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Abstract

Background—High-throughput profiling of circulating metabolites may improve cardiovascular 

risk prediction over established risk factors.

Methods and Results—We applied quantitative NMR metabolomics to identify biomarkers for 

incident cardiovascular disease during long-term follow-up. Biomarker discovery was conducted 

in the FINRISK study (n=7256; 800 events). Replication and incremental risk prediction was 

assessed in the SABRE study (n=2622; 573 events) and British Women’s Health and Heart Study 

(n=3563; 368 events). In targeted analyses of 68 lipids and metabolites, 33 measures were 

associated with incident cardiovascular events at P<0.0007 after adjusting for age, sex, blood 

pressure, smoking, diabetes and medication. When further adjusting for routine lipids, four 

metabolites were associated with future cardiovascular events in meta-analyses: higher serum 

phenylalanine (hazard ratio per standard deviation: 1.18 [95%CI 1.12–1.24]; P=4×10−10) and 

monounsaturated fatty acid levels (1.17 [1.11–1.24]; P=1×10−8) were associated with increased 

cardiovascular risk, while higher omega-6 fatty acids (0.89 [0.84–0.94]; P=6×10−5) and 

docosahexaenoic acid levels (0.90 [0.86–0.95]; P=5×10−5) were associated with lower risk. A risk 

score incorporating these four biomarkers was derived in FINRISK. Risk prediction estimates 

were more accurate in the two validation cohorts (relative integrated discrimination improvement 

8.8% and 4.3%), albeit discrimination was not enhanced. Risk classification was particularly 

improved for persons in the 5–10% risk range (net reclassification 27.1% and 15.5%). Biomarker 

associations were further corroborated with mass spectrometry in FINRISK (n=671) and the 

Framingham Offspring Study (n=2289).

Conclusions—Metabolite profiling in large prospective cohorts identified phenylalanine, 

monounsaturated and polyunsaturated fatty acids as biomarkers for cardiovascular risk. This study 

substantiates the value of high-throughput metabolomics for biomarker discovery and improved 

risk assessment.
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Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. 

Preventive cardiovascular risk assessment relies on established risk factors, including 

dyslipidemia, hypertension and diabetes; however, the first CVD events often originate from 

people classified as being at low or intermediate risk based on current risk algorithms.1–4 
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Detailed profiling of metabolic status, termed metabolite profiling or metabolomics, can 

provide insights into the molecular mechanisms underlying atherosclerosis.5–9 The 

quantification of large numbers of circulating metabolites across multiple pathways may 

also identify metabolic changes prior to the onset of overt disease, and hereby potentially 

lead to earlier and more accurate identification of individuals at high cardiovascular 

risk.10–12

Metabolite profiling has successfully been applied to identify biomarkers for the 

development of type 2 diabetes;13–17 however, few metabolite biomarkers have been 

consistently associated with future cardiovascular events across multiple studies.6,10–12,18 

Technological improvements in sample throughput now allow for metabolite profiling of 

extensive epidemiological cohorts, rather than case-control settings, to enhance biomarker 

discovery and replication.8–10,16–22 Serum nuclear magnetic resonance (NMR) 

metabolomics enables fast, inexpensive and reproducible quantification of circulating lipids 

and abundant metabolites.8,18,19,23–25 Here, we used a high-throughput NMR platform8 for 

metabolite profiling in three large population-based cohorts with the aim of identifying 

circulating biomarkers for cardiovascular risk during long-term follow-up. First, 68 lipid and 

metabolite measures from multiple pathways were tested for association with incident CVD. 

This hypothesis-generating approach was taken to discover novel biomarkers, and hereby 

gain information on disease mechanisms. The ability to improve cardiovascular risk 

assessment, beyond that achieved by established risk factors, was examined by a risk score 

including metabolite biomarkers derived in the discovery study and tested in the two 

validation cohorts.

Analytical confirmation of the identified biomarkers was provided by complementary mass 

spectrometry and gas chromatography. To examine the coherence across metabolomics 

methodologies, the NMR-based biomarker associations with CVD were further compared 

with those obtained from mass spectrometry in the discovery study as well as independently 

in the Framingham Offspring Study.

METHODS

Study populations

An overview of the study design is shown in Figure 1. This observational study examined 

metabolite associations with incident cardiovascular events in the population-based 

FINRISK study as discovery cohort. Metabolite biomarker candidates were replicated in two 

additional population-based cohorts. All participants provided written informed consent, and 

study protocols were approved by the local ethical committees. The main endpoint was the 

first incidence of a major cardiovascular event during follow-up, which includes fatal or 

nonfatal occurrence of myocardial infarction, ischemic stroke, cardiac revascularization 

(coronary artery bypass graft surgery or percutaneous transluminal coronary angioplasty), or 

unstable angina.26 Individuals with prevalent CVD at enrolment were omitted from 

analyses.

The FINRISK 1997 study is a general population survey conducted to monitor the health of 

the Finnish population among persons aged 25–74 at recruitment.22,26,27 In total, 8444 
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individuals were recruited from five study areas across Finland. Participants completed 

questionnaires on smoking status, alcohol usage, and medication. Median fasting time was 

5h (interquartile range 4–6h). Serum total cholesterol, high-density lipoprotein (HDL) 

cholesterol, and triglycerides were measured with enzymatic methods. Metabolite profiling 

by high-throughput NMR was measured during 2012 for 7602 individuals with serum 

samples collected in 1997 available.22 Pregnant women and persons missing risk factor 

information (n=83), and individuals with prevalent CVD (n=263) were excluded, leaving 

7256 individuals for statistical analyses. Tracking of CVD during follow-up (1997 through 

December 2011) was enabled by ICD-10 diagnosis codes from the Finnish National 

Hospital Discharge Register and Causes-of-Death Register. These registers cover all 

cardiovascular events that have led either to hospitalization or death in Finland. The 

cardiovascular diagnoses in these registers have been validated.28

Replication of biomarker associations with CVD and improvements in risk prediction were 

examined in two population-based studies from the UK: fasting serum samples from the 

Southall and Brent Revisited study (SABRE, n=2622)29 and the British Women’s Heart and 

Health Study (BWHHS, n=3563)30 were profiled by the same NMR metabolomics platform 

as used in FINRISK. Detailed information on the study populations is provided in the 

expanded methods online.

Metabolite quantification

A high-throughput NMR metabolomics platform8 was used for the quantification of 68 lipid 

and abundant metabolite measures from baseline serum samples of the FINRISK, SABRE, 

and BWHHS cohorts. All metabolites were measured in a single experimental setup, which 

allows for the simultaneous quantification of both routine lipids, total lipid concentrations of 

14 lipoprotein subclasses, fatty acid composition such as monounsaturated (MUFA) and 

polyunsaturated fatty acids (PUFA), various glycolysis precursors, ketone bodies and amino 

acids in absolute concentration units (Supplemental Table 1).8 The targeted metabolite 

profiling therefore includes both known metabolic risk factors and metabolites from multiple 

physiological pathways, which have not previously been examined in relation to CVD risk 

in large population studies. The 68 metabolite measures were assessed for association with 

incident CVD events using a hypothesis-generating biomarker discovery approach with 

subsequent replication in two independent cohorts. Spearman’s correlations of the 

metabolites are shown in Supplemental Figure 1. The NMR metabolomics platform has 

previously been used in various epidemiological studies9,10,16,17,20–22,31,32, details of the 

experimentation have been described9,24, and the method has recently been reviewed.8,19

A subset of 679 serum samples from the FINRISK study were additionally profiled with 

liquid-chromatography mass spectrometry (LC-MS) using the Metabolon platform33 in a 

case-cohort design for comparison of biomarker associations with incident CVD (expanded 

methods online). The biomarker associations were further compared with those obtained by 

LC-MS-based profiling of the Framingham Offspring Study (fifth examination cycle, 

n=2289 fasting plasma samples), as described in detail previously.13,14 Since several fatty 

acid biomarkers were not measured by LC-MS, the quantification was analytically 

confirmed by comparing NMR and gas chromatography in the Cardiovascular Risk in 
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Young Finns Study (YFS, n=2193 fasting serum samples).34 Metabolite profiling data 

collected at two-time points in YFS9 was further used to examine associations of dietary 

intake with the circulating biomarkers, and tracking of concentrations within the same 

individuals over 6 years.

Statistical analyses

All metabolite concentrations were first log-transformed prior to analyses to obtain 

approximately normal distributions. The metabolite measures were subsequently scaled to 

standard deviation (SD) units separately for each cohort. Associations with incident CVD 

were analyzed separately for each metabolite using Cox proportional hazards regression 

models. In the FINRISK discovery study, metabolite associations were first adjusted for age 

(as time scale), sex, systolic blood pressure, smoking, prevalent diabetes, antihypertensive 

treatment, lipid treatment, and geographical region, and subsequently tested with additional 

adjustment for routine lipid measures (total cholesterol and HDL cholesterol). Metabolites 

associated with CVD at P<0.05 when adjusting for routine lipids were then analyzed in the 

two replication cohorts with full adjustment. Analyses in SABRE were further adjusted for 

ethnicity. Results from individual cohorts were combined using inverse variance-weighted 

fixed-effect meta-analysis. Metabolites associated with incident CVD at P<0.0007 in meta-

analyses were denoted significant biomarkers (Bonferroni correction of P<0.05 accounting 

for 68 independent tests). Sensitivity analyses were conducted in the FINRISK study with 

additional exclusion criteria and covariate adjustment. Metabolites that were nominally 

significant in the meta-analysis (P<0.05) were also tested for association with cardiovascular 

mortality. Since phenylalanine did not meet the proportional hazards assumptions by the 

scaled Schoenfeld’s residuals test in the FINRISK study, the association was tested for 

interaction with age. Phenylalanine was further examined for association with death from 

coronary heart disease and stroke in meta-analyses.

The potential to improve cardiovascular risk prediction was evaluated by risk scores derived 

based on established factors with and without the significant metabolite biomarkers in the 

models. A multi-biomarker risk score was derived in the FINRISK discovery cohort: all 

combinations of the five significant biomarkers were tested, with established risk factors 

always included in the model. The model giving rise to the best fit based on the Akaike 

Information Criterion was selected. The logarithm of the hazard ratios (HRs) in the 

multivariable model were used as the linear predictor for the biomarker risk score. A 

reference risk score was also derived in the FINRISK study by using only the conventional 

risk factors to define the linear predictor. Due to differences in hazard depending on age and 

geographical regions, the baseline hazard term was derived within each validation cohort. 

The predictive utility of the biomarker risk score was examined in the two validation cohorts 

in terms of risk discrimination and reclassification. Prediction estimates were calculated as 

15-year absolute risk in SABRE (matching the FINRISK follow-up) and as 12-year absolute 

risk in BWHHS. Discrimination was assessed by the correlated censored C-statistic 

approach using jackknife estimation accounting for censoring35 and integrated 

discrimination improvement (IDI). IDI is the difference of mean predicted probabilities 

(absolute risk estimates) between the biomarker score and the reference score for events 

minus the corresponding difference in predicted probabilities for non-events.36,37 IDI thus 
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denotes the average increase in absolute risk estimates by the biomarker risk score for 

individuals who experienced a CVD event plus the average decrease in absolute risk 

estimates for those who did not have a CVD event. Since the absolute risk estimates are 

generally low in the study populations, the relative IDI offers a more intuitive understanding 

of the average improvement in risk prediction accuracy achieved by the biomarker model.36 

Net reclassification improvement (NRI) was examined to determine the extent to which the 

biomarker risk score reassigned individuals to risk categories that more correctly reflected 

whether or not they experienced a CVD event during follow-up. NRI was assessed in two 

risk category ranges: 1) only for individuals in the intermediate risk range of 5–10% based 

on the reference score (clinical NRI)3,4,38, and 2) for the whole study population using the 

risk categories <5%, 5–10% and >10% (categorical NRI).36 In addition, we assessed the 

continuous NRI, which deems any change in predicted risk in the correct direction as 

appropriate without dependency of risk categories.37 All reclassification metrics were 

examined separately for events and non-events, and net reclassification denotes the 

unweighted sum of the two. Model calibration within risk deciles was assessed by Hosmer-

Lemeshow goodness-of-fit test.2

Assessment of the consistency of biomarker associations between NMR and mass 

spectrometry and analytical confirmation of the biomarker quantification is described in the 

expanded methods online. Details of the biomarker associations with dietary data, and 

tracking of metabolite concentrations over time can also be found in expanded methods 

online.

RESULTS

The discovery study included 7256 individuals from the FINRISK general-population 

cohort, free of CVD at baseline. During a follow-up of 15-years, 800 persons experienced an 

incident cardiovascular event. Metabolite biomarker candidates for CVD were replicated in 

the two UK-based population-based cohorts: 2622 individuals from SABRE and 3563 

women from BWHHS, with a total of 941 incident cardiovascular events during 12–23 year 

follow-up. Baseline characteristics and cardiovascular event numbers are summarized in 

Table 1.

Metabolite Associations With Incident Cardiovascular Events

To generate hypotheses on the roles of the metabolite measures in cardiovascular 

pathophysiology, we first examined each metabolite for association with incident CVD in 

the FINRISK discovery study with adjustment only for established non-laboratory risk 

factors: age as time-scale, sex, systolic blood pressure, smoking, prevalent diabetes, 

geographical region, lipid medication, and antihypertensive treatment.2–4 Associations of the 

68 lipid and metabolite measures with incident cardiovascular events are illustrated in 

Figure 2. HRs are scaled to 1-SD increments in log-transformed metabolite concentrations to 

facilitate comparison across metabolites. Overall, 33 metabolite measures were associated 

with future cardiovascular events at P<0.0007 (Bonferroni correction for 68 tests). 

Prominent associations with increased CVD risk were observed for higher circulating 

concentrations of aromatic amino acids, glycolysis metabolites, MUFA relative to total fatty 
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acids (MUFA%), glycoprotein acetyls, as well as the lipid concentrations within medium 

and small very-low-density lipoproteins, intermediate-density lipoprotein and low-density 

lipoproteins. The strongest inverse associations with cardiovascular risk were found for 

lower concentrations of lipids within large HDL particles and for HDL cholesterol. 

Noticeably inverse associations were also observed for ketone bodies as well as ratios of 

omega-3 and omega-6, relative to total fatty acids. The metabolite associations were broadly 

consistent between men and women (Supplemental Figure 2).

To discover metabolite biomarkers for incident CVD independent of routine lipids, analyses 

were further adjusted for total- and HDL-cholesterol. In the FINRISK discovery study, 19 

metabolite measures were associated with cardiovascular events at P<0.05 when adjusting 

for routine lipids in the model (Supplemental Figure 3). These biomarker candidates were 

then further analyzed in the two replication cohorts. In meta-analyses, five metabolite 

measures were significantly associated with cardiovascular events (P<0.0007; Figure 3). 

Higher phenylalanine and MUFA% levels were associated with increased cardiovascular 

event risk. Higher concentrations of omega-6 fatty acids, total concentrations of PUFA, and 

docosahexaenoic acid (DHA; an omega-3 fatty acid) were associated with lower risk. The 

biomarker associations with CVD in absolute concentration units (without log-transform and 

SD-scaling) as well as for upper vs. lower quartiles are listed in Supplemental Table 2. The 

biomarker associations remained similar with additional subject exclusion criteria and 

adjustment factors (Supplemental Figure 4). In particular, associations were stronger with 

further adjustment for serum triglycerides. The magnitudes of the biomarker associations 

were comparable to those of routine lipid measures (Supplemental Figure 5). Metabolite 

measures displaying nominal association with incident CVD are listed in Supplemental 

Figure 6. The metabolite associations were similar or stronger with cardiovascular mortality 

as outcome (Supplemental Figure 7).

While the fatty acid measures displayed coherent associations with incident CVD in each 

cohort, some study heterogeneity was evident in the case of phenylalanine (meta-analysis 

heterogeneity statistic I2=63%, P=0.07; Figure 3). A potential reason may be the interaction 

of phenylalanine with age at end of follow-up (P=0.001 in FINRISK), indicating stronger 

associations of phenylalanine with cardiovascular events at younger age (Figure 4). This 

interaction, with approximately 1% weaker association per year, was consistent in SABRE 

but did not replicate in the older population, with narrower age-range (60–79 years at 

baseline) from BWHHS (Supplemental Figure 8). While phenylalanine was only weakly 

associated with incident cardiovascular events in BWHHS, the amino acid was consistently 

associated with death from coronary heart disease across all three cohorts (Figure 5). In 

contrast, no association was observed for phenylalanine with death from stroke.

Cardiovascular risk score validation and reclassification

A risk prediction score including metabolite biomarkers was derived in the FINRISK 

discovery study. The best model fit was obtained by incorporating four out of the five 

biomarkers (Figure 3) in the score along with established risk factors: phenylalanine, 

MUFA(%), omega-6 fatty acids, and DHA. Coefficients for calculating the risk prediction 

scores with and without these biomarkers are listed in Supplemental Table 3. The potential 
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of the biomarker score to improve risk discrimination and reclassification was tested in the 

SABRE and BWHHS cohorts (Table 2). Although discrimination assessed using the C-

statistic was not enhanced, the risk prediction estimates were on average more accurate in 

the two validation cohorts, both for those who had a CVD event during follow-up (mean 

improvement in risk prediction accuracy or relative IDI 4.5% for SABRE and 3.2% for 

BWHHS) and for those who did not (relative IDI 4.4% for SABRE and 1.1% for BWHHS). 

The model calibration was modest (Supplemental Figure 9), in particular for the older 

women from BWWHS, where both the reference and biomarker risk scores provided 

mediocre discrimination. The continuous risk reclassification was improved by the 

biomarker risk score among individuals who did not experience a cardiovascular event 

(26.8% for SABRE and 15.6% for BWHHS). The net categorical NRI for the whole study 

population was 7.6% for SABRE and 5.3% for BWHHS. Most notably, for persons 

classified in the intermediate risk range (5–10%) based on the reference risk score there was 

a substantial up-classification by the biomarker score to >10% risk among individuals who 

actually developed CVD (clinical NRI among events 20.5% for SABRE and 9.8% for 

BWHHS). Similarly, there was a significant down-classification by the biomarker score to 

<5% for those who remained free of CVD during follow-up (clinical NRI among non-events 

6.6% for SABRE and 5.7% for BWHHS). Reclassification tables for the intermediate risk 

range are shown in Supplemental Table 4.

Cross-platform biomarker confirmation

To verify the biomarker associations across metabolomics methods, we tested metabolites 

that were overlapping between the NMR platform and LC-MS for association with incident 

CVD. In the Framingham Offspring Study (n=2289, 466 events during 12-year follow-up), 

the biomarker associations were consistent with those obtained from NMR, albeit 

phenylalanine was weaker (Figure 6). The biomarker associations were also consistent 

between NMR and LC-MS when compared within the same set of individuals in a case-

cohort subset of the FINRISK study (n=679, 305 incident events; Figure 6). Comparisons of 

biomarker associations across metabolomics platforms with adjustment for age and sex only 

are shown in Supplemental Figure 10. The correspondence between phenylalanine 

(Pearson’s correlation r=0.62) and DHA (r=0.77) quantified by NMR and LC-MS is shown 

in Supplemental Figure 11. MUFA ratio, relative to total fatty acids, and omega-6 fatty acids 

were not measured by mass spectrometry; quantification of these biomarkers was instead 

confirmed by comparison with gas chromatography in 2193 participants from the YFS 

cohort (Supplemental Figure 12). The fatty acid quantification was highly consistent 

between methods: r=0.92 for MUFA (%), r=0.97 for omega-6 fatty acids and r=0.95 for 

DHA.

Biomarker tracking and dietary associations

The metabolite biomarker levels were consistent over 6-year follow in YFS (tracking 

correlations 0.41–0.47) and only slightly weaker over 20-year follow-up in the SABRE 

study (Supplemental Table 5). We further examined associations of dietary intake with the 

circulating biomarker concentrations at two time-points in YFS. Dietary DHA was robustly 

associated with serum DHA levels (P<0.0001 at both time-points), whereas dietary measures 

of phenylalanine, omega-6, and MUFA% were not strongly associated with the 
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corresponding circulating levels (Supplemental Figure 13). Circulating phenylalanine levels 

were not associated with aspartame in the 652 individuals from FINRISK with data 

available on this artificial sweetener (Spearman correlation −0.06, P=0.14).

DISCUSSION

Using high-throughput metabolite profiling in three general-population studies, we 

identified phenylalanine and three measures of fatty acids as independent biomarkers for 

future cardiovascular events. The circulating metabolites were as strongly predictive of 

cardiovascular risk as the conventional lipid risk factors, and were markers of CVD onset 

during more than a decade follow-up. The biomarker associations replicated in independent 

cohorts with varying baseline characteristics including age and ethnicity, and were 

consistent across different metabolite profiling platforms. Whereas higher circulating levels 

of DHA and omega-6 fatty acids have been linked with lower CVD event risk in some 

studies,39–41 the blood levels of MUFA and phenylalanine have not previously been 

associated with higher risk for future CVD in large epidemiological studies. These results 

demonstrate the power of detailed metabolite profiling for biomarker discovery in large 

prospective cohorts, which can yield improved molecular understanding of disease 

mechanisms. In combination, the four biomarkers indicated improved cardiovascular risk 

assessment for people in the intermediate risk range, where clinical decision making remains 

ambiguous.

Phenylalanine is an essential aromatic amino acid, and precursor for tyrosine and dopamine-

related neurotransmitters. The mechanisms by which blood levels of phenylalanine relate to 

cardiovascular risk remain unknown. Phenylalanine has been associated with insulin 

resistance and the risk for diabetes;13–16 however, the association with CVD remained 

similar after adjustment for glucose and insulin. A small case-control study using LC-MS 

suggested an amino acid score including phenylalanine to be associated with CVD.42 

Although phenylalanine alone was not statistically significant in that study, the HR (1.25; 

P=0.11) matched the magnitude observed in the present study. The ratio of phenylalanine to 

tyrosine has been suggested as a proxy of phenylalanine hydroxylase activity;43 however, 

this ratio was not associated with CVD event risk in the present study (HR=1.03; P=0.47). 

Phenylalanine was more strongly associated with CVD before the age of 60. This amino 

acid therefore represents a promising biomarker for early identification of cardiovascular 

risk.

Dietary recommendations support MUFA intake replacing saturated fatty acid to lower 

cardiovascular risk.44 In this study, high blood levels of MUFAs, relative to total fatty acids, 

were associated with higher cardiovascular risk. Similar results have been found for the risk 

of diabetes.17 However, circulating MUFA concentrations do not directly reflect dietary 

intake, since MUFAs constitute the major fatty acids stored in adipose tissue and can be 

synthesized de novo. A potential explanation for the positive association with CVD may be 

that the MUFA levels originate from desaturation of dietary saturated fatty acids.17,45 As 

such, MUFA% could potentially act as a blood biomarker reflecting long-term dietary 

quality.
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The role of PUFAs in CVD pathogenesis remains controversial.39–41,46–49 Intervention trials 

do not suggest risk reduction by omega-3 supplementation.46,47 Trials on omega-6 fatty acid 

consumption are less clear, as most studies evaluate effects of replacing saturated fatty 

acids.48,49 We observed consistent associations of higher blood levels of both DHA and 

omega-6 fatty acids with lower CVD risk, in agreement with some prospective studies on 

circulating PUFAs.39–41 These findings contrast results on the risk for incident diabetes, 

where only omega-6 fatty acids display inverse associations.17 Circulating PUFAs might 

serve as more reliable markers of therapeutic target and cardiovascular risk than 

conventional dietary assssments.10,39–41 Regardless of the therapeutic benefit, DHA and 

omega-6 fatty acid quantification could potentially augment risk assessment on top of 

established risk factors.

Individual biomarkers rarely improve risk prediction.1 The biomarkers identified here were 

quantified by a single analytical platform, which also features measurement of routine lipid 

risk factors.8,9,20,24,31,32 The combination of four biomarkers yielded improvements in risk 

prediction accuracy when evaluated in two independent cohorts. The average improvement 

in risk prediction accuracy (relative IDI) was ~4.5% in SABRE for both individuals who 

developed CVD and those who did not, and 1–3% in BWHHS. This modest improvement 

might relate to differences in age and gender distributions, population sampling, ethnicity, 

and geographical region between derivation and validation cohorts. The poor model 

calibration and lower reclassification rates in BWHHS may potentially be explained by the 

female-only composition as well as the higher baseline age of this study cohort. Novel 

biomarkers for risk prediction are primarily needed for persons in the intermediate risk 

range, for whom treatment decisions are most challenging.1–4 The four biomarkers proved 

particularly helpful in correctly reclassifying individuals in the 5–10% risk grey zone (net 

27% and 15% in the two validation cohorts). Although there are no widely accepted 

definitions of intermediate risk for the composite CVD endpoint studied here, also the 

continuous reclassification metrics were improved in both validation studies. Nonetheless, 

additional investigations should further evaluate the clinical utility of these biomarkers. In 

particular, metabolite profiling in clinical trials could inform on the feasibility of using the 

biomarkers to improve cardiovascular risk assessment. The throughput of the metabolomics 

platform employed now allows for profiling all samples collected in even the largest CVD 

prevention trials.8 This would elucidate the role of detailed metabolite profiling in high-risk 

individuals and patients with prevalent disease, and address the value for risk assessment 

among patients already on statin medication.

Our study has several strengths, including the large number of individuals studied, 

biomarker replication, assessment of risk prediction in independent cohorts, and 

confirmation of biomarker associations across metabolomics methodologies. Some 

limitations should also be considered. First, the metabolite coverage by NMR is limited 

compared to that afforded by mass spectrometry, which might further improve risk 

prediction.5,12 Second, blood sample collections were done before the widespread use of 

lipid-lowering medication and the benefit of modern preventive treatment based on risk 

classification by the highlighted biomarkers remains uncertain.
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Conclusion

Using NMR metabolomics profiling of 13441 individuals with long-term follow-up, we 

have identified phenylalanine and MUFA as novel biomarkers of higher CVD event risk, 

and corroborated omega-6 fatty acids and DHA as biomarkers of lower CVD risk. The 

combination of the four independent biomarkers indicated improved prediction of 

cardiovascular risk for persons classified with intermediate risk based on established risk 

factors. Further studies are needed to elucidate the biological mechanisms underlying the 

associations with CVD, and to clarify the clinical utility of these biomarkers to guide 

cardiovascular risk assessment. Overall, our investigation underscores the value of high-

throughput metabolite profiling in discovery of new and emerging biomarkers for CVD risk 

and their potentially cost-effective use for cardiovascular prevention.
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Figure 1. 
Overview of the study design and statistical analyses conducted.
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Figure 2. 
Metabolite associations with future cardiovascular events. Hazard ratios of 68 metabolite 

measures with incident cardiovascular disease during 15-year follow-up in the FINRISK 

study (n=7256, 800 events). Hazard ratios are per 1-SD log-transformed metabolite 

concentration and adjusted for age, sex, blood pressure, smoking, diabetes, geographical 

region, and cardiovascular medication. Errorbars denote 95% confidence intervals.

★: P<0.0007 (multiple testing correction).
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Figure 3. 
Meta-analysis of metabolite biomarkers for future cardiovascular events. Hazard ratios of 

biomarkers with incident cardiovascular events in three population-based studies and meta-

analysis (n=13441; 1741 events during 12–23 years follow-up). Analyses are adjusted for 

age, sex, blood pressure, smoking, diabetes, geographical region, cardiovascular medication 

as well as total and HDL cholesterol. Hazard ratios are per 1-SD log-transformed metabolite 

concentration and errorbars denote 95% confidence intervals. I2 indicates heterogeneity of 

meta-analysis. Metabolites associated with cardiovascular events at P<0.0007 (multiple 

testing correction) are shown here; associations with P<0.05 are listed in Supplemental 

Figure 6. The four biomarkers highlighted in bold are independent of each other and were 

included in the risk prediction score.
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Figure 4. 
Phenylalanine interaction with age. Hazard ratios of phenylalanine with incident 

cardiovascular disease in different baseline age groups for the FINRISK study. Analyses 

were adjusted for age, sex, blood pressure, smoking, diabetes, geographical region, 

cardiovascular medication as well as total and HDL cholesterol. Hazard ratios are per 1-SD 

higher log-transformed phenylalanine concentration (approximately corresponding to 14 

μmol/L). Errorbars denote 95% confidence intervals. The dashed line denotes the hazard 

ratio for the full age range. The continuous interaction of phenylalanine with age is shown 

for all three cohorts in Supplemental Figure 8.
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Figure 5. 
Phenylalanine associations with vascular mortality. Hazard ratios of phenylalanine with 

death from cardiovascular disease, coronary heart disease and stroke in the three cohorts and 

meta-analysis (n=13815). Analyses were adjusted for age, sex, blood pressure, smoking, 

diabetes, geographical region, cardiovascular medication as well as total and HDL 

cholesterol. Hazard ratios are per 1-SD higher log-transformed phenylalanine concentration 

(approximately corresponding to 14 μmol/L). Errorbars denote 95% confidence intervals. 

The numbers of coronary and stroke deaths sum to a slightly higher number than the 

cardiovascular deaths, since we have considered all causes of death written in the death 

certificate.
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Figure 6. 
Consistency between NMR and LC-MS for biomarker associations with incident 

cardiovascular disease. Metabolites overlapping between metabolomics platforms and 

nominally associated with incident CVD in the present study (P<0.05, Supplemental Figure 

6) are shown. Left panel: Biomarker associations with CVD risk observed in the present 

study based on NMR (white diamonds) compared with those obtained in the Framingham 

Offspring Study based on LC-MS (red squares; n=2289, 466 events). Right panel: 

Biomarker associations with CVD risk in a case-cohort subset of the FINRISK study 

(n=679, 305 events) profiled both by NMR (black circles) and LC-MS (red circles). Hazard 

ratios are per 1-SD higher log-transformed metabolite concentration. Errorbars denote 95% 

confidence intervals. All associations were adjusted for age, sex, blood pressure, smoking, 

diabetes status, geographical region, cardiovascular medication as well as total and HDL 

cholesterol. LC-MS-based associations were further adjusted for batch. The corresponding 

age- and sex-adjusted biomarker associations are shown in Supplemental Figure 10. 

*Associations of omega-6 fatty acids were compared with lysophosphatidylcholine- and 

cholesterolester-linoleic acid in the Framingham Offspring Study, and with total linoleic 

acid in the FINRISK subset. † Associations of DHA were compared with 

lysophosphatidylcholine- and cholesterolester- DHA in the Framingham Offspring Study. ¶ 
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DHA ratio was scaled to the total fatty acid concentration quantified by NMR for both 

platforms. The DHA ratio was not measured in the Framingham Offspring Study.
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Table 1

Baseline characteristics of the study populations.

Clinical characteristics FINRISK 1997 study
(n=7256)

Southall and Brent REvisted study 
(SABRE)
(n=2622)

British Women’s Heart and 
Health Study (BWHHS)

(n=3563)

Women (%) 3678 (51%) 386 (21%) 3563 (100%)

Location 6 regions in Finland London, United Kingdom 23 British towns

Age (years) 48±13 52±7 69±5

Body mass index (kg/m2) 26.6±4.5 26.1±3.7 27.5±4.9

Systolic blood pressure (mmHg) 136±20 124±18 147±25

Total cholesterol (mmol/L) 5.5±1.1 6.0±1.1 6.7±1.2

HDL cholesterol (mmol/L) 1.4±0.4 1.3±0.4 1.7±0.5

Triglycerides (mmol/L) 1.5±1.0 1.8±1.2 1.8±1.0

Lipid-lowering medication (%) 185 (2.6%) 5 (0.4%) 249 (7%)

Anti-hypertensive medication (%) 908 (13%) 294 (11%) 1033 (29%)

Current smoking (%) 1736 (24%) 592 (23%) 392 (11%)

Diabetes prevalence (%) 393 (5.4%) 314 (12%) 356 (10%)

Follow-up time (years, range) 15 20–23 11–13

Incident cardiovascular events 800 573 368

Data are number (%) or mean±SD when appropriate. HDL indicates high-density lipoprotein.
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