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Operando spectroscopy study of the carbon
dioxide electro-reduction by iron species on
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The carbon–carbon coupling via electrochemical reduction of carbon dioxide represents the

biggest challenge for using this route as platform for chemicals synthesis. Here we show that

nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday effi-

ciency (97.4%) and selectivity to acetic acid (61%) at very-low potential (−0.5 V vs silver/

silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy

techniques and density functional theory simulations, we correlate the activity to acetic acid

at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or

polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped

carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed

as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall

range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped

carbon it becomes important only at more negative potentials.
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One of the current grand challenges in chemical science is
moving towards a solar-driven chemistry, through the
conversion of recycled CO2 to chemicals using renewable

energy1,2. As a consequence, the electrochemical CO2 reduction
reaction (CO2RR) over different electrodes3 is increasingly
investigated with the biggest challenge being the formation of
products >C1. Copper has shown an incomparable efficiency to
form hydrocarbons4,5, but despite this, a poor stability, selectivity,
and high overpotentials are limiting factors. The opportunity to
facilitate one selective path amongst the others relies on the
possibility to kinetically control the energetics of adsorbed reac-
tion intermediates6, on a specific surface structure. This demands
new ideas in catalyst design attainable through a molecular level
understanding of the reaction mechanism5,6.

With respect to the selectivity issue, molecular catalysis can be
product specific and highly efficient, however redox processes are
limited to the transfer of only a few electrons, thereby leading to
products of lower technological interest such as CO.

Recently, it was shown that the immobilization of molecular
species such as Co porphyrins on graphite and graphene opens up
opportunities for multistep reduction products6.

We have also demonstrated the synthesis of acetic acid via
CO2RR over Cu on carbon nanotubes (Cu/CNTs) electrodes7.
With respect to the multistep synthesis of acetic acid from fossil
fuels, the direct CO2RR allows lowering of the carbon footprint by
a factor of 5–6, due to the combination of process intensification,
use of CO2 as raw material and use of renewable energy7.

Nitrogen species in carbon have been also reported to convert
CO2 to C1 products, such as CO8,9. Compared to metal-free
nanocarbons, C supported metal nanoparticles allow improving
performances and lowering CO2RR overpotentials10, but the
competing hydrogen evolution reaction (HER) reaction is also
favored. Liu et al.11 reported high CO2RR efficiency to acetate and
formate over Si/N-doped nanodiamond with high Faraday effi-
ciency of 91.2–91.8% at −0.8 to −1.0 V vs RHE, where the high
overpotential for the HER was the favorable factor.

In this work, we explore the CO2RR activity of Fe oxyhydr-
oxide nanostructures supported on O- and N-doped graphitic
supports in a CO2-saturated 0.05 M KHCO3 solution. We report
the outstanding performance of ferrihydrite-like (Fh-FeOOH)
clusters on N-doped carbon (N-C) with a total CO2RR Faraday
efficiency above 97 % and high selectivity to acetic acid at very-
low potential (−0.5 V vs Ag/AgCl). We apply operando hard X-
ray absorption fine structure (XAFS) spectroscopy to obtain
insights into: the nature of the sites responsible for CO2RR at low
potentials, particularly those enabling C–C coupling (to form
acetic acid); and dynamic structural changes upon potential
changes. This study reveals the reversible redox chemistry of Fh-
FeOOH nanostructures on N-C in low concentration bicarbonate
solution, characterized by the formation of Fe(II) species at
potentials relevant for CO2RR, whereas at more negative poten-
tials those species turn into Fe0. In contrast, there is no significant
formation of Fe(II) species in the Fh-FeOOH supported on O-
containing carbon in this voltage range, and the only structural
modification observed is the reduction of some of the Fh-FeOOH
clusters to Fe0. The H2 evolution is indeed correlated to the
transformation of Fe(III) into Fe0. By a combination of ambient
pressure soft X-ray photoelectron spectroscopy (XPS) and density
functional theory (DFT) simulations we prove that a chemical
interaction occurs between Fe sites of ferrihydrite and the pyr-
idine N species on the carbon surface. As a consequence of the
favorable Fe–N interaction, Fe species, initially present as single
atoms or clusters decorating the N-functionalized edges of the
graphitic planes, are stabilized as Fe(II) species at a potential
consistent with the carbonation of ferrihydrite and the formation
of a Fe(II)Fe(III) mixed compound12. This potential range

coincides with the highest Faraday efficiency to CO2RR products.
We conclude that the few relevant species for C–C coupling are
an ensemble of chemically interacting (bi)carbonate-bearing Fe
(II) species and N atoms, the latter one also capable of chemi-
sorbing CO2-related species13. This study deepens our under-
standing of the reactivity of this class of electrocatalysts in CO2RR
and their structural transformation into HER selective materials
and provides guidance for the synthesis of improved electro-
catalysts for the CO2RR.

Results
Structure of Fe/N-O and Fe/O-C. In this work, the catalysts were
synthesized by impregnation and subsequent thermal annealing
of the Fe nitrate precursor on pieces of N and O functionalized C
paper. The oxygen functionalized support (O-C) contains mainly
carboxylic functional groups14, whereas the nitrogen functiona-
lized support (N-C) contains mainly pyridine-like N species
(Supplementary Fig. 3)14. If not otherwise stated, the nominal Fe
loading was 1 wt. %, which was quantitatively loaded onto the
supports.

The structural characterization of the as synthetized samples
was performed by means of XAFS spectroscopy, XPS, scanning
electron microscopy (SEM) and transmission electron micro-
scopy (TEM). Fig. 1 reports the ex situ X-ray absorption near
edge structure (XANES) spectra at the Fe K edge of all the
samples. The positions of the absorption pre-edge (1s → 3d
transition) and edge (1s → 4p transition) resonances are sensitive
to the Fe oxidation state, whereas the intensity of the pre-edge
peak depends on site symmetry, where the lower the intensity the
higher the symmetry of the Fe sites. The pre-edge appears at ca.
7115 eV for Fe(III) species as in Fe2O3, and ca. 7112.5 eV for Fe
(II) species as in Fe(II)acetate15. Moreover, the pre-edge will be
more intense for tetrahedral and distorted octahedral geometries
than for octahedral systems.

Consistently, the absorption pre-edge and edge found for both
samples at approx. 7114.5 eV and 7125 eV, respectively, hints at
Fe(III) species16; however the difference with respect to the Fe
(III) coordination environment in Fe2O3 hematite and Fe3O4

magnetite is significant, as shown in Fig. 1.
The position of the white line at 7132.2 eV and the additional

peak at 7147.6 eV have been observed for ferrihydrite16 (Fh-
FeOOH), which is an hcp form of Fe oxyhydroxide, where Fe(III)
cations are coordinated with O atoms and terminal OH species in
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Fig. 1 Fluorescence yield (FY) Fe K edge XANES spectra of the Fe/O-C and
Fe/N-C samples. FY Fe K edge XANES spectra in comparison with Fe2O3

and Fe3O4 reference samples, measured in transmission
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both tetrahedral and octahedral geometries. The intensity of the
pre-edge features of both samples lies between hematite (only
octahedral sites) and magnetite (which contains ~30% tetrahedral
sites), implying that these samples contains some tetrahedral
character, which is in agreement with the structure of ferrihydrite
proposed by Michel et al.17.

The Fourier transform of the extended X-ray absorption fine
structure (FT EXAFS) data were fitted using the scattering paths
calculated from a cif file of Fh-FeOOH (PDF 00-058-0898 from
PDF-4+ structure) using two O paths and one Fe path. The
magnitude of the Fourier transform of the k2(χ) data of the EXAFS
region for the Fe/N-C, reported in Fig. 2 as example, is also
consistent with the structure of Fh-FeOOH. The two Fe–O paths
are separated by a distance of 0.15Å, and the Fe path is at 3.05 Å
from the absorber atom. The Fe–O coordination number is ~6.

Fe K edge EXAFS structural parameters derived from the fits of
the samples investigated reveal only negligible differences among
the samples (Supplementary Table 1). Surface elemental compo-
sition of the samples is obtained by XPS at the O1s, N1s, C1s, and
Fe2p core levels, by collecting electrons with kinetic energy of
450 eV corresponding to an information depth of 1.5 nm18

(Supplementary Table 2). Notably, the O1s XP spectra in
Supplementary Fig. 3 indicate the presence of O2− species as
well as OH− species, whereas the N1s XP spectra reveal the
presence of small amounts of N impurities, intuitively from the Fe
nitrate precursor, present at a binding energy typical for Fe–N
bonds19. Additionally, pyridine-like C-N species14 are present
only on the freshly prepared Fe/N-C material. The surface
sensitive C1s spectrum of the Fe/N-C shows much higher
intensity than the Fe/O-C at binding energy higher than the
graphite-like peak (284.4 eV), indicating a higher abundance of
exposed surface functional groups.

The scanning electron micrographs (SEM) reveal features
characteristic to each sample: a thin layer of Fe-phase covers the
surface of the fibers (Supplementary Fig. 4), whereas the amount
of the bigger agglomerates and their size increase with increasing
loading (Supplementary Fig. 5).

TEM images of the Fe/N-C (Supplementary Fig. 6) show that
regardless of the particles size, the films or particles are

polycrystalline and composed of small agglomerated crystallites.
The diffraction patterns are consistent with the Fh-FeOOH
structure (Supplementary Fig. 6c). Note however that the off-line
X-ray diffraction measurements on these catalysts failed to detect
any diffraction peaks related to any Fe oxide phase, demonstrat-
ing that there is no long-range order in these materials. The
similar Fh-FeOOH nanostructure of these samples is consistent
with a condensation mechanism of small clusters20 to form
various morphologies and sizes.

Figure 3 shows a top view bright field (left) and high-angle
annular dark field scanning transmission electron micrograph
(HAADF-HSTEM) (right) for the Fe/N-C. Note that in the latter
image, the heavier elements (in this case Fe) appear brighter.
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Fig. 2 Non-phase-corrected k2 weighted Fourier transform EXAFS data of
Fe/N-C sample. a Non-phase-corrected k2 weighted Fourier transform
EXAFS data of Fe/N-C as an example. The imaginary part of the data, fit
(using scattering paths calculated from cif file PDF 00-058-0898.cif of
ferrihydrite) and scattering paths are also shown to visualize the influence
of each path to the spectrum; b model of the Fh-FeOOH structure from PDF
00-058-0898.cif .Color code: Fe= orange, O= red
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Fig. 3 Nanostructure of Fe/N-C sample. a Representative Bright Field and b
HAADF STEM micrographs of sample Fe/N-C (scale bar 5 nm). The
brightest spots in the HAADF STEM image are Fe atoms. Several
morphologies are identified: Nanoparticles (circle); polyatomic species
(rectangle) and single atoms (small circle)
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Most interesting and only visible because of the high atomic
resolution achieved in these measurements, besides bigger 3-D
particles characterized by a darker contrast in the bright field
HRTEM image, are the edges of the graphitic layers or the
vacancies, which are decorated with Fe in clusters of atoms or as
single atoms, respectively. Note that the edges of the graphitic
layers are the location of the N or O species. High morphological
heterogeneity, spanning from single atoms to nanoparticles, is a
common feature of both samples, which makes quantitative
determination of the particles size distribution impractical.

The surface sensitive Fe L near edge X-ray absorption fine
structure (NEXAFS) spectra in Fig. 4a measured in ultra-high
vacuum (UHV) condition reveal an important difference between
these two samples. Particularly, the Fe L2,3 edge spectra are
dominated by the resonances R1 (2p → 3t2g) at 709 eV and R2
(2p → 3eg) at 710.5 eV, which are characteristic of Fe(III)
species21; however the resonance intensities below 710 eV differ
between the two samples. To assess the nature of the structural
difference, spectra were simulated (Fig. 4b) using CTM4XAS

software22,23. Accordingly, those resonances are a signature of Fe
(II) species in square planar (magenta line) or octahedral
geometry (green line) on the fresh Fe/N-C sample.

A temperature-programmed XPS experiment was used to
further characterize the surface chemistry of the Fe/N-C sample
(Fig. 4c, d). The thermal annealing of this sample up to 473 K in
UHV leads to the decrease of the O and Fe abundances and the
increase of the N and C abundances (Supplementary Fig. 7). The
decrease in the amount of O species is due to the condensation of
the Fe oxyhydroxide structural units, while the decrease of the
amount of Fe is the consequence of the particles size increase due
to sintering, which are then not entirely probed by this surface
sensitive measurement (ca. 0.5 nm information depth for electron
of KE 150 eV). The Fh-FeOOH phase changes from a
predominantly Fe(III) phase to a mixed Fe(III) /Fe(II) (red line
in Fig. 4c, d). Likewise, the N and C abundances increase is due to
the increased exposure of the support surface upon Fe sintering.
However, not only the total N abundance changes upon
annealing, but also the distribution of the two species, namely
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N-C and Fe–N, changes. In Fig. 4c and in Supplementary Fig. 7b,
c we can see that the N-C component increases significantly upon
annealing. These results clearly indicate that during the impreg-
nation step, the favorable dispersive interaction leads the Fe
species in solution to adsorb preferentially on the pyridinic N
species of the support and establish a chemical interaction with
them as previously observed for Pd nanoparticles24,25. Under
0.15 mbar H2O, we observe that the mixed Fe oxidation state is
still stable, whereas the pyridinic N species are reduced and
appears upshifted of 0.4 eV (398.8 eV), as expected for protonated
species. Under 0.13 mbar CO2, we observe a rapid re-oxidation of
the Fe(II) species to Fe(III). Most importantly, the quantitative
disappearance of the pyridinic component suggests that
CO2 chemisorbs not only on the Fe(II) species, but also on
the pyridinic N species as previously verified by
microcalorimetry13.

In order to investigate the interaction between the graphitic
edge (with and without N dopants) and the Fh-FeOOH-like
nanostructure, we have created an idealized structural model to
perform DFT simulations (Fig. 5). The iron oxyhydroxide
nanostructure is assumed to have the stoichiometry and local
structure of Fh-FeOOH. Our model is cut out from the bulk
crystal structure reported by Pinney et al.26, and is periodic in one
dimension. The Fh-FeOOH nanostructure is assumed to be in
close contact with graphite, decorating its zigzag edge, which is
represented in our model by a hydrogen-terminated one-
dimensional nanoribbon with two AB-stacked layers. This model
is plausible considering the HAADF STEM and HRTEM images
presented in Fig. 3. Along the [001] direction of the crystal, the
Fh-FeOOH nanostructure is terminated by hydroxyl groups on
one side (facing the vacuum gap) and by Fe cations on the other
side (facing the graphitic edge). Along the periodic direction, we
choose a supercell with eight C atoms at the edge, which
minimizes the strain of the Fh-FeOOH layer with respect to its
bulk cell parameters.

In the absence of N dopants, the interaction energy between
the graphitic edge and the ferrihydrite nanostructure is calculated
to be −1.1 eV for the supercell (with respect to the free edge and
the unstrained ferrihydrite 1D nanostructure). However, when
terminal C–H species at the edge are substituted by pyridinic N
species, the interaction energy becomes significantly more
negative (−1.9 eV) as the result of the formation of two N-Fe
bonds per supercell. Energy minimization leads to N-Fe bond
lengths of 2.0 Å and 2.1 Å, which are similar to Fe–N (pyridine)
bond distances reported in the literature. It is clear then that the
presence of pyridinic nitrogen at the carbon edge stabilizes the C/
ferrihydrite interface, by ~0.4 eV per N-Fe bond formed. The
formation of the chemical bond is accompanied by charge

transfer from the N atom to the Fe ion, whose Bader charge27

decreases from 1.62 a.u. to 1.26 a.u. indicating a partial reduction.
This is consistent with the Fe L edge NEXAFS spectrum of the Fe/
N-C sample in Fig. 4a, which clearly indicates the presence of
reduced Fe(II) sites as compared with the N-free Fe/O-C sample.
We also tested the possibility of the formation of C-Fe bonds at
the interface, via the removal of terminating hydrogen from the
edge to the gas phase (in the form of H2 molecules). However,
this is not a favorable process as the formation of such interface,
including the gas phase species, requires a large positive (5.4 eV)
energy. This theoretical analysis corroborates the role of pyridinic
N dopants in stabilizing the interface between graphite and the
iron oxo-hydroxide particles.

Reactivity of Fe/N-O and Fe/O-C. The CO2RR behavior of Fe/O-
C and Fe/N-C samples in CO2-saturated 0.05M KHCO3 solution
(the pH in the bulk of the electrolyte is about 7) was investigated
using the electrochemical cell depicted in Supplementary Fig. 1
and the results are compared in Table 1 at a constant cathodic
potential of −0.5 V vs Ag/AgCl (3M KCl). In this work we report
the results in Ag/AgCl (3M KCl) scale instead of the commonly
used reversible hydrogen electrodes (RHE) scale.

In fact, the conversion of the applied potentials referenced to
the Ag/AgCl (3M KCl) scale into the RHE scale, taking into
account the pH of the bulk electrolyte, results in CO2 reduction
potentials higher than the tabulated thermodynamic potentials
for the CO2RR to acetic acid. There are two reasons for the
inapplicability of this criterion: the local pH at the surface is
different than in the bulk, it may vary with time and possibly also
differs widely from surface site to site28; and the underlying redox
chemistry does not involve the CO2 molecule in the gaseous state,
but rather CO2-related compound existing in the liquid phase
such as H2CO3, HCO3

−, and CO3
2−, and, therefore, the redox

potential of these species must be considered instead29. From the

a b

Fig. 5 Model of the Fh-FeOOH/N-C interface. a Top and b lateral views of the DFT+U-relaxed geometry of ferrihydrite nanostructures decorating the N-
doped graphitic zigzag edges. Color code: C= gray, H=white, N= blue, Fe= orange, O= red

Table 1 CO2RR behavior of Fe/O–C and Fe/N–C samples at a
fixed voltage of −0.5 V vs Ag/AgCl

Faradaic efficiency—FE (%)

Catalysts HCOOH CH3COOH H2 CO2RRa Totalb

Fe/N–C 36.5 60.9 2.5 97.4 99.9
Fe/O–C 2.5 0 94.9 2.5 97.4

a CO2RR Faradaic efficiency
b CO2RR and HER Faradaic efficiency
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operando study presented later on in this paper, it will be evident
that the latter point provides a better description of these
experiments. Upon immersion of the samples in the liquid
electrolytes, the open circuit potential drifts very quickly from
circa −0.15 V to a negative value close to 0 V (−0.076 V for Fe/N-
C in the example reported in Supplementary fig. 7d and −0.048 V
for Fe/O-C). The anodic drift of the potential indicates that an
oxidation process is taking place. This observation could be
explained not only as phase transformation of some Fe(II) sites
present in the solid phase30, but also as an indication of the
mobilization of the Fe(III) species of ferrihydrite in carbonate
media leading to the formation of Fe(II)aq carbonate species12, the
latter species undergoing further oxidation and re-precipitation.
However, given the small and rapid variation of the OCP, we
conclude that the process is limited in this case and the
ferrihydrite/KHCO3 interface equilibrates rapidly.

Despite a minimal difference in the Fe nanostructures between
the samples, while the HER dominates over the CO2RR for Fe/O-C
under potential control, the behavior of Fe/N-C is different, with
CO2RR Faraday efficiency of 97.4 %, and a much lower HER
Faraday efficiency of 2.5% at −0.5 V vs Ag/AgCl. CO2RR products
detected were acetic acid (60.9%) and formic acid (36.5%) (Table 1).

The Faraday efficiency for the two electrocatalysts as function
of potential is depicted in Fig. 6a, c for Fe/N-C and Fe/O-C,
respectively. The corresponding turnover frequency (h−1 cm−2 g
of product g-1 of Fe in the electrode) for formic acid and acetic
acid is shown in Fig. 6b, d.

At more negative potentials (down to −1.5 V), the CO2RR
Faraday efficiency strongly decreases for the Fe/N-C, whereas the
HER increases significantly (Fig. 6a). The turnover frequency
passes through a minimum for formic acid, while acetic acid
decreases at more negative potentials (Fig. 6b). The electro-
catalytic results are fully reversible by increasing the cathodic

potential from −1.5 to −0.5 V. Average current densities of
−0.36, −0.78, and −5.36 mA cm−2 were obtained at −0.5, −1
and −1.5 V, respectively. The Fe/O-C is characterized by less
pronounced changes of the catalytic performance with potential,
with a very similar CO2RR Faraday efficiency, whereas the HER
Faraday efficiency increases at more negative potential (Fig. 6c).
The only CO2RR product with a turnover frequency that
decreases at a more negative potential is formic acid (Fig. 6d).
The comparative analysis of these catalysts evidences the critical
role of the carbon surface chemistry and the particular benefits of
the N sites, indicating that the active sites for CO2RR are located
at the metal cluster/carbon interface. This is also corroborated by
the poor performance of higher Fe loaded samples (Supplemen-
tary Table 3 and 4). However, at more negative cathodic
potentials, Fe/N-C also becomes poorly CO2RR efficient with
strong reduction of the acetic acid turnover frequency, whereas
the formic acid turnover frequency reaches a minimum and then
increases again (Fig. 6b).

Structure/CO2RR performance correlation by means of oper-
ando XAFS. Structural dynamics upon electrode polarization that
correlate selectivity trends are identified by operando XAFS at the
Fe K edge in fluorescence yield (FY) mode.

Accordingly, Fe/N-C and Fe/O-C behave quite differently upon
polarization. The XANES spectra recorded during cyclic
voltammetry (CV) (CV 10mV/s) from open circuit potential
(OCP ca. −0.1 ÷ 0 V vs Ag/AgCl in the fresh samples) to −2 V vs
Ag/AgCl for Fe/N-C catalyst are shown in Fig. 7a. The
corresponding current/ potential profile is reported in Fig. 7b.

At −0.5 V, the intensity of the pre-edge resonance at 7114.5 eV
decreases, while the edge is now down-shifted by 2 eV. At −2 V
in Fig. 7a, the Fe K edge spectrum resembles a metallic state (see
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Fe foil reference spectrum in Fig. 7c). The nature of the
underlying reduction process at −0.5 V resulting in the energy
shift of the edge can be discerned through the linear combination
of the spectrum using two components: the spectrum of Fe foil
and the initial spectrum of the electrocatalyst as reference for Fe0

and Fe(III), respectively (Fig. 7c) 15. More in detail, in Fig. 7c, a fit
(Fit1 green line) of the spectrum measured at −0.5 V using the
spectrum at OCP in 0.05M KHCO3 as Fe(III) component (in
Fig. 7a, red line) and Fe0 component (Fe foil/magenta line) leaves
a negative residual intensity (blue line), which clearly shows the
down-shift of the edge in the region assigned to Fe(II), while
the positive residual pre-edge intensity indicates that the metallic
contribution is overestimated within this fit. The normalization of
the Fit1 spectrum to the pre-edge intensity of the Fe/N-C at −0.5
V in 0.05M KHCO3 (in Fit 2/cyan line) leaves a residual
line (orange line), which resemble the spectrum of
FeO (wüstite)31 .

Changes in coordination geometry of the iron sites upon
polarization were also assessed by means of FT EXAFS analysis
(Fig. 7d). In order to explain the visible structural changes of the
initial Fh-FeOOH phase upon polarization at −0.5 V, simulations
of EXAFS signal were performed32. for: Ferrihydrite (Fe3+_sim.
blue line in Fig. 7d) as a weighted average of the contribution
from three sites (Supplementary Fig. 8); Wüstite structure as
signal of Fe(II) ion (green line in Fig. 7d); A mixed valence Fe(II)
/Fe(III) compound formed of 50% ferrihydrite and 50% wüstite
(in Fig. 7d, magenta line).

Similarly to the dry Fe/N-C /(Fig. 2), the data for the Fe/N-C
at OCP in 0.05M KHCO3 (red line) fits very well the structure of
Fh-FeOOH. We refer here to O ligands as -(O, OH) ligands being
the O species present in significantly higher amount (20 at%)
than N species (0.5 at%) (Supplementary Table 2).

The spectrum for Fe/N-C at −0.5 V (black line) resembles
qualitatively the simulated spectrum of a mixed valence Fe(II) /Fe
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(III) compound in the characteristic bimodal distribution of Fe-
(O, OH) bonding lengths.

This is a consequence of the convolution of constructive and
destructive interference between the signals of the different
phases. We conclude that −0.5 V, a reduction of some of the Fe
(III) to Fe(II) species may explain the peculiar radial distribution
function. Indeed, the formation of a mixed valence compound
from ferric oxyhydroxide was already reported at this potential
range in 0.2 M HCO3

−/CO3
2− solution and characterized as a Fe

(II)/Fe(III) hydroxi-carbonate green rust compound33.
After re-oxidizing the electrode at+ 0.77 V, quick XANES

spectra were continuously recorded upon constant potential
(crono-amperometry (CA)) in order to observe more detailed
structural dynamics, in addition to stability. The results are
reported in the Fig. 8a–d, and the current density recorded at
each potential is plotted in Supplementary Fig. 9b. The key
spectroscopic features such as pre-edge intensity at 7112.5 eV,
edge intensity at 7130 eV and edge energy are plotted as functions
of potential in Fig. 8e. In the potential region relevant to the
CO2RR between −0.15 V (OCP) and −0.55 V (XANES spectra in
Fig. 8a), the structural dynamics observed consist mainly of an
energy down-shift of the edge whereas the intensity of pre-edge

and edge does not change significantly (Fig. 8e). This behavior is
consistent with the CV experiment in Fig. 7a, indicating the
reversibility of the Fe(III) /Fe(II) process. In the radial
distribution function, (inset in Fig. 8a) the increase of the Fe-
(O, OH) distance (+0.1 Å) is also here consistent with a
reduction to Fe(II) species34 .The spectra resemble a mixed
valence Fe(III)/Fe(II) phase31, note, however, that the sample now
clearly contains a small Fe0 component from the previous
reduction step (non-phase-corrected Fe-Fe distance 4.5 Å in inset
in Fig. 8a).

In the potential window between -0.65 V and -1.25 V (XAFS
spectra in Fig. 8b), HER becomes dominant. The slight increase of
the pre-edge at 7112.5 eV indicates the formation of Fe0. Notable
changes occur at −1.15 V when the resonance at ~7130 eV
becomes particularly intense whereas the pre-edge intensity
decreases.

The FT EXAFS spectrum indicates that Fe–O species are still
present. In the potential region from −1.45 to −1.95 V (Fig. 8c,
d), the catalyst is very unstable, whereas the HER rate is at its
highest. At −1.55 V, the Fe K edge XANES and FT EXAFS
spectra resemble the spectra reported for Fe0. The instability of
the catalysts was observed several times during the CA, starting
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from −1.25 V, as a rapid switch between a Fe0 state and a Fe
oxidized state characterized by an unusual high intensity of the
resonance at ca. 7130 eV (energy shift consistent to Fe(II)). This
can be related to the HER mechanism. Despite the observation of
O species in the FT EXAFS spectrum, such high intensity implies
a different chemical environment than the Fe(II)-O species
observed at less negative potentials. A similar pronounced
increase of the white line intensity was observed for Fe-Fe
hydrogenase upon hydride bond formation and protonation35.
Analogously, we can assume that a similar situation occurs here.
At more negative potential, the higher availability of e− may lead
to the formation of Fe-hydride species from OH dissociation36.
We propose that the intermediate hydride species and adsorbed
H+ are discharged as H2, leaving Fe0 behind; however this
hypothesis requires further investigation.

A different behavior was observed for the fresh Fe/O-C in
operando (Fig. 9 and Supplementary Fig. 11).

Despite a similar trend and value in the OCP (the OCP drift
from −0.15 to −0.048 V), the corresponding spectrum at OCP is
clearly different from the spectrum relative to the fresh sample
(Fig. 1), and is characterized by a pre-edge dominated by the
metallic component.

The spectra measured remain otherwise unchanged as one
proceeds towards more negative potentials. Structural modifica-
tions happen at −1.95 V, consistent with a further reduction of Fe
(III) species to Fe0 (slight increase of the pre-edge). At −2 V a 3
eV down-shift of the edge is observed and the spectrum is now
similar to the one reported for wüstite31 .The electrode is then
electrochemically re-oxidized and subsequently another cycle of
several CA at different constant potential (from 0 to −2 V)
confirm this redox structural behavior. On the one hand, the
reduction of Fe(III) to Fe0 occurs for a minority of the Fe(III)
species at a potential close to the thermodynamic potential
(E0Fe3+/Fe

0=−0.204 V); on the other hand, the Fe(II)/Fe0

reduction of the majority of the Fe species in the sample occurs
at much higher overpotential (E0Fe2+/Fe

0=−0.64 V vs Ag/AgCl).
The latter phenomenology is expected for loosely immobilized
FeOOH particles or for bigger particles for which the poor
electron conductivity of the ferrihydrite phase results in the
observed reduction overpotential. Additionally, interfacial elec-
tron transfer resistance can be induced by the O species on the C
support. On the contrary, the initial reduction of the Fe(III) to Fe0

is considered being the result of the instability of some of the
immobilized ferrihydrite particles in KHCO3 solution. If the Fe
(III) species have lost their coordination due to the thermal
desorption of the oxygen species during the catalyst preparation
(C1s spectrum in Supplementary Fig. 3d), they may be more
susceptible to undergoing dissolution and reduction/precipitation
by interacting with the reduced carbon surface. This may happen
only for the very small clusters, whereas for the bigger clusters,
only the interfacial Fe sites will be affected.

Operando XAFS results on a sample with higher Fe loading on
O-C (20 wt. %) (Supplementary Fig. 9b and c) further
corroborated this finding.

Particularly, structural changes occur significantly for this
sample only above −0.8 V, with a gradual down-shift of the edge
until −1.8 V when the spectrum resembles that one reported in
literature for wüstite31 .Thus, changes in the spectra are for this
sample not related to either the CO2RR, the HER and any
structural changes accounting for the current voltage profile
observed between −0.3 V and −1 V vs Ag/AgCl (Supplementary
Fig. 9b), but are rather dominated by the structural dynamics of
the bulk of the nanoparticles (Supplementary Figure 5).

This implies that on low loading O-C surface only the small
Fh-FeOOH clusters are indeed reduced to Fe0 at low negative
potential.

Discussion
These results clearly indicate that the carbon surface chemistry
influences significantly the Fe redox chemistry with strong impact
on the catalytic performance. Particularly, some of the Fe(III)
sites in Fh-FeOOH clusters are reduced to Fe(II) on the Fe/N-C,
and here stabilized against the total reduction to Fe0 (E0Fe2+/Fe0

= -0.64 V vs Ag/AgCl) in the CO2RR selective potential region. In
contrast, on the O-C we observe: the total reduction of Fe(III) to
Fe0 for the minority of small clusters (E0Fe3+/Fe0=−0.204 V vs
Ag/AgCl) already upon immersion in the electrolyte, which is
responsible for the high FE for HER at low potentials; higher
overpotentials for the Fe(III)/Fe(II) reduction of most of the Fh-
FeOOH particles.

N dopants on carbon have a double effect: not only they
coordinate CO2-related species, but they also stabilize these Fe(II)
species hindering their further reduction, thus inhibiting HER (at
−0.5 V vs Ag/AgCl). The synthesis of acetic acid is here attributed
to the existence of adjacent Fe(II) and N sites initially present on
the carbon surface or formed in situ as consequence of a dis-
solution/precipitation of ferrihydrite in bicarbonate solution12.

The potential range for efficient CO2RR coincides with the
carbonation of Fh-FeOOH13 and formation of green rust, and,
therefore, we postulate that the carboxylate fragment is formed as
a consequence of the reduction of (bi)carbonate moieties on Fe
(II) species of the metastable (bi)carbonated Fe oxyhydroxide
phase or on Fe(II) single atoms, both directly interacting with the
carbon surface. On a N-free carbon surface, the availability of e−

and H+ leads to the formation of HCOOH. On a N-C, CO2-
related species chemisorbed on the N atoms adjacent to Fe(II)
species can undergo a 6 e− transfer to form the methyl fragment,
enabling opportunities for C–C coupling between neighboring
carboxylate and methyl species. As the potential is increased
further, the reduction to Fe0 occurs together with the HER,
probably through OH reductive dissociation. We envisage that
further development in hard X-ray operando valence-to-core X-
ray emission spectroscopy37,38 or soft X-ray in situ resonant
valence band photoelectron spectroscopy could allow to distin-
guish N and O ligands at the metal center, CO2-related adsorbates
and how those change upon polarization and or changes in
selectivity. On well-defined system such as single site catalysts,
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such a study would provide a definitive clarification on the
reaction mechanisms of the CO2 electrochemical reduction.

In summary, the outstanding CO2RR FE (97.4%) and high
selectivity to C–C coupling of Fe/N-C derive from the synergistic
effect between the carbon surface chemistry and Fe–OOH
nanostructure. Most relevant are the small Fh-FeOOH clusters or
Fe single atoms at the edge of the graphitic layers, where
potential induced Fe(II) species adsorb and reduce HCO3

− spe-
cies. The potential at which the Fe(II) sites are formed dictates the
potential for the CO2RR. While the reactivity toward the for-
mation of formic acid is related to the Fe species, N species act
concertedly to enable the C–C coupling. In order to maintain
these performances in an extended range of applied negative
potentials, synthetic strategies must aim to maximize and further
promote the stabilization of these small Fh-FeOOH clusters.

Methods
Sample preparation. TorayTM Carbon paper TGP-H-030 (FuelCellStore.com)
with thickness of 0.1 mm was cut into pieces of ~0.8 × 0.8 cm (approx. mass of 4.2
mg) and used as a support for the iron oxide particles. Prior to the metal precursor
impregnation, the carbon cloth was functionalized with either O- or N-groups
according to the procedure adapted from Arrigo et al.13,39.

First, several pieces were heated to 393 K in HNO3 (250 mL, 70 %, Sigma-
Aldrich) for 4 h, followed by drying in static air overnight at 373 K. Oxygen
functionalization with concentrated HNO3 produces a hydrophilic carbon surface
with mainly carboxylic functional groups. This sample is denoted as O-C. In a
second step, the HNO3-treated samples were put in a tube furnace under 50
mLmin−1 NH3 (99.98% Ammonia Micrographic, BOC Linde) at 873 K for 4 h.
Afterward the samples were cooled down to 323 K in NH3 and further to RT in N2

(50 mLmin−1, BOC Linde). A N-functionalized carbon is obtained, referred here as
N-C. The Fe containing samples (Fe wt. %= 1 or 20) were obtained via incipient
wetness impregnation of Fe(NO3)3•9H2O solution in H2O/ethanol (24:1). An
aliquot of 1 mL of a 6 gL−1 solution was used to prepare the 20 wt % sample,
whereas an aliquot of 100 mL of a 3 gL−1 solution was used to prepare the 1 wt. %
sample. The solution was added drop-wise to the single carbon cloth piece paying
attention that the wetting of the carbon paper piece was homogeneous. The
impregnated carbon paper pieces were dried at room temperature in air overnight.
Afterward, the samples were heated at 200°C in N2 (50 mLmin−1, BOC Linde) for
3 h in order to achieve decomposition of the metal precursor without
decomposition of the nitrogen species of the support. The samples were cooled
down to room temperature in N2 before exposure to air. The notations Fe/O-C and
Fe/N-C refers to samples prepared using the O-functionalized and N-
functionalized C paper support, respectively. This approach enables two main
advantages: easy and direct assembling of the electrode in the in situ
electrochemical cell for XAFS study and no requirement of the preparation of
commonly used catalyst inks which could detach from the substrate surface into
the solution with time.

Electron microscopy techniques. Bright field (BF) and high-angle annular dark
field scanning transmission electron microscopy (HAADF STEM) images were
acquired with a probe corrected ARM200F at the ePSIC facility (Diamond Light
Source) with an acceleration voltage of 200 keV. Measurement conditions were a
CL aperture of 30 μm, convergence semiangle of 24.3 mrad, beam current of 12 pA,
and scattering angles of 0–10 and 35–110 mrad for BF and HAADF STEM,
respectively. SEM analysis was performed on a Zeiss Ultra SEM operating at an
acceleration voltage of 1.6 and 20 keV.

Ambient pressure XPS and NEXAFS measurements. Ambient pressure XPS and
NEXAFS measurements in the soft X-ray regime were carried out at the ISISS end
station and beamline at Helmholtz–Zentrum Berlin (HZB). The freshly prepared
samples from atmospheric environment were directly exposed to vacuum (10−7

mbar) in the XPS Chamber. XPS measurements were performed applying a suitable
excitation energy corresponding to a kinetic energy (KE) of the photo-emitted
electrons of 450 eV (ex situ characterization in UHV) and/or 150 eV (TP-XPS
experiment) for the core levels Fe2p, C1s, O1s and N1s. The energy pass Ep was set
to 20 eV.

The core levels envelopes were fitted using Casa XPS software after subtraction
of a Shirley background.

The fittings of the Fe2p, O1s, and N1s were performed considering as many
components with Gaussian–Lorentzian line-shape as needed to describe
consistently structural changes among the samples and upon temperature-
programmed XPS. The fitting of the spectra was done constraining the peak
position by ± 0.05 eV. The area ratios between the Fe2p3/2 and Fe2p1/2 spin orbit
split transitions was constrained to the theoretical value of 2:1 and the distance
between the two-spin orbit split transition was 13.5 eV. Binding energies were
referenced to the C1s core level at 284.3 eV measured after each core level

measurement at the same excitation energy. Quantification of the elemental
composition was carried out assuming a homogeneous model distribution.

Auger Electron Yield NEXAFS spectra were recorded with an analyzer setting of
50 eV pass energy (Ep) and electron kinetic energy (KE) of 700 eV, 520 eV, 350 eV,
and 240 eV for Fe L, O K, N K, and C K, respectively. The beamline setting was:
exit slit (ES) 111 μm and fix focus constant (cff) 1.4 (cff= cosα/cosβ). The kinetic
energy window was chosen such to avoid photoelectrons moving through the
NEXAFS spectrum while sweeping the excitation energy, while broad Ep was
necessary to obtain reasonable intensity. The exit slit value chosen enables an
optimal compromise between high photon intensity and good spectral resolution.
The higher order suppression operation mode of the monochromator was applied
(fix focus constant cff= 1.4) to avoid contributions to the background in NEXAFS
spectra that might complicate intensity normalization of the spectra on impinging
photon flux. The same analyzer and beamline setting was used for measurements
under environmental condition. The sample heating was assured by a IR-laser
mounted on the rear part of the sample holder. Temperature control was realized
using two K-type thermocouples. During the TP-XPS experiment, water was dosed
through a dedicated mass flow controller to achieve a final pressure of 0.1 mbar.
After evacuating the chamber to a pressure of 10−7 mbar, CO2 was dosed through a
dedicated mass flow controller to achieve a final pressure of 0.1 mbar. During
APXPS measurements, the gases composition was continuously monitored using a
quadrupole mass spectrometer directly mounted onto the analysis chamber.

XAFS measurements and electrochemical cell for operando study. X-ray
absorption experiments (EXAFS and XANES) were performed at the B18 Core
EXAFS beamline of Diamond Light Source40. The measurements were carried out
using the Pt-coated branch of collimating and focusing mirrors, and a Si(111)
double-crystal monochromator. A couple of Pt-coated harmonic rejection mirrors
were inserted before the first ion chamber and used to filter out photons with
higher energy. The size of the beam at the sample position was ca. 1 mm (h) × 1
mm (v).

Samples were measured both in static air and operando conditions. The data
were collected in fluorescence mode, by means of a 36-element solid state
germanium detector (Kmax= 14), the ion chamber before the sample has been used
for measurement of incoming photons (I0 filled with a mixture of 30 mbar of Ar
and 1080 mbar of He to optimize sensitivity at 20% efficiency).

For the operando XAFS study we distinguish to different measurement modes:
Operando Fe K edge EXAFS and fast-XANES. The operando EXAFS spectra at the
Fe K edge (7112 eV) were obtained from 200 eV before the edge up to 900 eV after
the edge (corresponding to 15.3 Å−1 in k-space). The measuring time was 3
minutes per spectrum.

Operando fast-XANES was performed in quick mode with continuous
movement of the monochromator in both directions and a constant step size
equivalent to 0.3 eV. The spectra were obtained from 100 eV before the edge up to
300 eV after the edge (corresponding to 8.9 Å−1 in k-space) and collected every 20
s. When indicated, 11 repetitions were acquired and then merged to obtain a better
signal to noise ratio.

Data were normalized using the Athena32 program with a linear pre-edge and
polynomial post-edge background subtracted from the raw data. All XANES data
were fitted with linear combination analysis using relevant spectra as reference. Fits
were performed with Athena in the −20 to +30 eV range using relevant recorded
spectra as reference, to describe variation in sample composition.

EXAFS fits were performed using ARTEMIS software32. For the fresh sample
(reported in Fig. 2 and in supplementary table 1) the amplitudes and phases of two
Fe–O and one Fe-Fe scattering paths were calculated from reported structure PDF
00-058-0898.cif of ferrihydrite. Moreover, the interatomic distances and Debye-
Waller factors were optimized by fitting the experimental data.

An electrochemical cell adapted to the B18 beamline of the UK’s Synchrotron
Diamond Light Source was designed for the operando study. The scheme of the
operando XAFS cell is reported in Supplementary Fig. 2 and details about
experiments are reported in Supplementary Note 1. Before the operando
electrochemical measurements, the Fe K edge spectra were measured as a dry
sample and upon contact with the liquid electrolyte. Radiolysis was excluded on the
basis of the time stability of the Fe K edge measured for the fresh sample in KHCO3

at open circuit potential (OCP) for 30 minutes. This is also consistent with the
work of N. G. Petrik et al.41 showing that at the interface liquid electrolyte/Fe oxide,
radiolysis is inhibited with respect to bulk radiolysis.

For the analysis of the FT EXAFS recorded in operando, we reasoned that a
simulation approach was more appropriate rather than a fit due the possible
presence of multiple Fe phases. Therefore, first, the most relevant single scattering
and multiple scattering paths were calculated for each of the three crystallographic
sites in the ferrihydrite structure. Upon a comparative analysis, a fit of the Fe/N-C
at OCP in 0.05 M KHCO3 (red line) using only the most abundant site 1 of
ferrihydrite (site1 in Supplementary Fig. 8a,b) was used to extract the values for S02

amplitude (0.75), Fe–O (0.007), and Fe-Fe (0.010) Debye-Waller factors. Those
values were fixed for each path in all the simulations. Finally, the weighted average
of the contributions expected from the three difference sites was calculated. A
similar approach was adopted for wüstite and for the mixed valence oxide
simulations (50% Fh-FeOOH and 50% wüstite).
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Procedure for the electrochemical reduction of CO2 in liquid phase. A
homemade electrochemical cell made of Plexiglas was employed for the electro-
chemical reduction of CO2 in liquid phase (Supplementary Fig. 1). The cell has a
three-electrode configuration: the working electrode (about 0.64 cm2) was located
at the cathode side, at a small distance from a saturated Ag/AgCl reference elec-
trode to reduce the solution resistance. A commercial Pt rod (Amel) immersed in
the anode compartment was used as the counter-electrode. The anode and cathode
compartments were physically separated using a proton-conducting membrane
(Nafion® 117, supplied by Ion Power). A 0.05M KHCO3 aqueous solution was
used as the electrolyte both in cathode and anode compartments. To assure a
uniform distribution of CO2 in the cathode compartment, the electrolyte solution
was introduced into an external reservoir and saturated with a continuous flow of
pure CO2 (10 mLmin−1). A peristaltic pump was used to continuously circulate
the CO2 saturated electrolyte solution through the cathode compartment and the
external reservoir. A potentiostat/galvanostat (Amel mod. 2049 A) was employed to
supply a constant bias between the electrodes.

The experiments were carried out at three different voltages (−0.5, −1, and
−1.5 V), which were maintained for 30 min. Sampling from the external container
was made to analyze the liquid products by Gas Chromatography-Mass
Spectrometer (GC-MS, Thermo Trace 8000 A EVO, Triple Quadrupole MS,
column Stabilwax) and Ion Chromatography (IC Metrohm 940 with conductivity
and amperometry professional detector Vario). The gas products were detected by
sampling the outlet gaseous stream and analyzed by Gas-chromatography (GC-
TCD, Agilent 7890 A, column 5 A Plot). Before starting chronoamperometric
experiments, CV measurements were conducted on the electrocatalysts in the
potential interval 0/−2 V (vs Ag/AgCl) at a scan rate of 10 mVs−1.

Computational methods. The Vienna Ab Initio Simulation Package (VASP)42,43

was used to carry out quantum mechanical calculations within the Kohn-Sham
implementation of the DFT. The Perdew-Burke-Ernzerhof (PBE)44,45 version of
the generalized gradient approximation (GGA) was employed as the exchange-
correlation potential. A Hubbard-type correction was applied to Fe 3d orbitals
following the GGA+U formulation by Dudarev et al.46, where a single parameter
Ueff determines the strength of the correction. The GGA+U approach penalizes
the d orbital hybridization with the ligands, thus opposing the GGA tendency to
over-delocalize orbitals. Previous work has shown that Ueff= 4.0 eV leads to
optimal results in the description of the electronic structure of iron oxides47–49.
The interaction of the valence electrons with the core was modeled using projector
augmented wave (PAW) potentials, where levels up to 1 s in C, N, and O and up to
3p in Fe were kept frozen at the atomic reference states. The number of planewaves
in the basis set is controlled by the cutoff energy, which in our calculations was Ecut
= 520 eV, 30% above the standard value for the set of PAW potentials. Integrations
in the reciprocal space were performed using a fine grid of Г-centered k-points with
a maximum separation of 0.01 Å−1 in the reciprocal space. All precision para-
meters were tested for convergence of the total energy to within 1 meVatom−1.
Spin polarization was allowed in the simulations of iron-based systems, and the
magnetic moments were calculated in ferromagnetic configurations for simplicity.

Data availability. The authors declare that all data supporting the current findings
of this study are available in the main manuscript or in the Supplementary
information. Other data are available from the corresponding author on reasonable
request.
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