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A B S T R A C T

Background: Diffusion- and perfusion-weighted MRI are valuable tools for measuring the cellular and vascular
properties of brain tumours. This has been well studied in adult patients, however, the biological features of
childhood brain tumours are unique, and paediatric-focused studies are less common. We aimed to assess the
diagnostic utility of apparent diffusion coefficient (ADC) values derived from diffusion-weighted imaging (DWI)
and cerebral blood flow (CBF) values derived from arterial spin labelling (ASL) in paediatric brain tumours.
Methods: We performed a meta-analysis of published studies reporting ADC and ASL-derived CBF values in
paediatric brain tumours. Data were combined using a random effects model in order to define typical parameter
ranges for different histological tumour subtypes and WHO grades. New data were also acquired in a ‘validation
cohort’ at our institution, in which ADC and CBF values in treatment naïve paediatric brain tumour patients were
measured, in order to test the validity of the findings from the literature in an un-seen cohort. ADC and CBF
quantification was performed by two radiologists via manual placement of tumour regions of interest (ROIs), in
addition to an automated approach to tumour ROI placement.
Results: A total of 14 studies met the inclusion criteria for the meta-analysis, constituting data acquired in 542
paediatric patients. Parameters of interest were based on measurements from ROIs placed within the tumour,
including mean and minimum ADC values (ADCROI-mean, ADCROI-min) and the maximum CBF value normalised to
grey matter (nCBFROI-max). After combination of the literature data, a number of histological tumour subtype
groups showed significant differences in ADC values, which were confirmed, where possible, in our validation
cohort of 32 patients. In both the meta-analysis and our cohort, diffuse midline glioma was found to be an outlier
among high-grade tumour subtypes, with ADC and CBF values more similar to the low-grade tumours. After
grouping patients by WHO grade, significant differences in grade groups were found in ADCROI-mean, ADCROI-min,
and nCBFROI-max, in both the meta-analysis and our validation cohort. After excluding diffuse midline glioma,
optimum thresholds (derived from ROC analysis) for separating low/high-grade tumours were
0.95×10−3 mm2/s (ADCROI-mean), 0.82× 10−3 mm2/s (ADCROI-min) and 1.45 (nCBFROI-max). These thresholds
were able to identify low/high-grade tumours with 96%, 83%, and 83% accuracy respectively in our validation
cohort, and agreed well with the results from the meta-analysis. Diagnostic power was improved by combining
ADC and CBF measurements from the same tumour, after which 100% of tumours in our cohort were correctly
classified as either low- or high-grade (excluding diffuse midline glioma).
Conclusion: ADC and CBF values are useful for differentiating certain histological subtypes, and separating low-
and high-grade paediatric brain tumours. The threshold values presented here are in agreement with previously
published studies, as well as a new patient cohort. If ADC and CBF values acquired in the same tumour are
combined, the diagnostic accuracy is optimised.
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1. Introduction

Brain tumours represent the most common solid tumour of child-
hood, and one of the highest causes of paediatric cancer-related mor-
tality (Pollack, 1994). Magnetic resonance imaging (MRI) plays an es-
sential role in the clinical management of these patients. However,
paediatric brain tumours encompass a broad spectrum of histopatho-
logical features, and although conventional MRI sequences are well
suited to identifying the presence of a tumour, they often fail to provide
sufficient sensitivity and specificity regarding its underlying biology
(Poretti et al., 2012; Borja et al., 2013; Poussaint and Rodriguez, 2006;
Peet et al., 2012).

Advanced MRI techniques, such as diffusion- and perfusion-
weighted imaging (DWI and PWI, respectively), provide important
additional information regarding the biology and physiology of brain
tumours. DWI is the most commonly used of these techniques, and the
use of apparent diffusion coefficient (ADC) values to determine cellular
density, and to infer histologic subtype and/or malignancy in paediatric
brain tumours, has been widely reported (Bull et al., 2012; Chang et al.,
2003; Chen et al., 2010; Choudhri et al., 2015; Koral et al., 2013; Kralik
et al., 2014; Poretti et al., 2013; Rumboldt et al., 2006; Gimi et al.,
2012; Orman et al., 2015).

Neovascularisation is also considered a key mechanism in tumour
growth and malignancy; however, perfusion-based studies in paediatric
brain tumours are less frequently reported (Morana et al., 2018;
Dangouloff-Ros et al., 2015; Dangouloff-Ros et al., 2016; Kikuchi et al.,
2017; Yeom et al., 2014; Tzika et al., 2004; Cha, 2006; Thompson et al.,
2012; DerSimonian and Laird, 1986). This is due in part to PWI of brain
tumours traditionally being performed using dynamic susceptibility
contrast (DSC) MRI, which requires injection of a paramagnetic contrast
agent via high-flow power injectors and wide-bore intravenous can-
nulas, which poses technical challenges in young patients (Dangouloff-
Ros et al., 2016; Tzika et al., 2004). However, arterial spin labelling
(ASL) has emerged as a promising alternative to DSC-MRI in the eva-
luation of tumour vascularity (Lobel et al., 2011; Warmuth et al., 2003;
White et al., 2014). ASL does not require injection of an exogenous
contrast agent, making it well suited for paediatric use, and ASL-based
studies have shown promising results for the assessment of malignancy
in paediatric brain tumours (Dangouloff-Ros et al., 2016; Kikuchi et al.,
2017; Hirai et al., 2011; DerSimonian and Laird, 1986).

A number of studies have attempted to quantify typical values of
ADC or cerebral blood flow (CBF) in common World Health
Organisation (WHO) paediatric brain tumour histological subtypes or
grades, in order to provide threshold values to aid clinical diagnosis
(Bull et al., 2012; Chang et al., 2003; Chen et al., 2010; Choudhri et al.,
2015; Koral et al., 2013; Kralik et al., 2014; Poretti et al., 2013;
Rumboldt et al., 2006; Gimi et al., 2012; Orman et al., 2015; Morana
et al., 2018; Dangouloff-Ros et al., 2016; Kikuchi et al., 2017; Hirai
et al., 2011). Furthermore, following the updated WHO classification of
central nervous system tumours in 2016 (Delgado et al., 2018), in
which the importance of molecular stratification of brain tumours has
been recognised, a growing interest in ‘radio-genomics’ has emerged,
which aims to define the relationship between imaging features and
molecular tumour markers (Louis et al., 2016). Early studies have
shown promise in differentiating some brain tumour molecular sub-
types non-invasively using this technique (Kuo and Jamshidi, 2014;
Zhou et al., 2018; Liu et al., 2018; Figini et al., 2018), and, although
paediatric-based radio-genomics studies are still in their infancy, pro-
mising results have been obtained in identifying molecular subtypes of
medulloblastoma using MRI (Jansen et al., 2018; Dasgupta et al., 2019;
Perreault et al., 2014).

As paediatric brain tumours represent a rare disease, it is challen-
ging to acquire sufficient data in a single institution to characterise
typical ADC and CBF values across the wide spectrum of biology found
in these tumours. Furthermore, representative values reported in the
literature can vary considerably between studies. A proportion of this

variation is due to differences in the method by which representative
ADC and CBF values for a given tumour are extracted. Although auto-
mated tumour segmentation and analysis techniques may alleviate this
issue (Dangouloff-Ros et al., 2018), these are not yet standardised or
routinely available in the clinic. As such, most studies rely on manual
placement of regions of interest (ROIs) by a radiologist, using a clinical
workstation with limited image processing capabilities. The definition
of these ROIs tends to vary between studies. Some encompass the entire
‘solid tumour’ (Bull et al., 2012; Chen et al., 2010; Angulakshmi and
Priya, 2017), however more commonly a number of small ROIs (typi-
cally 5–75mm2) are hand-placed within the tumour volume, in regions
judged to have the lowest ADC or highest CBF values (Chang et al.,
2003; Koral et al., 2013; Kralik et al., 2014; Poretti et al., 2013;
Rumboldt et al., 2006; Morana et al., 2018; Dangouloff-Ros et al., 2015;
Dangouloff-Ros et al., 2016; Kikuchi et al., 2017). This represents a
relatively simple and easily implemented method for quantifying tu-
mour ADC and CBF values in the clinic, and it is therefore important to
understand the reliability of this technique.

Having acquired a ‘representative sample’ of the tumour by placing
an ROI, there is additional variation in which metrics are subsequently
reported. The mean ADC value within this ROI (ADCROI-mean) is often
used, however, there are a number of studies which suggest the
minimum ADC (ADCROI-min) may be superior for differentiating WHO
grade (Kralik et al., 2014; Calmon et al., 2017; Jaremko et al., 2010),
although this has recently been disputed (Lee et al., 2008). What ap-
pears more clear is that, for CBF, the maximum value (rather than the
mean) is best for differentiating WHO grade (Lobel et al., 2011; Surov
et al., 2017; Knopp et al., 1999; Sugahara et al., 2001; Shin et al., 2002;
Law et al., 2003; Aronen et al., 1994; DerSimonian and Laird, 1986).
However, particularly in paediatrics, it is important that CBF values are
normalised to a reference tissue within the patient's brain, in order to
account for age and other patient-dependent variations in cerebral
perfusion, such as hydrocephalus or anaesthesia (Noguchi et al., 2008;
DerSimonian and Laird, 1986). Normal appearing grey matter (GM) is
preferred for this, due to the higher signal-to-noise ratio and reduced
arterial transit time compared to white matter (Hales et al., 2014;
DerSimonian and Laird, 1986). This reference ROI is sometimes placed
in a fixed anatomical position, such as the contralateral thalamus
(Kikuchi et al., 2017) or temporal pole; (Morana et al., 2018) however,
in studies which include tumours occurring over a wide range of ana-
tomical locations, a region of normal appearing grey matter con-
tralateral to each individual tumour is often used (DerSimonian and
Laird, 1986).

The aim of this study was two-fold. Firstly, we performed a meta-
analysis of the available literature regarding ADC and CBF values
measured in common paediatric brain tumour subtypes, and by com-
bining data from previous studies, aimed to define typical parameter
ranges for different histological subtypes and WHO grades. In this
study, we focussed on histological rather than molecular subtypes, due
to the comparatively large quantity of published data regarding the
diffusion and perfusion characteristics of former. Following this, we
acquired ADC and CBF maps in a validation cohort of treatment naïve
paediatric brain tumour patients at our institution. This cohort was
used to (a) assess the reliability of extracting tumour ADC and CBF
values by the manual placement of ROIs, (b) determine if conclusions
drawn from the meta-analysis were valid in an un-seen data set, and (c)
assess the added diagnostic value of combining ADC and CBF mea-
surements from the same tumour, which has not been widely reported
in paediatric brain tumours.

2. Methods

2.1. Meta-analysis

2.1.1. Search strategy
A systematic search was performed in PubMed, using the following
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search terms: (diffusion OR ADC OR DWI OR “arterial spin labelling” OR
“arterial spin labeling” OR ASL) AND ((paediatric OR paediatric OR child)
AND (brain OR CNS) AND (tumour OR tumour OR neoplasm)). In addi-
tion, references from selected articles were examined manually for
potentially relevant studies which were not identified in the above
search.

Our inclusion criteria were as follows: (Jaremko et al., 2010) ASL or
DWI was used to measure CBF or ADC values respectively, in treatment
naïve paediatric brain tumours; (Lee et al., 2008) subsequent histolo-
gical confirmation of tumour subtype was performed, with the excep-
tion of optic pathway glioma and diffuse midline glioma, in which
tissue sampling is not generally used for diagnosis; (Bull et al., 2012)
imaging parameters were obtained from tumour ROIs avoiding large
blood vessels, necrotic, cystic and haemorrhagic regions (identified
using conventional MRI sequences); (Knopp et al., 1999) studies re-
ported ADCROI-mean, and/or ADCROI-min values, or maximum normalised
CBF values (nCBFROI-max) for the tumour, the latter being normalised to
normal appearing grey matter in the same patient.

Studies were excluded based on the following criteria: animal stu-
dies, studies which reported patients grouped by WHO grade only;
studies reporting normalised ADC values only; ASL studies which did
not report CBFmax values; studies in which CBFmax values were not
normalised to normal appearing grey matter; non-paediatric studies.

2.1.2. Data analysis
Reported mean values of ADCROI-mean, ADCROI-min, or nCBFROI-max

for different histological tumour subtypes, along with their standard
deviation (SD), were used as individual estimates from each included
study. These were combined to produce summary estimates (combined
mean and 95% confidence interval (CI)), using the DerSimonian and
Laird random effects model (van Gelderen et al., 2008), with between-
study variance pooled by histological subtype. This was used to account
for inherent variability in the MR acquisition protocols and analysis
techniques used across studies; an example is shown in the Inline
Supplementary Materials (S1).

The above process was repeated after re-grouping the literature data
into the four WHO grade groups (I-IV), and again after grouping all
tumours into either low-grade (WHO I-II) and high-grade (III-IV) cate-
gories. Throughout this study, all group comparisons were performed
using either t-tests (two groups) or their non-parametric equivalent for
non-normally distributed data (Mann Whitney U test for un-paired
samples, Wilcoxon rank sum tests for paired samples). Differences be-
tween multiple groups were identified using a one-way ANOVA test of
subgroup summary measures (Borenstein et al., 2009). Post-hoc group
comparisons were corrected for multiple comparisons using Tukey's
honestly significant difference criterion (Tukey, 1949).

2.2. Cohort validation

2.2.1. Patients
Paediatric patients with primary brain tumours seen at the neuro-

oncology clinic at our hospital were retrospectively reviewed, after
institutional ethical approval. Inclusion criteria were: patients who re-
ceived ASL and DWI imaging between June 2015 (when ASL was in-
troduced for paediatric brain tumours at our hospital) to September
2017, and patients with no prior resection, biopsy or treatment of the
tumour.

2.2.2. Magnetic resonance imaging
All patients were examined either at 3 T (MAGNETOM Prisma,

Siemens, Erlangen, Germany) or at 1.5 T (MAGNETOM Avanto,
Siemens). On both scanners, ASL was performed using a prototype
pseudo-continuous labelling sequence, with background suppression,
and a 3D gradient-and-spin-echo readout. The labelling duration was
1800ms, with a 1500ms post-labelling delay, and ten repetitions were
acquired. The DWI acquisition consisted of a diffusion-sensitised axial

2D spin-echo sequence with EPI readout, with a maximum b value of
1000 s/mm2. In addition, the MRI protocol included standard sequences
for brain tumour investigations, including axial T2-weighted (T2w)
imaging, axial T1w imaging pre- and post‑gadolinium contrast agent
injection, and fluid attenuated inversion recovery (FLAIR) imaging.
T2w, ASL and DWI sequences were acquired prior to the injection of
gadolinium, and full details of these sequences are given in the Inline
Supplementary Materials (S2).

2.2.3. Post-processing
All post-processing, image analysis, and statistics were performed in

Matlab (Mathworks Inc., Natick, MA) unless otherwise stated.
Repetitions of the raw ASL images were checked for patient motion
prior to averaging, and where necessary, individual mis-aligned vo-
lumes were corrected using an affine registration. All image registra-
tions were performed using the flirt algorithm in FSL (FMRIB, Oxford,
UK), using affine registrations (12 degrees of freedom) derived from a
correlation ratio cost function.

CBF maps (units of ml blood/100 g tissue/min) were calculated
using the method described in Alsop et al. (Alsop et al., 2014), with
λ=0.9, α=0.85, and T1bl= 1.65 s. The ADC maps were produced
directly by the scanner, and converted into standard units (mm2/s)
prior to analysis using an in-house Matlab script. CBF and ADC maps
were co-registered to the axial T2w scan. The ADC maps were regis-
tered directly to T2w scans; for the ASL data, the M0 calibration image
was used to calculate the transformation matrix between the ASL and
T2w scans, which was then applied to the CBF maps.

2.2.4. Manual ROI placement
Whole-tumour ROIs were drawn by two readers (both consultant

neuro-radiologists; KM (reader 1), 8 years of experience; Fd'A (reader
2), 4 years of experience). These were drawn around solid portions of
the tumour (including enhancing and non-enhancing tissue) on the T2w
axial images, using all available slices. Areas of cyst, haemorrhage,
necrosis, and large blood vessels were avoided by cross-reference to the
standard imaging sequences. The readers were blinded to the patient's
histopathological diagnosis.

Both readers then independently sampled each tumour using two
ROIs, each square in size and 50mm2 in area, and fitting completely
within the previously defined whole-tumour ROI. The size of this ROI
was chosen to best match the ROI sizes used across the studies included
in the meta-analysis, the average size of which was 48 ± 25mm2 (in
all studies where this was specified). One ROI was placed on the ADC
map in the region of lowest-appearing ADC, the other on the CBF map
in a region of highest-appearing CBF (both determined via visual in-
spection). An example is illustrated in Fig. 1. The mean value from the
ADC ROI was used for ADCROI-mean, the minimum value was used for
ADCROI-min, and the maximum value from the CBF ROI was used for
CBFROI-max. For CBF normalisation, a 150mm2 ROI was placed in
normal-appearing contralateral grey matter (Fig. 1), similar to the
technique described in Yeom et al. (DerSimonian and Laird, 1986).

2.2.5. Automated ROI placement
In order to judge the performance of each reader in manually

finding the lowest ADC and highest CBF tumour regions via visual in-
spection, every tumour was then automatically sampled using an in-
house routine written in Matlab. For this, all possible locations for a
50mm2 ROI which fit wholly within the tumour (as defined by the
whole-tumour ROIs drawn by the two readers) were identified. Of
these, the optimal ADC ROI placement was chosen as the location with
the lowest mean ADC within the ROI, and the optimal CBF ROI pla-
cement was chosen as the location with highest mean CBF. This re-
presented the ‘gold standard’ for the placement of these ROIs, which
cover regions that are thought to represent the most cellular or most
vascular regions of the tumour respectively. For normalisation of the
CBF values in this part of the study, the FAST algorithm(Zhang et al.,
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2001) in FSL was used to automatically segment the grey matter on the
T2w images, and any overlap between the grey matter mask and tu-
mour ROI was automatically excluded. The mean CBF value in grey
matter in the axial slice at the mid-point of the tumour was used for
normalisation (for automated CBF measurements only).

In addition, in order to determine the effect of ROI size on the
quantification of tumour ADC and CBF values in our cohort, the auto-
mated ROI placement routine described above was reiterated, with ROI
sizes of 25, 75, and 100mm2. The lower limit of this range was chosen
to ensure that any misalignment of the co-registered ADC and CBF
maps, due to the unique distortions inherent in each sequence, did not
outweigh the coverage of the ROI. Lastly, ADCmean, ADCmin, and
nCBFmax were measured over the entire tumour volume (based on the
whole-tumour ROIs defined above) for comparison.

For analysis of the validation cohort, agreement between manual

ADC and CBF measurements from the two readers was assessed using
the intraclass correlation coefficient (ICC). In addition, the reproduci-
bility coefficient (RPC) was defined as 1.96 x the SD of the difference in
measured values across the cohort. Bias was defined as the mean dif-
ference between a reader's manual ADC or CBF measurements and the
equivalent gold-standard values from automated evaluation. Optimum
threshold values for separating low- and high-grade tumours in the
validation cohort were calculated using receiver operator characteristic
(ROC) analysis.

The combined predictive power of ADC and CBF measurements, for
separating low/high grade tumours, was also examined. For this, ADC
and CBF values from the same tumour were used as predictors in a
logistic regression model, with high/low grade as the binary outcome.
This was performed using Matlab's fitlm function, and the mathematical
form of the model is given in the Inline Supplementary Materials (S4).

3. Results

3.1. Meta-analysis

A total of 14 studies met the inclusion criteria, constituting data
acquired from 542 patients (9 studies reported ADC values (290 pa-
tients), 5 reported CBF values (252 patients)). Details are given in
Table 1.

3.1.1. Tumour histological subtypes
Summary estimates are shown in Fig. 2, which indicate the range of

ADC and CBF values seen across different histological tumour subtypes,
after combining the available data from the literature. For a given
parameter, subtypes were included if data were available for 2 patients
or more, after combination across the contributing studies. All sig-
nificant differences between groups are indicated in the figure.

Although there was appreciable overlap between many of the his-
tological subtypes, pilocytic astrocytoma had significantly higher ADC
values compared to both medulloblastoma and atypical teratoid/rhab-
doid tumour (AT/RT), using both ADCROI-mean and ADCROI-min values.
In addition, diffuse midline glioma differed from other high-grade tu-
mours, with ADCROI-mean/min and nCBFROI-max values more similar to
those found in low-grade subtypes. No significant differences in
nCBFROI-max values between subtypes survived multiple comparison
correction.

3.1.2. WHO tumour grades
After re-grouping all tumours by WHO grade, summary estimates

for each parameter are shown in Fig. 3. Also shown are the summary
estimates after re-grouping tumours into low-grade (WHO I-II) and

Fig. 1. ADC and CBF ROI placement in an example patient (medulloblastoma,
WHO IV). Axial T2w slices are shown in (A) and (C). The ADC map, and tumour
ADC ROI placed by one of the readers (red square), are shown in (B). Similarly,
the CBF map, with the tumour CBF ROI (red square), and normal appearing
grey matter ROI (green square), placed by the same reader, are shown in (D).

Table 1
Summary of the studies included in the meta-analysis. ADCROI-mean/min, mean/min tumour apparent diffusion coefficient; nCBFROI-max, maximum tumour cerebral
blood flow, normalised to normal-appearing grey matter; pCASL, pseudo-continuous arterial spin labelling; PASL, pulsed arterial spin labelling; BL, bolus length; PLD,
post-labelling delay; NS, not specified.

Study Parameters measured No. patients Age range (years) Magnetic field strength (T) DWI b-values (s/mm2) or ASL modality (BL/PLD, ms)

Bull (2012) ADCROI-mean, ADCROI-min 54 0.1–15.8 1.5 b= 0,500,1000
Calmon (2017) ADCROI-mean 18 3.3–14.7 1.5 b= 0,1000
Chang (2003) ADCROI-mean 6 1.1–15.0 1.5 b= 0,1000
Chen (2010) ADCROI-mean, ADCROI-min 22 3.8 – NS 1.5 b= 0,1000
Choudhri (2015) ADCROI-mean 20 0.5–16.8 1.5, 3 b= 0,1000
Koral (2013) ADCROI-mean, ADCROI-min 95 1.2–17.4 1.5, 3 b= 0,1000
Kralik (2014) ADCROI-min 19 0.08–1.0 1.5 b= 0,1000
Poretti (2013) ADCROI-mean 24 0.08–18.5 1.5 b= 0,1000
Rumboldt (2006) ADCROI-mean 32 0.1–23.0 1.5 b= 0,500,1000
Dangouloff-Ros (2016) nCBFROI-max 129 0.2–18.0 1.5 pCASL (NS/1025)
Dangouloff-Ros (2015) nCBFROI-max 13 0.6–16.0 1.5 pCASL (NS/1025)
Kikuchi (2017) nCBFROI-max 19 0.2–12.0 3 pCASL (1650/1525)
Morana (2018) nCBFROI-max 37 2.0–17.0 1.5 PASL (NS/1500–1800)
Yeom (2014) nCBFROI-max 54 0.2–18.0 3 pCASL (1500/1500)
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high-grade (WHO III-IV) categories.
Overall, as the WHO grade of a tumour increased, ADC values de-

creased and CBF increased. A one-way ANOVA with post-hoc multiple
comparison correction revealed improved stratification across WHO
grades I to IV using ADCROI-mean values (p=8.8×10−19) compared to
ADCROI-min (p=5.7×10−5). nCBFROI-max values also demonstrated
good separation between individual grades (p=1.2× 10−7).

After re-grouping tumours into low-grade and high-grade cate-
gories, both ADCROI-mean and ADCROI-min were significantly higher in
low-grade vs. high-grade tumours (p=5.8×10−7 and 3.7× 10−4

respectively), and nCBFROI-max was significantly lower in low-grade
tumours (p=8.2×10−11). The boundaries for the ‘target area’ for
potential threshold values for optimal separation of low- and high-
grade tumours, defined as the region between the 95% CIs of the two

groups, are illustrated in Fig. 3 (see also Section 3.2.3).

3.2. Cohort validation

The inclusion criteria were fulfilled by 32 patients (17 females). The
median age at pre-treatment MRI was 4.8 years (range 0.4 to
14.5 years). Histologic examination revealed the following subtypes
(WHO grade in brackets): 10 pilocytic astrocytomas (I), 1 pilomyxoid
astrocytoma (I), 2 gangliogliomas (I), 2 anaplastic ependymomas (III), 7
diffuse midline gliomas (1 x III, 5 x IV, 1 not biopsied), 6 medullo-
blastomas (IV), 2 glioblastomas (IV), 1 atypical teratoid/rhabdoid tu-
mour (IV), and 1 mixed germ cell tumour (IV).

Fig. 2. Summary estimates for (A) ADCROI-mean, (B) ADCROI-min and (C) nCBFROI-max across histological brain tumour subtypes. Data points and error bars represent
mean and 95% CI values for a given subtype respectively, after combination of data from the contributing studies using the random effects model. Colours represent
WHO grade (see legend), and horizontal lines represent significant differences between subtypes after multiple comparison correction using Tukey's honestly
significant difference criterion. N represents the total number of patients available for each subtype. * p < .05, ** p < .01, *** p < .001.
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3.2.1. Manual ROI placement – Inter-reader agreement and comparison
with automated assessment

The agreement in manual measurements of tumour ADC and CBF
values between the two readers is shown in Table 2. Also shown is bias

(mean difference) between each reader's manual measurements and the
gold-standard values obtained via automated evaluation.

Between the two readers, all manually measured parameters
showed excellent correlation across the range of tumours in our cohort,

Fig. 3. Summary estimates for ADCROI-mean (top row), ADCROI-min (middle row) and nCBFROI-max (bottom row). Tumours are categorised into individual WHO grade
groups (left column), and into low-grade (I-II) and high-grade (III-IV) groups (right column). Blue and red lines (with values overlaid) in B, D, and F represent the
bounds for potential threshold values which could best separate low- and high-grade lesions (see Section 3.2.3). Symbols are the same as those used in Fig. 2, with N
representing the total number of patients available for each group. * p < .05, ** p < .01, *** p < .001.

Table 2
Inter-reader agreement for manual measurement of the parameters of interest, and comparison of each reader's measurements to automated parameter evaluation.
AE, automated evaluation; ICC, intraclass correlation coefficient; RPC, reproducibility coefficient.

Reader 1 vs. Reader 2 Reader 1 vs. AE Reader 2 vs. AE

Parameter ICC RPC ICC Bias (R1-AE) ICC Bias (R2-AE)

ADCROI-mean 0.96 0.33× 10−3 mm2/s 0.84 7.80% 0.83 10.50%⁎

ADCROI-min 0.95 0.31× 10−3 mm2/s 0.67 12.31%⁎ 0.62 12.08%
CBFROI-max 0.97 24.88ml/100 g/min 0.62 −15.72% 0.60 −21.44%⁎⁎

CBFGM 0.95 19.06ml/100 g/min 0.87 13.52%⁎⁎ 0.85 13.74%⁎⁎

nCBFROI-max 0.94 1.33 0.64 −22.33%⁎ 0.64 −21.07%⁎

⁎ p < .05.
⁎⁎ p < .01.

P.W. Hales et al. NeuroImage: Clinical 22 (2019) 101696

6



with ICCs of 0.94 or higher. The limits of agreement were slightly better
for ADC values compared to CBF; after normalising to the mean mea-
sured value for each parameter, the RPC values shown in Table 2 re-
present an inter-reader variability of 31% and 36% for ADCROI-mean and
ADCROI-min values, and 44% and 42% for CBFmax and mean CBF in the
grey matter (CBFGM), respectively. As nCBFROI-max represents the quo-
tient of two independently measured values (CBFmax and CBFGM), the
RPC value was accordingly high: the value of 1.33 represents 82% of
the mean nCBFROI-max values across the cohort.

Overall, the manually measured parameter values showed moderate
correlation with the equivalent ‘gold standard’ automated values;
ADCROI-mean showed the best correlation (mean ICC of 0.84), and
CBFmax the poorest (mean ICC of 0.61). In general, manual measure-
ments of ADCROI-mean, ADCROI-min, and CBFGM were over-estimated
compared to the gold standard, and CBFROI-max and nCBFROI-max were
under-estimated (see bias values in Table 2).

3.2.2. Subtype comparisons
Due to the limited size of the validation cohort, only the following

subtypes could be considered for between-group comparisons: pilocytic
astrocytoma (N=10), diffuse midline glioma (N=7) and medullo-
blastoma (N=6). All other subtypes had fewer than 3 patients. In the
meta-analysis, it was suggested that pilocytic astrocytomas should be
separable from medulloblastomas using ADCROI-mean or ADCROI-min. It
was also suggested that diffuse midline glioma should be separable
from medulloblastoma using ADCROI-mean, and will appear more similar
to pilocytic astrocytoma.

Plots of the between-group differences for the above histological
subtypes are shown in the Inline Supplementary Material (S3). Using
automated values from our cohort, the pilocytic astrocytomas did in-
deed demonstrate significantly higher ADCROI-mean and ADCROI-min va-
lues than the medulloblastomas (p=9.5× 10−5 and p=2.2× 10−4

respectively, ANOVA with post-hoc multiple comparison correction). In
addition, the diffuse midline gliomas demonstrated significantly higher
values of ADCROI-mean and ADCROI-min compared to the medullo-
blastomas (p= .0014 and p= .0030 respectively). In our cohort, the
medulloblastomas also demonstrated significantly higher nCBFROI-max

values than both the pilocytic astrocytomas (p= .012) and diffuse
midline gliomas (p= .011). Lastly, as suggested by the meta-analysis,
no significant differences were found between the pilocytic astro-
cytomas and diffuse midline gliomas, in any of the parameters.

3.2.3. Low- and high-grade tumour separation
After re-grouping the tumours in our cohort into low-grade (WHO I-

II) or high-grade (WHO III-IV) categories, group differences in ADCROI-

mean, ADCROI-min, and nCBFROI-max are shown in Fig. 4. Diffuse midline
gliomas were excluded (N=7), due to the aforementioned atypical
features of these high-grade tumours. The positions of the optimal
threshold values for separation of the two groups, derived from ROC
analysis, are also shown in Fig. 4, relative to their suggested ‘target
region’, as suggested by the findings from the meta-analysis.

The AUC values shown in Fig. 4 indicated that automated mea-
surements provided improved separation of low/high grade tumours,
compared to manually derived values. Using the automated values, the
optimum ADCROI-mean threshold for low/high-grade separation was
0.95×10−3 mm2/s, proving a 96% accuracy in low/high-grade clas-
sification. For ADCROI-min, this was 0.78×10−3 mm2/s (83% accu-
racy); and for nCBFROI-max, 1.45 (83% accuracy). All but one of the
threshold values shown in Fig. 4 fell within the ‘target regions’ sug-
gested by the meta-analysis. The only exception was the automated
ADCROI-min threshold – our cohort suggested a value just below the
lower bound suggested by the meta-analysis (0.82×10−3 mm2/s,
Fig. 4D). However, applying the latter to our cohort gave equally good
separation between the two groups, and as such a threshold of
0.82×10−3 mm2/s for ADCROI-min is likely to be optimal.

Overall, ADC values provided superior separation of low/high grade

tumours, compared to CBF. This was largely due to a sub-set of low-
grade glial tumours which demonstrated markedly high CBF (two pi-
locytic astrocytomas, with CBFmax of 85 and 149ml/100 g/min; and
one pilomyxoid astrocytoma with CBFmax of 149ml/100 g/min; Fig. 4F;
see Discussion). A flowchart summarising the use of these thresholds for
identifying low- and high-grade tumours, and their estimated sensi-
tivity and sensitivity based on their application in our validation cohort,
is illustrated in Fig. 5.

Lastly, the effect of changing the size of the ROI used for the au-
tomated ADC and CBF measurements is shown in Fig. 6. In terms of
separation of low/high grade tumours, varying the ROI size between 25
and 100mm2 had only a minimal effect on the AUC values obtained
from the ROC analysis (see Fig. 6); over this range, the coefficient of
variation in AUC values was only 0.5% for ADCROI-mean, 1.2% for AD-
CROI-min, and 3.2% for nCBFROI-max. However, when the ‘whole tumour’
ROI was used, particularly for ADCROI-mean/min, the AUC values were
markedly lower than those obtained with the smaller ROIs (25 to
100mm2, Fig. 6).

3.2.4. Combined use of ADC and CBF as predictors
Using a logistic regression model, with automated values of either

ADCROI-mean or ADCROI-min in combination with nCBFROI-max as in-
dependent variables, we were able to achieve correct low/high-grade
classification in 100% of our tumours (again, after exclusion of diffuse
midline glioma). An example is shown in Fig. 7 (the equivalent plot for
the ADCROI-min+ nCBFROI-max model is shown in the Inline Supple-
mentary Materials, S4). As such, the predictive power of using ADC and
CBF values combined was superior to either parameter used in isola-
tion, albeit only marginally so in the case of using ADCROI-mean alone in
our cohort.

Lastly, the logistic regression model described above, which was
derived using automated ADC and CBF values, was applied to the
manual measurements from each reader in turn. Using combined
ADCROI-mean and nCBFROI-max values, the model correctly classified low/
high grade status for 92% of the tumours for reader 1, and 96% for
reader 2. Using combined ADCROI-min and nCBFROI-max values, the
model correctly classified low/high grade status for 88% of the tumours
for reader 1, and 92% for reader 2.

4. Discussion

Paediatric brain tumours are rare, and encompass a wide spectrum
of biological subtypes. As such, it is challenging to define their quan-
titative imaging characteristics, such as typical ADC and CBF values,
using data from a single institution. The aim of this study was to collate
a body of evidence from previously published data in order to overcome
this limitation. The included studies acquired data over a range of MRI
scanners, pulse sequences, and field strengths (1.5–3 T). Accordingly,
these data were combined using a random effects model, to account for
between-study variations in methodology. As such, the resulting typical
parameter ranges and recommendations presented here should be ap-
plicable over the range of MRI scanners and acquisition protocols ty-
pically encountered in the clinic. By demonstrating the concordance of
the results from the meta-analysis with data acquired in a new cohort of
patients, we aimed to demonstrate the applicability of these guidelines
in a single-centre setting. Lastly, the image analysis techniques used in
this study were limited to those which could be performed using typical
clinical workstations with limited image processing capabilities, to as-
sess the accuracy and reproducibility of a relatively simple quantifica-
tion method which could be readily applied in the clinic.

4.1. Stratification of histological subtypes

After combing data across studies, our results suggest that con-
siderable overlap in ADC and CBF values remains, and as such, many
histological subtypes will not be separable using these parameters
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alone. However, both the meta-analysis and our validation cohort
confirm that pilocytic astrocytomas have markedly higher ADC values
compared to high-grade embryonal tumours such as medulloblastoma.

The results from the meta-analysis and the validation cohort also
suggest that diffuse midline glioma is an ‘outlier’ among high-grade
tumours, being characterised by ADC and CBF values which are more
similar to low-grade glial tumours. This is perhaps surprising given that
diffuse midline gliomas carry the worst prognosis of all childhood brain
tumours. However, this poor prognosis is largely due to the location of
these tumours in the brain stem, and their highly infiltrative nature.
These tumours intermix with surrounding white matter tracts, and
despite the conspicuity of these lesions on T2w imaging, it has been
proposed that only small areas of signal abnormality represent ana-
plastic tumour tissue (Thompson et al., 2012). This makes separating
malignant tumour tissue from surrounding parenchyma problematic,
and as such, ADC and CBF values are likely to be ‘corrupted’ by the
admixture of tumour and non-tumour tissue. It has been suggested that
regions which demonstrate T2 hypo-intensity in conjunction with
postcontrast signal enhancement and diffusion restriction may re-
present focal anaplasia in these tumours (Thompson et al., 2012),
which may alleviate this issue in future studies.

4.2. Stratification of low- and high-grade tumours

As illustrated in Fig. 4, the threshold values for differentiating low-

and high-grade tumours presented here were in good agreement with
the results from the meta-analysis. Furthermore, our suggested ADCROI-

mean threshold of 0.95× 10−3 mm2/s is in good agreement with the
value of 0.9× 10−3 mm2/s suggested by Orman et al. (Orman et al.,
2015), and the mean difference in nCBFROI-max between the low- and
high-grade groups of 0.99 in our study falls within the 95% CI range
reported recently in Delgado et al. (Hirai et al., 2011).

Our analysis suggests that ADC values provide superior separation
of low-grade and high-grade tumours, compared to CBF. As mentioned
above, this was due to a subset of low-grade glial tumours with mark-
edly high CBF. Previous studies have shown that, despite their low-
grade nature, histologically, pilocytic astrocytomas demonstrate a high
vascular density (Birlik et al., 2006). However, the delivery of blood to
these tumours appears to remain generally low: both our validation
cohort, and data from the meta-analysis, confirm that the majority of
pilocytic astrocytoma tumours are hypo-perfused. There are, however,
a minority in which markedly high blood flow is observed, which may
get over-looked when summary values are reported. Further studies to
investigate the clinical progression of these highly perfused pilocytic
astrocytomas, as compared to their hypo-perfused counterparts, would
be of interest. Nonetheless, once ADC and CBF values are combined, all
pilocytic astrocytomas were correctly classified as either low- or high-
grade in our cohort, demonstrating that diagnostic utility is maximised
by combining ADC and CBF values in the same tumour.

In addition, our results suggest that sampling a sub-section of the

Fig. 4. Separation of low-grade (WHO I-II) and high-grade
(WHO III-IV) tumours, using ADCROI-mean (top row), ADCROI-

min (middle row) and nCBFROI-max (bottom row). Data points
are derived from manual ROI measurements (left column) and
automated ROI measurements (right column). The threshold
value for optimum separation of high/low grade tumours in
the validation cohort, derived from ROC analysis, is shown as
a dashed line for both manual and automated values. For
comparison, the red and blue horizonal lines represent the
anticipated bounds of the ‘target region’ for these threshold
values, derived from the meta-analysis (Fig. 3). Between-
group p-values obtained from two-sided Wilcoxon rank sum
tests, and area under the curve (AUC) values from ROC ana-
lysis, are indicated in each panel.
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tumour, via either manual or automated placement of a small ROI,
provided superior stratification of low/high-grade tumours, compared
to values drawn from the entire solid tumour region. Our results were

approximately consistent using ROIs in the range of 25–100mm2, all of
which provided improved stratification compared to the whole-solid-
tumour ROIs.

4.3. ADCROI-mean or ADCROI-min?

The results from both the meta-analysis and the validation cohort
suggest that overall, the performance of the ADCROI-mean and ADCROI-min

parameters was approximately equivalent; however, ADCROI-mean per-
formed marginally better in a small number of cases (improved ICC
with automated values, improved performance in the meta-analysis in
terms of WHO grade stratification, and marginally higher AUC values
for low/high-grade tumour separation in our cohort). However, it
should be noted that the mean/min ADC values used in this study do
not generally refer to ‘whole-tumour’ mean or minimum values. Rather,
the ADCROI-mean and ADCROI-min parameters refer to the distribution of
values within an ROI, placed in an area of solid tumour judged to have
comparatively low ADC via visual or automated assessment. The mean
value derived from this area is likely to provide a more stable estimate
of local cellularity, compared to the minimum value, which is ulti-
mately decided by a single voxel.

4.4. Reliability of the manual placement of ROIs for ADC and CBF
quantification

A further aim of this study was to evaluate the reliability of ADC and
CBF measurements when ‘done by hand’, by experienced radiologists.
This arguably represents the most realistic manner by which these
measurements are obtained clinically, where image analysis infra-
structure is often limited, and is also representative of the techniques
used in the studies included in the meta-analysis.

Fig. 5. Flowchart illustrating the use of ADCROI-min, ADCROI-mean or nCBFROI-max values for differentiating low- and high-grade paediatric brain tumours. ADCROI-min/

mean represent the minimum/mean values from the ROI placed on the ADC map, and nCBFROI-max is the maximum value from the ROI placed on the CBF map, divided
by the mean CBF value from the ROI placed in contralateral grey matter. The above thresholds are suitable for most histological subtypes, with the exception of
diffuse midline glioma. Additionally, a subset of low-grade pilocytic astrocytoma may present with nCBFROI-max values above 1.45.

Fig. 6. Plots of the AUC values derived from ROC analysis of low-grade vs.
high-grade tumour stratification, based on ADC and CBF measurements ob-
tained from the automated placement of ROIs with a range of sizes
(25–100mm2). Also shown are the AUC values after using ADC and CBF
measurements obtained from ‘whole tumour’ ROIs.
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Our results suggest that ADC and CBF values obtained by two in-
dependent readers show excellent correlation across a range of common
paediatric brain tumour subtypes and grades. However, the absolute
values varied between readers. As CBFmax must be normalised to
normal-appearing grey matter, the measurement of which itself is
subject to variability between readers, the final values of nCBFROI-max

can be highly variable when performed manually.
It is clearly challenging, and subjective, for a reader to pick out the

lowest ADC or highest CBF region of a tumour ‘by eye’, and the auto-
mated evaluation of these ROI placements suggest that, typically,
manually measured ADC values are overestimated, and nCBFROI-max

underestimated. Measures derived from the automated method af-
forded more accurate separation of tumour subtypes when compared to
the manually derived measures, and as such our findings support a
move towards automated tumour sampling where possible. However,
when using the logistic regression model (with ADC and CBF values
combined), manually measured values provided a low/high-grade
predictive accuracy of 92% for reader 1 and 96% for reader 2. As such,
the limited precision and accuracy of manually measured values do not
appear to greatly diminish their diagnostic utility, and their use is
justified if automated tumour sampling techniques are not available.

4.5. Limitations

Our study had a number of limitations. Firstly, the size of our va-
lidation cohort was fairly small, and as such we were not sufficiently
powered to validate a number of the histological subgroup comparisons
presented in the meta-analysis. This reflects a general limitation of
performing a single-centre study on a rare disease with a broad spec-
trum of biological features. Furthermore, we did not account for mo-
lecular tumour classifications in this study, which is likely to form a key
aspect of diagnosis in future paediatric brain tumours studies. However,

a sufficient quantity of data regarding ADC and CBF values in these
paediatric molecular subgroups has not yet been reported in the lit-
erature to allow for a meaningful meta-analysis.

In addition, the large size of ROI used for deriving CBF values in
normal-appearing grey matter, in relation to the typical thickness of
cortical grey matter, may result in CBF values derived from these re-
gions being subject to partial volume effects with nearby white matter
or CSF. Furthermore, the algorithm used for automated segmentation of
grey matter for CBF normalisation purposes may have been impaired by
the presence of a tumour. Although visual inspection of the segmen-
tations indicated this was not a major problem in this study, the auto-
mated grey matter CBF values may be slightly inaccurate due to this
issue. Lastly, we did not consider more complex metrics regarding the
distribution of ADC or CBF values within a tumour, such as percentile
values, skewness, etc. Although previous studies have shown utility in
some of these parameters, our aim in this study was to examine imaging
metrics which could be readily measured in a clinical environment,
with limited image processing capabilities.

5. Conclusion

The available data regarding ADC and CBF in paediatric brain tu-
mours indicate these parameters are useful for the stratification of
certain histological subtypes, and, where possible, the significant dif-
ferences between subtypes identified in the literature were confirmed in
our validation cohort. Identification of low- and high-grade tumours is
possible using ADC or CBF, and the threshold values presented here are
in agreement with previously published studies and new data from an
independent validation cohort. Automated tumour sampling methods
provide improved accuracy and precision in the measurement of ADC
and CBF, which in turn improves the diagnostic power of these para-
meters. This will be improved further when CBF and ADC values are
combined to predict the malignancy of a tumour.
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