 1) Λ̂ Λ̂ R̂(k) 0

K̂(k)

and we can splice to generate a strongly diagonal resolution at the p-adic

level. In this paper we work with the integral case; p-adic results then follow

from the relevant tensor products and are left to the reader.

Finally, we note that the modules R(k) have cyclotomic descriptions.

Define Λ-modules

P k = (ζ − 1)kZ[ζp]

Right actions are inherited from those defined for R. Then it is true that

R(k) =

P i 1 ≤ k ≤ q − 1

P 0 = R k = q
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For typesetting reasons, we write

P̃ k = (P k)∗

Duality identifications then become

P̃ k =


P k = 0

R k = 1

P q+1−k 2 ≤ k ≤ q − 1

This cyclotomic formulation is extremely useful for performing calculations,

and is the one we use to develop the main results of this paper.

2.5 Bilinear Forms

Let R be a commutative ring, and M a right Λ-module. A bilinear form on

M is a bilinear map

〈 , 〉 : M ×M → R

i.e. ∀a, b ∈ R, 〈 , 〉 satisfies

• 〈xa+ yb, z〉 = a〈x, z〉+ b〈y, z〉;

• 〈x, ya+ zb〉 = a〈x, y〉+ b〈x, z〉.

A bilinear form is non-degenerate when for all x, y ∈M

〈x, y〉 6= 0

A bilinear form is skew-symmetric when for all x, y ∈M

〈x, y〉 = −〈y, x〉

A bilinear form is symmetric when for all x, y ∈M

〈x, y〉 = 〈y, x〉
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We write 〈B〉 for a bilinear form 〈 , 〉. If M is free with basis {e1, . . . , em},
then a bilinear form on M generates a matrix β = (βij) where

βij = 〈ei, ej〉

and this matrix uniquely determines the form. Suppose two bilinear forms

〈A〉, 〈B〉 have two associated representations α and β. We say that the forms

are equivalent if

α = UβU t

where U is some invertible matrix. In practice, this means we can act with

simultaneous elementary row and column operations upon a representation of

a form 〈B〉 to reduce it to some simpler representation. For skew-symmetric

forms 〈B−〉, the existence of a symplectic basis forces the existence of a

reduced form

〈B−〉 =



0 η1 0 0 0 0

−η1 0 0 0 0 0

0 0 0
. . . 0 0

0 0
. . . 0 0 0

0 0 0 0 0 ηn

0 0 0 0 −ηn 0


for ηi ∈ Z. For symmetric bilinear forms, no such general reduction exists,

and the question of classifying symmetric bilinear forms is a much larger

and more complicated problem. In [28], Wall developed the foundations of a

theory of Hermitian forms, a general framework within which such symmetric

and skew-symmetric forms sit. In a further series of papers he undertook the

task of attempting to classify such hermitian forms over rings of increasing

complexity, ending with a paper on integral group rings over a finite group.

We note that the forms discussed later in this paper fall somewhere between

his work in [29] and [30]. For further reading we also direct the reader to a

paper by Fröhlich [4].

There is a strong connection between bilinear forms on a module M , and

maps from M into its dual M∗. Given a bilinear form 〈B〉, it defines a pair

of R-homomorphisms F1, F2 : M →M∗ by
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F1(x)(y) = 〈x, y〉
F2(x)(y) = 〈y, x〉

for x, y ∈ M . Reversing, given any R-homomorphism F : M → M∗, F then

defines a bilinear form 〈B〉 on M by

〈x, y〉 = F (x)(y)

Similarly a homomorphism F̃ : M∗ →M defines a bilinear form on M∗.

Suppose G is a finite group and (M , ρ) is a R[G]-module equipped with

a finite representation ρ : G→ GLR(M) and a bilinear form

〈B〉 : M ×M → R

〈B〉 is R[G] invariant when for all g ∈ G, x, y ∈M we have

〈ρ(g)x, ρ(g)y〉 = 〈x, y〉

This is equivalent to the associated dual map F : M → M∗ being a R[G]-

homomorphism.
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Chapter 3

Poincaré Duality and Highly

Connected Universal Covers

The treatment of the dual cell construction set out in the following chapters

follows a series of lectures given by F.E.A. Johnson. However, this material is

not new and similar treatments can be found in a number of souces, including

[23] and [18].

3.1 Ordered Simplicial Complexes

Suppose A is a set, and≤ a partial ordering on A which is reflexive, transitive,

and satisfies

(a ≤ b) ∧ (b ≤ a)⇒ a = b

We call the pair (A,≤) a poset. Suppose (A,≤), (B,≤) are posets, then an

order preserving mapping f : (A,≤) → (B,≤) is a mapping of sets which

also satisfies

a ≤ b⇒ f(a) ≤ f(b)

(A,≤) is totally ordered when for all a, b ∈ A, either a ≤ b or b ≤ a.

A simplicial complex K is a collection K = (VK , SK) where

• VK is a set (the vertex set);

• SK is a set of subsets of VK (the set of simplices) such that
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– σ ∈ SK is non-empty;

– If v ∈ VK then {v} ∈ SK ;

– If σ ∈ SK and τ ⊂ σ, then τ ∈ SK .

Suppose K,L are simplicial complexes. A simplicial mapping F : K → L is

a mapping f : VK → VL such that for all σ ∈ SK , f(σ) ∈ SL.

An ordered simplicial complex is a pair (K,≤) where

• K = (VK , SK) is a simplicial complex;

• ≤ is a partial ordering on VK in such a way that for all σ ∈ SK , σ is

totally ordered.

Suppose (K,≤), (L,≤) are ordered simplicial complexes. Then a mapping

f : (K,≤)→ (L,≤) is a simplicial mapping which is also order preserving.

Example 3.1.1. Consider the n-simplex 4n = [0, . . . , n]. Then 4n has

canonical ordering

4n = 0 < 1 < . . . < n

and so can be considered as an ordered simplicial complex

We note that the set of posets, simplicial complexes and ordered simplicial

complexes form categories, which we label Pos, Sim and OS respectively.

Furthermore Pos and OS are categories with finite products.

Proposition 3.1.2. Every finite simplicial complex K admits a partial order

≤ such that (K,≤) ∈ OS

Proof. Write VK = {v0, v1, . . . , vn}. There exists an embedding

K →4n

vi 7→ i

and so take as ordering the induced order.
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Let (A,≤) be a poset. The nerve N(A,≤) of A is the simplicial complex

N(A,≤) = (VN(A,≤), SN(A,≤)) where

VN(A,≤) = A

SN(A,≤) = {Totally ordered subsets of A}

We are particularly interested in one specific nerve construction. Suppose X

is a simplicial complex. Then SX has a natural partial ordering by inclusion,

so we can construct the poset (SX ,≤). Define a mapping

B : Simp→ OS

B(X) = N(SX ,≤)

We identify B with barycentric subdivision and call B(X) the derived com-

plex. In more detail: if SX = {σi}, we define σ̂i to be the barycentre of σi.

For vertex set take VB(X) = {σ̂i}. A k simplex of B(X) will then be a totally

ordered chain

σ̂0 < σ̂1 < . . . < σ̂n

To visualise this, it is instructive to look at a low dimensional example

Example 3.1.3. Let X = 42 = [0, 1, 2]. The vertices are of the form

[i], and their barycentres are simply themselves, which we write as vi. The

1-simplices take the form [i, j] and we denote its barycentre by vij. Finally

denote the barycentre of [0, 1, 2] by v012. Therefore we obtain

VB(X) = {v0, v1, v2, v01, v02, v12, v012}
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and pictorially we have

v012

v02

v12

v0 v2

v01

v1

As 1-simplices we have chains of these vertices which form a totally ordered

set of size two with respect to inclusion on simplices of X. Our possible

ordered sets look like {vi < vij}, {vi < vji}, {vi < v012}, {vij < v012} and

writing out explicitly:

{v0 < v01, v0 < v02, v0 < v012, v1 < v01, v1 < v12, v1 < v012, v2 < v02,

v2 < v12, v2 < v012, v01 < v012, v02 < v012, v12 < v012}
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v012

v02

v12

v0 v2

v01

v1

For 2-simplices our possible ordered chains look like {vi < vij < v012}, and

writing explicitly:

{v0 < v01 < v012, v0 < v02 < v012, v1 < v01 < v012, v1 < v12 < v012,

v2 < v02 < v012, v2 < v12 < v012}

Pictorially, we can just shade in all possible 2-simplexes in the above picture.

3.2 Simple Lefschetz Duality

We call a poset (A,≤) homogenously n-dimensional when every maximal

totally ordered subset has cardinal n+ 1. Formally:

1. If τ ⊂ A is totally ordered then |τ | ≤ n+ 1.

2. If τ ⊂ A is totally ordered then there exists a totally ordered subset

σ ⊂ A such that τ ⊆ σ and |σ| = n+ 1.

We call a simplicial complex X homogeneously n-dimensional when every

maximal simplex has dimension n. We have the following trivial results:

Lemma 3.2.1. If (A,≤) is homogeneously n-dimensional then N(A,≤) is
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homogeneously n-dimensional.

Lemma 3.2.2. If X is a homogeneously n-dimensional simplicial complex

then B(X) is a homogeneously n-dimensional simplicial complex.

If (A,≤) is homogeneously n-dimensional, then we also have the notion of

height. Define a function

h : A→ {0, . . . , n}

by h(a) = k when a ∈ A occurs in a maximal totally ordered subset as

(a0 < . . . < ak−1 < a < ak+1 < . . . < an)

Proposition 3.2.3. h is well defined.

Proof. We need to show that h is independent of the maximal totally ordered

subset chosen. Suppose h(a) = k, and that we pick another subset containing

a as

b0 < . . . < bl−1 < a < bl+1 < . . . < bn

If k < l, then we can construct a new totally ordered subset as

b0 < . . . < bl−1 < a < ak+1 < . . . < an+l−k

But then this is a higher length than our maximal subset, which is a con-

tradiction. We can follow the same process for l < k, so that we must have

k = l

We can expand this definition in the obvious way to construct a height

function on X a finite homogeneously n-dimensional simplicial complex,

h : SX → {0, . . . , n}

(We note that this becomes a formalisation of dimension.) This in turn
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induces a height function on the derived complex

h : VB(X) → {0, . . . , n}

Example 3.2.4. Consider B(42). Then h(v01) = 1, since we can construct

the maximal chain

v0 < v01 < v012

For (A,≤) homogeneously n dimensional, define

[a,+∞) = {b ∈ A; a ≤ b}

(a,+∞) = {b ∈ A; a < b}

Proposition 3.2.5. N([a,+∞)) is a cone.

Proof. From the given definitions, we have that

VN([a,+∞)) = VN((a,+∞)) + {a}

SN([a,+∞)) = SN((a,+∞)) + {a ∪ β; β ∈ SN((a,+∞))}

By the definition of the join ∗, we then obtain

N([a,+∞)) = {a} ∗N((a,+∞))

N([a,+∞)) = C(N((a,+∞)))

Proposition 3.2.6. If h(a) = k, then N([a,+∞)) is homogeneously (n−k)-

dimensional.

Proof. Write Si for a totally ordered subset of A of cardinal i. Then a

maximal subset in N([a,+∞)) must take the form

a = Sk < Sk+1 < . . . < Sn

and so has cardinal n− k as required
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Define the formal boundary of N([a,+∞)) by

∂N([a,+∞)) = N((a,+∞)) =
⋃
a<b

h(b)=h(a)+1

N([b,+∞))

Suppose X = (VX , SX) is an ordered simplicial complex. We can take

equivalent constructions on SX in X or VX in B(X). Suppose σ ∈ SX , so

that σ̂ is a vertex in B(X). We have that

∂N([σ,+∞)) = N((σ,+∞)) =
⋃
σ<τ

h(τ)=h(σ)+1

N([τ,+∞))

This allows us to define the dual cone D(σ) as

D(σ) = N([σ,+∞)) = σ̂ ∗ ∂(N([σ,+∞))

Combining with 3.2.6, we see that for each σ of dimension k in X we have

constructed a dual structure in B(X) of dimension n−k. D(σ) is clearly not

a simplex in general, but with some added constraints on X it is in fact a

cell.

Suppose X is a finite simplicial complex and ρ ∈ SX . Then we say that

τ ∈ SX is joinable to ρ in X when

• τ ∩ ρ = ∅;

• τ ∪ ρ ∈ SX .

Define the link of ρ in X, Lk(ρ,X), to be the sub-complex of X consisting

of all τ ∈ SX which are joinable to ρ
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Example 3.2.7. Take X = 43:

3

2

1

0

First consider Lk([0], X). The non intersecting 0-simplices are [1], [2], [3],

and since [0, 1], [0, 2], [0, 3] are all simplices, these 0-simplices belong in the

link. Similarly for 1-simplices [1, 2], [1, 3], [2, 3], and the 2-simplex, [1, 2, 3].

So we can visualise the link as

3

2

1

0

Similarly we see that Lk([1, 2, 3], X) = [0], which we visualise as above, and

Lk([01], X) = [23], visualised as
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3

2

1

0

Note in the above example that for each ρ ∈ S43 , ρ ∗ Lk(ρ,43) = 43. This

generalises to all simplicial complexes. If ρ ∈ SX then ρ∗Lk(ρ,X) imbeds in

X as a full subcomplex consisting of all maximal simplices which contain ρ.

Writing Sdi(X) for a sequence of i subdivisions on X, we say that two

simplicial complexes X and Y are combinatorially equivalent when there

exist k, l ∈ Z such that

Sdk(X) ∼= Sdl(Y )

We will write X ∼ Y to denote combinatorial equivalence. The standard

n-sphere Sn has simplicial definition

VSn = {0, 1, . . . , n+ 1}

SSn = {σ ⊂ VSn ; 0 < |σ| < n+ 2}

with degenerate case S−1 = ∅. Define a property of X a simplicial complex

L(n,k): For each k simplex ρ ∈ SX , Lk(ρ,X) ∼ Sn−k−1.

We call X a combinatorial n-manifold when it satisfies L(n, 0) i.e. for each

v ∈ VX , Lk(v,X) ∼ Sn−1.

Lemma 3.2.8. If X is a combinatorial n-manifold then it is homogeneously

n-dimensional.
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Proof. v ∗ Lk(v,X) is some union of maximal simplexes. But then

v ∗ Lk(v,X) ∼ C(Sn−1) ∼= Dn ∼ 4n

Lemma 3.2.9. Sn is a combinatorial manifold.

Proof. Pick a v ∈ VSn . Then

VLk(v,Sn) = VSn − {v}

SLk(v,Sn) = {σ ∈ SSn ; v * σ}

= {σ ⊂ VLk(v,Sn); 1 ≤ |σ| ≤ n+ 1}

But then this is simply the definition of Sn−1.

We wish to prove:

Theorem 3.2.10. Suppose X, Y are combinatorially equivalent simplicial

manifolds. Then

X is a combinatorial n-manifold ⇔ Y is a combinatorial n-manifold

We proceed using a double induction argument on the following statements

P(n,k): If X is a simplicial complex satisfying L(n, 0), then X also

satisfies L(n, k).

Q̃(n): If X, Y are simplicial complexes such that X ∼ Y , then

X is a combinatorial n-manifold ⇔ Y is a combinatorial n-manifold

Clearly solving 3.2.10 is equivalent to showing that Q̃(n) holds for all n.

Lemma 3.2.11. P (n, n) is true.

Proof. By 3.2.8, any n-simplex ρ of X is necessarily maximal, so that

Lk(ρ,X) = ∅ = S−1
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as required.

Proposition 3.2.12. P (n, k − 1) ∩ Q̃(n − k) ⇒ P (n, k) for n ≥ 2 and

1 ≤ k ≤ n− 1.

Proof. Let σ be a k-simplex of an X satisfying P (n, k − 1). Then σ can be

decomposed as the disjoint union v t τ for some v ∈ VX , and τ a (k − 1)-

simplex. Since P (n, k − 1) holds we have that

Lk(τ,X) ∼ Sn−(k−1)−1 = Sn−k

By 3.2.9, Sn−k is a combinatorial (n − k)-manifold, and by the assumption

Q̃(n − k) holds, so is Lk(τ,X). Then since v ∈ Lk(τ,X), Lk(v,Lk(τ,X)) is

well defined, and furthermore

Lk(σ,X) = Lk(v,Lk(τ,X))

Since Lk(τ,X) is a combinatorial (n − k)-manifold, it satisfies L(n − k, 0),

therefore

Lk(σ,X) ∼ Sn−k−1

and P (n, k) is satisfied.

Define further conditions

P (n) =
n∧
k=0

P (n, k) Q(n) =
n∧
i=0

Q̃(i)

Proposition 3.2.13. Q(n− 1)⇒ P (n).

Proof. First note that we can rewrite Q(n− 1) as

Q(n− 1) =
n−1∧
k=1

Q̃(n− k)

Then since P (n, 0) is tautologically true, 3.2.12 gives
n−1∧
k=0

P (n, k) is true. But

then by 3.2.11, P (n, n) holds, and so does P (n).
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CHAPTER 3. POINCARÉ DUALITY AND HIGHLY CONNECTED UNIVERSAL COVERS

Suppose σ a k-simplex of X, and define Sd(X, σ) to be the elementary

subdivision of X formed by only subdividing X by a single extra vertex at σ.

Proposition 3.2.14. P (n)⇒ Q̃(n).

Proof. Suppose X is a simplicial complex satisfying P (n), and let σ be a

k-simplex of X. Since any subdivision is a finite number of elementary sub-

divisions, it is enough to set Z = Sd(X, σ) and prove

X a combinatorial n-manifold ⇔ Z a combinatorial n-manifold

Write

VZ = VX t {w}

where w is the unique extra vertex introduced upon subdividing at σ. Then

it is easy to check that

Lk(v, Z) ∼

Lk(v,X) v ∈ VX
(∂σ) ∗ Lk(σ,X) v = w

Therefore for the case v ∈ VX , we have

Lk(v, Z) ∼ Sn−1 ⇔ Lk(v,X) ∼ Sn−1

for all v ∈ VX . This leaves only Lk(w,Z) to consider. But then since X

satisfies P (n), it satisfies P (n, k) in particular so that

Lk(w, Y ) ∼ (∂σ) ∗ Lk(ρ,X) ∼ Sk−1 ∗ Sn−k−1 ∼= Sn−1

Combining 3.2.13 and 3.2.14 gives:

Corollary 3.2.15: P (n) and Q(n) are true for all n.

This proves 3.2.10, as well as the following nice result:

Theorem 3.2.16. If X is a combinatorial n-manifold then X satisfies
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L(n, k) for 0 ≤ k ≤ n.

We can now prove the following:

Theorem 3.2.17. Suppose X is an ordered simplicial n-manifold, and σ

a k-simplex of X. Then D(σ̂) ∈ B(X) is a (n− k) cell.

Proof. Note that by definition, N((σ,+∞)) is the set of simplices joinable

to σ̂ formed by vertices of higher height than σ̂, and so will belong in

Lk(σ̂,B(X)). Similarly, considering the construction B(∂σ), we see that it

consists of simplices joinable to σ̂ formed by vertices of lower height than σ̂.

Therefore

Lk(σ̂,B(X)) = N((σ,+∞)) ∗ B(∂σ)

Now σ̂ is a vertex in B(X), which is also a combinatorial n-manifold since X

is by 3.2.10. Therefore

Lk(σ̂,B(X)) ∼ Sn−1

We also have

B(∂σ) ∼ ∂σ ∼ Sk−1

so that, considering the expression

Sn−1 ∼ Sk−1 ∗N((σ,+∞))

we see that

∂N([σ,+∞)) = N((σ,+∞)) ∼ Sn−k−1

Finally

N([σ,+∞)) = σ̂ ∗ ∂N([σ,+∞)) ∼ σ̂ ∗ Sn−k−1 = Dn−k

where Dn−k is a disk of dimension (n− k). Therefore

(D(σ), ∂D(σ)) ∼ (Dn−k, Sn−k−1)

the definition of a (n− k)-cell.
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We have a constructed genuine geometric theory of duality, which takes a

simplex in X to a cell in B(X). However it remains to formalise the algebra

in terms of chain complexes

3.3 Lefschetz Complexes

We define a Lefschetz n-complex to be a collection

X = (X, ≤, dim, [ , ])

where

• (X, ≤) is a finite poset;

• dim : X → {−1, 0, 1} is an order preserving mapping;

• [ , ] : X ×X → {±1} is a mapping satisfying

– for all x, y ∈ X, [x, y] 6= 0⇒ dim(y) = dim(x)− 1;

– for all x, z ∈ X,
∑
y∈X

[z, y][y, x] = 0.

Define Ck(X) to be the free abelian group on the set {x ∈ X; dim(x) = k},
and define boundary operators (considering Ck(X) as a right module)

∂k : Ck(X)→ Ck−1(X)

∂k(x) =
∑
y∈X

y[y, x]

Together these define a formal chain complex C∗(X). C∗(X) is also equipped

with a homology theory, which we will call Lefschetz homology, by virtue of

the following:

Proposition 3.3.1. ∂k−1 ◦ ∂k = 0.
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Proof. By definition for all x ∈ X

∂k−1 ◦ ∂k(x) = ∂k−1(
∑
y∈X

y[y, x])

=
∑
y∈X

∑
z∈X

z[z, y][y, x]

= 0

We also have the notion of a cochain complex and Lefschetz cohomology.

Define Ck(X) to be the free abelian group on {x ∈ X; dim(x) = k} considered

now as a left module, and define coboundary operators by

δk : Ck(X)→ Ck+1(X)

δ(x) =
∑
y∈X

[x, y]y

Proposition 3.3.2. δk+1 ◦ δk = 0.

Proof. By definition for all x ∈ X:

δk+1 ◦ δk(x) = δk+1(
∑
y∈X

[x, y]y)

=
∑
y∈X

∑
z∈X

[x, y][y, z]z

= 0

Example 3.3.3. Suppose X an ordered homogenously n-dimensional sim-

plicial complex. Define the dimension mapping dim : SX → {0, . . . , n} sim-

ply by the dimension of the simplex. Consider simplexes τ ⊂ σ such that

dim(σ) = dim(τ) + 1. Then for some sequence of αj ∈ Z, and some i, k ∈ Z
we can write

τ = [α0, . . . , α̂i, . . . , αk]

where α̂j denotes the deletion of that element. We can then define the map-
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ping

[ , ] : SX → SX → {±1}

[τ, σ] =

(−1)i τ ⊂ σ, dim(σ) = dim(τ) + 1

0 otherwise

and we have a Lefschetz complex X associated to X.

Suppose X = (X, ≤, dim, [ , ]) is a Lefschetz n-complex. Then we de-

fine the Lefschetz cocomplex X∗ as

X∗ = (X, ≤, dim, [ , ])

where

• x ≤ y ⇔ y ≤ x;

• dim = n− dim;

• [x, y] = [y, x].

For every k there then exists isomorphisms of abelian groups

φk : Ck(X)→ Cn−k(X∗)

φk : Ck(X)→ Cn−k(X
∗)

If, considering as modules, we make the convention that C∗(X
∗) is left-

handed, and C∗(X∗) is right-handed, we have the following:

Theorem 3.3.4. There exist chain isomorphisms:

φ∗ : C∗(X)→ Cn−∗(X∗)

φ∗ : C∗(X)→ Cn−∗(X
∗)

The proof is simply by following definitions, and since it proceeds exactly
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the same as for the explicit example of Poincaré duality, we defer to that

later proof.

Suppose X is a finite, connected, orientable simplicial n-manifold, and

B(X) is its barycentric subdivision. Then as per 3.3.3 we can associate a

Lefschetz complex X to X. Note that since any simplicial decomposition can

be taken as a cellular decomposition, we can think of C∗(X) as a cellular

chain. We also construct a dual Lefschetz complex D(X) by

• C∗(D(X)) is the free abelian group on the k-cells of B(X) of the form

D(σ), where σ is a (n− k)-simplex of X;

• τ ⊂ σ ⇒ D(σ) ⊂ D(τ);

• dim(D(σ)) = n− dim(σ).

We make the convention that the incidence numbers in D(X) are defined by

[D(σ), D(τ)] = [τ, σ]

While seemingly arbitrary, we can think of this choice as ensuring that the

orientability of X, and hence B(X) is preserved. Then D(X) is a Lefschetz

co-complex, and our earlier geometric isomorphism

{k simplices of X} → {(n− k) cells of B(X)}

σ 7→ D(σ)

induces isomorphisms of abelian groups

hk : Ck(X)→ Cn−k(D(X))

hk : Ck(X)→ Cn−k(D(X))

Theorem 3.3.5. There exist chain isomorphisms

h∗ : C∗(X)→ Cn−∗(D(X))

h∗ : C∗(X)→ Cn−∗(D(X))
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Proof. Take h∗ = {hk}. We already know that hk is an isomorphism of

abelian groups, so all that remains to check is commutativity via the diagram

Ck(X) Ck−1(X)

Cn−k(D(X)) Cn−k−1(D(X))

∂k

hk−1hk

δn−k

Suppose σ ∈ Ck(X) a k-simplex. Then

hk−1 ◦ ∂k(σ) = hk−1(
∑
τ∈X

τ [τ, σ])

=
∑
τ∈X

D(τ)[τ, σ]

δn−k ◦ hk(σ) = δn−k(D(σ))

=
∑

D(τ)∈B(X)

D(τ)[D(σ), D(τ)]

=
∑
τ∈X

D(τ)[τ, σ]

as required.

While we have an intuitive idea of what C∗(D(X)) represents, currently

we only have a homology theory of C∗(D(X)) in terms of the singular ho-

mology of C∗(X). We would like an independent formulation of H∗(D(X)),

to confirm that our interpretation of C∗(D(X)) is correct.

Theorem 3.3.6: H∗(C∗(D(X))) ∼= H∗(X).

Proof. We proceed by a standard spectral sequence argument. Since B(X)

is equipped with a cell structure, namely the dual cells to simplices in X,
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C∗(D(X)) has a filtration

. . . ⊂ Fp−1 ⊂ Fp ⊂ Fp+1 ⊂ . . .

where F is formed by dual cells of dimension p in B(X). Take the homology

spectral sequence of (F∗) As entries on the first page we have

E1
p,q = Hp+q(Fp/Fp−1)

For the differentials

d1
p,q : E1

p,q → E1
p−1,q

consider the short exact sequence of the triple

0→ Fp−1/Fp−2 → Fp/Fp−2 → Fp/Fp−1 → 0

Then the long exact sequence in homology gives rise to a boundary operator

∂ : Hp+q(Fp/Fp−1)→ Hp+q(Fp−1/Fp−2)

and since

E1
p,q = Hp+q(Fp/Fp−1) E1

p−1,q = Hp+q(Fp−1/Fp−2)

we can take d1
p,q = ∂. Defining υp to equal the number of p cells in B(X), we

obtain

Hp+q(Fp/Fp−1) =

Zυp q = 0

0 q 6= 0

so that

E1
p,q = C∗(B(X))

d1
p,q : Cp → Cp−1
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Therefore

E2
p,q =

Hp(B(X)) q = 0

0 q 6= 0

Looking at the differentials, since we only have one non-zero row we obtain

d2
p,q : E2

p,q → E2
p−2,q−1 ⇒ d2

p,q = 0

⇒ dnp,q = 0 for all n ≥ 2

⇒ E∞p,q =

Hp(B(X)) q = 0

0 q 6= 0

Since X is finite, the filtration is bounded and

Hp((C∗(D(X))) ∼= Hp(B(X)) ∼= Hp(X)

As a corollary to this we get the standard formulation of Poincaré duality

Corollary 3.3.7. Hn−∗(X) ∼= H∗(X).

Finally, Lefschetz also generates a relation on the duals of these isomor-

phisms. Consider hk : Ck(X)→ Cn−k(D(X)). Then

h∗k : Cn−k(D(X))→ Ck(X)

(h∗k)
−1 : Ck(X)→ Cn−k(D(X))

so we might expect that (h∗k)
−1 = ±hk. Lefschetz then proves the following:

Proposition 3.3.8. (h∗k)
−1 = (−1)

n(n−1)
2 hk.

Poincaré duality in Lefschetz’s original formulation is a powerful geomet-

ric result, however one could ask how practically useful it is to construct

a chain isomorphism from X to D(X) when one is purely interested in con-

structing properties on X. It turns out that with a small shift, we can convert
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this formulation to an isomorphism between the chain and cochain complex

of the exact same combinatorial manifold.

Theorem 3.3.9: Suppose X is a finite, connected, orientable simplicial n-

manifold with associated Lefschetz complex X. Then there exists a chain

isomorphism

h∗ : C∗(B(X))→ Cn−∗(B(X))

where B(X) is the Lefschetz complex associated to the derived manifold B(X).

Proof. Since X is a simplicial manifold it admits a simplicial decomposition.

Take such a decomposition, and then take the barycentric subdivision. Then

a k-simplex 4k in X defines a k-cell in B(X) since it merely becomes a union

of k-simplices contained in 4k with boundary ∂4k. So the original simplices

define a cell structure on B(X) and hence form a basis for a cellular chain

complex C∗(B(X)). Then we can construct a duality isomorphism on these

simplices (now considered as cells):

h∗ : C∗(B(X))→ Cn−k(D(X))

However we then obtain

Cn−k(D(X)) ∼= Cn−k(B(X))

Hence the result.

Proposition 3.3.10. Suppose hk : Ck(B(X)) → Cn−k(B(X)) is a duality

isomorphism. Then

h∗k = (−1)
n(n−1)

2 hn−k

Proof. Recall our previous definition of hk, which here becomes

hk : Ck(B(X))→ Cn−k(B(X))

hk
−1

: Cn−k(B(X))→ Ck(B(X))

Then hk
−1

= hn−k, and application of 3.3.8 gives the result.
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3.4 Highly Connected Universal Covers

Suppose X is an orientable, closed, combinatorial-manifold of dimension n,

with fundamental group π1 = G. Writing either n = 2m or n = 2m + 1, we

wish to consider those X whose universal cover X̃ is (m−1)-connected, that

is

πi(X̃) = 0 0 ≤ i ≤ m− 1

In [25], Wall labelled PL-manifolds M satisfying such conditions as highly-

connected, and so we take inspiration from this nomenclature for the title of

this section. In this thesis we are concerned only with the odd-dimensional

cases, and from this point take X to be a orientable, closed, combinatorial

2m + 1 manifold. We will abuse notation and write X for both X and its

associated Lefschetz complex, and X̃ for both the universal cover and the

Lefschetz complex associated to it. The first question to ask is whether we

can describe the homology of X̃. First recall that we can always split a ho-

mology group into a direct product of a free part and a torsion part, as we

can for a cohomology group. The universal coefficient theorem then gives a

relationship between these two decompositions (see 3.3 in [12])

Theorem 3.4.1. Let M be a manifold, and suppose

Hi(M ;Z) = Zai ⊕ Tori

where ai ∈ Z. Then

H i(M ;Z) = Zai ⊕ Tori−1

We also have the following standard result by Hurewicz (see 4.37 in [12]).

Theorem 3.4.2. For n ≥ 2, if M is a (n − 1)-connected manifold then

for i ≤ n there exist isomorphisms

hi : πi(M)→ Hi(M)
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These results, combined with Poincaré duality, are enough to describe the

homology of X̃.

Theorem 3.4.3. Suppose X is a connected, orientable, closed, combina-

torial 2m + 1 manifold. Suppose further that πi(X̃) = 0 for 0 ≤ i ≤ j − 1 .

Then

Hi(X̃;Z) =



Z i = 0, 2m+ 1

Za ⊕ Torj i = m

Za i = m+ 1

0 otherwise

for a ∈ Z.

Proof. Since X̃ is a connected space, trivially we have

H0(X̃;Z) = Z

Using the convention that Tor−1 = 0, we also have that

H0(X̃;Z) = Z

Applying Poincaré duality we obtain

H2m+1(X̃;Z) = Z

Considering the conditions on πi(X̃), application of Hurewicz gives

Hi(X̃;Z) = 0 1 ≤ i ≤ m− 1

In particular we note that

Tori = 0 0 ≤ i ≤ m− 1
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Therefore by the Universal Coefficient Theorem we have that

H i(X̃;Z) = 0 1 ≤ i ≤ m− 1

Application of Poincaré duality then gives

Hi(X̃;Z) = 0 m+ 2 ≤ i ≤ 2m

We are left with two non-zero homology groups in the middle dimensions, m

and m+ 1. Write

Hm(X̃;Z) = Za ⊕ Torm

for some a ∈ Z. By the Universal Coefficient Theorem

Hm(X̃;Z) = Za ⊕ Torm−1 = Za

Poincaré duality then gives

Hm+1(X̃;Z) = Za

The above result takes place entirely at the homological level, but we can

use this information to reverse engineer properties at the chain level. C∗(X̃)

is a chain complex

0→ C2m+1(X̃)
d2m+1−−−→ C2m(X̃)

d2m−−→ . . .
d2−→ C1(X̃)

d1−→ C0(X̃)→ 0

where each Ci is a free Λ = Z[G] module. Since X̃ only has non-zero homol-

ogy in the top, bottom, and middle dimensions, this means that the sequence

only fails to be exact at three points. However, since we assume that X̃ is

connected, the top and bottom homology are fixed and not particularly in-

teresting. Therefore we can augment and co-augment these complexes to

remove these cases

0→ Z→ C2m+1(X̃)
d2m+1−−−→ C2m(X̃)

d2m−−→ . . .
d2−→ C1(X̃)

d1−→ C0(X̃)→ Z→ 0
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Exactness will then fail at a single point, namely

dm+1 : Cm+1 → Cm

Therefore, most of the homological information of X̃ is encapsulated in a

single boundary operator.

Now suppose we reverse the situation, and instead try to build purely

algebraic chain complexes which satisfy equivalent conditions. Let C∗ be

a chain complex of dimension 2m + 1 where each Ci is a free Λ-module.

Furthermore suppose there exists a chain isomorphism h∗ : C∗ → Cn−∗

satisfying h∗k = (−1)
n(n−1)

2 hn−k and that the homology of C∗ is given by

Hi(C∗;Z) =



Z i = 0, 2j + 1

Za ⊕ Torj i = j

Za i = j + 1

0 otherwise

for some a ∈ Z We will call such a C∗ a highly connected chain complex. As

before we can augment and co-augment C∗ to give

0→ Z→ C2m+1
d2m+1−−−→ C2m

d2m−−→ . . .
d2−→ C1

d1−→ C0 → Z→ 0

Writing the cochain complex C∗ we augment and co-augment to obtain

0→ Z→ C0 d∗1−→ C1 d∗2−→ . . .
d∗2m−−→ C2m

d∗2m+1−−−→ C2m+1 → Z→ 0

Applying the isomorphism h∗ generates the commutative chain diagram

0 C0 C1 . . . C2m C2m+1 0

0 C2m+1 C2m
. . . C1 C0 0

h0 h1 h2m h2m+1
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and focusing on the middle dimension, we have the square

Cm Cm+1

Cm+1 Cm

d∗m+1

hm hm+1

dm+1

Construct a homomorphism

∂m+1 : Cm → Cm

∂m = dm+1 ◦ hm = hm+1 ◦ d∗m+1

Then there exists a chain complex, say Ĉ, which isomorphic to C∗

0→ C0 d∗1−→ . . .
d∗m−→ Cm ∂m−→ Cm

dm−→ . . .
d1−→ C0 → 0

By our earlier observations we know that Ĉ will only fail to be exact

at ∂m+1, and we see that all the non-trivial behaviour is described by the

mapping ∂m+1 : Cm → Cm. Considering the dual mapping ∂∗m+1 : Cm → Cm

we obtain:

Lemma 3.4.4. ∂∗m+1 = (−1)m∂m+1

Proof. From 3.3.10 we know that

h∗m = (−1)
2m(2m+1)

2 h2m+1−m = (−1)m(2m+1)hm+1

Recalling that

∂m+1 = dm+1 ◦ hj

dm+1 ◦ hm = hm+1 ◦ d∗m+1
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we see that

∂∗m+1 = h∗m ◦ d∗m+1

= (−1)m(2m+1)hm+1 ◦ d∗m+1

= (−1)2m2+m∂m+1

= (−1)m∂m+1

Returning to Ĉ we have two exact segments linked by ∂m+1

0→ Z ε∗−→ C0 d∗1−→ . . .
d∗m−→ Cm

Cm
dm−→ . . .

d1−→ C0
ε−→ Z→ 0

Since each Ci is a free module over Λ we see that we are almost looking at a

section of a Λ-resolution of Z and its dual, in other words, writing Fi = Ci,

the exact sequences

0→ Z ε∗−→ C0 d∗1−→ . . .
d∗j−→ Cm → Ω∗m+1 → 0

0→ Ωm+1 → Cm
dm−→ . . .

d1−→ C0
ε−→ Z→ 0

It follows that ∂m+1 will induce a mapping ∂̃m+1 : Ω∗m+1 → Ωm+1 which, since

Ωm+1 = Ker(dm), will completely describe the non-exact behaviour of Ĉ. So

we have the diagram

Cm

Ω∗m+1 Ωm+1

Cm
∂m+1

∂̃m+1

where ∂̃∗m+1 = (−1)m∂̃m+1.

This diagram forms the basis for most of the material in the rest of this

paper. Now suppose we wanted to calculate the non-trivial homology of C∗.
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Then

Hm(C∗;Z) = Ker(dm)/Im(∂m+1) = Ωm+1/Im(∂m+1)

Take a matrix representation for ∂m+1. This matrix is then equipped with a

Smith Normal Form (see [20]), which takes the form

SNF(∂j+1) =



η1 0 0 0 0

0
. . . 0 0 0

0 0 ηr 0 0

0 0 0 0 0

0 0 0 0
. . .


for some choice of r ∈ N, ηi ∈ Z and some number s ∈ N of zero rows/columns.

This form then completely determines homology (see the introduction of [3]

for full details), so that:

Hm(C∗;Z) = Zs ⊕ Z/η1Z⊕ . . .⊕ Z/ηrZ

We also note that as discussed in Chapter 2.5, ∂m+1 defines a bilinear form

equipped with some symmetry condition. We have therefore constructed two

invariants of our chain complexes, a Λ-invariant bilinear form on the middle

chain group, and homology.

Suppose that Ωm+1 is straight, so that we can write

Ωm+1 = Mm+1 ⊕ Λaj+1

for some minimal module Mm+1 and choice of am+1 ∈ Z. For this paper we

will concern ourselves only with such syzygies, and only study the minimal

case i.e. am+1 = 0.

We note that in the calculation of such ∂̃m+1 we will not deal with any

of the topology involved in constructing both genuine X̃ and X from these

algebraic complexes. We merely produce algebraic properties any such X̃

must satisfy following on from the existence of free resolutions and a duality

isomorphism h∗ satisfying h∗k = (−1)mhn−k.
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Cyclic Groups

4.1 Highly Connected Chain Complexes With

Cyclic Fundamental Group

In this section we take our highly connected chain complexes of the previous

chapter and fix Λ = Z[Cn]. From our work in section 2.3 we know that a

free Λ-resolution of Z exhibits only two syzygies which are both straight with

minimal modules

M2i+1 = Rn

M2i = Z

Suppose C∗ is a highly-connected chain complex of dimension 4k+ 1. We

have the diagram

C2k

Ω∗2k+1 Ω2k+1

C2k

∂2k+1

∂̃2k+1

We are therefore interested in ∂̃2k+1 : M∗
2k+1 → M2k+1, which here becomes
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∂̃2k+1 : R∗n → Rn Furthermore from 3.4.4 we obtain

∂̃∗2k+1 = (−1)2k∂̃2k+1 = ∂̃2k+1

The study of such homomorphisms will be the main focus of this chapter,

which we will cover in the next section.

Next suppose C∗ is a highly-connected chain complex of dimension 4k+3.

We have the diagram

C2k+1

Ω∗2k+2 Ω2k+2

C2k+1

∂2k+2

∂̃2k+2

We are therefore interested in ∂̃2k+2 : M∗
2k+2 → M2k+2, which here becomes

∂̃2k+2 : Z∗ → Z, where ∂̃∗2k+2 = −∂̃2k+2 by 3.4.4. Since Z is a well understood

module, we can immediately give a classification in this case. Suppose A,B

are right Λ-modules and define

Hom+
Λ(A,B) = {f ∈ HomΛ(A,B); f ∗ = f}

Hom−Λ(A,B) = {f ∈ HomΛ(A,B); f ∗ = −f}

Proposition 4.1.1. Hom−Λ(Z∗,Z) = 0.

Proof. Suppose we label the elements of Z as ai. Then there exists a Λ-

isomorphism

υ : Z∗ → Z

υ(a∗i ) = ai

υ induces another Λ-isomorphism

υ̃(EndΛ(Z))→ HomΛ(Z∗,Z)

υ̃(φ) = φ ◦ υ
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Furthermore, since υ∗ : Z∗ → Z is defined by

υ∗(a∗j)(a
∗
i ) = a∗j(υ(a∗i ))

= a∗j(ai)

we obtain υ∗(a∗j) = aj i.e. υ∗ = υ. Defining End−Λ(Z) in the obvious way, it

is true that

End−(Z) ∼= Hom−Λ(Z∗,Z)

But End(Z) ∼= Z, so that

End−(Z) = 0

Hence the result.

4.2 Matrix Representations for HomZ[Cn](R∗n,Rn)

To classify (4k + 1)-dimensional highly connected chain complexes, we need

to classify HomΛ(R∗n,Rn). So suppose F ∈ HomΛ(R∗n,Rn). We take matrix

representations, and study F : (Zp−1, ρ∗)→ (Zp−1, ρ) where for r ∈ Rn, ρ(x),

ρ∗(x) are defined by the standard relations

ρ(x)(r) = r · x

ρ∗(x) = ρ(x−1)t

Classifying such F then becomes solving the equation

F ◦ ρ∗(x) = ρ(x) ◦ F

for F ∈ Mp−1(Z). Furthermore, we require F ∗ = F , which in matrix repre-

sentation is equivalent to requiring

F t = F

These equations are relatively easy to solve in small dimensions, but as n

increases so does the number and length of computations required and so
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a brute force approach is not optimal. However a general form is obtain-

able by other means. Define basis elements ei = xp−i, and describe Rn by

Rn = {ei}0≤i≤p−2. (While not the most obvious description, later in the

metacyclic case this will facilitate a direct comparison between two distinct

methods. For the greatest continuity, we therefore adopt that description

here as well.) Furthermore recall our definition of cn to be the n× 1 matrix

defined by (cn)i,1 = 1. We then have the following:

Proposition 4.2.1. ρ(x) =

(
0 −1

In−2 −cn−2

)

Proof. Since x = −1−
n−1∑
k=2

xk = −
n−2∑
j=0

ei, we have that

ρ(x)(ei) = xn−i · x

= xn−i−1

=


ei+1 0 ≤ i ≤ p− 3

−
n−2∑
j=0

ei i = n− 2

Proposition 4.2.2. ρ∗(x) =

(
−ctn−2 −1

In−2 0

)
Proof.

ρ(x−1)(ei) = xn−i · x−1

= xn−i+1

=


−

n−2∑
j=0

ei i = 0

ei−1 1 ≤ i ≤ n− 2

Therefore

ρ(x−1) =

(
−cn−2 In−2

−1 0

)
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and since ρ∗ = ρ(x−1)t, we obtain the result.

From 2.3.1 we know that R∗n ∼= Rn, so there exists an isomorphism

υ : R∗n → Rn

If F ∈ EndΛ(Rn), υ will induce an isomorphism

υ̃ : EndΛ(Rn)→ HomΛ(R∗n,Rn)

υ̃(F) = F ◦ υ

So we can study HomΛ(R∗n,Rn) by studying EndΛ(Rn) and one specific iso-

morphism υ.

Proposition 4.2.3. EndΛ(Rn) = Rn.

Proof. Suppose r ∈ Rn. Then the most general φ : Rn → Rn has the form

φ(r) = r · α α ∈ Z[Cn]

But then writing r =
n−2∑
i=0

aix
i, we see that

n−2∑
i=0

aix
i ·

n−1∑
j=0

xi =
n−2∑
i=0

ai(
n−1∑
j=0

xi)

= 0

So
n−1∑
j=0

xi = 0 in EndΛ(Rn), and hence the result.

In matrix representations, this means we can set

ρ(x)n−1 = −
n−2∑
j=0

ρ(x)j
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and express F ∈ EndΛ(Rn) as

F =
n−2∑
i=0

aiρ(x)i ai ∈ Z

where ρ(x)0 = ρ(1) = Id. Suppose now Υn denotes the matrix corresponding

to υ. Then we can express an F ∈ HomΛ(R∗n,Rn) as

F =
n−2∑
i=0

aiρ(x)iΥn ai ∈ Z

We have constructed a general form for F , but at the moment it remains

somewhat opaque. However by considering some low dimensional examples,

it becomes clear how to build up a general matrix form for firstly Υn and

then ρ(x)i ◦Υn.

Example 4.2.4 (C5). Let Λ = Z[C5]. Then

Rn = SpanZ{ei}0≤i≤3

with ei = x5−i. From 4.2.1 and 4.2.2 we know

ρ(x) =


0 0 0 −1

1 0 0 −1

0 1 0 −1

0 0 1 −1

 ρ∗(x) = ρ(x−1)t =


−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0


Consider

α =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1


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Then

α ◦ ρ∗(x) =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1



−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0



=


0 0 0 −1

1 1 1 0

0 1 1 0

0 0 1 0



ρ(x) ◦ α =


−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0




1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1



=


0 0 0 −1

1 1 1 0

0 1 1 0

0 0 1 0


Since α ◦ ρ∗(x) = ρ(x) ◦ α, and det(α) = 1, we can take Υ5 = α. Write

γi = ρ(x)i ◦Υ5. Then one can calculate

γ2 =


0 0 −1 0

0 0 −1 −1

1 1 0 0

0 1 0 0



γ3 =


0 −1 0 0

0 −1 −1 0

0 −1 −1 −1

1 0 0 0


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γ4 =


−1 0 0 0

−1 −1 0 0

−1 −1 −1 0

−1 −1 −1 −1


Note that γ4 = −

3∑
i=0

γi as required. An element F ∈ HomΛ(R∗n,Rn) therefore

takes the form

F = a0γ0 + a1γ1 + a2γ2 + a3γ3

We also require a symmetry condition on F , and calculate

γt3 = −γ1

γt2 = −γ2

γt1 = −γ3

γt0 = γ0 + γ1 + γ2 + γ3

to obtain

F ∗ = a0(γ0 + γ1 + γ2 + γ3)− a1γ3 − a2γ2 − a3γ1

= a0γ0 + (a0 − a3)γ1 + (a0 − a2)γ2 + (a0 − a1)γ3

Solving F ∗ = F and setting a = a2, b = a3 gives a symmetric map

F+ = a(2γ0 + 2γ1 + γ2) + b(γ3 − γ1)

F+ =


2a 2a− b a b

2a− b 4a− 2b 3a− 2b a

a 3a− 2b 4a− 2b 2a− b
b a 2a− b 2a


det(F+) = 5(a2 + ab− b2)2

Example 4.2.5 (C7). Let Λ = Z[C7] and define basis elements ei = x7−i so
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that

Rn = SpanZ{ei}0≤i≤5

By 4.2.1 and 4.2.2 we have

ρ(x) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


ρ∗(x) =



−1 −1 −1 −1 −1 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


and it is easy to check that

Υ7 =



1 1 1 1 1 1

0 1 1 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1


satsfies Υ7 ◦ ρ∗(x) = ρ(x) ◦Υ7 and has unit determinant. Therefore defining

γi = ρ(x)i ◦Υ7, an element F ∈ HomΛ(R∗n,Rn) is of the form

F = a0γ0 + a1γ1 + a2γ2 + a3γ3 + a4γ4 + a5γ5

for ai ∈ Z where

γ1 =



0 0 0 0 0 −1

1 1 1 1 1 0

0 1 1 1 1 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 1 0


γ2 =



0 0 0 0 −1 0

0 0 0 0 −1 −1

1 1 1 1 0 0

0 1 1 1 0 0

0 0 1 1 0 0

0 0 0 1 0 0


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γ3 =



0 0 0 −1 0 0

0 0 0 −1 −1 0

0 0 0 −1 −1 −1

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0


γ4 =



0 0 −1 0 0 0

0 0 −1 −1 0 0

0 0 −1 −1 −1 0

0 0 −1 −1 −1 −1

1 1 0 0 0 0

0 1 0 0 0 0



γ5 =



0 −1 0 0 0 0

0 −1 −1 0 0 0

0 −1 −1 −1 0 0

0 −1 −1 −1 −1 0

0 −1 −1 −1 −1 −1

1 0 0 0 0 0


We have the following duality relations

γt0 =
5∑
i=0

γi γt1 = −γ5

γt2 = −γ4 γt3 = −γ3

γt4 = −γ2 γt5 = −γ1

Solving F ∗ = F and setting a = a3, b = a4, c = a5 gives a symmetric map

F+ = a(2γ0 + 2γ1 + 2γ2 + γ3) + b(γ4 − γ2) + c(γ5 − γ1)

F+ =



2a 2a− c 2a− b a b c

2a− c 4a− 2c 4a− b− 2c 3a− b− c a+ b− c b

2a− b 4a− b− 2c 6a− 2b− 2c 5a− 2b− 2c 3a− b− c a

a 3a− b− c 5a− 2b− 2c 6a− 2b− 2c 4a− b− 2c 2a− b
b a+ b− c 3a− b− c 4a− b− 2c 4a− 2c 2a− c
c b a 2a− b 2a− c 2a


det(F+) = 7(a3 + 3a2b− a2c− 4ab2 + 5abc− 2ac2 + b3 − b2c− 2bc2 + c3)2

Studying these two examples, there are obvious general forms for Υn and
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each γi that one could conjecture, all of which are indeed correct as we now

show. Suppose Λ = Z[Cn] and ei = xn−i so that

Rn = SpanZ{ei}0≤i≤n−2

Define ξk ∈ GLk(Z) to be the upper-triangular matrix consisting entirely of

1’s

(ξk)ij =

1 j ≥ i

0 j < i

Proposition 4.2.6. Υn = ξn−1.

Proof. We note that ξn−1 is the matrix representation of the change of basis

calculation discussed in 2.3.1, albeit over a different basis, and it follows that

the result holds. For completeness we give another proof within this context

however.

Proceed row by row for the calculation ρ(x) ◦ ξn−1. Define Row(i) to be

the ith row of the product ρ(x) ◦ ξn−1. Then by inspection, the non-zero

element of the first row of ρ(x) will only ‘hit’ the non-zero elements in the

(n− 1)th row of ξn−1, of which there is only one in position (n− 1, n− 1). So

Row(1) =
(

0 . . . 0 −1
)

The non-zero elements of the second row of ρ(x) will hit the first and last

rows of ξn−1, and so will pick up a string of 1’s ending in a 1− 1 = 0. So

Row(2) =
(

1 . . . 1 0
)

In general, the non-zero elements of the ith row of ρ(x) will hit the (i− 1)th

and last rows of ξn−1, picking out in order (i− 2) zeroes, followed by a string

of 1′s and ending on a 1− 1 = 0. Combining these together gives the block

matrix description

ρ(x) ◦ ξn−1 =

(
0 −1

ξn−2 0

)
A similar row by row inspection gives ξn−1 ◦ ρ∗(x) = ρ(x) ◦ ξn−1
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Define γi = ρ(x)i ◦ ξn−1, so that F =
n−2∑
i=0

aiγi

Proposition 4.2.7. γi can be expressed in block matrix form as

γi =

(
0 −ξti

ξn−(i+1) 0

)

Proof. Proceed by induction on i. We take as base case 4.2.6, and assume

that the statement is true for i− 1, i.e.

γi−1 =

(
0 −ξti−1

ξn−i 0

)

Then

γi = ρ(x) ◦ γi−1 =

(
0 −1

In−2 −cn−2

)(
0 −ξti−1

ξn−i 0

)
We proceed on a row-by-row analysis again, defining Row(i) to be the ith

row of ρ(x) ◦ γi−1. The non-zero element in the first row of ρ(x) will only hit

elements in the (n − 1)th row of γi−1 of which there is only one in position

(n− 1, n− i). Therefore

Row(1) =
(

01 . . . 0n−i−1 −1n−i 0n−i+1 . . . 0n−1

)
where the subscripts indicate which column an element belongs to. The

second row of ρ(x) has two non-zero entries which will pick out the 1st and

(n − 1)th rows of γi−1. Again, we will obtain a −1 in the (n − i)th column,

and this time we will pick up a further −1 in the (n− i+ 1)th, so that

Row(2) =
(

01 . . . 0n−i−1 −1n−i −1n−i+1 0n−i+2 . . . 0n−1

)
For 3 ≤ j ≤ i this pattern will continue, so that Row(j) will differ from

Row(j− 1) only by the addition of an (−1) in the (n− i+ (j− 1))th column.

This arises from the extra element the (j − 1)th row of −ξti−1 has when

compared to the (j − 2)th row. Therefore in block matrix form we can write
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i⊕
j=1

Row(j) =
(

0 −ξti
)

Next consider Row(i + 1). Then the (i + 1)th row of ρ(x) will pick out the

ith and (n − 1)th row of γi−1, which now both correspond to the ξn−i block.

Therefore it will pick out a sequence of (n − i) 1′s, where the final element

is cancelled out by the contribution of the −1 in the (n− 1)th row, giving

Row(i+ 1) =
(

11 . . . 1n−i−1 0n−i . . . 0n−1

)
For i+ 2 ≤ j ≤ n− 1, write j = i+ k where 2 ≤ k ≤ n− i− 1 the jth row of

γi differs from its (j − 1)th by the replacement of a 1 in the (k− 1)th column

by a 0. Therefore

Row(j) =
(

01 . . . 0k−1 1k . . . 1n−i−1 0n−i . . . 0n−1

)
and we get

n−1⊕
j=i+1

Row(j) =
(
ξn−i−1 0

)
By the inductive hypothesis the result then follows.

Lemma 4.2.8.
n−1∑
i=0

γi = 0.

Proof.

n−1∑
i=0

γi = (
n−1∑
i=0

ρ(x)i) ◦ ξn−1

= (0) ◦ ξn−1

= 0

It then follows that:

Theorem 4.2.9. Suppose F : R∗n → Rn is a Z[Cn]-homomorphism. Then
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F has matrix representation

F =
n−2∑
i=0

aiγi ai ∈ Z

Considering symmetry conditions we obtain:

Proposition 4.2.10. γti =


n−2∑
j=0

γj i = 0

−γn−(i+1) 1 ≤ i ≤ n− 2

Proof. Immediate from the block form of γi.

We can now combine these results to give a general form for elements of

Hom+
Z[Cn](R∗n,Rn).

Theorem 4.2.11. Suppose F : R∗n → Rn is a symmetric Z[Cn]-homomorphism.

Then F has matrix representation

an−1
2

(

n−3
2∑
i=0

2γi + γn−1
2

) +
n−2∑
i=n+1

2

ai(γi − γn−(i+1))

where γi defined as above, ai ∈ Z.

Proof. The condition F ∗ = F generates a system of equations on the coeffi-

cient terms:

a0 = a0

ai = a0 − an−(i+1) (1 ≤ i ≤ n− 2)

The case i = n−1
2

then gives a0 = 2an−1
2

. Pick ai for n+1
2
≤ i ≤ n − 2 to be
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our representatives. Then we can write a symmetric mapping F+ as

F+ = 2an−1
2
γ0 +

n−3
2∑
i=1

(2an−1
2
− an−(i+1))γi + 2an−1

2
γn−1

2
+

n−2∑
i=n+1

2

aiγi

= an−1
2

(

n−3
2∑
i=0

2γi + γn−1
2

) +
n−2∑
i=n+1

2

ai(γi − γn−(i+1))

87



Chapter 5

Metacyclic Groups I: Further

Preliminaries

5.1 Highly Connected Chain Complexes over

a Metacyclic Group Ring

We now construct highly connected chain complexes fixing Λ = Z[G(p, q)].

When we constructed such chain complexes in section 3.4 we assumed each Ci

free, however from section 2.4 we know that the existence of a strongly diago-

nal resolution is currently only known for a restricted number of groups. We

can still construct highly connected chain complexes using projective Ci but

in doing so they lose the ability to correspond to a universal cover. However,

the problems discussed in this section are still worthwhile performing in a

general setting, and not just through case-by-case calculations for the groups

known to admit a strongly diagonal resolution; they can accommodate any

future progress made in expanding said list of groups, allow us to generate

p-adic results through tensor products, and act as a first approximation to

the construction of such universal covers.

As discussed in section 2.4, our diagonal resolutions (either strongly or

otherwise) generate odd syzygies which are straight with minimal modules
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(written in the row formulation):

M2k+1 = R(k)⊕ [y − 1)

Suppose C∗ is a 4k + 1 dimensional highly connected chain complex. Then

we have the diagram

C2k

Ω∗2k+1 Ω2k+1

C2k

∂2k+1

∂̃2k+1

We are therefore interested in ∂̃2k+1 : M∗
2k+1 →M2k+1 where

∂̃∗2k+1 = (−1)2k∂̃2k+1 = ∂̃2k+1

We can represent ∂̃2k+1 as a matrix

∂̃2k+1 =

(
δ11 δ12

δ21 δ22

)

where

δ11 :R(k)∗ → R(k)

δ12 :[y − 1)∗ → R(k)

δ21 :R(k)∗ → [y − 1)

δ22 :[y − 1)∗ → [y − 1)

with δ∗11 = δ11, δ∗22 = δ22, . We start by studying δ12, for which we need a

well known result (see B.5 in [8]), and a lemma.

Lemma 5.1.1 (Eckmann Shapiro) Let G be a group, H ⊂ G a sub-

group, and let i : Z[H] → Z[G] denote the inclusion map. Suppose M is

a Z[G]-module and N a Z[H]-module, so that i∗(M) denotes restriction of
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scalars, and i∗ denotes extension of scalars. Then there exist isomorphisms

HomZ[G](i∗(N),M) ∼= HomZ[H](N, i
∗(M))

HomZ[G](M, i∗(N)) ∼= HomZ[H](i
∗(M), N)

Lemma 5.1.2. For 1 ≤ i ≤ q, HomΛ(Iq, R(i)) = 0.

Proof. Let i : Z[Cp]→ Λ denote the inclusion mapping. We can write

q⊕
i=1

HomΛ(Iq, R(i)) ∼= HomΛ(Iq, i∗(IC))

Using 5.1.1, and the standard result that HomZ[Cp](Z, IC) = 0 we calculate

q⊕
i=1

HomΛ(Iq, R(i)) ∼= HomZ[Cp](i
∗(Iq), IC)

=
⊕
q

HomZ[Cp](Z, IC)

= 0

Hence the result.

Proposition 5.1.3. HomΛ([y − 1)∗, R(k)) ∼=
⊕
i 6=1

HomΛ(R(i)∗, R(k)).

Proof. Let Iq be the augmentation ideal of Z[Cq]. Then we can write [y− 1)

as an extension

0→
⊕
i 6=1

R(i)→ [y − 1)→ Iq → 0

Recall from 2.3.1 that I∗q
∼= Iq so dualising the above sequence, we obtain an

exact sequence

0→ Iq → [y − 1)∗ →
⊕
j 6=1

R(i)∗ → 0

Applying HomΛ(−, R(k)) gives the long exact sequence

0→ HomΛ(
⊕
i 6=1

R(i)∗, R(k))→ HomΛ([y − 1)∗, R(k))→ HomΛ(Iq, R(k))→
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→ End1
Λ(
⊕
i 6=1

R(i)∗, R(k))→ . . .

But then from 5.1.2

HomΛ(Iq, R(k)) = 0

So there exists the exact sequence

0→ HomΛ(
⊕
i 6=1

R(i)∗, R(k))→ HomΛ([y − 1)∗, R(k))→ 0

and the result follows.

It is also obvious that δ21 = δ∗12. We therefore have three cases of Λ-

homomorphisms to consider. Switching to our cyclotomic formulation, we

will write these three cases as

Fk : P̃ k → P k

Gk,i : P̃ i → P k

H : [y − 1)∗ → [y − 1)

so that defining

G = (Gk,0, Gk,2, Gk,3, . . . , Gk,p−1)t

G∗ = (G∗k,0, G
∗
k,2, G

∗
k,3, . . . , G

∗
k,p−1)

we have

∂̃2k+1 =

(
Fk G

G∗ H

)
For the remainder of this chapter, we will produce a range of results and

methods which will allow us to classify such homomorphisms, with a specific

focus on Fk. In the next chapter, we will apply these and earlier results.
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5.2 Homomorphisms over Q[G(p, q)] and the

rational fixed field

As a first approximation to classifying Fk ∈ HomΛ(P̃ k, P k) we consider what

happens over Q. Define

ΛQ = Q[G(p, q)]

K = Q[ζp]

K0 = Kθ

where K0 is the fixed field of K under θ, and K and K0 are ΛQ-modules in

the obvious way. We wish to classify HomΛQ(P̃ k⊗Q, P k⊗Q). The first step

towards this is to calculate P k ⊗Q. Recall the fibre decomposition of Λ as

Z[G(p, q)] Tq(R0, π)

Z[Cq] Fp[Cq]

We tensor this diagram with Q, and calculate

Λ⊗Q = ΛQ

Tq(R0, π)⊗Q = Mq(R0 ⊗Q) = Mq(K0)

Z[Cq]⊗Q = Q[Cq]

Fp[Cq]⊗Q = 0
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to obtain a fibre product

Q[G(p, q)] Mq(K0)

Q[Cq] 0

It follows that Q[G(p, q)] ∼= Q[Cq]⊕Mq(K0). Recall that

Tq(R0, π) ∼= R(1)⊕ . . .⊕R(q)

∼= R⊕ P ⊕ . . .⊕ P q−1

OverQ all these modules become isomorphic, and returning to our cyclotomic

interpretation, we obtain

P k ⊗Q ∼= K

P̃ k ⊗Q ∼= K

so that

HomΛQ(P̃ k ⊗Q, P k ⊗Q) ∼= EndΛQ(K)

∼= K0

The rational homomorphism ring is completely classified by elements of the

rational fixed field, which is in turn explicitly describable. To this end we

recall the definition of a Galois group. Suppose F is a field, and E is some

field extension that is normal and separable. The Galois group of E/F is the

group of automorphisms of E that leave F fixed

Gal(E/F ) = {φ : E → E;∀f ∈ F, φ(f) = f}

93



CHAPTER 5. METACYCLIC GROUPS I: FURTHER PRELIMINARIES

We can therefore write

θ ∈ Gal(K/Q) ∼= Cp−1

Since ord(θ) = q, θ generates a unique subgroup of order q, Cq ⊂ Gal(K/Q).

In fact, for any j a positive divisor of p − 1, there exists a unique subgroup

of order j, Cj ⊂ Gal(K/Q) and subsequent generator. Of special interest is

the case j = 2, and we will label the generator of such a C2 by τ . We note

that τ acts as complex conjugation.

Proposition 5.2.1. Suppose q is even. Then K0 is totally real where

K0 ⊗Q R = R× . . .× R︸ ︷︷ ︸
(p−1)/q

Proof. We begin with the case q = 2. Then θ = τ , and we can write K0 as

K0 = Q[µp] µp = ζp + ζ−1
p

which in turn implies

K0 ⊗ R = R× . . .× R︸ ︷︷ ︸
(p−1)/2

Now suppose q = 2j where j > 1. Then K0 ⊂ Kτ and

K0 ⊗Q R ⊂ R× . . .× R︸ ︷︷ ︸
(p−1)/2

Since dimQ(K0) = p−1
q

we must have

K0 ⊗Q R = R× . . .× R︸ ︷︷ ︸
(p−1)/q

For the case q odd, we need the following standard result from Galois

theory (see [24])
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Proposition 5.2.2. Let A ⊂ B ⊂ C be fields such that C/A and B/A are

finite Galois extensions. Then there exists a short exact sequence of finite

groups

1→ Gal(C/B)→ Gal(C/A)→ Gal(B/A)→ 1

Proposition 5.2.3. Suppose q is even. Then K0 is totally complex where

K0 ⊗Q R = C× . . .× C︸ ︷︷ ︸
(p−1)/2q

Proof. Since q is odd, 2q will still be a divisor of p − 1, and so there will

exist an element ξ ∈ Gal(K/Q) such that ord(ξ) = 2q. Then the inclusions

Kξ ⊂ K0 ⊂ K gives rise to the exact sequence

1 Gal(K/K0) Gal(K/Kξ) Gal(K0/K
ξ) 1

1 Cq C2q C2 1

∼= ∼= ∼=

where the given isomorphisms can be checked by basic dimensional argu-

ments. Let µ be the generator of Gal(K0/K
ξ), and recall the definition of

τ as the unique element of order 2 in Gal(K/Q) and hence its subgroups of

even order. In this case, τ ∈ Gal(K/Kξ), and since q is odd, µ must be the

restriction of τ to K0. So µ will act on K0 as complex conjugation and hence

K0 is complex

K0 ⊗Q R = C× . . .× C︸ ︷︷ ︸
(p−1)/2q

We are particularly interested in the elements of K0 satisfying certain

symmetry conditions. Define

K+
0 = {α ∈ K0;α = α}

K−0 = {α ∈ K0;α = −α}

It is then simple to obtain
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Proposition 5.2.4. Suppose q even. Then

K+
0 ⊗ R = K0 ⊗ R

K−0 ⊗ R = 0

Proposition 5.2.5: Suppose q odd. Then

K+
0 ⊗ R = R× . . .× R︸ ︷︷ ︸

(p−1)/2q

K−0 ⊗ R = i(R× . . .× R)︸ ︷︷ ︸
(p−1)/2q

Note that for q odd, we have that

(K+
0 ⊗ R)⊕ (K−0 ⊗ R) ∼= K0 ⊗ R

It is also easy to see how this holds without extending scalars. Since τ is

non-trivial, we can write

K0 = {aiγi + biγi}1≤i≤p−1

where ai ∈ Q, γi are invariant basis elements. It then follows that

K+
0 = {ai(γi + γi)}1≤i≤ p−1

2q
K−0 = {bi(γi − γi)}1≤i≤ p−1

2q

for ai, bi ∈ Q.

Proposition 5.2.6. K+
0 ⊕K−0 ∼= K0.

Proof. We have for each i

ai(γi + γi) + bi(γi − γi) = (ai + bi)γi + (ai − bi)γi
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Representing the coefficients as a matrix over Q, we can reduce as(
1 1

1 −1

)
→

(
0 1

2 0

)
→

(
0 1

1 0

)

Finally noting that there are no intersections between choices of i, we have

that

K+
0 ⊕K−0 ∼= {ciγi + diγi})1≤i≤ p−1

2q
= K0

As a corollary to this proof, we note that this result will not hold in the

integral case.

5.3 Characteristic Elements of P k

We now return to Λ = Z[G(p, q)]. Recall the definition of θ from the group

presentation of G(p, q); then θ has equivalent description

θ(xi) = xia

for some a ∈ Z such that aq = 1 mod p. Define

b = aq−1 mod p

so that

θ−1(xi) = xib

Using this notation we see that

xy = yθ−1(x) = yxib

Recall P k = (ζp − 1)kZ[ζp] is a Λ-module via the usual right actions. For

the remainder of this chapter we will write ζ = ζp. Writing in this form,

we easily see that each P k is monogenic. Further to this, we can completely

characterise each P k by two simple properties. Beginning with P 0 = R, let

M be a Λ-lattice and define properties
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M(Σ): rkZ(M) = p− 1 and M · Σx = 0 where Σx =
6∑

k=0

xk

M(0): There exists ε0 ∈M such that ε0·y = ε0 and SpanZ{ε0·xi}0≤i≤p−2 = M

Proposition 5.3.1. Let M be a Λ-lattice. Then M satisfies M(Σ),M(0) if

and only if M ∼= R and SpanZ{ε0 · xi}0≤i≤p−2 is a Z-basis for M .

Proof. We start with the backwards implication. By definition R satisfies

M(Σ). Take ε0 = 1. Then

1 · y = 1

R = SpanZ{1 · xi}0≤i≤p−2

so R satisfies M(0) too.

Now suppose that M is a Λ-lattice satisfying M(Σ) and M(0) for some

element ε0. We can construct a homomorphism of abelian groups \ : R→M

defined on the basis of R by

\(1 · xi) = ε0 · xi

SinceM = SpanZ{ε0·xi}0≤i≤p−2, \ is surjective, and since rkZ(M) = rkZ(R) =

p−1, \ is bijective. \ clearly commutes with the action of x, and via 1 ·y = 1,

ε0 · y = ε0 it also commutes with the action of y, so is a Λ-isomorphism.

This result generalises to all P k. Define the element

vX =

p−b∑
j=1

xj

vX has the following properties:

Lemma 5.3.2. Considered as elements acting from the right

(xb(p−1) − 1)k = (−1)k(xp−1 − 1)kvkX
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Proof.

(xb(p−1) − 1)k = (xp−1 − 1)k(x(b−1)(p−1) + x(b−2)(p−1) + . . .+ 1)k

= (xp−1 − 1)(
b−1∑
j=0

xj(p−1))k

Then

b−1∑
j=0

xj(p−1) =

p−2∑
j=p−b+1

xj + xp−1 + 1

=

p−2∑
j=p−b+1

xj −
p−2∑
j=0

xj + 1

= −
p−b∑
j=1

xj

= −vX

Substituting back we have

(xb(p−1) − 1)k = (−1)k(xp−1 − 1)kvkX

Lemma 5.3.3. vX is a unit with inverse v−1
X = xp−1

p−a∑
j=0

x(p−b)j.

Proof. First note that modulo p

ab = aaq−1 = aq = 1

Consider the expression

p−b−1∑
j=0

xj
p−a−1∑
l=0

x(p−b)l =

p−a−1∑
l=0

p−b−1∑
j=0

xj+(p−b)l

We order the sum by running through all values of j for a particular value

of l before moving to the next value of l in the sum. Then this expression
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starts with a sum for the l = 0 terms

1 + x+ . . .+ xp−b−1

followed by for l = 1

xp−b + xp−b+1 + . . .+ x2(p−b)−1

The expression continues in this way hitting consecutive powers of x until

the final chain

x(p−a−1)(p−b) + x(p−a−1)(p−b)+1 + . . .+ x(p−a)(p−b)−1

But then

(p− a)(p− b)− 1 = p2 − ap− bp+ ab− 1

= 1− 1 (p)

= 0 (p)

So, for some n ∈ Z, we can write

p−b−1∑
j=0

xj
p−a−1∑
l=0

x(p−b)l = n

p−1∑
j=0

xj + 1

= 1

Noting that
p−b−1∑
j=0

xj = xp−1vX

we arrive at the result.

For 1 ≤ k ≤ q − 1 define a property:

M(k): There exists εk ∈M such that εk · y = εk · (−1)kvkX and

SpanZ{εk · xi}0≤i≤p−2 = M
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Proposition 5.3.4. Let M be a Λ-lattice. Then M satisfies M(Σ),M(k) if

and only if M ∼= P k and SpanZ{εk · xi}0≤i≤p−2 is a Z-basis for M .

Proof. As before we show that P k satisfies M(Σ), M(k). M(Σ) is obvious.

Write εk = (ζ − 1)k = 1 · (xp−1 − 1)k. Then this element clearly generates,

and using the fact that 1 · y = 1, we have that

εk · y = 1 · (xp−1 − 1)ky

= 1 · y(xb(p−1) − 1)k

= 1 · (−1)k(xp−1 − 1)kvkX

= εk · (−1)kvkX

So P k satisfies M(k). For the forward implication, we simply re-apply the

same argument we made in 5.3.1.

We will call such an εk a characteristic element. For the rest of this chapter

we will exclusively write each generator (ζ − 1)k = 1 · (xp−1 − 1)k = εk and

defining

p[k, i] = εk · xi

we think of P k via the description

P k = SpanZ{p[k, i]}0≤i≤p−2

The benefit of this description is that in considering Λ-homomorphisms be-

tween such modules, we need only consider how the homomorphism acts on

the characteristic element. Suppose f : P r → P s is some Λ-isomorphism.

Then since P r, P s are both monogenic, f must map the generator of P r, εr,

to some multiple of the generator of P s, εs. But then this generates f across

the whole of P r. Noting that we can also write elements of R in terms of x

and acting from the right, we obtain:
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Proposition 5.3.5. f : P r → P s is defined by

f(εr) = εs · λ λ ∈ R

if and only if

f(p[r, i]) = ·p[s, i] · λ

Proof. For the forward implication, we have by definition that

f(p[r, i]) = f(εr · xi)

= f(εr) · xi

= εs · λxi

= p[s, i] · λ

where since λ is a term entirely in x, it commutes with xi. For the backwards

implication simply take i = 0.

Consider the module P q. Recalling that R(q + i) ∼= R(i), we see that

R(q + q) ∼= R(q) ∼= R, which implies that P q ∼= R. Then P q must satisfy

M(0) with some characteristic element εq. Unlike previously however, we

cannot just take εq = 1 · (xp−1 − 1)q, since this element does not possess the

proper y action.

Recall the definition of π ∈ R0 to be the unique prime in R0 lying over p,

i.e. the element satisfying

π
p−1
q = pv

for some v ∈ R0 a unit

Proposition 5.3.6. π = (ζ − 1)qvπ for some vπ ∈ R a unit.

Proof. We have that

((ζ − 1)q)
p−1
q = (ζ − 1)p−1

= pu

102



CHAPTER 5. METACYCLIC GROUPS I: FURTHER PRELIMINARIES

for some u ∈ R a unit. So clearly (ζ − 1)q is a prime lying over p, but also

(ζ − 1)q 6= π since (ζ − 1)q /∈ R0. So (ζ − 1)q must differ from π by a unit,

which we will call vπ.

Proposition 5.3.7. π = πw for some w ∈ R0 a unit.

Proof. Since our involution acts as complex conjugation, it commutes with

integer powers and we see that

πq = πq = pu = pu

where u ∈ R0 a unit. It follows that u is a unit, and so π must be unit

equivalent to π, say π = πw where w ∈ R×. Furthermore, since π ∈ R0, we

obtain w ∈ R0 since

πw = π = θ−1(π) = θ−1(πw) = πθ−1(w)

so that θ−1(w) = w as required.

It follows from this result that it makes sense to consider π as an element

acting from the right, so that 1 · π will still represent the prime lying over p.

Define uπ = vπ, so that considering as actions on the right we write

π = (xp−1 − 1)quπ

Proposition 5.3.8. The element εq = 1 · π is a characteristic element for

P q.

Proof. Firstly we have, since π ∈ R0

εq · y = 1 · πy

= 1 · yθ−1(π)

= 1 · π

= εq
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P q has the natural basis P q = SpanZ{1 · (xp−1 − 1)qxi}0≤i≤p−2. Then

SpanZ{1 · πxi}0≤i≤p−2 = SpanZ{1 · (xp−1 − 1)quπx
i}0≤i≤p−2

= SpanZ{ε · (xp−1 − 1)qxi}0≤i≤p−2

Hence the result.

Consider P̃ k. Then the duality relations discussed in section 2.4 can be

written

P̃ k ∼=


P k = 0

R k = 1

P q+1−k 2 ≤ q − 1

It follows that each P̃ k will satisfy M(Σ) and some appropriate M(i), and is

therefore equipped with a characteristic element which we label ε̃k, so that

P̃ k = SpanZ{ε̃k · xi}0≤i≤p−2. Define elements

p̃[k, i] = ε̃k · xi

Then we also have the following result

Proposition 5.3.9.

f1 : P̃ r → P̃ s

f2 : P̃ r → P s

f3 : P r → P̃ s

are Λ-homomorphisms defined by

f1(ε̃r) = ε̃s · λ1

f2(ε̃r) = εs · λ2

f3(εr) = ε̃s · λ3
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for λ1, λ2, λ3 ∈ R if and only if

f1(p̃[r, i]) = p̃[s, i] · λ1

f2(p̃[r, i]) = p[s, i] · λ2

f3(p[r, i]) = p̃[s, i] · λ3

Proof. The same argument used in 5.3.4 applies here also and generates the

result.

For notational ease, define

Pk =


P k = 0

R k = 1

P q+1−k 2 ≤ k ≤ q − 1

Then we can define an isomorphism υk : P̃ k → Pk by

υk(ε̃k) =


ε1 k = 0

ε0 k = 1

εq+1−k 2 ≤ k ≤ q − 1

One approach to study Fk would therefore be to split it into two parts

Fk = F̃k ◦ υk

for some F̃k : Pk → P k. However, a description of F ∗k would require us to

calculate υ∗k, and we are unable to do so with the oblique definition of υk

given. We proceed to describe ε̃k as

ε̃k =

p−2∑
j=0

ajp[k, j]
∗ aj ∈ Z.
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5.4 Actions in P̃ k

In order to describe ε̃k in the natural dual basis, we first need to understand

how x and y act upon this basis. We have the following base case for x:

Lemma 5.4.1.

p[k, i]∗ · x =

p[k, i+ 1]∗ − p[k, 0]∗ 0 ≤ i ≤ p− 3

−p[k, 0]∗ i = p− 2

Proof. For aj ∈ Z, and noting that p[0, i] · x = p[0, i+ 1] and setting

p[0,−1] = εk · xp−1 = −
p−2∑
j=0

p[0, j]

we have

(p[k, i]∗ · x)(

p−2∑
j=0

ajp[k, j]) = (xp−1 · p[k, i]∗)(
p−2∑
j=0

ajp[k, j])

= p[k, i]∗(

p−2∑
j=0

ajp[k, j] · xp−1)

= p[k, i]∗(

p−2∑
j=0

ajp[k, j − 1])

= p[k, i]∗(

p−2∑
j=1

ajp[k, j − 1]− a0

p−2∑
l=0

p[k, l])

= p[k, i]∗(

p−3∑
j=0

(aj+1 − a0)p[k, j]− a0p[k, p− 2])

Hence the result.
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Proposition 5.4.2.

p[k, i]∗ · xj =


p[k, i+ j]∗ − p[k, j − 1]∗ 1 ≤ j ≤ p− 2− i

−p[k, j − 1]∗ j = p− 1− i

p[k, i+ j − p]∗ − p[k, j − 1]∗ p− i ≤ j ≤ p− 1

Proof. We proceed by (staggered) induction on j. We first consider the case

1 ≤ j ≤ p− 2− i.

p[k, i]∗ · x = p[k, i+ 1]∗ − p[k, 0]∗

so the base case holds. Suppose true for j − 1, so that

p[k, i]∗ · xj−1 = p[k, i+ j − 1]∗ − p[k, j − 2]∗

Then

p[k, i]∗ · xj = (p[k, i+ j − 1]∗ − p[k, j − 2]∗) · x

= p[k, i+ j]∗ − p[k, 0]∗ − p[k, j − 1]∗ + p[k, 0]∗

= p[k, i+ j]∗ − p[k, j − 1]∗

So the statement is true for all j such that 1 ≤ j ≤ p− 2− i. Next suppose

j = p− 1− i. Then

p[k, i]∗ · xj = (p[k, i]∗ · xp−2−i) · x

= (p[k, p− 2]∗ − p[k, p− 3− i]∗) · x

= −p[k, 0]∗ − p[k, p− 2− i]∗ + p[k, 0]∗

= −p[k, p− 2− i]∗

= −p[k, j − 1]∗

So the statement is true here also. Finally suppose p− i ≤ j ≤ p− 1. Then
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again we proceed by induction. The base case is now

p[k, i]∗ · xp−i = −p[k, p− 2− i]∗ · x

= p[k, 0]∗ − p[k, p− 1− i]∗

= p[k, i+ p− i− p]− p[k, p− 1− i]∗

= p[k, i+ j − p]∗ − p[k, j − 1]∗

which holds. Suppose true for j − 1, so that

p[k, i]∗ · xj−1 = p[k, i+ j − 1− p]∗ − p[k, j − 2]∗

Then

p[k, i]∗ · xj = (p[k, i+ j − 1− p]∗ − p[k, j − 2]∗) · x

= p[k, i+ j − p]∗ − p[k, 0]∗ − p[k, j − 1]∗ + p[k, 0]∗

= p[k, i+ j − p]∗ − p[k, j − 1]∗

So the statement holds for all p− i ≤ j ≤ p− 1.

Having obtained a complete description of x actions in P̃ k, we now con-

sider the action of y. By definition we have

(p[k, i]∗ · y)(

p−2∑
j=0

ajp[k, j]) = (y−1 · p[k, i]∗)(
p−2∑
j=0

ajεk · xi)

= (p[k, i]∗)(

p−2∑
j=0

ajεk · xiy−1)

= (p[k, i]∗)(

p−2∑
j=0

ajεk · yθ(x)i)

= (p[k, i]∗)(

p−2∑
j=0

ajεk · vkXxai)

Immediately we run into a problem, namely we have no general form for a.
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While a general description of the y action appears unattainable, we can at

least produce a general result for the simplest possible case, the action of y

on p[0, 0]∗.

Lemma 5.4.3. There exists a unique number η such that 1 ≤ η ≤ p− 2 and

aη = −1 mod p

Proof. Consider elements of the form ka mod p for 1 ≤ k ≤ p − 1. Then

since p is prime, ka = 0 mod p ⇒ k = lp for l ∈ Z. Then ka mod p must

cycle through all elements 1 ≤ m ≤ p − 1. Suppose otherwise, then there

exist k1, k2 such that 1 ≤ k1 ≤ k2 ≤ p− 1 and k1a = k2a mod p. But then

k1a = k2a mod p⇒ (k1 − k2)a = 0 mod p

⇒ (k1 − k2) = 0 mod p

⇒ k1 = k2 + lp

a contradiction. So there exists η, 1 ≤ η ≤ p− 2 which will ‘hit’ p− 1. But

also noting a 6= 1 we obtain

a(p− 1) = −a 6= −1 mod p

Hence 1 ≤ η ≤ p− 2.

Lemma 5.4.4. η = p− b

Proof.

b = aq−1 mod p ⇒ p− b = −aq−1 mod p

⇒ a(p− b) = −aq = −1 mod p

So by definition p− b = η.

Proposition 5.4.5. p[0, 0]∗ · y = p[0, 0]∗ − p[0, p− b]∗
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Proof. We have that

(p[0, i]∗ · y)(

p−2∑
j=0

ajp[0, j]) = p[0, i]∗(

p−2∑
j=0

ajp[0, j] · y−1)

= p[0, i]∗(ε0 ·
p−2∑
j=0

ajx
jy−1)

= p[0, i]∗(ε0 · y−1

p−2∑
j=0

ajx
aj)

= p[0, i]∗(ε0 · (a0 + ap−bx
p−1 +

p−2∑
j=1,j 6=p−b

ajx
aj))

= p[0, i]∗((a0 − ap−b)r0 + . . .)

Hence the result.

While limited in scope, this result is in fact enough to allow us to calculate

explicit descriptions for all ε̃k.

5.5 Projection Homomorphisms

Recall from section 2.4 the existence of a map T ∈ Tq(R0, π) which can be

described in block matrix form as

T =

(
0 Iq−1

π 0

)

Then successive applications of T on any R(k) generates an infinite sequence

of inclusions

. . . ⊂ R(q) ⊂ R(q − 1) ⊂ . . . ⊂ R(2) ⊂ R(1) ⊂ R(q) ⊂ . . .
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where each inclusion has an index of p. We wish to construct an analagous

chain in our current framework. Define a projection homomorphism

ρk : P k → P k−1

ρk(εk) = εk−1 · (xp−1 − 1)

for for 1 ≤ k ≤ q − 1. Then we can construct a chain

P q−1 ρq−1−−→ P q−2 ρq−2−−→ . . .
ρ2−→ P

ρ1−→ R

where since (xp−1 − 1)p−1 = pu for some u ∈ R a unit, we can infer that

det(ρk) = p as needed. It remains to construct a projection R → P q−1.

Using 5.3.1 we define an isomorphism

υπ : R→ P q

υπ(ε0) = εq

which allows us to define a final projection

ρq : P q → P q−1

ρq(εq) = εq−1 · (xp−1 − 1)uπ

We can therefore construct an infinite chain

. . .
υπ−→ P q ρq−→ P q−1 ρq−1−−→ . . .

ρ3−→ P 2 ρ2−→ P
ρ1−→ R

υπ−→ P q ρq−→ . . .

Dualising this chain we obtain a new sequence of dual modules and dual

maps

. . .
ρ∗q−→ P̃ q υ∗π−→ R̃

ρ∗1−→ P̃
ρ∗2−→ P̃ 2 ρ∗3−→ . . .

ρ∗q−1−−→ P̃ q−1 ρ∗q−→ P̃ q υ∗π−→ . . .
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Proposition 5.5.1. ρ∗k : P̃ k−1 → P̃ k is defined by

ρ∗k(p[k − 1, i]∗) =

−p[k, i]∗ · (xp−1 − 1)x 1 ≤ k ≤ q − 1

−p[k, i]∗ · (xp−1 − 1)xuπ k = q

Proof. We consider the case k = q, as it contains the other case by simply

deleting uπ. Then by definition we have that

ρ∗k(p[k − 1, i]∗)(

p−2∑
j=0

ajp[k, j]) = p[k − 1, i]∗(ρk((

p−2∑
j=0

ajp[k, j]))

= p[k − 1, i]∗(

p−2∑
j=0

ajp[k − 1, j] · (xp−1 − 1)uπ)

= (p[k − 1, i]∗ · (x− 1)uπ)(

p−2∑
j=0

ajp[k − 1, j])

Since the action of x is independent of k, we can infer

(p[k− 1, i]∗ · (x− 1)uπ)(

p−2∑
j=0

ajp[k− 1, j]) = (p[k, i]∗ · (x− 1)uπ)(

p−2∑
j=0

ajp[k, j])

which implies

ρ∗k(p[k − 1, i]∗) = p[k, i]∗ · (x− 1)uπ

= −p[k, i]∗ · (xp−1 − 1)xuπ

Proposition 5.5.2. υ∗π : P̃ q → R̃ is defined by

υ∗π(p[q, i]∗) = p[0, i]∗

Proof. By definition we have

υ∗π(p[q, i]∗)(

p−2∑
j=0

ajp[0, i]) = p[q, i]∗(υπ(

p−2∑
j=0

ajp[0, i]))
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= p[q, i]∗(

p−2∑
j=0

ajp[q, i]))

= p[0, i]∗(

p−2∑
j=0

ajp[0, i]))

Hence the result.

Our goal is to be able to project calculations in a general P̃ k up to R̃,

perform them there, and then move back down to give the result in terms of

our original module. To this end we define the inverse map

(υ∗π)−1 : R̃→ P̃ q

(υ∗π)−1(p[0, i]∗) = p[q, i]∗

For the projections, while it is evident we cannot define an inverse over the

entirety of P̃ k, we can define it over a certain subset. Define semi-inverses

(ρ∗k)
−1 : P̃ k → P̃ k−1

(ρ∗k)
−1(p[k, i]∗ · (xp−1 − 1)x) = −p[k − 1, i]∗ 1 ≤ k ≤ q − 1

(ρ∗k)
−1(p[k, i]∗ · (xp−1 − 1)xuπ) = −p[k − 1, i]∗ k = q

For s > r we will write

r∑
j=s

ρ∗j = ρ∗s ◦ . . . ◦ ρ∗r+1 ◦ ρ∗r

s∑
j=r

(ρ∗j)
−1 = (ρ∗r)

−1 ◦ . . . ◦ (ρ∗s+1)−1 ◦ (ρ∗s)
−1

We wish to prove

p[k, i]∗ · y = (

q∑
j=k+1

(ρ∗j)
−1 ◦ υ−1

π )((υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y)
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for which we need to check that (υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y) belongs to the do-

main of (ρ∗j)
−1 for k + 1 ≤ j ≤ q. To achieve this, recall the definition of uπ.

We obtain the following:

Lemma 5.5.3. θ−1(uπ) = (−1)quπv
−q
X .

Proof. Since π ∈ R0 we have

π = θ−1(π)

= (xb(p−1) − 1)qθ−1(uπ)

which implies

(xp−1 − 1)quπ = (−1)q(xp−1 − 1)qvqXθ
−1(uπ)

⇒ θ−1(uπ) = (−1)quπv
−q
X

Corollary 5.5.4.

θ−1(uπ) = (−1)quπv
−q
X

Proof. Immediate from the relation

θ−1(uπ) = θ−1(uπ)

We are now able to prove:

Proposition 5.5.5.

p[k, i]∗ · y = (

q∑
j=k+1

(ρ∗j)
−1 ◦ υ−1

π )((υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y)

Proof. We know that p[0, i]∗ · y = p[0, i]∗ · λ for some λ ∈ R. Using 5.5.4 we

114



CHAPTER 5. METACYCLIC GROUPS I: FURTHER PRELIMINARIES

obtain

(υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y

= p[0, i]∗ · (−1)q−k(xp−1 − 1)q−kxq−kuπy

= p[0, i]∗ · y(−1)q−k(xb(p−1) − 1)q−kxb(q−k)θ−1(uπ)

= p[0, i]∗ · λ(−1)3q−2k(x(p−1) − 1)q−kvq−kX xb(q−k)uπv
−q
X

= p[0, i]∗ · ((−1)q−k(xp−1 − 1)q−kxq−kuπ)(−1)2q−kx(b−1)(q−k)vq−kX v−qX λ

While a messy expression, the important thing to note is that even after

y acts, we still remain in the domain over which our sequence of inverse

projections are defined. So

(

q∑
j=k+1

(ρ∗j)
−1 ◦ υ−1

π )((υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y)

is a well-defined expression, and since we have Λ-homomorphisms

(

q∑
j=k+1

(ρ∗j)
−1 ◦ υ−1

π )((υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y)

= (

q∑
j=k+1

(ρ∗j)
−1 ◦ υ−1

π ◦ υπ ◦
k+1∑
j=q

ρ∗j)(p[k, i]
∗) · y

= p[k, i]∗ · y

5.6 Characteristic elements in P̃ k

We wish to calculate a natural dual basis description for ε̃k

ε̃k =

p−2∑
i=0

aip[k, i]
∗
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We start in R̃:

Proposition 5.6.1. ε̃0 = p[0, 0]∗.

Proof. Since R̃ ∼= P , we want to show that

p[0, 0]∗ · y = −p[0, 0]∗ · vX

From 5.4.5 we know

p[0, 0]∗ · y = p[0, 0]∗ − p[0, p− b]∗

and using 5.4.2 we calculate

−p[0, 0]∗ · vX = −p[0, 0]∗ · (
p−b∑
j=1

xj)

= −
p−b∑
j=1

(p[0, j]∗ − p[0, j − 1]∗)

= −(p[0, p− b]∗ − p[0, 0]∗)

= p[0, 0]∗ − p[0, p− b]∗

= p[0, 0]∗ · y

We also have

SpanZ{p[0, 0]∗ · xi}0≤i≤p−2 = SpanZ{p[0, i]∗ − p[0, i− 1]∗, p[0, 0]∗}1≤i≤p−2

= SpanZ{p[0, i]∗}0≤i≤p−2

Corollary 5.6.2. ε̃q = p[q, 0]∗.

For P̃ , first recall 5.3.7 and the relation π = πw where w ∈ R×0 .

Lemma 5.6.3. xquπ = (−1)quπw
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Proof. We calculate

(xp−1 − 1)quπw = πw

= π

= (xp−1 − 1)quπ

= (x− 1)quπ

= (−1)qxq(xp−1 − 1)quπ

Comparing terms we obtain the result.

Proposition 5.6.4. ε̃1 = p[1, 0]∗ · x

Proof. To show p[1, 0]∗ · xy = p[1, 0]∗ · x we project p[1, 0]∗ · xy into R̃, have

y act, and then project back up. We will abuse notation and omit explicitly

writing these projections. Using 5.6.3 we then have

p[1, 0]∗ · xy = p[0, 0]∗ · ((−1)q−1(xp−1 − 1)q−1xq−1uπ)xy

= p[0, 0]∗ · (−1)q−1(xp−1 − 1)q−1xquπy

= p[0, 0]∗ · (−1)2q−1(xp−1 − 1)q−1uπwy

= p[0, 0]∗ · y(−1)2q−1(xb(p−1) − 1)q−1θ−1(uπ)w

= p[0, 0]∗ · (−1)4q−1vX(xp−1 − 1)q−1vq−1
X uπv

−q
X w

= p[0, 0]∗ · (−1)2q−1(xp−1 − 1)q−1uπw

= p[0, 0]∗ · (−1)q−1(xp−1 − 1)q−1xquπ

= p[1, 0]∗ · x

We also have

SpanZ{p[1, 0]∗ · xi+1}0≤i≤p−2 = SpanZ{p[1, i]∗ − p[1, i− 1]∗,−p[1, p− 2]∗}1≤i≤p−2

= SpanZ{p[1, i]∗}0≤i≤p−2

Hence the result.
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Proposition 5.6.5. For 2 ≤ k ≤ q − 1

ε̃k = p[k, 0]∗ · xku−1
π

Proof. We want to show p[k, 0]∗ · xku−1
π y = p[k, 0]∗ · (−1)q+1−kxku−1

π vq+1−k
X .

Then

p[k, 0]∗ · xku−1
π y = p[0, 0]∗ · ((−1)q−k(xp−1 − 1)q−kxq−kuπ)xku−1

π y

= p[0, 0]∗ · (−1)q−k(xp−1 − 1)q−kxquπu
−1
π y

= p[0, 0]∗ · (−1)2q−k(xp−1 − 1)q−kuπu
−1
π wy

= p[0, 0]∗ · (−1)2q−k(xp−1 − 1)q−kwy

= p[0, 0]∗ · y(−1)2q−k(xb(p−1) − 1)q−kw

= p[0, 0]∗ · (−1)3q−2k+1vX(xp−1 − 1)q−kvq−kX w

= p[0, 0]∗ · (−1)2(q−k)+1(xp−1 − 1)q−kxquπu
−1
π vq−k+1

X

= p[k, 0]∗ · (−1)q−k+1xku−1
π vq−k+1

X

We also have

SpanZ{p[k, 0]∗ · xi+ku−1
π }0≤i≤p−2

= SpanZ{p[k, 0]∗ · xi+k}0≤i≤p−2

= SpanZ{p[k, k + i]∗ − p[k, k + i− 1]∗,−p[k, p− 2], p[k, 0]}0≤i≤p−k−2,

⊕ SpanZ{p[k, k + i− p]∗ − p[k, k + i− p− 1]∗}p−k−1≤i≤p−2

= SpanZ{p[k, i]∗}0≤i≤p−2

Given these dual characteristic elements, we can define how ρ∗k acts on

them

Proposition 5.6.6. Suppose ρk : P k → P k−1 is defined as above. Then
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ρ∗k : P̃ k−1 → P̃ k is defined by

ρ∗k(ε̃k−1) =

ε̃k · (−1)(xp−1 − 1) k = 1, 3 ≤ k ≤ q

ε̃k · (−1)(xp−1 − 1)uπ k = 2

Proof. We proceed case by case, beginning with k = 1 and ρ∗1 : R̃ → P̃ .

Then

ρ∗1(ε̃0) = ρ∗1(p[0, 0]∗)

= p[1, 0]∗ · (−1)(xp−1 − 1)x

= ε̃1 · (−1)(xp−1 − 1)

For k = 2 and ρ∗2 : P̃ → P̃ 2 we obtain

ρ∗2(ε̃1) = ρ∗2(p[1, 0]∗ · x)

= p[2, 0]∗ · (−1)(xp−1 − 1)x2

= p[2, 0]∗ · (−1)(xp−1 − 1)x2u−1
π uπ

= ε̃2 · (−1)(xp−1 − 1)uπ

For 3 ≤ k ≤ q − 1 and ρ∗k : P̃ k−1 → P̃ k we have

ρ∗k(ε̃k−1) = ρ∗k(p[k − 1, 0]∗ · xku−1
π )

= p[k, 0]∗ · (−1)(xp−1 − 1)xk+1u−1
π

= ε̃k · (−1)(xp−1 − 1)

Finally for k = q and ρ∗q : P̃ q−1 → P̃ q we have

ρ∗q(ε̃q−1) = ρ∗q(p[q − 1, 0]∗ · xq−1u−1
π )

= p[q, 0]∗ · (−1)(xp−1 − 1)xquπu
−1
π

= p[q, 0]∗ · (−1)(xp−1 − 1)uπu
−1
π

= p[q, 0]∗ · (−1)(xp−1 − 1)
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= ε̃q · (−1)(xp−1 − 1)

Finally we can also now write 5.5.2 in terms of dual characteristic ele-

ments.

Corollary 5.6.7. υ∗π : P̃ q → R̃ is defined by

υ∗π(ε̃q) = ε̃0

5.7 Duality Isomorphisms

We are now equipped to study the duals of duality isomorphisms. We previ-

ously defined

υk : P̃ k → Pk

for 0 ≤ k ≤ q − 1 by

υk(ε̃k) =


ε1 k = 0

ε0 k = 1

εq+1−k 2 ≤ k ≤ q − 1

Lemma 5.7.1.

υk(p[k, i]
∗) =



ε1 ·
i∑

j=0

xj k = 0

ε0 ·
i∑

j=0

xj−1 k = 1

εq+1−k ·
i∑

j=0

xj−kuπ 2 ≤ k ≤ q − 1

Proof. We have that

p[k, 0]∗ ·
i∑

j=0

xi =
i∑

j=0

(p[k, i]∗ − p[k, i− 1]∗) + p[k, 0]∗
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= p[k, i]∗

So that

υk(p[k, i]
∗) = υk(p[k, 0]∗ ·

i∑
j=0

xj)

= υk(p[k, 0]∗) ·
i∑

j=0

xj

Using 5.6.1, 5.6.4, 5.6.5 it follows that

υk(p[k, 0]∗) =


ε1 k = 0

ε0 · xp−1 k = 1

εq+1−k · x−kuπ 2 ≤ k ≤ q − 1

Hence the result.

Again, the simplest case to consider is k = 0.

Proposition 5.7.2. υ∗0 : P̃ → R is defined by

υ∗0(ε̃1) = −ε0

Proof. υ∗0 is defined on p[1, 0]∗ by

υ∗0(p[1, 0]∗)(

p−2∑
j=0

ajp[0, j]
∗) = p[1, 0]∗(υ0(

p−2∑
j=0

ajp[0, j]
∗))

= p[1, 0]∗(

p−2∑
j=0

aj(p[1, 0] ·
j∑
l=0

xl))

= p[1, 0]∗(

p−2∑
j=0

ajp[1, 0] +

p−2∑
j=1

ajp[1, 1] + . . .)

121



CHAPTER 5. METACYCLIC GROUPS I: FURTHER PRELIMINARIES

=

p−2∑
j=0

aj

which implies

υ∗0(p[1, 0]∗) =

p−2∑
j=0

p[0, j]

Then

υ∗0(ε̃1) = υ∗0(p[1, 0]∗ · x)

=

p−2∑
j=0

p[0, j] · x

=

p−2∑
j=1

p[0, j] + p[0, p− 1]

= −p[0, 0]

= −ε0

We next turn to the case k = 1:

Proposition 5.7.3. υ∗1 : P̃ → R is defined by

υ∗1(ε̃0) = −ε1

Proof. υ∗1 is defined on p[0, 0]∗ by

υ∗1(p[0, 0]∗)(

p−2∑
j=0

ajp[1, 0]∗) = p[0, 0]∗(υ1(

p−2∑
j=0

ajp[1, 0]∗))

= p[0, 0]∗(

p−2∑
j=0

aj(p[0, 0] ·
j∑
l=0

xl−1))

= p[0, 0]∗(a0p[0, 0] · xp−1 + a1p[0, 0] · (xp−1 + 1) + . . .)

= p[0, 0]∗(−
p−2∑
j=0

j∑
l=0

alp[0, j])
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which implies that

υ∗1(p[0, 0]∗) = −p[1, 0]

Hence the result.

Finally we have:

Proposition 5.7.4. Suppose 2 ≤ k ≤ q − 1. Then υ∗k : P̃ q+1−k → P k

is defined by

υ∗k(ε̃q+1−k) = εk · (−1)q+1w−1

Proof. For notation ease define

µ = (−1)qwu−1
π

We note that by rearranging 5.x we obtain

µuπ = xq

Then υ∗k is defined on p[q + 1− k, 0]∗ · xq+1−kµ by

υ∗k(p[q + 1− k, 0]∗ · xq+1−kµ)(

p−2∑
j=0

ajp[k, j]
∗)

= (p[q + 1− k, 0]∗ · xq+1−kµ)(υk(

p−2∑
j=0

ajp[k, j]
∗))

= (p[q + 1− k, 0]∗ · xq+1−kµ)(

p−2∑
j=0

ajp[q + 1− k, 0] ·
j∑
l=0

xl−kuπ)

= p[q + 1− k, 0]∗(

p−2∑
j=0

ajp[q + 1− k, 0] ·
j∑
l=0

xl−kuπµx
p−q−1+k)

= p[q + 1− k, 0]∗(

p−2∑
j=0

ajp[q + 1− k, 0] ·
j∑
l=0

xl−q−1xq)
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= p[q + 1− k, 0]∗(

p−2∑
j=0

ajp[q + 1− k, 0] ·
j∑
l=0

xl−1)

= p[q + 1− k, 0]∗(−
p−2∑
j=0

j∑
l=0

alp[q + 1− k, j])

which implies

υ∗k(p[q + 1− k, 0]∗ · xq+1−kµ) = −p[k, 0]

Hence the result.

Given this result, we would like to have an explicit description for w, and

we introduce the following property of G a metacyclic group:

G(π): π = (−1)qπ

We will shortly show that G(π) is satisfied for a large range of groups. We

also have the following:

Theorem 5.7.5. Suppose G satisfies G(π). Then υ∗k : P̃ k → Pk is given by

υ∗k =


−υ1 k = 0

−υ0 k = 1

−υq+1−k 2 ≤ k ≤ q − 1

Proof. For k = 0, 1, the result follows immediately from 5.7.2 and 5.7.3

respectively. For 2 ≤ k ≤ q − 1, since

G satisfies G(π)⇒ w = (−1)q

5.7.4 becomes

υ∗k(ε̃q+1−k) = εk · (−1)2q+1 = −εk

and the result follows.
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Define υq : P̃ q → P by

υq(ε̃q) = ε1

Then it is immediately obvious that:

Lemma 5.7.6. υq can be decomposed as

υq = υ0 ◦ υ∗π

This allows us to rewrite 5.5.1 as:

Corollary 5.7.7.

ρ∗k =


−(υ−1

k ◦ ρk ◦ υk−1) k = 1

−(υ−1
k ◦ ρq ◦ υπ ◦ υk−1) k = 2

−(υ−1
k ◦ ρq+2−k ◦ υk−1) 3 ≤ k ≤ q

5.8 Endomorphisms of P k

The final type of mappings for us to consider are Λ-endomorphisms of P k.

Proposition 5.8.1. Suppose φk : P k → P k is a Λ-endomorphism. Then

φk(εk) = εk · α α ∈ R0

Proof. The most general φk is given by

φk(εk) = εk · α α ∈ R

But then, recalling that ε0 · y = ε0, and noting that all x terms commute, φk

must also satisfy

εk · α = φk(εk)

= φk(ε0 · (xp−1 − 1)k)
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= φk(ε0 · y(xp−1 − 1)k)

= φk(ε0 · (xa(p−1)−1)ky)

= φk(ε0 · (xp−1 − 1)k)(
a−1∑
j=1

xj(p−1))ky

= ε0 · (xp−1 − 1)kα(
a−1∑
j=1

xj(p−1))ky

= ε0 · (xa(p−1) − 1)kαy

= ε0 · y(xp−1 − 1)kθ−1(α)

= εk · θ−1(α)

Hence the result.

Proposition 5.8.2: φ∗k : P̃ k → P̃ k is defined by

φ∗k(ε̃k) = ε̃k · α

Proof. By definition we have

φ∗k(p[k, i]
∗)(p[k, j]) = p[k, i]∗(φk(p[k, j]))

= p[k, i]∗(p[k, j] · α)

= (α · p[k, i]∗)(p[k, j])

= (p[k, i]∗ · α)(p[k, i])

which implies

φ∗k(p[k, i]
∗) = p[k, i]∗ · α

Hence the result.

Note that we can define an endomorphism on the dual modules in the

exact same way
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Proposition 5.8.3: Suppose φ̃k : P̃ k → P̃ k is a Λ-homomorphism. Then

φ̃k(ε̃k) = ε̃k · α α ∈ R0

Proof. Analogous to 5.8.2

5.9 R0 for Metacyclic Groups of Even Order

In section 5.2, we saw the fixed field K0 classified rational homomorphisms.

Similarly, the presence of R0 in the result of 5.8.1 and the condition G(π)

show the important role of R0 in the integral case, and we devote time to

the study of this fixed ring. Define symmetric and skew-symmetric subsets

of R0 by

R+
0 = {α ∈ R0;α = α}

R−0 = {α ∈ R0;α = −α}

Then G(π) is equivalent to stating that π ∈ R+
0 for q even and π ∈ R−0 for q

odd. For q even, it turns out this is simple to prove. Suppose Λ = Z[G(p, 2r)]

for some r ∈ Z.

Proposition 5.9.1. Let G = G(p, 2r). Then R0 = R+
0

Proof. Let α ∈ R0. Then the most general form of α can be written

α =

p−2∑
i=0

ai

2r−1∑
j=0

θj(ζ i)

(Note that in practice, many of the ai’s would be set to zero). Then since θ

has order 2r, θr has order 2, hence θr(ζk) = ζ−k. So we can write

α =

p−1∑
i=0

ai

r−1∑
j=0

(θj(ζ i) + θrθj(ζ i))
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=

p−1∑
i=0

ai

r−1∑
j=0

(θj(ζ i) + θj(ζ i)−1)

Then

α =

p−1∑
i=0

ai

r−1∑
j=0

(θj(ζ i) + θj(ζ i)−1)

=

p−1∑
i=0

ai

r−1∑
j=0

(θj(ζ i)−1 + θj(ζ i))

= α

It then easily follows that

Corollary 5.9.3. Suppose G = G(p, 2r). Then G satisfies G(π).

Corollary 5.9.2. If G = G(p, 2r), then R−0 = 0.

We compare this with our rational calculations, where K0 is totally sym-

metric.

Example 5.9.4 (G(5, 2)). Writing γ1 = ζ + ζ4, γ2 = ζ2 + ζ3; G(5, 2) = D10

has group presentation and fixed ring

G(5, 2) = 〈x, y; x5 = y2 = 1, yx = x4y〉

R0 = {aγ1 + bγ2; a, b ∈ Z}

It can be calculated

γ1γ2 = −1

(2γ1 + 3γ2)2 = 5γ2
2

so that

π = 2γ1 + 3γ2

128



CHAPTER 5. METACYCLIC GROUPS I: FURTHER PRELIMINARIES

Furthermore

vπ = −ζ − ζ2 + ζ4

⇒uπ = 1 + 2x+ x2

5.10 R0 of Quadratic Type for Metacyclic Groups

of Odd Order

Unfortunately, when q is odd, things are not so simple. The presence of

a genuine automorphism of order 2 means that both R+
0 , R

−
0 are non-zero.

Furthermore, from the proof of 5.2.6 we see that there exist elements in

R0 which cannot be split into symmetric and skew-symmetric parts. This

complexity makes trying to ascertain symmetry conditions on π highly non-

trivial. However we can achieve a completely general result for one subclass

of G(p, 2r + 1).

Suppose G = G(p, 2r + 1) where 2r + 1 = p−1
2

. For these values of q, R0

has dimension two and writing R0 = Z[α]/m(α) where m(α) is the minimal

polynomial of R0, m(α) is quadratic and we call R0 of quadratic type. For

some choice of γ ∈ R0, γi 6= 1, we can write

R0 = Z[γ] = {a+ bγ; a, b ∈ Z}

The existence of the involution on R0 means that γ 6= γ, and it follows that

1 + γ + γ = 0. Therefore

R0 = {aγ + bγ; a, b,∈ Z}

We will sometimes find it useful to switch between these two definitions.
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Example 5.10.1 (G(7, 3)). G(7, 3) has group presentation

G(7, 3) = 〈x, y; x7 = y3 = 1, yx = x2y〉

Then we can take γ = ζ + ζ2 + ζ4, so that γ = ζ3 + ζ5 + ζ6, and we get the

description

R0 = {a(ζ + ζ2 + ζ4) + b(ζ3 + ζ5 + ζ6); a, b ∈ Z}

The structure of these cyclotomic quadratic fields was considered by Hasse

in [11]. Recall the definition of the Legendre symbol as

(
a

p
) =


1 a is a square modulo p, a 6= 0 modulo p

−1 a is not a square modulo p, a 6= 0 modulo p

0 a = 0 modulo p

Then Hasse proves (page 529 in [11]):

Proposition 5.10.2. Let p be a prime number, and let p̂ = (−1)
p−1
2 p.

Then √
p̂ =

∑
a6≡0modp

(
a

p
)ζap

Lemma 5.10.3. π =
√
p̂

Proof. In the case q = p−1
2

, π is the unique element satisfying

π2 = pu u ∈ R×0

Then

(
√
p̂)2 = p̂ = (−1)

p−1
2 p

Since π is unique, we must then have√
p̂ = π
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We can further connect Hasse’s result to our formulation of R0 via the

following

Proposition 5.10.4. Let p be a prime, q = 2r + 1 = p−1
2

. Then z ∈ Fxp is

a square if and only if there exists an automorphism θ : Fxp → Fxp such that

ord(θ) = q and z = θk(1) for some 1 ≤ k ≤ q − 1.

Proof. Suppose z is a square. Let y = a2 be any square (for instance, for

p ≥ 3 you can always pick y = 4). Then define a θ by θk(i) = yki for i ∈ Fxp .
Then it is obvious that any power of y will also be a square, and also

yq = (a2)q = ap−1 = 1 (p)

by Fermat’s Little Theorem. Therefore ord(θ) = q, and θ applied successively

to 1 simply cycles through all p−1
2

squares in Fp before returning back to 1.

Therefore z = θk(1) for some k.

For the converse suppose we are given an automorphism θ : Fxp → Fxp such

that ord(θ) = q. Let m = θ(1). Then θq(1) = mq = 1. Since q odd means

q + 1 is even this means we can write

θ(1) = m = mq+1 = (m
q+1
2 )2

Clearly θ2(1) = m2 is a square, as is θ2j(1) for 1 ≤ j ≤ q−1
2

. But then we can

write

θ2j+1(1) = m2j+1 = m2j+1+q = (mj+ q+1
2 )2

and hence the result.

Proposition 5.10.5. π = γ − γ

Proof. We can express γ by

γ =

q−1∑
k=0

θk(ζp)
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Using 5.10.4, this becomes

γ =
∑

a is a square modp

ζap

Then rewriting 5.10.2 using this and 5.10.3 gives

π =
√
p̂ = γ − γ

This complete description of π gives us the following

Proposition 5.10.6. Suppose G = G(p, 2r + 1) where 2r + 1 = p−1
2

. Then

R+
0 = {a; a ∈ Z}

R−0 = {aπ; a ∈ Z}

Proof. Any r ∈ R0 can be expressed as

r = aγ + bγ a, b ∈ Z

Then

r = aγ + bγ

Solving r = r implies b = a, so that

r = a(γ + γ) = −a

where we can absorb the sign into the constant. Solving r = −r implies

b = −a, so that

r = a(γ − γ) = aπ

We see that in this case, the element π generates R−0 . We also note the

formal corollary

Corollary 5.10.7. Suppose G = G(p, 2r + 1) where 2r + 1 = p−1
2

. Then G

satisfies G(π).
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Finally, we note that in this case, the unit group R×0 is trivial, with R×0 =

{±1}. As we shall see, this simplicity does not survive as we increase the

order of R0.

5.11 R0 of Quartic Type for Metacyclic Groups

of Odd Order

Suppose Λ = Z[G(p, 2r + 1)] where 2r + 1 = p−1
4

. For these values of q, R0

has dimension four with quartic minimal polynomial so we call it of quartic

type. We can express R0 in four variables, say γ1, γ2, γ3, γ4 ∈ R0, such that

R0 = {aγ1 + bγ2 + cγ3 + dγ4; a, b, c, d ∈ Z}

Once again, since q is odd, there exists a genuine involution on γi (γi 6= 1).

We can then write R0 as

R0 = {aγ1 + bγ1 + cγ2 + dγ2; a, b, c, d ∈ Z}

As a first approximation to R+
0 , R−0 we have the following standard de-

scriptions

R−0 = {a(γ1 − γ1) + b(γ2 − γ2); a, b ∈ Z}

R+
0 = {a(γ1 + γ1) + b(γ2 + γ2); a, b ∈ Z}

From our work in the case 2r+1 = p−1
2

, we might expect a further description

of R−0 involving a factor of the element π. Towards this end we consider the

lowest dimensional case. We note however that even here the calculations

are unfeasibly onerous to do by hand. To deal with this, computational

methods can be employed and a series of Python scripts written to automate

the calculation of:

• a for a given p, q;

133



CHAPTER 5. METACYCLIC GROUPS I: FURTHER PRELIMINARIES

• the basis elements of R0;

• products in R0 (this takes as input the coefficients of γi, γi and outputs

the coefficients of these terms in the final product).

These building blocks then facilitate the calculation of units and π for a

greater range of groups. However, the time taken to perform the most gen-

eral search algorithm for units increases exponentially in p−1
q

, and so this

computational approach is infeasible in general. Furthermore, calculation

time also increases with p, albeit in a more manageable way.

Example 5.11.1(G(13, 3)). G(13, 3) has group presentation

G(13, 3) = 〈x, y; x13 = y3 = 1, yx = x3y〉

and we pick representatives for R0 as

γ1 = ζ + ζ3 + ζ9

γ2 = ζ2 + ζ5 + ζ6

Consider the element

(γ1 + γ1) + 2(γ2 + γ2)

Then it can be calculated that

((γ1 + γ1) + 2(γ2 + γ2))(2(γ1 + γ1) + (γ2 + γ2)) = −1

Therefore u = (γ1 + γ1) + 2(γ2 + γ2) is a unit. Suppose u1, u2, . . . , uk are

units. Then we define

< u1, u2, . . . , uk >= {±un1
1 u

n2
2 . . . unkk ;nk ∈ Z}

a generator representation for a unit group. In G(13, 3) we obtain

< u, u−1 > = {±1,±u,±u−1,±u2,±u−2, . . .}

< u, u−1 > ⊂ R×0
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We note that < u, u−1 >, and hence R×0 , is infinite, providing a potentially

infinite number of conditions to check against to find π, namely

π4 = 13v v ∈ R×0

As it happens, one can calculate

(γ1 − γ1)4 = 13u−2

(γ2 − γ2)4 = 13u2

providing two options for the unique π. But then it is also easily checked that

(γ2 − γ2)u = (γ1 − γ1)

so that uniqueness is preserved. Since u, u−1 are clearly symmetric, either

choice of representative gives that π is skew-symmetric. Making a choice of

representative:

π = (γ2 − γ2)

then R−0 has description

R−0 = {π(a+ bu); a, b ∈ Z}

In this example, as in those R0 considered in section 5.10, all elements of R−0

contain a factor of π. However this is not the case in general.

Example 5.11.2 (G(37, 9)). G(37, 9) has group presentation

G(37, 9) = 〈x, y; x37 = y9 = 1, yx = x7y〉

and we pick representatives for R0 as

γ1 = ζ + ζ7 + ζ9 + ζ10 + ζ12 + ζ16 + ζ26 + ζ33 + ζ34

γ2 = ζ2 + ζ14 + ζ15 + ζ18 + ζ20 + ζ24 + ζ29 + ζ31 + ζ32
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Then we can find a unit u with inverse u−1 as

u = 7(γ1 + γ1) + 5(γ2 + γ2)

u−1 = −5(γ1 + γ1)− 7(γ2 + γ2)

One can calculate

((γ1 − γ1) + (γ2 − γ2))4 = 37u2 ⇒ π = (γ1 − γ1) + (γ2 − γ2))

Furthermore

πu−1 = ((γ1 − γ1)− (γ2 − γ2))

Define a subset Rπ
0 ⊂ R0 by

Rπ
0 = {π(a+ bu−1); a, b ∈ Z}

We see that Rπ
0 � R−0 since

a((γ1 − γ1) + (γ2 − γ2)) + b((γ1 − γ1)− (γ2 − γ2))

= (a+ b)(γ1 − γ1) + (a− b)(γ2 − γ2)

= 2c(γ1 + γ1) + d(γ2 − γ2)

For G(37, 9) we have obtained our first genuinely distinct structure in the

integral case. We note however, that extending scalars to Q gives

R−0 ⊗Q ∼= Rπ
0 ⊗Q

Furthermore, extending to R, we see that π ⊗ R must be a skew-symmetric

unit, in other words i, again matching up with our work in Section 5.2.

Similar calculations can be performed for a selection of p, q. In each case

we make the choice γ1 =
q−1∑
k=0

θk(ζ), which then fixes γ2. Define u1, u2, v1, v2, π1, π2

by
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• u = u1(γ1 + γ1) + u2(γ2 + γ2) is a unit with inverse

u−1 = v1(γ1 + γ1) + v2(γ2 + γ2);

• π = π1(γ1 − γ1) + π2(γ2 − γ2) satisfies π4 = pu2.

We obtain the following in tabulated form

p q u1 u2 v1 v2 π1 π2

13 3 1 2 -2 -1 0 1

29 7 2 3 -3 -2 1 0

37 9 7 5 -5 -7 1 1

53 13 4 3 -3 -4 1 0

61 15 22 17 -17 -22 1 2

101 25 9 11 -11 -9 1 1

109 27 118 143 -143 -118 3 4

Corollary 5.11.3. G(π) is satsified for the groups G(13, 3), G(29, 7), G(37, 9),

G(53, 13), G(61, 15), G(101, 25), G(109, 27).
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Chapter 6

Metacyclic Groups II

6.1 Generator Representations for

HomZ[G(p,q)](P̃
k, P k)

In the previous chapter we constructed duality isomorphisms, projection ho-

momorphisms, and endomorphisms for each P k defined on the generators of

each. We now use these constituent parts to construct general homomor-

phisms Fk : P̃ k → P k. Broadly, the problem splits into five distinct classes

dependent on k

1. k = 0

2. k = 1

3. 1 < k <
q + 1

2

4.
q + 1

2
< k < q − 1

5. k =
q + 1

2

We consider each in turn.
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6.1.1 k=0

We want to classify F0 ∈ HomΛ(R̃, R). We could construct such an F0 as

R̃
υ0−→ P

ρ1−→ R
φ0−→ R

This construction is not unique, but we have the following:

Proposition 6.1.1.1. F0 is invariant under choice of construction.

Proof. We want to classify all the different paths one can take from R̃ into

R. Then we have two general cases, which will look like

R̃→ P → R

R̃→ P̃ → R

albeit with an arbitrary number of endomorphisms interspersed along these

paths. But then since φk : P k → P k, φ̃∗k : P̃ k → P̃ k are independent of

k, with each contributing an element of R0, we can collect them together

into one single endomorphism at any point along the path. Up to sign and

elements of R0, which can also be absorbed into any endomorphism, ρ1 is the

only Λ-homomorphism from P into R, and ρ∗1 is the only Λ-homomorphism

from R̃ into P̃ . But then, from 5.7.7

ρ∗1 = −υ−1
1 ◦ ρ1 ◦ υ0

So they both contribute the same term to any F0. Finally consider what

happens if we choose to include more than one duality isomorphism, such as

R̃→ P → P → R̃→ P̃ → R

While these isomorphisms do not contribute any terms to F0, upon taking

duals, each contributes a minus sign, and so it is important to consider

them. However any path from R̃ into R must contain an odd number of

these isomorphisms, and mod 2 all paths are equivalent.
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Proposition 6.1.1.2. Suppose F0 ∈ HomΛ(R̃, R). Then

F0(ε̃0) = ε0 · (xp−1 − 1)α α ∈ R0

Proof. Using 6.1.1.1 , it is enough to consider the construction

R̃
υ0−→ P

ρ1−→ R
φ0−→ R

Then, for α ∈ R0 we get

(φ0 ◦ ρ1 ◦ υ0)(ε̃0) = (φ0 ◦ ρ1)(ε1)

= φ0(ε0 · (xp−1 − 1))

= ε0 · (xp−1 − 1)α

Proposition 6.1.1.3. Suppose F+
0 ∈ Hom+

Λ(R̃, R). Then

F+
0 (ε̃0) = ε0 · (xp−1 − 1)α+ α+ ∈ R+

0

Proof. From 5.7.6 and 5.7.7 we have that

υ∗0 ◦ ρ∗1 = (−υ1) ◦ (−υ−1
1 ◦ ρ1 ◦ υ0)

= ρ1 ◦ υ0

Then F ∗0 : R̃→ R is defined by

F ∗0 (ε̃0) = (φ0 ◦ ρ1 ◦ υ0)∗(ε̃0)

= (υ∗0 ◦ ρ∗1 ◦ φ∗0)(ε̃0)

= (ρ1 ◦ υ0 ◦ φ∗0)(ε̃0)

= ε0 · (xp−1 − 1)α

Solving F ∗0 = F0 then reduces to solving α = α. Hence the result.
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6.1.2 k=1

Proposition 6.1.2.1. Suppose G satisfies G(π) and F1 ∈ HomΛ(P̃ , P ).

Then

F1(ε̃1) = ε1 · (xp−1 − 1)q−1uπα α ∈ R0

Proof. We again construct F1 by composing projections, endomorphisms and

duality isomorphisms, and writing

q∑
j=2

ρj = ρ2 ◦ ρ3 ◦ . . . ρq

we could construct such an F1 by

P̃
υ1−→ R

υπ−→ P q

q∑
j=2

ρj

−−−→ P
φ1−→ P

Considering all possible paths from P̃ into P , any path will contain

• An odd number of duality isomorphisms;

• A total of q − 1 projections and dual projections, containing one of

either ρ∗2 or ρq ◦ υπ;

• An arbitrary number of endomorphisms which we can combine into one

endomorphism.

and again F1 is invariant of choice of construction. We therefore obtain

F1(ε̃1) = (φ1 ◦
q∑
j=2

ρj ◦ υπ ◦ υ1)(ε̃1)

= (φ1 ◦
q∑
j=2

ρj ◦ υπ)(ε0)

= (φ1 ◦
q∑
j=2

ρj)(εq)

= φ1(ε1 · (xp−1 − 1)q−1uπ)
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= ε1 · (xp−1 − 1)q−1uπα

for α ∈ R0.

Proposition 6.1.2.2: F ∗1 (ε̃1) = ε1 · (−1)q(xp−1 − 1)q−1uπα

Proof. We begin by noting that

(

q∑
j=2

ρj)
∗ =

2∑
j=q

(ρj)∗

= (−1)q−1

3∑
j=q

(υ−1
j ◦ ρq+2−j ◦ υj−1) ◦ (υ−1

2 ◦ ρq ◦ υπ ◦ υ1)

= (−1)q−1υ−1
q ◦

q∑
j=2

ρj ◦ υπ ◦ υ1

So that

F ∗1 = υ∗1 ◦ υ∗π ◦ (

q∑
j=2

ρj)
∗ ◦ φ∗1

= (−1)q(υ0 ◦ υ∗π ◦ υ−1
q ◦

q∑
j=2

ρj ◦ υπ ◦ υ1 ◦ φ∗1)

= (−1)q(υq ◦ υ−1
q ◦

q∑
j=2

ρj ◦ υπ ◦ υ1 ◦ φ∗1)

= (−1)q(

q∑
j=2

ρj ◦ υπ ◦ υ1 ◦ φ∗1)

Then by inspection

F ∗1 (ε̃1) = ε1 · (−1)q(xp−1 − 1)q−1uπα

Corollary 6.1.2.3: Suppose G satsfies G(π) and F+
1 ∈ Hom+

Λ(P̃ , P ). Then
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F+
1 (ε̃1) =

ε1 · (xp−1 − 1)q−1uπα+ q = 2r

ε1 · (xp−1 − 1)q−1uπα− q = 2r + 1

where α+ ∈ R+
0 , α− ∈ R+

0 .

6.1.3 1 < k < q+1
2

Proposition 6.1.3.1: Suppose G satsfies G(π), 1 < k < q+1
2

and

Fk ∈ HomΛ(P̃ k, P k). Then

Fk(ε̃k) = εk · (xp−1 − 1)q+1−2kα α ∈ R0

Proof. We take the construction

P̃ k υk−→ P q+1−k

q+1−k∑
j=k+1

ρj

−−−−−→ P k φk−→ P k

By the same argument used in 6.1.1.1, Fk is invariant under the construction

chosen. Then for α ∈ R0

Fk(ε̃k) = (φk ◦
q+1−k∑
j=k+1

ρj ◦ υk)(ε̃k)

= ((φk ◦
q+1−k∑
j=k+1

ρj)(εq+1−k)

= φk(εk · (xp−1 − 1)q+1−2k)

= εk · (xp−1 − 1)q+1−2k)α

Proposition 6.1.3.2. F ∗k (ε̃k) = εk · (−1)q(xp−1 − 1)q+1−2kα

Proof. We have that

(

q+1−k∑
j=k+1

ρj)
∗ =

j=k+1∑
q+1−k

ρ∗j
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= (−1)q+1−2k(

j=k+1∑
q+1−k

υ−1
j ◦ ρq+2−j ◦ υj−1)

= (−1)q+1(υ−1
q+1−k ◦

q+1−k∑
j=k+1

ρj ◦ υk)

Then

F ∗k = υ∗k ◦ (

q+1−k∑
j=k+1

ρj)
∗ ◦ φ∗k

= (−1)q+2(υq+1−k ◦ υ−1
q+1−k ◦

q+1−k∑
j=k+1

ρj ◦ υk ◦ φ∗k)

= (−1)q(

q+1−k∑
j=k+1

ρj ◦ υk ◦ φ∗k)

which implies

F ∗k (ε̃k) = εk · (−1)q(xp−1 − 1)q+1−2kα

Corollary 6.1.3.3. Suppose G satisfies G(π), 1 < k < q+1
2

and

F+
k ∈ Hom+

Λ(P̃ k, P k). Then

F+
k (ε̃k) =

εk · (xp−1 − 1)q+1−2kα+ q = 2r

εk · (xp−1 − 1)q+1−2kα− q = 2r + 1

where α+ ∈ R+
0 , α− ∈ R−0 .

6.1.4 q+1
2 < k < q − 1

Proposition 6.1.4.1. Suppose G satsfies G(π), q+1
2

< k < q − 1 and

Fk ∈ HomΛ(P̃ k, P k). Then

Fk(ε̃k) = εk · (xp−1 − 1)2(q−k)+1uπα α ∈ R0
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Proof. We take the construction

P̃ k υk−→ P q+1−k

q+1−k∑
j=1

ρj

−−−−−→ R
υπ−→ P q

q∑
j=k+1

ρj

−−−−−→ P k φk−→ P k

By the usual argument, Fk is independent of the construction chosen. Then

noting that

q+1−k∑
j=1

ρj(εq+1−k) = ε0 · (xp−1 − 1)q+1−k

q∑
j=k+1

ρj(εq) = εk · (xp−1 − 1)q−kuπ

We obtain

Fk(ε̃k) = εk · (xp−1 − 1)2(q−k)+1uπα

for α ∈ R0.

Proposition 6.1.4.2. F ∗k (ε̃k) = εk · (xp−1 − 1)2(q−k)+1uπα

Proof. By the usual argument, we have that

(

q∑
j=k+1

ρj)
∗ = (−1)q−k(υ−1

q ◦
q+1−k∑
j=2

ρj ◦ υk)

We can also calculate

(

q+1−k∑
j=1

ρj)
∗

= (−1)q+1−k(υ−1
q+1−k ◦

q−1∑
k+1

ρj ◦ υ2) ◦ (υ−1
2 ◦ ρq ◦ υπυ1) ◦ (υ−1

1 ◦ ρ1 ◦ υ0)

= (−1)q+1−k(υ−1
q+1−k ◦

q∑
k+1

ρj ◦ υπ ◦ ρ1 ◦ υ0)
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Then

υ∗k ◦ (

q+1−k∑
j=1

ρj)
∗ ◦ υ∗π = (−1)q+2−k(υq+1−k ◦ υ−1

q+1−k ◦
q∑

k+1

ρj ◦ υπ ◦ ρ1 ◦ υ0 ◦ υ∗π)

= (−1)q−k(

q∑
k+1

ρj ◦ υπ ◦ ρ1 ◦ υq)

So that

F ∗k = υ∗k ◦ (

q+1−k∑
j=1

ρj)
∗ ◦ υ∗π ◦ (

q∑
j=k+1

ρj)
∗ ◦ φ∗k

= (−1)2(q−k)(

q∑
k+1

ρj ◦ υπ ◦ ρ1 ◦ υq ◦ υ−1
q ◦

q+1−k∑
j=2

ρj ◦ υk ◦ φ∗k)

=

q∑
k+1

ρj ◦ υπ ◦
q+1−k∑
j=1

ρj ◦ υk ◦ φ∗k

which implies

F ∗k (ε̃k) = εk · (xp−1 − 1)2(q−k)+1uπα

Corollary 6.1.4.3. Suppose G satisfies G(π), q+1
2
< k < q − 1, and

F+
k ∈ Hom+

Λ(P̃ k, P k). Then

F+
k (ε̃k) = εk · (xp−1 − 1)2(q−k)+1uπα+ α+ ∈ R+

0

6.1.5 k = q+1
2

Proposition 6.1.5.1. Suppose F q+1
2
∈ HomΛ(P̃

q+1
2 , P

q+1
2 ). Then

F q+1
2

(ε̃ q+1
2

) = ε q+1
2
· α α ∈ R0

Proof. Since P̃
q+1
2 ∼= P

q+1
2 there is only one possible path to take, namely

P̃
q+1
2

υ q+1
2−−−→ P

q+1
2

φ q+1
2−−−→ P

q+1
2
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Then, for α ∈ R0

F q+1
2

(ε̃ q+1
2

) = φ q+1
2
◦ υ q+1

2
(ε̃)

= φ q+1
2

(ε q+1
2

)

= ε q+1
2
· α

Proposition 6.1.5.2. Suppose G satisfies G(π), and

F+
q+1
2

∈ Hom+
Λ(P̃

q+1
2 , P

q+1
2 ). Then

F q+1
2

(ε̃ q+1
2

) = ε q+1
2
· α−

where α ∈ R−0 .

Proof. F ∗q+1
2

: P̃
q+1
2 → P

q+1
2 is defined by

F ∗q+1
2

= υ∗q+1
2

◦ φ q+1
2

= −υ q+1
2
◦ φ q+1

2

which implies that

F ∗q+1
2

(ε̃ q+1
2

) = ε q+1
2
· −α

So solving F ∗q+1
2

= F q+1
2

reduces to α = −α. Hence the result.

Collating these results together, and using 5.9.3, we obtain:

Theorem 6.1.5.3. Suppose G = (p, 2r) and F+
k ∈ Hom+

Λ(P̃ k, P k). Then

Fk(ε̃k) =



εk · (xp−1 − 1)α+ k = 0

εk · (xp−1 − 1)q+1−2kuπα+ k = 1

εk · (xp−1 − 1)q+1−2kα+ 1 < k ≤ q
2

εk · (xp−1 − 1)2(q−k)+1uπα+
q+2

2
≤ k < q

where α+ ∈ R+
0 , α− ∈ R−0 .
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Theorem 6.1.5.4. Suppose G = G(p, 2r + 1), G satisfies G(π), and that

F+
k ∈ Hom+

Λ(P̃ k, P k). Then

F+
k (ε̃k) =



εk · (xp−1 − 1)α+ k = 0

εk · (xp−1 − 1)q+1−2kuπα− k = 1

εk · (xp−1 − 1)q+1−2kα− 1 < k < q+1
2

εk · α− k = q+1
2

εk · (xp−1 − 1)2(q−k)+1uπα+
q+1

2
< k < q

where α+ ∈ R+
0 , α− ∈ R−0 .

6.2 Matrix Representations for

HomZ[G(p,q)](P̃
k, P k)

In section 3.4 we discussed how given a matrix representation for the middle

boundary map of a highly connected chain complex X4k+1, we can compute

its Smith Normal Form to compute the only homology group of note, namely

H2j(X
4k+1;Z). Seeking matrix representations for Fk is therefore a worth-

while cause. We have two approaches. The first is a brute force approach

which uses the tools set out in Chapter 4.

Suppose Fk ∈ HomΛ(P̃ k, P k), and ρ : G → GLZ(P k) an integral repre-

sentation. Then Fk can be expressed as Fk : (Zp−1, ρ∗) → (Zp−1, ρ) by first

taking a general Fk = (aij)1≤i,j≤p−1, aij ∈ Z and then solving

Fk ◦ ρ∗(x) = ρ(x) ◦ Fk
Fk ◦ ρ∗(y) = ρ(y) ◦ Fk

F t
k = F k

This method has the benefit of providing solutions without any calculations

within R0, but quickly becomes unfeasible since the size and number of cal-

culations increases with p.

The second approach utilises our work with so called generator repre-

sentations for Fk. Recall we took basis elements p[k, i] = εk · xi so that
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P k = SpanZ{p[k, i]}. Then we have two definitions depending on which

basis for P̃ k we pick. If we choose p̃[k, i], then we have that

Fk(p̃[k, i]) = Fk(ε̃k) · xi

One can then simply expand out the right hand side and read off coefficients

of basis elements to generate the matrix for Fk. In half of the cases, this

method has the benefit of only requiring simple expansion and cancellation

of terms even for large p. The difficulty for the other half is not knowing a

priori an explicit form for uπ, and as the calculations in sections 5.9 through

5.11 show, it is far from trivial to compute π and hence uπ. Furthermore,

this does not generate a symmetric matrix, even though it corresponds to a

symmetric function, because of the choice of basis. To generate a symmetric

matrix as our brute force method does, we need to define Fk over the natural

dual basis

Fk(p[k, i]
∗) = Fk(p[k, 0]∗) · (1 + . . . xi)

= Fk(ε̃k) · wk(1 + . . . xi)

where wk is some unit dependent on k. To generate these symmetric ma-

trices is again computationally difficult because for all k 6= 0, 1 it requires

knowledge of uπ. We proceed to work through both methods for the example

G = G(5, 2) to verify that they do in fact coincide for this group.

Example 6.2.1 (G = G(5, 2)). G(5, 2) = D10 has group presentation

G(5, 2) = 〈x, y; x5 = y2 = 1, yx = x4y〉

and two homomorphisms to consider

F0 : R̃→ R

F1 : P̃ → P

We begin with our brute force approach, and take our standard basis. We

will write ρk(g) for the representation of g in P k. Then using 4.2.1 and 4.2.2
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we obtain

ρ0(x) = ρ1(x) =


0 0 0 −1

1 0 0 −1

0 1 0 −1

0 0 1 −1



ρ∗0(x) = ρ∗1(x) =


−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0


The calculations ρ(y)(p[k, i]) = p[k, i] · y give

ρ0(y) =


1 −1 0 0

0 −1 0 0

0 −1 0 1

0 −1 1 0

 ρ1(y) =


0 −1 1 0

−1 0 1 0

0 0 1 0

0 0 1 −1



ρ∗0(y) =


1 0 0 0

−1 −1 −1 −1

0 0 0 1

0 0 1 0

 ρ∗1(y) =


0 −1 0 0

−1 0 0 0

1 1 1 1

0 0 0− 1


Solving the requisite equations for Fk = (aij)ij and setting a13 = a, a12 = b

gives

F0 = F1 =


2a b a 2a− b
b 2b 2b− a a

a 2b− a 2b b

2a− b a b 2a


Now consider our second method, beginning with k = 0. Then w0 = 1

and α ∈ R0 can be written

α = a(x+ x4) + b(x2 + x3) a, b ∈ Z
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Therefore, writing ei = p[0, i]

F0(e∗i ) = ε0 · (x4 − 1)(1 + . . .+ xi)(a(x+ x4) + b(x2 + x3))

= ε0 · (x4 − xi)(a(x+ x4) + b(x2 + x3))

= ε0 · (a(1 + x3 − xi+1 − xi−1) + b(x+ x2 − xi+2 − xi−2))

and we obtain

F0(e∗0) = ε0 · (a(1 + x3 − x− x4) + b(x+ x2 − x2 − x3))

= ε0 · (a(2 + x2 + 2x3) + b(x− x3))

= 2ae0 + be1 + ae2 + (2a− b)e3

F0(e∗1) = ε0 · (a(1 + x3 − x2 − 1) + b(x+ x2 − x3 − x4))

= ε0 · (a(x3 − x2) + b(1 + 2x+ 2x2))

= be0 + 2be1 + (2b− a)e2 + ae3

F0(e∗2) = ε0 · (a(1 + x3 − x3 − x) + b(x+ x2 − x4 − 1))

= ε0 · (a(1− x) + b(2x+ 2x2 + x3))

= ae0 + (2b− a)e1 + 2be2 + be3

F0(e∗3) = ε0 · (a(1 + x3 − x4 − x2) + b(x+ x2 − 1− x))

= ε0 · (a(2 + x+ 2x3) + b(−1 + x2))

= (2a− b)e0 + ae1 + be2 + 2ae3

Writing as a matrix

F0 =


2a b a 2a− b
b 2b 2b− a a

a 2b− a 2b b

2a− b a b 2a


and we have verified that we obtain the same result. For F1 recall from 5.6.3,
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5.9.1 that

uπ = 1 + 2x+ x2

wk = x4

Therefore, writing ei = p[1, i]

F1(e∗i ) = ε1 · x4(x4 − 1)(1 + 2x+ x2)(1 + . . .+ xi)(a(x+ x4) + b(x2 + x3))

= ε0 · (2 + x+ x4)(a(1 + x3 − xi+1 − xi−1) + b(x+ x2 − xi+2 − xi−2))

so that

F1(e∗0) = 2be0 + (3b− a)e1 + be2 + (a− b)e3

F1(e∗1) = (3b− a)e0 + (6b− 2a)e1 + (5b− 2a)e2 + be3

F1(e∗2) = be0 + (5b− 2a)e1 + (6b− 2a)e2 + (3b− a)e3

F1(e∗3) = (a− b)e0 + be1 + (3b− a)e2 + 2be3

and writing as a matrix

F1 =


2b 3b− a b a− b

3b− a 6b− 2a 5b− 2a b

b 5b− 2a 6b− 2a 3b− a
a− b b 3b− a 2b


At first glance, this does not match up with our previous result. However, by

making the basis change a = 3b− c c ∈ Z, we find that

F1 =


2b c b 2b− c
c 2c 2c− b b

b 2c− b 2c c

2b− c b c 2b

 = F0

In this example, F0 = F1 are defined over two separate variables, and so
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the calculation of the Smith Normal Form is non-trivial. However, consid-

ering G satisfying dimZ(R0) = 1, these groups will generate matrices more

amenable to general calculations.

Suppose G = G(p, p − 1). Then R0 = {a; a ∈ Z}. This simplicity of the

fixed ring allows a particularly nice result for F0. Define a n × n matrix Tn

by

(T )ij =

2 i = j

1 i 6= j

We then obtain:

Proposition 6.2.2. Suppose G = G(p, p − 1). Then F0 has matrix rep-

resentation F0 = aTp−1, a ∈ Z.

Proof. Simply rewriting 6.1.1.3 over the natural dual basis gives

F0(p[0, i]∗) = ε0 · a(xp−1 − 1)(1 + . . .+ xi)

= ε0 · a(xp−1 − xi)

= ε0 · −a(

p−2∑
j=0

xj + xi)

= −a(

p−2∑
j=0

p[0, j] + p[0, i])

and absorbing the sign into the constant term gives the result.

Tn is a particularly nice matrix for our calculations by virtue of the fol-

lowing result

Proposition 6.2.3: det(Tn) = n+ 1

Proof. We proceed by induction on n. As base case take n = 1, which is

clearly true. Suppose true for all i ≤ n − 1, and consider Tn. Perform a

simultaneous row and column operation on Tn by subtracting row 2 from
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row 1, and column 2 from column 1 to give an equivalent matrix

T̃n =



2 −1 0 0 . . .

−1 2 1 1 . . .

0 1

0 1 Tn−2

...
...


Then, recalling the earlier of definition of cn as a column consisting entirely

of 1’s:

det(Tn) = 2det(Tn−1) + det(

(
−1 ctn−2

0 Tn−2

)
)

= 2det(Tn−1)− det(Tn−2)

= 2n− (n− 1)

= n+ 1

Hence the result.

Corollary 6.2.4. F0 has Smith Normal Form

a

(
Ip−2 0

0 p

)

We proceed to give symmetric matrix representations and Smith Normal

Forms for Fk, k ≥ 1, for the example G(5, 4).

Example 6.2.5 (G(5, 4)). For a ∈ Z, F1, F2, F3 can be written:

F1 =


4a 3a 2a a

3a 6a 4a 2a

2a 4a 6a 3a

a 2a 3a 4a

 SNF(F1) =


a 0 0 0

0 5a 0 0

0 0 5a 0

0 0 0 5a


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F2 =


2a 2a a 0

2a 4a 3a a

a 3a 4a 2a

0 a 2a 2a

 SNF(F2) =


a 0 0 0

0 a 0 0

0 0 a 0

0 0 0 5a



F3 =


6a 7a 3a −a
7a 14a 11a 3a

3a 11a 14a 7a

−a 3a 7a 6a

 SNF(F3) =


a 0 0 0

0 5a 0 0

0 0 5a 0

0 0 0 5a


Suppose that G = G(p, p−1

2
) where p−1

2
= 2r + 1 for some r. Then from

5.10.6 we know that

R+
0 = {a; a ∈ Z}

R−0 = {aπ; a ∈ Z}

Considering F0, we note that we have the same situation as in 6.2.2, and

therefore obtain:

Proposition 6.2.6. Suppose G = G(p, p−1
2

) where p−1
2

is odd. Then F0

has matrix representation F0 = aTp−1, a ∈ Z.

Example 6.2.7 G(7, 3). Calculating symmetric matrices for G = G(7, 3)

gives

F+
1 =



6a 5a 4a 3a 2a a

5a 10a 8a 6a 4a 2a

4a 8a 12a 9a 6a 3a

3a 6a 9a 12a 8a 4a

2a 4a 6a 8a 10a 5a

a 2a 3a 4a 5a 6a


SNF(F1)



1 0 0 0 0 0

0 7 0 0 0 0

0 0 7 0 0 0

0 0 0 7 0 0

0 0 0 0 7 0

0 0 0 0 0 7


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F+
2 =



4a 5a 4a 2a 0 −a
5a 10a 10a 7a 3a 0

4a 10a 14a 12a 7a 2a

2a 7a 12a 14a 10a 4a

0 3a 7a 10a 10a 5a

−a 0 2a 4a 5a 4a


SNF(F2) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 7 0 0

0 0 0 0 7 0

0 0 0 0 0 7


6.3 Representations for HomΛ(P̃

i, P k)

In section 5.1 we saw that writing our boundary homomorphism in block

matrix form, the off-diagonal entries were generated by homomorphisms

Gk,i : P̃ i → P k

where i 6= 1. We can then use the same reasoning as for the results in Section

6.1 to obtain

Proposition 6.3.1. Suppose Gk,0 ∈ HomΛ(R̃, P k). Then

Gk,0(ε̃0) =


εk · (xp−1 − 1)α k = 0

εk · α k = 1

εk · (xp−1 − 1)q+1−kuπα 2 ≤ k ≤ q − 1

for α ∈ R0.

Proposition 6.3.2. Suppose 2 ≤ i ≤ q − 1, and Gk,i ∈ HomΛ(P̃ i, P k).

Then

Gk,i(ε̃i) =


εk · (xp−1 − 1)q+1−i−kα k < q + 1− i

εk · (xp−1 − 1)2q+1−i−kuπα k > q + 1− i

εk · α k = q + 1− i

for α ∈ R0.

Matrix representations for these maps can then be generated in the usual

way.
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6.4 Representations for HomΛ([y − 1)∗, [y − 1))

Recall the definition of [y − 1) as the right ideal generated by y − 1 over Λ.

Define basis elements

e[i, j] = (y − 1)yq−ixj

Then since

(y − 1)y = y2 − y

= −y + 1− 1 + yq−1 − yq−1 + . . .− y3 + y2

=

q∑
k=2

(yk − yk+1)

= −
q∑

k=2

(y − 1)yk

= −
q−2∑
l=0

(y − 1)yq−l

we can write

[y − 1) = SpanZ{e[i, j]}0≤i≤q−2
0≤j≤p−1

Define a right Λ action on [y − 1) by

e[i, j] · g = e[i, j]g−1

The following are then trivial:

Lemma 6.4.1.

e[i, j] · x =

e[i, p− 1] j = 0

e[i, j − 1] 1 ≤ j ≤ p− 1
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Lemma 6.4.2.

e[i, j] · y =


e[i+ 1, aj] 0 ≤ i ≤ q − 3

−
q−2∑
k=0

e[k, aj] i = q − 2

where a is determined from the group presentation.

From this description we see that [y − 1) looks like a product

[y − 1) = Rq ⊗Λ Z[Cp]

where we recall the definition of R from section 2.3. We therefore expect to

be able to express a homomorphism

H : [y − 1)∗ → [y − 1)

as a product of univariate functions

H = h1 ⊗ h2

h1 : R∗q → Rq

h2 : Z[Cp]
∗ → Z[Cp]

In fact this is easily verified by calculating actions in the dual space.

Proposition 6.4.3.

e[i, j]∗ · x =

e[i, p− 1]∗ j = 0

e[i, j − 1] 1 ≤ j ≤ p− 1

Proof. Labelling constants a[i, j] ∈ Z we have

(e[i, j]∗ · x)(

q−2∑
i=0

p−1∑
j=0

a[i, j]e[i, j])
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= e[i, j]∗(

q−2∑
i=0

p−1∑
j=0

a[i, j]e[i, j] · x−1)

= e[i, j]∗(

q−2∑
i=0

p−1∑
j=0

a[i, j](y − 1)yq−ixj+1)

= e[i, j]∗(

q−2∑
i=0

(

p−2∑
j=0

a[i, j]e[i, j + 1] + a[i, p− 1]e[i, 0]))

= e[i, j]∗(

q−2∑
i=0

(

p−1∑
j=1

a[i, j − 1]e[i, j] + a[i, p− 1]e[i, 0]))

Hence the result.

Proposition 6.4.4.

e[i, j]∗ · y =

e[i+ 1, aj]∗ − e[0, aj]∗ 0 ≤ i ≤ q − 3

−e[0, aj]∗ i = q − 2

Proof.

(e[i, j]∗ · y)(

q−2∑
i=0

p−1∑
j=0

a[i, j]e[i, j])

= e[i, j]∗(

q−2∑
i=0

p−1∑
j=0

a[i, j](y − 1)yq−ixjy

= e[i, j]∗(

q−2∑
i=0

p−1∑
j=0

a[i, j](y − 1)yq−(i−1)xbj

= e[i, j]∗(

q−2∑
i=0

p−1∑
j=0

a[i, aj](y − 1)yq−(i−1)xj

= e[i, j]∗(

p−1∑
j=0

(−a[0, aj]

q−2∑
k=0

e[k, aj] +

q−2∑
i=1

a[i, aj]e[i− 1, j]))

= e[i, j]∗(

p−1∑
j=0

(−a[0, aj]

q−2∑
k=0

e[k, aj] +

q−3∑
i=0

a[i+ 1, aj]e[i, j]))
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= e[i, j]∗(

p−1∑
j=0

(

q−3∑
i=0

(a[i+ 1, aj]− a[0, aj])e[i, j]− a[0, aj]e[q − 2, j]))

Hence the result.

Considering H, we see that the requirement H(e[i, j]∗ ·x) = H(e[i, j]∗) ·x
becomes a relation purely in j, i.e. x, and that H(e[i, j]∗ · y) = H(e[i, j]∗) · y
is a relation purely in y, and so H can be split into two univariate functions.

But then we have already classified matrix representations for h1 : Rq → Rq

in Chapter 4, so that only h2 remains. Define a matrix

αn =

(
0 In−1

1 0

)

Lemma 6.4.5. Suppose Λ = Z[Cp]. Then

ρ(x) = αp

Proof. Immediate from 6.4.1 by disregarding the i indices.

Proposition 6.4.6. Suppose h2 : Z[Cp]
∗ → Z[Cp] is a Z[Cp]-homomorphism.

Then h2 has matrix representation

h2 =

p−1∑
i=0

aiα
i
p

where ai ∈ Z.

Proof. We can decompose h2 as

h2 = h̃ ◦ υ

where υ : Z[Cp]
∗ → Z[Cp] is an isomorphism, and h̃ ∈ EndZ[Cp]. But then

from 6.4.1 and 6.4.3 we see that we can simply take υ = Ip. Furthermore,
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since EndZ[Cp]
∼= Z[Cp], h̃ can be expressed as

h2 =

p−1∑
i=0

aiρ(x)i

where ai ∈ Z. Hence the result.

Summarising, we obtain:

Theorem 6.4.7: Suppose H : [y − 1)∗ → [y − 1) is a Λ-homomorphism.

Then H can be expressed as a product

(h1 ⊗ h2) : (R∗q ⊗ Z[Cp]
∗)→ (Rq ⊗ Z[Cp])

where

h1 =

q−2∑
i=0

aiγi

h2 =

p−1∑
j=0

biαi

and ai, bi ∈ Z, γi as defined in Chapter 4.

We also require H∗ = H, giving the following

Theorem 6.4.8: Suppose H : [y − 1)∗ → [y − 1) is a symmetric Λ-

homomorphism. Then H can be expressed as a product

(h1 ⊗ h2) : (R∗q ⊗ Z[Cp]
∗)→ (Rq ⊗ Z[Cp])

where

h1 = an−1
2

(

n−3
2∑
i=0

2γi + γn−1
2

) +
n−2∑
i=n+1

2

ai(γi − γn−(i+1))
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h2 = b0α0 +

p−1
2∑
j=1

bi(αi + αp−i)

and ai, bi ∈ Z.
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