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Abstract: 28 

Several studies have investigated the effect of low-magnitude-high-frequency vibration on the 29 

outcome of fracture healing in animal models. The aim of this study was to quantify and 30 

compare the micromovement at the fracture gap in a tibial fracture fixed with an external fixator 31 

in both a surrogate model of a tibial fracture and a cadaver human leg under static loading, 32 

both subjected to vibration. The constructs were loaded under static axial loads of 50, 100, 33 

150 and 200 N and then subjected to vibration at each load using a commercial vibration 34 

platform, using a DVRT sensor to quantify static and dynamic fracture movement. The overall 35 

stiffness of the cadaver leg was significantly higher than the surrogate model under static 36 

loading. This resulted in a significantly higher facture movement in the surrogate model. Under 37 

vibration the fracture movements induced at the fracture gap in the surrogate model and the 38 

cadaver leg were 0.024±0.009 mm and 0.016±0.002 mm respectively, at 200N loading. Soft 39 

tissues can alter the overall stiffness and fracture movement recorded in biomechanical 40 

studies investigating the effect of various devices or therapies. While the relative comparison 41 

between the devices or therapies may remain valid, absolute magnitude of recordings 42 

measured externally must be interpreted with caution.  43 

 44 
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Introduction: 56 

Ilizarov Frame hexapods of various design are typically used in the management of long bone 57 

fractures in the field of orthopaedic trauma. Non-union fractures remain a challenge however, 58 

and account for around 10% of all fractures treated and about 2% of tibial diaphyseal 59 

fractures.1-3 There are several contributing factors to non-union including the patient, injury 60 

and treatment protocols.2,3 The stability of initial fracture fixation and post-operative loading of 61 

the fracture are among the key treatment related factors.4-13 Both contribute to the 62 

mechanobiology of the healing fracture where it is well established that there are certain strain 63 

thresholds that promote callus formation. For example, interfragmentary motion (IFM) in the 64 

range of 0.2-1mm and 2-10% strain is suggested to improve fracture healing. 4.,5,11,12   65 

There are some studies suggesting that the application of low-intensity pulsed ultrasound 66 

(LIPUS) and whole body vibration (WBV) may possibly improve fracture healing and 67 

potentially address non-union.14-19 The exact mechanisms by which these methods improve 68 

fracture healing at the molecular and cellular level are still unknown. However, it is generally 69 

accepted that LIPUS generates nano-scale motions while WBV generates micro-scale motion 70 

at the fracture site leading to different mechanisms of improved healing. 71 

There has been no prior study to quantify the movement induced at the fracture gap as a result 72 

of external vibration in a tibial fracture fixed with an external fixator. Surrogate bone models 73 

and cadaveric tissue can be used to compare the fracture movement in an in vitro study. An 74 

in vitro fixation of a surrogate bone in the absence of soft tissues should provide little 75 

attenuation to vibration applied at the foot when observed at the fracture gap. Whilst, in a 76 

cadaver model, the magnitude of the displacement induced by the vibrating platform at the 77 

foot may be attenuated by the presence of the soft tissues. Incremental fracture displacements 78 

of 1mm/day are usually induced clinically using an external frame, although the soft tissues 79 

and bone remodelling stiffness determine the actual mode of distraction at the fracture gap. In 80 

this study we were not able to replicate the bone remodelling response, but just the soft 81 

tissues. However, the growing bone formed during distraction osteogenesis would have a low 82 

modulus of elasticity compared to mature bone. 83 

The aim of this study was to quantify and compare the micromovement at the fracture gap in 84 

a tibial fracture fixed with an external fixator in both a surrogate model and cadaver leg under 85 

both static loading and subject to vibration. Therefore, the study quantifies and compares the 86 

overall stiffness and fracture movement in both models, and investigates if comparable trends 87 

exist between the two models. Cadaver studies are more challenging to perform than the 88 

surrogate models, but are more realistic. 89 
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Materials and Methods: 90 

Specimens: A fourth generation tibia was purchased from Sawbones Worldwide (SKU:3402- 91 

overall length: 405mm; tibia plateau diameter: 84mm; distal tibia diameter: 58mm; mid shaft 92 

diameter: 10mm -  WA, USA) and a left cadaver leg including all the soft tissue from the knee 93 

below was obtained from Anatomy gifts registry (Sex: male; Age: 62; body weight: 56 kg - MD, 94 

USA). The host institute had all the required approvals to perform this study. A transverse 95 

osteotomy was performed in each model using an oscillating saw (DEWALT - MD, USA). In 96 

the surrogate model  the sawbone tibia was cut. In the cadaver leg, the tibia and fibula were 97 

divided using a minimally invasive technique that preserved the soft tissues. Both transections 98 

were made in the mid-disphyseal region. 99 

The tibiae in both cases were stabilized with an external fixator (Taylor Spatial Frame - Smith 100 

& Nephew plc, TN, USA). This is shown schematically in Fig 1. A two-ring Taylor Spatial Frame 101 

(TSF) construct was used with two proximal half pins and two distal half pins with a 90-degree 102 

divergence between the pins on each ring. The external fixator was then extended to produce 103 

a 50 mm fracture gap in the surrogate model, this was to ensure that the bony fragments did 104 

not come into contact during the experimental loading. In the case of the cadaver specimen a 105 

13 mm fracture gap was produced, and further extension to match the surrogate model was 106 

not possible without overstretching the soft tissue (see Fig 1). This is a clinically typical fixation, 107 

although such fractures might be fixed with additional pins/wires pending various patient and 108 

injury related factors. Considering that in this biomechanical study the surrogate and cadaver 109 

models were fixed in the same configuration, the relative differences in outcome should remain 110 

valid.  111 

Loading and measurements: The specimens were then fixed proximally to a material testing 112 

machine (Zwick Testing Machines Ltd., Herefordshire, UK) and distally rested on a commercial 113 

vibrating platform (Juvent, FL, USA - 0.3g’s of acceleration at 32-35 Hz with 0.05mm vertical 114 

displacement). It must be noted that (1) the vibrating platform first finds the resonant frequency 115 

of the system and then initiates the vibrations see the manufacturer website and previous 116 

studies describing and evaluating this system.e.g.20-22; (2) the natural frequency of a complete 117 

leg has been reported to be about 0.85Hz23 while we are not confident if this has been picked 118 

up by the vibrating platform but we are confident that the vibrating frequency applied by the 119 

platform is well away from the natural frequency of the leg. A titanium “foot” was used to ensure 120 

direct contact between the surrogate tibia and the vibrating platform, while in the case of the 121 

cadaver leg the specimen was in contact with the vibrating platform through the foot.  122 
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The specimens were loaded five times under static axial loads of 50, 100, 150 and 200 N 123 

equivalent to partial weight bearing.24,25 Note, normal limb loads are approximately of 3xBW, 124 

but the use of far lower loads here is due to the fact that the subjects do not weight bear 125 

significantly during distraction osteogenesis, and are in line with measurements of frame loads 126 

carried out in author’s lab.26 At the end of each loading scenario (1) the overall stiffness of the 127 

constructs were calculated based on the load-displacement data from the material testing 128 

machine. (2) The displacement at the fracture gap under the static loads was recorded with a 129 

caliper (with the resolution of 0.01 mm) on the lateral side. (3) The vibrating platform was 130 

turned on to vibrate the tibial shaft along its long axis. The fracture gap vibration (differential 131 

displacement across the medial fracture side) and the platform vibration were recorded using 132 

displacement sensors (with the resolution of 0.001 mm - DVRT- LORD MicroStrain, VT, USA) 133 

configured to LabVIEW (National Instruments, TX, USA).  134 

Independent (two sample) t-test was used to compare the overall stiffness between the 135 

surrogate and cadaver models at 200 N loading. A dependent (paired) t-test was used to 136 

compare the difference between the displacement applied via the vibrating platform and the 137 

fracture movement both in the surrogate model and the cadaveric specimen. Significance level 138 

was set at p<0.05.  139 

Results:  140 

Static loading: The overall stiffness of the surrogate model was 6.39±0.57 N/mm, and of the 141 

cadaver leg was 47.46±0.74 N/mm, based on the load-displacement data at 200N (p<0.05 -). 142 

The fracture movement at the lateral side of the surrogate model and cadaver leg increased 143 

linearly (R2=0.9) from 2.82±0.13mm and 0.23±0.07 mm under 50 N to 10.99±1.40 mm and 144 

0.96± 0.08 under 200 N respectively (Fig 3).  145 

Dynamic loading: In the surrogate model, there was no significant difference between the 146 

displacement applied via the vibrating platform (platform vibration) and the fracture movement 147 

induced at the fracture gap (fracture gap vibration) under each loading scenario, figure 4. The 148 

displacement applied via the vibrating platform was however always higher than the fracture 149 

gap displacement. Average platform and fracture gap displacement (due to the vibration) 150 

across all loading scenarios were 0.030 ±0.006 mm and 0.025 ±0.008 mm respectively 151 

(significant difference - p<0.05 – Fig 4). 152 

In the cadaver leg, there was a statistically significant difference between the displacement 153 

applied via the vibrating platform (platform vibration) and the fracture movement induced at 154 

the fracture gap (fracture gap vibration) under each loading scenario. Average platform and 155 



6 
 

fracture gap displacement (due to the vibration) across all loading scenarios were 0.027 156 

±0.002 mm and 0.013 ±0.003 mm respectively (significant difference - p<0.05 – Fig 4). 157 

There was found to be a significant difference between the amount of displacement of the 158 

vibrating platform between the surrogate model (0.030 ±0.006 mm) and the cadaver leg 159 

specimen (0.027 ±0.002 mm) during vibration across all loading scenarios.  160 

 161 

Discussion: 162 

A tibial fracture, fixed with an external fixator, was tested experimentally in a surrogate model 163 

and a cadaveric leg. The constructs were statically loaded and then subjected to vibration with 164 

a commercial vibration platform, at each load interval, to quantify fracture movement as a 165 

result of static loading and then with vibration.  166 

The results highlighted a significant difference (eight times) between the overall stiffness of 167 

the surrogate model and the cadaveric leg (Fig 2). This is mainly due to the presence of soft 168 

tissues and the fibula in the cadaver model. However, other factors could have been 169 

contributing to the difference observed here. The frame constructs may not have been 170 

identically positioned resulting in different biomechanical properties. 171 

A linear pattern of increase in fracture movement was observed in both cases due to the linear 172 

increase of loading from 50 to 200 N (Fig 3). However, there was about one order of magnitude 173 

difference between the fracture movement data obtained from the surrogate model and the 174 

cadaver leg. This was not surprising given the lower overall stiffness recorded for the surrogate 175 

model. In the case of the cadaver leg at 200 N, corresponding to partial weight bearing, 176 

fracture movement of 0.96±0.08 mm was measured. This is within the acceptable 0.2-1 mm 177 

fracture movement that is suggested to promote callus formation and enhance the healing 178 

process.4,5,7,11 In distraction osteogenesis, the TSF is typically extended by 1mm/day clinically. 179 

From figure 3B this would correspond to 210N at the bone ends. This seems to agree well 180 

with data from an instrumented fixator used in a clinical study 26,27 thus indicating that the 181 

stiffness of the cadaver tissues is likely to be similar to normal. Distal vibration of the tibia led 182 

to vibration at the fracture gap in both the surrogate model and cadaver leg. In the cadaver 183 

leg, a significant difference was observed between the displacement applied via the vibrating 184 

platform (0.027±0.003 mm - averaged over all tests) and the fracture movement (0.013±0.003 185 

mm- averaged over all tests – see Fig 4). The difference between the two displacements at 186 

the fracture gaps is likely to have been altered by the soft tissues in the cadaver leg, and 187 

highlights the contribution made by the soft tissues to both static and dynamic stiffness. 188 



7 
 

This study has several limitations but perhaps the key limitation is that only one surrogate 189 

model and one cadaveric leg were used. While the study would have benefited from a larger 190 

sample size, the authors think that the differences captured in this study will remain valid with 191 

a larger sample size. Note, considering that only one surrogate and one cadaver leg were 192 

used in this study (while several tests were carried out) statistical analysis data must be 193 

considered with caution. Further in vivo studies are required to test the hypothesis that whole 194 

body vibration can improve the fracture healing process in humans and to investigate the effect 195 

of different frequencies, since only one frequency band was used here. Depending on the 196 

frequency and magnitude of the load, other vibrational regimes may also be osteogenic. In 197 

this paper we have chosen to investigate one level and suggest that this would be osteogenic.   198 

In summary, this study has highlighted the effect of soft tissues in biomechanical studies. Soft 199 

tissues can alter the overall stiffness and fracture movement recorded in biomechanical 200 

studies investigating the effect of various devices or therapies. While the relative comparison 201 

between the devices or therapies may remain valid, absolute magnitude of recordings in such 202 

studies must be interpreted with caution.  203 
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Figure captions: 322 

Fig 1: Schematic of the experimental set up in a lateral view: (A) the surrogate model, (B) the 323 

cadaver leg. 324 

Fig 2: Overall stiffness of the fracture fixation constructs. Note standard deviation is for 5 325 

number of repeats of the axial compression test. * highlight significant difference. 326 

Fig 3: Fracture movement induced via static loading in the surrogate model (A) and the 327 

cadaver leg (B). 328 

Fig 4: Fracture movement induced via the vibrating platform in the surrogate model (A) and 329 

the cadaver leg (B). Note standard deviation is for five number of repeats of the axial 330 

compression test. * highlight significant difference. 331 
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