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Abstract  

This study presents an adaptive railway traffic controller for real-time operations based on approximate dynamic programming 

(ADP). By assessing requirements and opportunities, the controller aims to limit consecutive delays resulting from trains that 

entered a control area behind schedule by sequencing them at critical locations in a timely manner, thus representing the practical 

requirements of railway operations. This approach depends on an approximation to the value function of dynamic programming 

after optimisation from a specified state, which is estimated dynamically from operational experience using reinforcement learning 

techniques. By using this approximation, the ADP avoids extensive explicit evaluation of performance and so reduces the 

computational burden substantially. In this investigation, we explore formulations of the approximation function and variants of 

the learning techniques used to estimate it. Evaluation of the ADP methods in a stochastic simulation environment shows 

considerable improvements in consecutive delays by comparison with the current industry practice of First-Come-First-Served 

sequencing. We also found that estimates of parameters of the approximate value function are similar across a range of test scenarios 

with different mean train entry delays. 
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1. Introduction 

Today’s cities are becoming larger and ever more congested. Railways are now more popular than ever before as 

means of commuting into (or out of) cities and passenger numbers are predicted to grow in many countries around the 

world for the foreseeable future. With the increase in passenger numbers over the past decades, and projections that 

this trend is to continue, governments and railway undertakings are therefore eager to increase railway capacity and 

customer satisfaction while at the same time decreasing cost and energy usage. This can be achieved by exploiting 

information and communications technology in control of railway networks. The reason behind this drive is to add 

more capacity and reliability into the railway network by improved usage of current infrastructure and capabilities at 

affordable cost (Department for Transport, 2007a, 2007b). 

Timetabling (or scheduling) and traffic management are two essential elements of railway operations. They allow 

for effective usage of railway resources including infrastructure, crew and rolling stocks. Timetables also inform the 

operators and passengers of the movement of trains. Because railway timetables are based on deterministic running 

of trains and their dwell times at stations, time margins are added to timetables to accommodate unforeseen variations. 

Due to the time taken to compute a new timetable, full recalculation in response to disturbances, in current practice 

train dispatchers rely on their own experience to modify railway operations to recover delays or limit their propagation 

onto other train services. However, the efficiency and effectiveness of these actions is often unknown. In such cases 

deploying automatic re-scheduling tools has been shown to improve performance by limiting delay and returning 

operation to the planned timetable as quickly as possible. 

Real-time regulation of railway traffic aims at ensuring safe, punctual and energy-efficient train operations. These 

Railway Traffic Management (RTM) systems anticipate future conflicts based on current speeds and positions of 

trains and provide suitable control measures. By using this real-time information to assess requirements and 

opportunities, the motion of trains can be controlled advantageously through real-time management of sequencing of 

trains and of acceleration and deceleration of individual trains. This will facilitate response to perturbations and other 

minor deviations from scheduled operation and to major disruptions to expedite recovery; in doing so it will support 

the operation of enhanced timetables that meet the increasing call on rail network capacity by passenger and freight 

operations.  

1.1. Literature review 

A growing literature is available on real-time RTM (Cacchiani et al., 2014; Corman and Meng, 2015; Fang et al., 

2015) which has shown the effectiveness and benefits of using such tools in some particular circumstances. 

Here we distinguish between different types of delays according to the following definitions:  

i) primary delays arise from deviations from normal operation traffic, e.g. longer than expected dwell times,  

ii) consecutive delays are ones caused to other trains from the primary delays, and  

iii) total delays are the sum of all primary and consecutive delays. 

Adenso-Diaz et al. (1999) formulated the real-time timetable and rolling stock re-scheduling problem in cases of 

large disruption to one or more trains as a Mixed Integer Linear Programme (MILP). Because the problem is hard to 

solve using existing MILP solvers, a heuristic was developed to produce feasible solutions that are intended to increase 

the number of passengers transported within the planning period. The model was implemented in practice and 

solutions produced were reported to be appealing. Törnquist and Persson (2007) also formulated the re-scheduling 

problem for large networks as a MILP model which considers reordering and rerouting of trains with the objective of 

minimising train delays. Because MILP solvers could not find feasible solutions within reasonable times, Törnquist 

(2012, 2007) extended this work by presenting a heuristic and reported that good solutions could be calculated quickly.  

Another instance of MILP formulation for re-scheduling was formulated by Pellegrini et al. (2014) with the aim of 

obtaining optimal solutions for re-scheduling and re-routing of trains at a local level. Two objectives were considered: 

i) minimising the largest consecutive delay, and ii) minimising total consecutive delays for all trains. A rolling horizon 

approach was adopted to evaluate the effects of using different planning periods. 

The alternative graph formulation for railway re-scheduling has also been widely reported. This is a discrete 

optimisation formulation which can be used to model re-scheduling problems with no-wait and no-store constraints 

that has been applied to job shops (Mascis and Pacciarelli, 2002). Several works are reported in the literature using 



 Taha Ghasempour, Benjamin Heydecker / Transportation Research Procedia 00 (2019) 000–000  3 

the Alternative graph model to formulate the railway re-scheduling problem; among the first, D’Ariano et al. (2007a) 

proposed a branch-and-bound solution algorithm for re-scheduling trains in real-time, where block sections are 

characterised as machines and trains as jobs in the formulation, therefore providing a microscopic view of the railway 

network under consideration. This formulation allows for presentation of railway network safety constraints including 

that at any time, at most one train is present in each block section of the track. Building on their previous work 

D’Ariano et al. (2007b) adopted a blocking time model to evaluate the feasibility of headways between following 

trains, and train speed profiles are updated considering preceding signal aspects. Mazzarello and Ottaviani (2007) 

similarly use the Alternative graph formulation to produce a conflict-free timetable for trains; they also computed 

associated train speed profiles to minimise train energy consumption.  

Corman et al. (2012, 2010a, 2009) extended the work of D’Ariano et al. (2007a) to include local re-routing of trains 

with the objective of minimising the maximum consecutive delay. Corman et al. (2014, 2010b) extended their work 

by introducing a controller that coordinates multiple local areas to control large networks. For a limited number of 

areas, their framework is reported to perform well, but as the planning horizon is extended and the number of local 

areas is increased, good solutions could not be guaranteed.  

Ho et al. (1997) developed and tested a traffic controller for railway junctions using dynamic programming (DP). 

Their method included approximations in the traffic flow model and optimisation process to improve computational 

speed. Their work established DP as a method that is appropriate to model railway junction traffic but not ideal to 

derive optimal solutions in real-time due to the computational effort required.  

Among the few that have investigated and tested RTM methods in stochastic environments, Meng and Zhou (2011) 

employed a macroscopic stochastic programming model to account for the stochastic nature of railway traffic to solve 

a single-track train dispatching problem under uncertain running times and capacity loss durations. The objective 

function adopted for this work was to minimise weighted combination of penalties for earliness and lateness of trains. 

Quaglietta et al. (2013) also tested a re-scheduling approach, formulated using an alternative graph model, under 

uncertainty by employing a Monte-Carlo scheme. Larsen et al. (2013) proposed a framework to evaluate the robustness 

of a re-scheduling solution according to its accommodation of small stochastic variations in running and dwell times 

of trains in the network without increasing output delays; this research showed that allowing for the stochastic nature 

of the railway environment improves performance compared to the first-come-first-served (FCFS) heuristic.  

1.2. Motivations and objectives 

The available literature on RTM shows that comparatively few industrial prototypes of these systems have been 

implemented in practice (Borndörfer et al., 2017; Mannino and Mascis, 2009; Mehta et al., 2010). One significant 

difficulty with the approaches to real-time train re-scheduling is that they are heavily affected by the size of problem 

instances. The complex nature of railway operations means that there are a large number of: i) possible states; ii) 

feasible actions which can be taken; and iii) possible outcomes of making each decision. This means that for congested 

and complex railway networks calculating optimal solutions could be computationally intractable due to the number 

of cases to be considered. Furthermore, most re-scheduling approaches in the literature assume optimisation in an 

ideal environment and report results from testing in simulations configured accordingly. However, the railway 

environment has a highly stochastic nature in which efficiency and accuracy of re-scheduling controls are the essence 

of reliable operations.  

It is therefore desirable to build upon the existing re-scheduling methods to develop frameworks in which 

optimisation can be achieved reliably and in a timely manner as this represent the practical requirements of railway 

operations closely. This will increase the chances of effective implementation of real-time traffic management systems 

in practice.  

One promising method in the field of optimisation and control that has attracted much attention in the recent 

decades is Approximate Dynamic Programming (ADP) due to its effectiveness in tackling stochastic applications 

where the state and action spaces are large (Li and Womer, 2015; Medury and Madanat, 2013; Papadaki and Powell, 

2002; Papageorgiou et al., 2014; Simão et al., 2009; Van Roy et al., 1997; Zhang and Dietterich, 1995). ADP is a 

variant of DP which uses approximation in the evaluation of candidate control decisions. It is often used when the 

robustness of a DP is required but the problem is too complicated for a DP strategy to tackle in an efficient and timely 

manner. The ADP is based on an algorithmic strategy that uses the result of each optimisation to update the current 
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approximation of future performance. Through this updating, the ADP can adapt its optimisation in response to 

changes in the operating environment.  

Although the use of ADP to solve operational railway problems is rare, studies in railway related ADP are emerging 

(Powell and Bouzaiene-ayari, 2007; Šemrov et al., 2016; Yin et al., 2016). An area of research which has similarities 

to the RTM problem is the field of road traffic signal control. Cai et al. (2009) investigated the application of ADP to 

signal control of road traffic, aiming to develop an adaptive controller for online operation. In this work, a linear 

approximation function was employed with parameter values updated during operation using reinforcement learning 

techniques. Two learning techniques were used in this work: Temporal-Difference (TD) learning (Sutton, 1988) and 

perturbation learning (Papadaki and Powell, 2003). The TD method tracks the difference between current 

approximation of performance and values estimated from current state values. This difference is used to update values 

of the parameters in the approximation function. Perturbation learning estimates the gradients of the approximation 

function by perturbing the system state. Despite these different learning methods, Cai et al. found no substantial 

difference between their performance in numerical experiments. 

Given the robustness of ADP in tackling scheduling problems, as is presented in the literature, the objective of this 

paper is to develop an adaptive RTM framework, based on ADP with two distinct learning techniques, to mange 

railway traffic by controlling train sequences at critical points (such as junctions, merges and crossings). The 

framework is then evaluated in a separate high fidelity stochastic simulation environment to investigate its 

performance in the presence of uncertainties that are typical of practical operation. 

The remainder of this paper is organised as follow: In section 2 we introduce ADP and present our learning methods 

in general terms. The ADP frameworks are then developed for the railway re-scheduling problem in section 3. Section 

4 introduces our test case network, discusses the stochastic environment in which our ADP frameworks are tested and 

presents findings from our numerical experiments. We conclude this paper and consider the scope for future research 

in section 5. 

 

Nomenclature 

 

𝑠 is a vector of system state; 

𝐽(𝑠) is the true value function associated with state 𝑠; 

𝐽(𝑠, 𝑟) is an approximate function of 𝐽(𝑠); 

𝑟 is a vector of functional parameters;  

∆𝑟 is an adjustment to 𝑟;  

𝑢 is a decision vector;  

 

 

 

𝐸 represents the expectation over random information; 

𝛼 is a discount factor;  

𝜃 is a discount rate for cost incurred in the future;  

g(. ) is a one-step cost function;  

𝜙(. ) is a feature-extraction function;  

𝑒(. ) is an error function. 

 

2. Approximate Dynamic Programming 

Even though DP provides exact solutions for optimisation over time, it suffers from the ‘curses of dimensionality’ 

(Powell, 2011). This refers to the computational demand involved in calculations of DP which are exponential to the 

size of each of the state space, information space and decision space. In this section, we outline how ADP reduces this 

computational burden while extracting information from each optimisation to adapt to the operating environment and 

so to improve its decisions. Under the concept of reinforcement learning, certain specific techniques of temporal-

difference learning are discussed, which form the basis of the present ADP framework. 

2.1. Dynamic programming 

Let 𝑠 ∈ 𝑆 be a vector of state variables of the system, 𝑢 ∈ 𝑈 the vector of decision variables, and  g(.)  a function 

that calculates the cost during a step from one optimisation to the next based on the state and decision. Given an initial 

state 𝑠𝑡 and future-discount factors   𝛼𝑖  (𝑖 ≥ 0) a dynamic programme over a horizon of 𝑇 steps calculates a sequence 

of decisions  u  from time step  t  by solving: 
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T
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=

 
 
 
 . 

 

(1) 

The optimal performance  J  stating from state  st  at step  t  can be calculated by solving Bellman’s recursive 

equation (Bellman, 1957): 

( ) ( ) ( )( ) 1 1min , ,t t t t
u U

J s E g s u s J s u+ +


= + . 

 

(2) 

The backward dynamic programming procedure addresses this by starting from the final time  T , assuming the 

optimal value function 𝐽(𝑠𝑡+𝑇) is known, and solving equation (2) recursively working backward to the initial state  st  

to obtain the optimal sequence of decisions which would lead to the associated estimate of performance. 

Although equation (2) characterises an elegant way of representing an optimisation problem, it can be 

computationally expensive and therefore is not practical for operational use. The reason for this is the need to consider 

the entire state space to calculate the optimal decision at each step, so that the computational intensity grows 

exponentially with additional state spaces.  

Employment of DP for real-time control is especially onerous. For one, considering the entire state space to the 

end of the planning period at every time step may not be efficient, as plans for future decisions might be varied in light 

of emergence of new information so that decisions planned in the ‘tail’ period may never be implemented. 

Furthermore, complete information on future states might not be available owing to the stochastic environment. 

Although the opportunity will often arise to revise these decisions as their time approaches, calculating them in the 

first place is not necessarily a productive use of computational effort. 

2.2. ADP with linear function approximation  

In DP, the Bellman equation requires that at each step t, for each state in space S with I dimensions, decision in 

space U with K dimensions, and outcome in space O with W dimensions, a value function J be calculated to make an 

optimal decision. Therefore, the computational demand would increase quickly and exponentially as 𝑆𝐼 × 𝑈𝐾 × 𝑂𝑊.  

To address difficulties the consequent difficulties associated with DP, the approximate dynamic programme (ADP) 

approach to decision-making has been developed. This approach works forward in time and employs a greedy 

approach to make decisions using available information in an exhaustive search with explicit evaluation in the short-

term future denoted as  g(.)  together with an approximation 𝐽(. ) to the value function  J(.)  after that. This means that 

the ADP does not compute the exact value function  J(.) , and so avoids the need to solve equation (2) for each state  

st  at every future time step.  Therefore, we reduce the future extent of the state space considered by replacing the true 

value function 𝐽(𝑠) with an approximation  𝐽(𝑠,  𝑟) with parameters  r  but does not represent decisions explicitly. This 

has the effect to make the computational requirement polynomial to the number of state variables, rather than being 

exponential to the size of state space.  

In this forward process, the focus is on the near-future for which information is more reliable and decisions 

imminent. Reinforcement learning is then used to update the parameters  r  of the approximation function 𝐽(𝑠,  𝑟) 

according to the estimated optimal performance after each optimisation. At each time step  𝑡  we estimate the value of 

the current state with explicit decisions in the near future and using the approximation 𝐽(. ) to represent performance 

after that, implicitly assuming optimal decisions after time  t+T .  Thus 

( ) ( ) ( )1 1 1

0

min , , ,
T

t i t i t i t i t T t T t
u U

i

J s E g s u s J s r+ + + + + + + +


=

 
= + 

 
     

 

(3) 
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hence implementing at each time step 𝑡:   

( ) ( )*

1 1 1

0

arg min , , ,
T

t i t i t i t i t T t T t
u U

i

u E g s u s J s r+ + + + + + + +


=

 
= + 

 
   

 

(4) 

 

Equation (3) calculates costs  g(.)  only for states  st  that are visited, so reducing the computational burden 

substantially. These explicit cost calculations are moderated by use of the approximation function  𝐽(. )  to represent 

future costs implicitly.  This is one way in which ADP gains efficiency over backward dynamic programming. We 

adopt a separable linear approximation function for the approximate value function 𝐽(. ) , which can therefore be 

expressed as: 

( ) ( ), 'J s r r s=  ,                         

 

(5) 

where 𝑟 =  (𝑟1, 𝑟2, … , 𝑟𝑀)′ is a column vector with each entry a parameter of the approximation function, and 𝜙(. ) is 

a features extraction function (or basis function) defined on the state space 𝑆 and so maps the state to a feature vector 

for which 𝑟 is the associated parameter vector and 𝑀 is the number of features used. Tsitsiklis and Van Roy (1997) 

proved that for linear functions 𝐽(. ), under certain assumptions, this approximation process converges to the unique 

optimal parameter vector 𝑟∗.  

There are several different methods for updating the parameter vector 𝑟 (Powell, 2011). In the present work, we 

explore some variants of the temporal difference (TD) learning techniques (Bradtke and Barto, 1996; Sutton, 1988). 

This reduces the difference between the approximated value function 𝐽(𝑠, 𝑟) and the optimised value function 𝐽(𝑠), to 

improve the quality of approximations as more state transitions are observed. In the remainder of this section we build 

explore the literature on TD learning and introduce the implementations that were developed for the present 

application. 

2.3. Temporal Difference learning 

The approach of TD learning is to adjust the parameter vector 𝑟, once after each optimisation, to improve the 

estimated value by using the observed value. This is achieved by comparing the value  𝐽(𝑠𝑡 , 𝑟𝑡) for the current state  st  

with the optimised value 𝐽(𝑠𝑡) from (3), to construct the measure of discrepancy: 

( ) ( ) ( ),t t t t tr J s J s r= −  

 

(6) 

Combining equations (3) and (6), a temporal difference 𝛿𝑡 at time step 𝑡 is described as:    

( ) ( ) ( ) ( )*

1 1 1

0

, , , ,
T

t t i t i t i t i T t T t t t

i

r g s u s J s r J s r+ + + + + + +

=

= + −    

 

(7) 

In this expression , the future discount factors   < 1  are required because the future estimate  𝐽𝑡+𝑇   is augmented 

by the short-term values  gt+i  before comparison with the immediate estimate  𝐽𝑡 .  Standard TD literature adopts the 

quadratic error measure  𝑒𝑡(𝑟) = 𝛿𝑡
2(𝑟)  and calculates the  M  parameter values that would minimise this when 

aggregated over past time steps by solving after each step (4), the  auxiliary optimisation 

( ) ( )
0

minimise
t

t i t i
r

i

E r e r−

=

=
 

 

 

                                                                                                   (8) 
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for some positive discounting factors  i  (0 < i < t)  that are non-increasing in  i .  By decreasing rapidly with  i , these 

discounting factors can be used to weight recent discrepancies more heavily with the effect that the objective function 

will emphasise the corresponding operating conditions. 

The solution to (8) can be used to calculate adjustments ∆𝑟𝑡  to 𝑟𝑡  that would minimise the current aggregated 

discrepancy as: 

( )arg mint t
r

r E r r


 = + . 

 

(9) 

For the solution to (9) to be well-defined, M-1 > 0 so that there are at least as many contributions  ei(r)  to the 

minimand as  M ,  the number of parameters in  r .  In the case that additionally M = 0  and the stationarity conditions 

for minimality of the solution are mutually independent, there will be a unique solution (9) to (8).  

In the case that  M-1 = 0 , there will be a continuum of solutions. In such cases, adjusting to  𝑟𝑡+1 = 𝑟𝑡 + ∆𝑟𝑡  has 

been found to be prone to policy oscillation and overshooting manifested as fluctuating values of  r  (Bertsekas, 2011; 

Wagner, 2014), resulting in poor performance. We experienced this phenomenon while implementing TD for railway 

traffic management. Consequently, when using only current observations (ie 1 = 0), we adopt moderated adjustments  

𝑟𝑡+1 = 𝑟𝑡 + 𝜂𝑡  ∆𝑟𝑡   where  𝜂𝑡 ∈  (0,  1)   (𝑡 ≥  1)  is a decreasing sequence of moderating factors that satisfy the 

following conditions for convergence of  r : 

1

t

t




=

= 
 

2

1

t

t




=

 <  

 

 

(10) 

In this approach, use of rapidly decreasing discounting factors  i  (0 < i < t) that emphasise recent discrepancies 

will lead to greater adaptiveness of the ADP optimisation (3) to current operating conditions. Similarly, greater values 

of  t  allow for greater adjustment to the parameters  r  so can lead to more rapid adaptation of the system but expose 

it to stochastic fluctuations, whilst lesser values of  t  confer greater stability on the values of parameters  r .   

For the cases where M-1 > 0, the TD method applies the following Newton-based adjustment once after each 

optimisation: 

( ) ( ) ( ) ( )
1

0 0

.
t t

t j t j t t j t i t i t t i t

j i

r r r r r

−

− − − −

= =

  = −    
 
        

 

 

(11) 

Using the linear form of equation (5) for the approximate value function  𝐽(𝑠, 𝑟) , equation (7) becomes: 

( ) ( ) ( )*

1 1 1

0

, , ' '
T

t i t i t i t i T t t T t t

i

g s u s r s r s+ + + + + + +

=

= +  −      . 

 

(12) 

The optimisation (8) is then quadratic in  r  and is solved exactly, where it can be calculated, by (11) which becomes 

         

( )

( ) ( ) ( )

1

0

1 1

0

where and 0 .

t

t t i t i t t i

i

t

t j t j t j k T k T k

j

r r

s s k t

−

− −

=

− − + + +

=

 = − 

=    = −  





H

H

 

   

 

  

          (13)    

The initial value 𝑟0 can be an arbitrary vector, or calculated according to a period of training using historical data. 
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Certain special cases of TD learning arise according to the specification of  i  that are worthy of note. We consider 

these in turn. 

 

One-step TD learning: 1 = 0 .  In this case, only the current discrepancy  t  is considered in calculating rt .  This 

will lead to degenerate solutions whenever M > 1 because the matrix  r
2t  of second derivatives will be singular and 

hence non-invertible: there will be a continuum of solutions  r  to  t (r) = 0  that will minimise t
2  to  0 . In such 

cases, a suitable direction  rt  can be furnished by the gradient as  -rt = -(T+1t+T+1 - t)  with modification factor  

t  calculated either to achieve  t (rt - t rt) = 0 or some proportion of this. This can be solved using the accumulated 

estimate  Ht  of the Hessian matrix  H  in a single Newton step:  

         ( )1

0

1
where .

t

t t t t t t t j t j

j

r r
t

−

− −

=

 = −  =  H H  

(14)  

              

It can also be solved by using the Moore-Penrose pseudo-inverse  Pt  of the second derivative t t
   of  et , thus  

rt = -Pt t  t , which will give another solution to t (rt + rt) = 0 . 

 

M-step TD learning:  M-1 > 0 ,  M = 0 .  In this case, provided that the information in the  M  discrepancies  i  

(0 < i < M) is mutually independent, then the matrix  r
2t  of second derivatives will be invertible and there will be a 

unique solution  r  to (8) that achieves the global minimum of  0 . 

 

Least squares TD learning: i = 1/t  (0 < i < t) .  This formulation (LSTD) was introduced by Bradtke and Barto 

(1996). After each optimisation (3), LSTD solves for parameters  r  by minimising the sum of squares of all temporal 

differences  i  (0 < i < t)  since the start of operation.  In this case, the objective  

( ) ( )2

0

1 t

t t i

i

E r r
t

−

=

=  . 

 

(15) 

 

of the optimisation  (8) is quadratic in  r  and when  t > M – 1 can be solved in a single Newton step. At this solution,  

( ) ( )0 1 .r t tE r t M =  −  

 

(16) 

 

 

Thus for  t > M , the solution to the minimization (8) is achieved by the single Newton step specified by (13). But 

from (15), 

    ( ) ( ) ( ) ( )2

1

1 1
.t t t

t
E r E r r t M

t t
−

− 
= +  
 

  

 

(17) 

 

so that    ( ) ( ) ( ) ( )1 1

1

1 1 1
.t t r t t t t t t t t t

t
r E r r r t M

t t t

− −

−

 − −    = −  +  =    
  

H H   

  

 (18)            

This is a proportion  1/t  of the one-step TD change given by (14), so with diminishing influence of subsequent 

discrepancies  t  as  t  increases . 

By incorporating all temporal differences up to step  t , LSTD exploits at each step all the data observed since the 

start of the optimisation process. The weight given to the new information in the discrepancy  t  at each step  t as 

against past information, represented by the modification factors t , varies among the strategies according to the 
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choice of the discount parameters  i  (0 < i < t) .  This is achieved at the computational expense of inverting the 

Hessian matrix  Ht  in equation (18).  

3. Adaptive railway traffic control 

We now present the application of ADP for railway traffic control. We discuss the control environment and the 

state space of the RTM system, as used for optimisation, then set out the algorithmic procedure that solves our RTM 

problem using ADP by employing the techniques derived in the previous section. Thus the control method proposed 

here can adapt according to prevailing traffic conditions on the railway network and calculate decisions accordingly.  

3.1. System dynamics 

Railway traffic is currently regulated using ‘fixed block colour light signalling’, which divides the track into a 

series of fixed longitudinal sections called blocks. The operation of these systems is based on two main principles: 

 

• A train cannot be authorised to enter a block if either it is currently occupied by another train, or one has already 

been authorised to enter it, and 

• The distance separating a train from the next one downstream must always be greater than the braking distance 

required for the following train to stop safely.  

 

Under these systems, the trains are regulated by controlling the colour signal lights positioned to the side or above 

the track, with a green signal indicating movement authority into the next block and a red signal indicating that the 

next block downstream is occupied. In case of three and four aspect railway signalling, yellow signals indicate braking 

for trains as they travel towards a red signal further downstream.  

 

Fig. 1 – Representation of the state-space for a horizon of three trains in ADP. 

In this study, we present a method for sequencing decisions at railway junctions that is intended to minimise the 

total consecutive delays of all trains. This objective function can be modified readily to include other considerations 

such as inclusion of importance weights to prioritise certain trains. In the present study we adopt a variant of the state 

space model for RTM presented by Ho et al. (1997) in which conflict resolution is treated as a multistage process in 

which each stage allows one train to pass through the junction and is characterised by the trains that then remain in 

the control area. 
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Excluding the initial stage, the system should undergo as many stages to the future as the number of trains currently 

in the control area: where this is extensive, the number can be substantial. The possible transformations for three trains 

are shown in Fig. 1. When many trains are present in the control area:, the number of possible states at the intermediate 

stages corresponding to Fig. 1 increases exponentially, making DP impractical as a solution method.  

3.2. Control algorithm 

We consider sequence controls at the time each train enters the designated control area: each such event corresponds 

to a stage of the dynamic optimisation. We therefore apply the general representation of ADP presented in the previous 

section to the adaptive control of railway traffic control, by considering decisions 𝑢𝑡 at stage  t  over horizon of  T  

stages to be considered explicitly. We calculate a sequence of decisions 𝑢𝑡
∗ by solving:  

( ) ( ) ( )*

1 1 1

0

arg min , , , 1
T

t i t i t i t i T t T t
u U

i

u E g s u s J s r t T+ + + + + + +


=

  
= +    

  
   

 

(19) 

 

where each stage cost g(𝑠𝑗 , 𝑢𝑗 , 𝑠𝑗+1)  (𝑗 ≥ 0) represents the consecutive delay to all trains under consideration within 

the control area. This is repeated for a sequence of  T  entering trains. In the present case of railway traffic control the 

state 𝑠𝑡 is a combination of traffic state and control state at stage  t  ie information on the trains remaining in the control 

area and awaiting movement authority,  and the controls  u  specify the sequence of right-of-way assignments which 

optimises the junction capacity according to g(.). The objective function therefore represents the stage cost functions 

g(sj, uj, sj+1) of equation (19) together with the implicit future costs  𝐽(. ) .  The resulting optimised value of the 

objective function is the used through equation (8) to update the approximation of the long-term total consecutive 

delays 𝐽(. ) .  We adopt the rolling approach of implementing only the first of the calculated decisions (ie 𝑢𝑡
∗) before 

recalculating (19) at the next stage. 

In this framework, a temporal difference 𝛿𝑡 at stage  t  is: 

( ) ( ) ( )1 1 1

0

, , , ,
T

t i t i t i t i T t T t t t

i

g s u s J s r J s r+ + + + + + +

=

 
= + − 
 
    . 

 

(20) 

 

We adopt a linear form (5) for the approximation function  ( ),J s r .  The procedures for TD learning to calculate 

adjustments ∆𝑟𝑛 to 𝑟𝑛 are then as described in the previous section.  

We developed the explicit stage cost functions  g(si, uj, sj+1) for use in equation (19) and embedded them into a 

separate high fidelity microscopic railway traffic simulator which is configured for railway operations controlled by 

two, three and four aspect signals. Development of this microscopic simulator is to address three points: i) devise all 

feasible sequence permutations for the junction, to avoid resource incompatibility arising from unacceptable train 

conflicts, ii) to calculate the short-term traffic state of the control area under consideration, including train entry and 

exit times for individual block sections, and, iii) to evaluate performance of the ADP framework under different delay 

scenarios.  

The microscopic simulator employs Lomonossoff’s equation to represent train movements inside each block 

section for the specified infrastructure by taking into consideration train characteristics (eg tractive force available), 

signalling system (eg block lengths and signal aspects), interlocking constraints, and station stops. At the heart of this 

microscopic traffic simulator is the calculation of continuous braking curves, which are calculated to stop trains at the 

end of all block sections and stations, and for transitions into lower speed limits. Braking curves calculated for 

scheduled station stops and entry into lower speed limit zones are always respected, though ones to stop trains at the 

end of blocks are only enforced if the next block is occupied. Thus, all safety and operational requirements are 

respected, and infrastructure data and the movement of trains is represented in detail. The temporal resolution adopted 

for this simulator is 0.1 second.  
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Here, we suppose that sufficient real-time data are available for railway systems to anticipate future arrival times 

into the control area. We also suppose that other data are available that describe the probability of events occurring in 

operations, eg distributions for dwell times at stations. Furthermore, we suppose that the latency of the system to 

receive data, calculate plans and deliver optimised sequences to the signaling system is short, ie the communication 

and computation delays are small so that control decisions can be calculated and implemented promptly.  

Subject to this, the adaptive railway traffic control using ADP is summarised in Algorithm 1. In this formulation, 

the movement of the next T trains is represented explicitly, features 𝜙 based on the arrival times into the control area 

are extracted, and the optimal decision 𝑢𝑡
∗ are then calculated using (19). This requires evaluation of performance for 

𝑢𝑡
∗, which is then used to update approximation function by comparing the approximation 𝐽(𝑠𝑡 , 𝑟𝑡) to the optimised 

performance 𝐽(. ) .  The framework then implements the first part of the calculated plan, ie 𝑢1
∗ or the first train to be 

given movement authority into the junction, and consider the next T trains, ie t+1 to T+1. The framework then iterates 

through all remaining trains to produce the complete sequence of trains.  

Algorithm 1 - ADP algorithm for adaptive railway traffic control 

Step 1. Initialisation: 

1.1 Choose an initial state 𝑠0; 

1.2 Initialise parameter vector 𝑟0; 

1.3 Choose the horizon  T  stages to be calculated explicitly; 

1.4 Set 𝑡 = 0; 

1.5 Initiate learning rate 𝜂0 (where required). 

Step 2. Receive current traffic state  s : 

2.1 Set 𝑡 = 𝑡 + 1; 

2.2 Extract features 𝜙(𝑠𝑡) from state 𝑠𝑡 .  

Step 3. Evaluate control decisions  u : 

3.1 Find the optimal decisions 𝑢𝑡
∗ using (19). 

Step 4. Update approximation function  𝐽(. ): 

4.1 Calculate new observation 𝐽(𝑠𝑡) using (3); 

4.2 Calculated current approximation 𝐽(𝑠𝑡 , 𝑟𝑡) using (5); 

4.3 Calculate the  T  stage temporal difference  𝛿𝑡  at stage  at the current stage  t  using (20); 

4.4  TD learning:  

          Update parameter vector  𝑟𝑡  to  𝑟𝑡+1 = 𝑟𝑡 +∆𝑟𝑡   where ∆𝑟𝑡 is calculated according to the TD learning  

          strategy adopted ie (14) or (18). 

Step 5. Implement decision: 

5.1 Implement 𝑢1
∗ ; 

5.2 Update the state from 𝑠𝑡 to 𝑠𝑡+1(𝑠𝑡 ,  𝑢𝑡) using the simulation  

5.3 Return to step 2 if trains remain in the system, otherwise stop. 

 

4. Numerical experiments and discussion  

To evaluate our ADP approach using TD and LSTD learning techniques, infrastructure and operational data for a 

section of United Kingdom’s railway was used to conduct numerical experiments. In this section, we first introduce 

the case study network and discuss challenges and significance of the considered network in terms of mainline 

operations; then, we set out our method for perturbing the timetable and present the stochastic environment in which 

our experiments are conducted. Finally, our results of employing ADP for railway traffic control are presented and 

discussed. In the remainder of this paper we refer to our ADP approaches solely according to their learning techniques 

ie TD and LSTD. 
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4.1. Case study 

Part of the East Coast Main Line (ECML) in the UK is used as an example that represents a high capacity main 

line. The section of network used for our case study is located on the southern part of the ECML between Hatfield and 

Stevenage, runs for approximately 20 kilometres, and includes five stations: Stevenage (major station), Knebworth, 

Welwyn North, Welwyn Garden City and Hatfield. Fig. 2 presents a detailed schematic of the infrastructure layout of 

the considered network which is electrified along its whole length at 25 kV AC and runs on conventional 4-aspect 

signalling.  

The ECML consists of four tracks, one fast and one slow in each direction, for most of its length. The infrastructure 

around the village of Digswell is an exception where four tracks narrow to two tracks over the Welwyn Viaduct that 

carries trains over River Mimram, and through two tunnels north of Welwyn North station. It is on this part of the 

network that High-Speed Intercity services and commuter services with frequent stops must negotiate usage of the 

same tracks. The problem of conflicting requests for use of tracks is exacerbated by commuter trains with planned 

stops at Welwyn North station, which block the line while dwelling at this station. Therefore, efficient management 

of railway traffic on this stretch is of paramount importance to the ECML, as it represents the primary bottleneck on 

the rail link connecting the eastern side of the UK from London and the South East of England to Scotland and the 

North.  

 

 

Fig. 2 – Infrastructure layout of the considered network 

The Welwyn Viaduct is an historic structure that was opened in the mid-19th century and therefore by law cannot 

be altered or demolished, as it is a Grade II listed building. This makes replacement of this known bottleneck 

expensive, time consuming and practically impossible for the infrastructure manager. It is therefore a prime target for 

implementation of such tools as envisaged in the present investigation, and so is ideal for our numerical experiments.      

In our investigation, we simulate the 2018 timetable for a weekday between 7:00 am and 10:45 am. Northbound 

and southbound services do not interact on this network, so can be controlled independently. In this paper, we focus 

on sequencing trains at the bottleneck in Fig. 2 for southbound services (25 High-Speed Intercity services and 5 

Commuter services with frequent stops) that run from Stevenage towards Hatfield and so consider the morning peak 

period on ECML towards London.  

We perturb our timetable by delaying all trains that dwell at Stevenage Station. This includes all commuter services 

with planned stops at Welwyn North Station, as well as some intercity services. Half of the trains are perturbed by 

sampling from a Weibull distribution as Quaglietta et al. (2013) found to be appropriate for this: we adopt shape 

parameter 1.8 and scale parameter 8s, producing mean delays of 7.1 seconds (Fig. 3a). The individual delays can then 

be scaled to generate different traffic scenarios. Of the trains that do not stop at Stevenage, some may be delayed due 

to delayed services dwelling at Stevenage.  

The railway operating environment has substantial stochastic elements, so to assess our framework, we evaluate 

each traffic scenario with Monte-Carlo simulation with 30 combinations of i) dwell times per station, and ii) running 

times per block section that, are generated by random draws from associated probability distributions. In the absence 

of empirical dwell time and sectional running time distributions for our test case, we have assumed the following: 

 
• Station delays: Our case study network includes five stations; of these, all except Stevenage Station are minor 

stations at which a relatively small number of services have planned stops. The dwell times for minor stations are 

generated from a Weibull distribution with 2.56, 20s, 24s as shape, scale and shift parameters respectively. This 
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distribution is reported by Quaglietta et al. (2013) for dwell times at minor stations in the Netherlands and is 

presented in Fig. 3b. The minimum dwell time at a minor station in our test case network is 30 seconds. If a 

sample returns a dwell time less than the minimum dwell time, then 30 seconds is used; taking this into account, 

our mean dwell time at a minor station is 41.8 seconds.  

• Section running time delays: Train drivers vary in their driving behaviour. Factors affecting this include their 

route knowledge and the present weather conditions. Although this variation in behaviour may affect short term 

predictions of traffic state, it is difficult to find a unified probability distribution that represents this. In our study, 

we use a Beta distribution with shape parameters α and β as 5 and 1.5 respectively, shown in Fig. 3c, to represent 

the proportion of the maximum train acceleration that is used by a driver in a block section. Similar to delays at 

minor stations, we set a minimum acceptable proportion as 0.65; therefore, the mean proportion of maximum 

acceleration used on a single block section in our study is 0.79. The purpose of this is to introduce additional 

stochasticity and so to test the robustness of this ADP formulation.  

 

   

(a) (b) (c) 

Fig. 3 – Probability distributions of (a) delays at Stevenage Station without scale factors, (b) dwell times at minor stations, and (c) the 

proportion of the maximum acceleration used by a driver on a block section. 

In this study, the First-Come-First-Served (FCFS) heuristic provides a baseline for comparison of performance. No 

estimate for the globally optimal performance is considered because the computational complexity of RTM makes 

this impractical. All of the control methods were evaluated using realised dwell times and sectional running times, 

whilst the ADP approaches did not use future dwell and running times to calculate control decisions.  

The discount factors 𝛼𝑛 for use in (3) and (4) were calculated as 𝛼𝑛 = 𝑒(−𝑛𝜃), with the discount rate set at  θ = 0.15 

(ie a discount of 15% for each successive train). An issue in using one-step TD learning is the choice of moderating 

step size 𝜂𝑡 in updating the parameters  rt . A common approach in stochastic approximation is to use a stage-varying 

rate: we adopted a constant value for 𝜂𝑡 so corresponding to the exponentially weighted variant. 

All numerical experiments were conducted by computer simulation, implemented in Python 3.4 running under 

Windows 10 on a PC configured with Intel Core i7- 4790 CPU and 32 GB RAM. The computational time for TD and 

LSTD are similar. This depends on the choice of  T  in equation (19) to compute the explicit part of the cost function 

g(.) . Computation of 𝑔(. ) was found to be the most burdensome part of the present ADP framework, where we 

evaluate train movements individually. In this study, we set  T = 3 which translates into a computational time, in the 

stochastic environment, of 1.1 seconds per stage on average. Setting T to 4, 5 and 6 trains was found to increase the 

computational time to 2.86, 6.03 and 11.78 seconds per stage on average, respectively. This is not a specific limitation 

of ADP and arises from the exponential number of explicit calculations for the short-term costs  g(.)  during in the 

stochastic environment. 

4.2. Feature selection 

Among various choices to represent the cost  g  in the objective function of the ADP (1) we considered minimising 

total consecutive delays. There are numerous possibilities for the features 𝜙 in equation (5) that are extracted from the 
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state  st  at each stage  t . Although many features that represent the state and can be extracted could be used for 

approximation of the value function 𝐽(. ), not all combinations will necessarily benefit performance. The choice is 

important as it may affect both effectiveness and computational efficiency of the ADP frameworks. 

To investigate effects of this choice of features    on performance, we simulated a traffic scenario with mean initial 

delay for all trains, measured just downstream of Stevenage Station, as 15 minutes 2 seconds. Combinations of features 

were then tested for LSTD learning under identical conditions to compare performance. We extracted and tested all 

15 combinations of the four features:  

a) scheduled running time of remaining trains in the control area,  

b) train delays as measured just after Stevenage Station,  

c) the time difference between services at the conflict point according to the current plan, and  

d) the service headways according to the current plan.    

 

Fig. 4 presents the mean consecutive delay of all trains when they reach Hatfield Station (Fig. 2) for all 15 

combinations of these features plus performance for 1 controller that uses no features, ie  M = 0  and therefore always 

𝐽 = 0; the FCFS performance for the traffic scenario was 20.48 seconds and is not shown on the graph as it performs 

substantially worse than any of the points shown in Fig. 4. Most combinations of features perform similarly to or 

worse than none at all (corresponding to a  T  step greedy heuristic without any approximation function 𝐽(. )): the three 

combinations {a, c}, {a, b, c} and {a, b, d} did improve performance. 

 

Fig. 4 – Performance of various feature combinations (multiple coincident values are indicated by number) 

  

  Of these, the combination {a, b, d} produced the absolute best performance with a mean of 13.78 seconds per 

train followed closely by combinations {a, c} and {a, b, c} that both produced means of 13.79 seconds per train 

compared with the 14.25 seconds per train for the controller that used no features. We adopted the combination {a, c} 

for use because it performs nearly as well as the best combination but uses one fewer feature. The worst performing 

combination was {b, c, d} with 15.4 seconds per train, which is clearly greater than that of the pure greedy algorithm 

that uses no features at all. In all combinations that included both c and d, poor performance was observed. 
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More combinations of features resulted in worse performance than using none at all, which shows the importance 

of appropriate feature selection for ADP. In the next section, we investigate in detail the performance of our 

frameworks using the {a, c} features, therefore we extract scheduled running time of remaining trains in the control 

area (𝜙1 = 𝑎) and the time difference between services at the conflict point according to the current plan (𝜙2 = 𝑐) 

for the approximate value function   𝐽(. ) . 

4.3. Performance analysis 

Two traffic scenarios were considered. For each, in total 30,000 train delays were generated from the Weibull 

distribution for Stevenage Station, equating to 2,000 morning peaks. Mean initial delay for all trains as measured just 

after Stevenage Station are 4 minutes 37 seconds for Traffic Scenario A, and 14 minutes 58 seconds for Traffic 

Scenario B. These compare with the mean timetable headway between all services on the shared section of Fig. 2 

which is 4 minutes and 39 seconds. Accordingly, we aim to investigate ADP performance during moderate 

perturbations in traffic scenario A, and instances with more substantial perturbations in traffic scenario B.  

In this section we adopt all of the adjustment  r  for LSTD (ie i=1/t , t =1) and, to compare traffic scenarios A 

and B we only adopt a tenth of the adjustment  r  for TD (ie 1=0, t =0.1). Towards the end of this section, a version 

of TD that adopts all adjustments of  r  (ie 1=0, t =1.0) is also considered.  

              Table 1 - Comparison of performance (seconds) 

  Traffic Scenario A   Traffic Scenario B 

      FCFS TD LSTD  FCFS TD LSTD 

Mean consecutive delay 19.35 14.0 14.0  21.33 15.21 15.22 

Mean train running time 296.19 290.83 290.83  298.83 292.69 292.68 

Mean total delay 295.21 289.85 289.85  918.93 912.80 912.79 

 

Table 1 presents comparison of performance among FCFS, one-step TD and LSTD according to three measures of 

performance for each of traffic scenarios A and B. These show that the proposed ADP approach reduces mean 

consecutive delay of FCFS by about a quarter in these scenarios. The two formulations of LSTD and one-step TD 

achieve almost the same performance, meaning the controls produced using the two learning methods are similar (ie 

they computed the same sequences in almost all cases). This need not mean they calculate the same approximations; 

indeed, the mean absolute error in approximation of value function 𝐽 in one-step TD was 63.8 for scenario A and 68.3 

for scenario B, whereas for LSTD it was slightly greater at 64.5 for scenario A and 71.2 for scenario B. In both cases 

however, the approximations favoured similar control decisions. The ADP reduced mean consecutive delays by 

around 28%, mean running times by around 2% and mean total delays by around 1%.    

Table 2 – Percentiles of consecutive delay (seconds) 

  Traffic Scenario A   Traffic Scenario B 

Percentile      FCFS TD LSTD  FCFS TD LSTD 

75th
 24.91 17.48 17.47  29.27 19.45 19.45 

90th 46.32 28.91 29.02  50.52 30.82 30.81 

 

As the primary measure for our objective function, mean consecutive delays reveal how one-step TD and LSTD 

contributed towards their principal goal. One interesting observation is the similarity of the mean consecutive delays 

in traffic scenarios A and B. It seems that initial delays do not influence strongly the consecutive delays incurred inside 

the control area; this can also be observed in Fig. 5a and b, which present boxplots for the mean consecutive delays.  

The main improvements in the high values of delay in Fig. 5 can be seen in the 75th and the 95th percentiles which 

are shown in Table 2. It is evident that the two learning techniques are similarly effective in reducing the proportion 

of long consecutive delays compared to FCFS. Of the two ADP methods, LSTD performs marginally better than does 

TD. 
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Table 3 – 75th Percentiles of train running times (seconds) 

Traffic Scenario A   Traffic Scenario B 

FCFS TD LSTD  FCFS TD LSTD 

281.92 253.31 253.31  281.69 251.24  251.25 

 

As an indication of the rate of track occupancy within our test network, we study the running times of individual 

trains inside the control area. Fig. 6 presents boxplots for train running times in traffic scenarios A and B. As with the 

consecutive delays, both TD and LSTD improve running times substantially in the 75th percentile of Fig. 6, as is 

shown in Table 3.  Unlike the mean consecutive delays, there is a long tail in TD and LSTD individual train running 

times of Fig. 6 with substantially greater high extremes. These arise from trains that are further delayed in the control 

area for the sake of gains in the principal objective of network performance. However, these actions may be especially 

unfavorable to certain train services so the objective could be developed further to achieve more equitable solutions. 

The upper quartile (75th percentiles) in Table 3 are smaller than the corresponding mean values in Table 1 for running 

times, as a consequence of a small proportion of high values that are shown in Fig. 6.   

  

(a) Scenario A (b) Scenario B 

Fig. 5 – Distribution of mean consecutive delays. 

  

(a) Scenario A (b) Scenario B 

Fig. 6 – Distribution of individual train running times inside the control area. 
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Once more, in Fig. 6, similar performance can be seen in the two traffic scenarios even though the initial delays 

differ. The similarities in consecutive delays and running times for both traffic scenarios suggests more attention needs 

to be given to train headways resulting from initial delays rather than the initial delays themselves. This can also be 

hypothesised from performances in Fig. 4.  

  

(a)  Scenario A (b)  Scenario B 

Fig. 7 – Evolution and comparison of learning parameters for TD t of 0.1 and LSTD learning. 

  

(a) (b) 

Fig. 8 – (a) Root Mean Square Error of TD with t of 0.1 and 1, as well as LSTD learnings for traffic scenario A, and (b) evolution and 

comparison of learning parameters for TD  with t of 0.1 and 1 for traffic scenario A. 
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The improvements in total delays in Table 1 are relatively small. Because of the ways that railways operate, most 

initial delays may not be recoverable and indeed this is not included in the present objective. It should be noted that 

the improvements in mean consecutive delays, running times and total delays are similar in both traffic scenarios. 

Comparison of Figs 6a and 6b shows that in ADP, on occasion a few trains are delayed substantially with the intention 

to achieve low average delay during the remainder of that run. 

Fig. 7 presents evolution of the parameters  r  under each of the TD and LSTD learning strategies in the two traffic 

scenarios. The parameters approach similar values notwithstanding the different mean entry delays. TD learning 

behaves similarly in both traffic scenarios, whilst LSTD parameters stabilise on larger values in scenario A compared 

to the more heavily delayed scenario B. Part of the reason for this behaviour may be that in traffic scenario A the time 

difference between services at the conflict point according to the current plan (𝜙2) are smaller and more stable 

compared to traffic scenario B. In the presence of substantial perturbations to trains, greater values of  𝜙2 are extracted 

from the current state. Recalling that LSTD learning solves for parameters  𝑟  by minimising the sum of squares of all 

temporal difference errors since the start of operation, it is perhaps not surprising that r values stabilise on smaller 

values for scenario B compared to scenario A. Also, for the same reason, LSTD becomes more stable as time goes on 

compared to TD learning which puts more emphasis on recent observation. 

Depending on the values adopted for the modification parameters  t , TD may be more adaptive than LSTD, and 

as shown in Fig. 8(a), TD achieves smaller errors than does LSTD which suggest that TD tends to approximate the 

value function more accurately. The reason for this may be the nature of one step TD in reacting to short-term changes 

in traffic on the network whereas LSTD stays stable and approximate according to what has been observed from the 

start of the operations. Furthermore, Fig. 8(a) shows that t = 1 achieves smaller errors as it adopts all adjustments to 

r after every observation which means it reacts to changes in traffic more strongly than it does with t = 0.1; this 

however comes at a cost of reduced stability in the parameters as is clear in Fig. 8(b). It has to be noted that TD with 

t =0.1 and t =1 achieved similar performance. Because LSTD has no modification parameter to be tuned, the 

stabilisation in the parameters for LSTD is achieved automatically. There may be a better specification for the 

modification parameters  𝜂𝑡 than a constant which could contribute to improved performance. 

 

Table 4 – Mean and standard deviation of parameters for TD with t of 0.1 and 1 for traffic scenario A 

       Mean Standard Deviation 

Parameters            t : 0.1 1 0.1 1 

r(1) 0.063 0.072 0.021 0.060 

r(2) -0.057 -0.067 0.025 0.072 

 

The results and the small difference between approximation and learning values presented in this section show that 

both ADP approaches seem to perform well in railway traffic management with similar potential for benefits in terms 

of operational performance. Tests using the exponentially weighted least squares TD learning approach with  

 {0.5, 0.3, 0.1} gave performance values that are almost indistinguishable from the LSTD approach so are not 

reported in detail here, though greater values of    resulted in greater fluctuations in estimates of the parameters  r  of 

the approximation function. 

5. Conclusions 

This study presents an investigation into an adaptive railway traffic controller for real-time operations that applies 

approximate dynamic programming (ADP). By assessing requirements and opportunities, the controller aims to limit 

train delays by advantageously controlling the sequencing of trains at critical locations in a timely manner. Few in the 

literature have investigated methods that are appropriate for use in stochastic environments. Many suffer from high 

computational complexity, which makes them inefficient or difficult to adopt for practical operation. We therefore 

have developed an ADP framework to reduce the computational burden which in turn confers flexibility in control in 

a stochastic environment that has been tested using a Monte-Carlo scheme. We have formulated our problem as a 

dynamic program and use ADP to approximate the optimised value function, and reinforcement learning techniques 
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to update the approximation. This algorithmic framework reduces the number of states to be evaluated substantially, 

which leads to a corresponding reduction in the computational burden. In this investigation, we explore the variants 

of temporal difference (TD) and least-squares temporal difference (LSTD) learning techniques. Because number of 

features is sufficiently small, the parameters of the linear approximation function can be updated using a closed-form 

expression based on Newton’s method. This avoids the widely used methods of TD learning based on gradient descent 

that have been found to lead to policy oscillation and overshooting. The present investigation found that features of 

the approximation function must be selected carefully, as some possible combinations do not improve performance 

compared to a ‘greedy’ approach in which the criterion for optimisation focuses exclusively on short-term 

performance.  

The numerical tests reported here were based on two traffic scenarios, each equating to 2,000 morning peaks, and 

represent moderate and severe perturbations to trains running on the test network. As the primary measure, the 

objective function of mean consecutive delays was reduced by around 28% using the ADP framework by comparison 

with conventional first-come first-served control. The even greater proportionate reduction in the higher percentile 

points of the distribution of consecutive delays shows that the ADP framework reduces longer delays effectively, 

helping to improve regulation of train services.  

Comparing the TD and LSTD approaches to estimation of parameters in the value approximation function, we 

found similar values between these approaches, though the values estimated by one-step TD fluctuated from moment 

to moment whilst those estimated by LSTD necessarily stabilised because they are calculated using all earlier results 

with equal weighting. The TD estimates can be stabilised to some degree by adopting a weighting with exponential 

decay, so focusing on the most recent caluclations. The error in approximating the value function using TD is smaller 

compared to LSTD in both traffic scenarios, and errors were smaller for both TD and LSTD in the traffic scenario 

with moderate perturbations compared to severe perturbations. We also found that adopting all adjustments to 

parameters r in one-step TD achieved better approximations, although at the cost of reduced stability in the parameter 

estimates.  

The detailed calculation of the cost during a single stage represented by g(.) in equation (19) was found to be the 

most computationally expensive part of the present ADP framework. While testing ADP in a deterministic 

environment we achieved computational times of 0.07 second per stage on average for a lookahead horizon of  T = 3 

trains, compared with 1.1 seconds per stage on average in stochastic environment due to the 30 simulations with draws 

from the distributions for each evaluation of expected performance according to (3). This contrasts with the 

computational time required for FCFS, which was 0.016 second per stage in our experiments.   

To have a fully stochastic framework, this kind of railway traffic control could be formulated as a Markov decision 

process, given that all transition probabilities are known. Such a treatment would be comparable with application of 

the learning approaches described here. Therefore, the present ADP framework can be readily extended to include this 

capability. As an adaptive ADP approach for Railway Traffic Management (RTM), this study has so far focused on 

isolated junctions. The objective of RTM is to achieve good network-wide performance, so the ability of ADP to co-

ordinate network traffic is an interesting topic for further research. The challenge here would be to represent traffic 

state of adjacent control areas effectively and hence extract appropriate features to use in the approximate performance 

function of the local ADP.     
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